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Abstract 

In the feature subset selection problem, a learning algorithm is faced with the problem of 
selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. 
To achieve the best possible performance with a particular learning algorithm on a particular 
training set, a feature subset selection method should consider how the algorithm and the training 
set interact. We explore the relation between optimal feature subset selection and relevance. Our 
wrapper method searches for an optimal feature subset tailored to a particular algorithm and a 
domain. We study the strengths and weaknesses of the wrapper approach and show a series of 
improved designs. We compare the wrapper approach to induction without feature subset selection 
and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is 
achieved for some datasets for the two families of induction algorithms used: decision trees and 
Naive-Bayes. @ 1997 Elsevier Science B.V. 
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1. Introduction 

A universal problem that all intelligent agents must face is where to focus their 
attention. A problem-solving agent must decide which aspects of a problem are relevant, 
an expert-system designer must decide which features to use in rules, and so forth. Any 

learning agent must learn from experience, and discriminating between the relevant and 
irrelevant parts of its experience is a ubiquitous problem. 
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Fig. I. The wrapper approach to feature subset selection. The induction algorithm is used as a “black box” 
by the subset selection algorithm. 

In supervised machine learning, an induction algorithm is typically presented with a 
set of training instances, where each instance is described by a vector of feature (or 
attribute) values and a class label. For example, in medical diagnosis problems the 

features might include the age, weight, and blood pressure of a patient, and the class 
label might indicate whether or not a physician determined that the patient was suffering 
from heart disease. The task of the induction algorithm, or the inducer, is to induce a 
clussiJer that will be useful in classifying future cases. The classifier is a mapping from 
the space of feature values to the set of class values. 

In the feature subset selection problem, a learning algorithm is faced with the problem 

of selecting some subset of features upon which to focus its attention, while ignoring 

the rest. In the wrapper approach [ 471, the feature subset selection algorithm exists 
as a wrapper around the induction algorithm. The feature subset selection algorithm 

conducts a search for a good subset using the induction algorithm itself as part of the 
function evaluating feature subsets. The idea behind the wrapper approach, shown in 
Fig. 1, is simple: the induction algorithm is considered as a black box. The induction 

algorithm is run on the dataset, usually partitioned into internal training and holdout 
sets, with different sets of features removed from the data. The feature subset with the 
highest evaluation is chosen as the final set on which to run the induction algorithm. 
The resulting classifier is then evaluated on an independent test set that was not used 
during the search. 

Since the typical goal of supervised learning algorithms is to maximize classification 

accuracy on an unseen test set, we have adopted this as our goal in guiding the feature 

subset selection. Instead of trying to maximize accuracy, we might instead have tried 
to identify which features were relevant, and use only those features during learning. 
One might think that these two goals were equivalent, but we show several examples of 

problems where they differ. 
This paper is organized as follows. In Section 2, we review the feature subset selection 

problem, investigate the notion of relevance, define the task of finding optimal features, 
and describe the filter and wrapper approaches. In Section 3, we investigate the search 
engine used to search for feature subsets and show that greedy search (hill-climbing) is 
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inferior to best-first search. In Section 4, we modify the connectivity of the search space 
to improve the running time. Section 5 contains a comparison of the best methods found. 

In Section 6, we discuss one potential problem in the approach, over-fitting, and suggest 
a theoretical model that generalizes the feature subset selection problem in Section 7. 
Related work is given in Section 8, future work is discussed in Section 9, and we 

conclude with a summary in Section 10. 

2. Feature subset selection 

If variable elimination has not been sorted out after two decades of work assisted by 
high-speed computing, then perhaps the time has come to move on to other problems. 

-R.L. Plackett [79, discussion] 

In this section, we look at the problem of finding a good feature subset and its relation 

to the set of relevant features. We show problems with existing definitions of relevance, 
and show how partitioning relevant features into two families, weak and strong, helps 
us understand the issue better. We examine two general approaches to feature subset 
selection: the filter approach and the wrapper approach, and we then investigate each in 
detail. 

2.1. The problem 

Practical machine learning algorithms, including top-down induction of decision tree 
algorithms such as ID3 [96], C4.5 [ 971, and CART [ 161, and instance-based algo- 

rithms, such as IBL [ 4,221, are known to degrade in performance (prediction accuracy) 
when faced with many features that are not necessary for predicting the desired out- 
put. Algorithms such as Naive-Bayes [29,40,72] are robust with respect to irrelevant 
features (i.e., their performance degrades very slowly as more irrelevant features are 
added) but their performance may degrade quickly if correlated features are added, even 

if the features are relevant. 
For example, running C4.5 with the default parameter setting on the Monk1 problem 

[ 1091, which has three irrelevant features, generates a tree with 15 interior nodes, five 
of which test irrelevant features. The generated tree has an error rate of 24.3%, which 
is reduced to 11.1% if only the three relevant features are given. John [46] shows 

similar examples where adding relevant or irrelevant features to the credit-approval and 
Pima diabetes datasets degrades the performance of C4.5. Aha [ l] noted that “IB3’s 
storage requirement increases exponentially with the number of irrelevant attributes”. 
(IB3 is a nearest-neighbor algorithm that attempts to save only important prototypes.) 
Performance likewise degrades rapidly with irrelevant features. 

The problem of feature subset selection is that of finding a subset of the original 
features of a dataset, such that an induction algorithm that is run on data containing 

only these features generates a classifier with the highest possible accuracy. Note that 
feature subset selection chooses a set of features from existing features, and does not 
construct new ones; there is no feature extraction or construction [ 53,991. 
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From a purely theoretical standpoint, the question of which features to use is not 
of much interest. A Bayes rule, or a Bayes classifier, is a rule that predicts the most 

probable class for a given instance, based on the full distribution D (assumed to be 
known). The accuracy of the Bayes rule is the highest possible accuracy, and it is mostly 
of theoretical interest. The optimal Bayes rule is monotonic, i.e., adding features cannot 
decrease the accuracy, and hence restricting a Bayes rule to a subset of features is never 
advised. 

In practical learning scenarios, however, we are faced with two problems: the learning 

algorithms are not given access to the underlying distribution, and most practical algo- 

rithms attempt to find a hypothesis by approximating NP-hard optimization problems. 
The first problem is closely related to the bias-variance tradeoff [ 36,611: one must trade 

off estimation of more parameters (bias reduction) with accurately estimating these pa- 
rameters (variance reduction). This problem is independent of the computational power 

available to the learner. The second problem, that of finding a “best” (or approximately 

best) hypothesis, is usually intractable and thus poses an added computational burden. 
For example, decision tree induction algorithms usually attempt to find a small tree that 

fits the data well, yet finding the optimal binary decision tree is NP-hard [ 42,451. For 
neural networks, the problem is even harder; the problem of loading a three-node neural 
network with a training set is NP-hard if the nodes compute linear threshold functions 

[ 12,481. 
Because of the above problems, we define an optimal feature subset with respect to 

a particular induction algorithm, taking into account its heuristics, biases, and tradeoffs. 
The problem of feature subset selection is then reduced to the problem of finding an 

optimal subset. 

Definition 1. Given an inducer 2, and a dataset D with features XI, X2, . . . , X,,, from 
a distribution D over the labeled instance space, an optimal feature subset, Xopt, is a 
subset of the features such that the accuracy of the induced classifier C = Z(D) is 
maximal. 

An optimal feature subset need not be unique because it may be possible to achieve 
the same accuracy using different sets of features (e.g., when two features are perfectly 
correlated, one can be replaced by the other). By definition, to get the highest possible 
accuracy, the best subset that a feature subset selection algorithm can select is an optimal 

feature subset. The main problem with using this definition in practical learning scenarios 

is that one does not have access to the underlying distribution and must estimate the 

classifier’s accuracy from the data. 

2.2. Relevance of features 

One important question is the relation between optimal features and relevance. In this 

section, we present definitions of relevance that have been suggested in the literature.2 

*In general, the definitions given here are only applicable to discrete features, but can be extended to 

continuous features by changing p (X = n) to p (X < x). 
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We then show a single example where the definitions give unexpected answers, and we 
suggest that two degrees of relevance are needed: weak and strong. 

2.2.1. Existing dejinitions 

Almuallim and Dietterich [ 5, p. 5481 define relevance under the assumptions that all 
features and the label are Boolean and that there is no noise. 

Definition 2. A feature Xi is said to be relevant to a concept C if Xi appears in every 
Boolean formula that represents C and irrelevant otherwise. 

Gennari et al. [37, Section 5.51 allow noise and multi-valued features and define 
relevant features as those whose “values vary systematically with category membership”. 
We formalize this definition as follows. 

Definition 3. Xi is relevant iff there exists some xi and y for which p(Xi = xi) > 0 

such that 

p(Y=y 1 Xi=Xi) Z p(Y=y). 

Under this definition, Xi is relevant if knowing its value can change the estimates for 
the class label Y, or in other words, if Y is conditionally dependent on X;. Note that 
this definition fails to capture the relevance of features in the parity concept where all 
unlabeled instances are equiprobable, and it may therefore be changed as follows. 

Let Si = {XI,. . . ,Xi_l,Xi+r,. . . ,X,,}, the set of all features except Xi. Denote by si 
a value-assignment to all features in Si. 

Definition 4. Xi is relevant iff there exists some Xi, y, and si for which p(Xi = xi) > 0 

such that 

p(Y =y,& =si 1 xi = Xi) # p(Y = y,si = Si). 

Under the following definition, Xi is relevant if the probability of the label (given all 
features) can change when we eliminate knowledge about the value of X;. 

Definition 5. Xi is relevant iff there exists some xi, y, and si for which p (Xi = xi, Si = 
si) > 0 such that 

p(Y=y 1 Xi =Xi,Si=Si) Z p(Y=y 1 Sj=Si). 

The following example shows that all the definitions above give unexpected results. 

Example 1 (Correlated XOR) . Let features X1, . . . , X5 be Boolean. The instance space 
is such that X2 and X3 are negations of X4 and X5, respectively, i.e., X4 = z, X5 = x3. 
There are only eight possible instances, and we assume they are equiprobable. The 

(deterministic) target concept is 

Y=X1 @X2 (@ denotes XOR). 
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Table 1 
Feature relevance for the Correlated XOR problem under the four definitions 

Definition Relevant Irrelevant 

Definition 2 

Definition 3 

Definition 4 

Definition 5 

Xl 

None 

All 

X1 

&.X3.X4.& 

All 

None 

x2. x3. x4, x5 

Note that the target concept has an equivalent Boolean expression, namely, Y = 

X1 @ K. The features X3 and Xs are irrelevant in the strongest possible sense. XI is 

indispensable, and either but not both of {Xz, X4) can be disposed of. Table 1 shows 
for each definition, which features are relevant, and which are not. 

According to Definition 2, X3 and X5 are clearly irrelevant; both Xz and X4 are 

irrelevant because each can be replaced by the negation of the other. By Definition 3, all 
features are irrelevant because for any output value y and feature value x, there are two 

instances that agree with the values. By Definition 4, every feature is relevant because 
knowing its value changes the probability of four of the eight possible instances from 
l/8 to zero. By Definition 5, X3 and Xs are clearly irrelevant, and both X2 and X4 are 
irrelevant because they do not add any information to S2 and S4, respectively. 

Although such simple negative correlations are unlikely to occur, domain constraints 

create a similar effect. When a nominal feature such as color is encoded as input to a 
neural network, it is customary to use a local encoding, where each value is represented 

by an indicator feature. For example, the local encoding of a four-valued nominal 
{a, b,c,d} would be {0001,0010,0100,1000}. Under such an encoding, any single 

indicator feature is redundant and can be determined by the rest. Thus most definitions 
of relevance will declare all indicator features to be irrelevant. 

2.2.2. Strong and weak relevance 

We now claim that two degrees of relevance are required: weak and strong. Relevance 

should be defined in terms of an optimal Bayes classifier-the optimal classifier for a 
given problem. A feature X is strongly relevant if removal of X alone will result in 
performance deterioration of an optimal Bayes classifier. A feature X is weakly relevant 

if it is not strongly relevant and there exists a subset of features, S, such that the 
performance of a Bayes classifier on S is worse than the performance on S U {X}. A 
feature is irrelevant if it is not strongly or weakly relevant. 

Definition 5 repeated below defines strong relevance. Strong relevance implies that the 
feature is indispensable in the sense that it cannot be removed without loss of prediction 
accuracy. Weak relevance implies that the feature can sometimes contribute to prediction 

accuracy. 

Definition 5 (Strong relevance). A feature Xi is strongly rehant iff there exists some 
xi, y, and SL for which p( Xi = xi, & = si) > 0 such that 
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Definition 6 (Weak relevance). A feature Xi is weakly relevant iff it is not strongly 
relevant, and there exists a subset of features Si of Si for which there exists some xi, y, 
and si with p( Xi = xi, Si = of) > 0 such that 

A feature is relevant if it is either weakly relevant or strongly relevant; otherwise, it 

is irrelevant. 
In Example 1, feature Xi is strongly relevant; features X2 and X4 are weakly relevant; 

and X3 and X5 are irrelevant. 

2.3. Relevance and optima&y of features 

A Bayes classifier must use all strongly relevant features and possibly some weakly 

relevant features. Classifiers induced from data, however, are likely to be subopti- 

mal, as they have no access to the underlying distribution; furthermore, they may 
be using restricted hypothesis spaces that cannot utilize all features (see the exam- 
ple below). Practical induction algorithms that generate classifiers may benefit from 

the omission of features, including strongly relevant features. Relevance of a feature 
does not imply that it is in the optimal feature subset and, somewhat surprisingly, 

irrelevance does not imply that it should not be in the optimal feature subset (Exam- 

ple 3). 

Example 2 (Relevance does not imply optima&y). Let the universe of possible in- 

stances be (0, 1}3, that is, three Boolean features, say Xi, X2, X3. Let the distribution of 

instances be uniform, and assume the target concept is f( Xi, X2, X3 ) = (X1 A X2 ) V X3. 
Under any reasonable definition of relevance, all features are relevant to this target 

function. 
If the hypothesis space is the space of monomials, i.e., conjunctions of literals, the 

only optimal feature subset is (X3). The accuracy of the monomial X3 is 87.5%, the 
highest accuracy achievable within this hypothesis space. Adding another feature to the 
monomial will decrease the accuracy. 

The example above shows that relevance (even strong relevance) does not imply 
that a feature is in an optimal feature subset. Another example is given in Section 3.2, 
where hiding features from ID3 improves performance even when we know they are 

strongly relevant for an artificial target concept (Monk3). Another question is whether 
an irrelevant feature can ever be in an optimal feature subset. The following example 
shows that this may be true. 

Example 3 (Optimal&y does not imply relevance). Assume there exists a feature that 
always takes the value one. Under all the definitions of relevance described above, this 
feature is irrelevant. Now consider a limited Perceptron classifier [ 81,100] that has an 
associated weight with each feature and then classiftes instances based upon whether 
the linear combination is greater than zero. (The threshold is fixed at zero-contrast 
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Fig. 2. The feature filter approach, in which the features are filtered independently of the induction algorithm. 

this with a regular Perceptron that classifies instances depending on whether the linear 

combination is greater than some threshold, not necessarily zero.) Given this extra 
feature that is always set to one, the limited Perceptron is equivalent in representation 
power to the regular Perceptron. However, removal of all irrelevant features would 

remove that crucial feature. 

In Section 4, we show an interesting problem with using any filter approach with 
Naive-Bayes. One of the artificial datasets (m-of-n-3-7-10) represents a symmetric target 

function, implying that all features should be ranked equally by any filtering method. 
However, Naive-Bayes improves if a single feature (any one of them) is removed. 

We believe that cases such as those depicted in Example 3 are rare in practice and 
that irrelevant features should generally be removed. However, it is important to realize 
that relevance according to these definitions does not imply membership in the optimal 
feature subset, and that irrelevance does not imply that a feature cannot be in the optimal 
feature subset. 

2.4. The filter approach 

There are a number of different approaches to subset selection. In this section, we 

review existing approaches in machine learning. We refer the reader to Section 8 for 
related work in Statistics and Pattern Recognition. The reviewed methods for feature 
subset selection follow the jilter approach and attempt to assess the merits of features 
from the data, ignoring the induction algorithm. 

The filter approach, shown in Fig. 2, selects features using a preprocessing step. The 

main disadvantage of the filter approach is that it totally ignores the effects of the 
selected feature subset on the performance of the induction algorithm. We now review 
some existing algorithms that fall into the filter approach. 

2.4.1. The FOCUS algorithm 
The FOCUS algorithm [5,6], originally defined for noise-free Boolean domains, 

exhaustively examines all subsets of features, selecting the minimal subset of features 
that is sufficient to determine the label value for all instances in the training set. This 
preference for a small set of features is referred to as the MIN-FEATURES bias. 

This bias has severe implications when applied blindly without regard for the resulting 
induced concept. For example, in a medical diagnosis task, a set of features describing 
a patient might include the patient’s social security number (SSN). (We assume that 
features other than SSN are sufficient to determine the correct diagnosis.) When FOCUS 
searches for the minimum set of features, it will pick the SSN as the only feature 
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needed to uniquely determine the label. 3 Given only the SSN, any induction algorithm 
is expected to generalize very poorly. 

2.4.2. The Relief algorithm 
The Relief algorithm [ 50,51,63] assigns a “relevance” weight to each feature, which 

is meant to denote the relevance of the feature to the target concept. Relief is a ran- 
domized algorithm. It samples instances randomly from the training set and updates 
the relevance values based on the difference between the selected instance and the two 
nearest instances of the same and opposite class (the “near-hit” and “near-miss”). The 
Relief algorithm attempts to find all relevant features: 

Relief does not help with redundant features. If most of the given features are 
relevant to the concept, it would select most of them even though only a fraction 
are necessary for concept description [ 50, p. 1331. 

In real domains, many features have high correlations with the label, and thus many 

are weakly relevant, and will not be removed by Relief. In the simple parity example 
used in [ 50,511, there were only strongly relevant and irrelevant features, so Relief 

found the strongly relevant features most of the time. The Relief algorithm was mo- 
tivated by nearest-neighbors and it is good specifically for similar types of induction 

algorithms. 
In preliminary experiments, we found significant variance in the relevance rankings 

given by Relief. Since Relief randomly samples instances and their neighbors from 
the training set, the answers it gives are unreliable without a large number of sam- 
ples. In our experiments, the required number of samples was on the order of two to 
three times the number of cases in the training set. We were worried by this vari- 
ance, and implemented a deterministic version of Relief that uses all instances and all 

nearest-hits and nearest-misses of each instance. (For example, if there are two nearest 
instances equally close to the reference instance, we average both of their contribu- 
tions instead of picking one.) This gives the results one would expect from Relief if 
run for an infinite amount of time, but requires only as much time as the standard 
Relief algorithm with the number of samples equal to the size of the training set. 
Since we are no longer worried by high variance, we call this deterministic variant 
Relieved. We handle unknown values by setting the difference between two unknown 
values to 0 and the difference between an unknown and any other known value to 
one. 

Relief as originally described can only run on binary classification problems, so we 
used the Relief-F method described by Kononenko [ 631, which generalizes Relief to 
multiple classes. We combined Relief-F with our deterministic enhancement to yield the 
final algorithm Relieved-F. In our experiments, features with relevance rankings below 
0 were removed. 

’ This is true even if SSN is encoded in 30 binary features as long as more than 30 other binary features are 

required to determine the diagnosis. Specifically, two real-valued attributes, each one with 16 bits of precision, 
will be inferior under this scheme. 
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Fig. 3. A view of feature set relevance. 

2.4.3. Feature jilter-kg using decision trees 
Cardie [ 181 used a decision tree algorithm to select a subset of features for a nearest- 

neighbor algorithm. Since a decision tree typically contains only a subset of the features, 

those that appeared in the final tree were selected for the nearest-neighbor. The decision 

tree thus serves as the filter for the nearest-neighbor algorithm. 
Although the approach worked well for some datasets, it has some major shortcom- 

ings. Features that are good for decision trees are not necessarily useful for nearest- 

neighbor. As with Relief, one expects that the totally irrelevant features will be filtered 
out, and this is probably the major effect that led to some improvements in the datasets 
studied. However, while a nearest-neighbor algorithm can take into account the effect 
of many relevant features, the current methods of building decision trees suffer from 

data fragmentation and only a few splits can be made before the number of instances 
is exhausted. If the tree is approximately balanced and the number of training instances 

that trickles down to each subtree is approximately the same, then a decision tree cannot 
test more than 0( log m) features in a path. 

2.4.4. Summary of jilter approaches 
Fig. 3 shows the set of features that FOCUS and Relief attempt to identify. While 

FOCUS is searching for a minimal set of features, Relief searches for all the relevant 
features (both weak and strong). 

Filter approaches to the problem of feature subset selection do not take into account 
the biases of the induction algorithms and select feature subsets that are independent 
of the induction algorithms. In some cases, measures can be devised that are algorithm 
specific, and these may be computed efficiently. For example, measures such as Mallow’s 
C,) [ 751 and PRESS (Prediction sum of squares) [ 881 have been devised specifically 
for linear regression. These measures and the relevance measure assigned by Relief 
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Fig. 4. The tree induced by C4.5 for the “Corral” dataset, which fools top-down decision-tree algorithms 

into picking the “correlated” feature for the root, causing fragmentation, which in turns causes the irrelevant 

feature to be chosen. 

would not be appropriate as feature subset selectors for algorithms such as Naive-Bayes 
because in some cases the performance of Naive-Bayes improves with the removal of 

relevant features. 
The Corral dataset, which is an artificial dataset from John, Kohavi and Pfleger [47] 

gives a possible scenario where filter approaches fail miserably. There are 32 instances 
in this Boolean domain. The target concept is 

(AOAAl) V (BOABl). 

The feature named “irrelevant” is uniformly random, and the feature “correlated” matches 
the class label 75% of the time. Greedy strategies for building decision trees pick the 
“correlated” feature as it seems best by all known selection criteria. After the “wrong” 

root split, the instances are fragmented and there are not enough instances at each 
subtree to describe the correct concept. Fig. 4 shows the decision tree induced by C4.5. 
CART induces a similar decision tree with the “correlated” feature at the root. When this 
feature is removed, the correct tree is found. Because the “correlated” feature is highly 
correlated with the label, filter algorithms will generally select it. Wrapper approaches, 
on the other hand, may discover that the feature is hurting performance and will avoid 
selecting it. 

These examples and the discussion of relevance versus optimality (Section 2.3) show 
that a feature selection scheme should take the induction algorithm into account, as is 
done in the wrapper approach. 
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Fig. 5. The state space search for feature subset selection. Each node is connected to nodes that have one 
feature deleted or added. 

2.5. The wrapper approach 

In the wrapper approach, shown in Fig. 1, the feature subset selection is done using the 
induction algorithm as a black box (i.e., no knowledge of the algorithm is needed, just 

the interface). The feature subset selection algorithm conducts a search for a good subset 
using the induction algorithm itself as part of the evaluation function. The accuracy of 

the induced classifiers is estimated using accuracy estimation techniques [56]. The 
problem we are investigating is that of state space search, and different search engines 
will be investigated in the next sections. 

The wrapper approach conducts a search in the space of possible parameters. A 

search requires a state space, an initial state, a termination condition, and a search 
engine [ 38,101]. The next section focuses on comparing search engines: hill-climbing 

and best-first search. 
The search space organization that we chose is such that each state represents a 

feature subset. For n features, there are n bits in each state, and each bit indicates 
whether a feature is present ( 1) or absent (0). Operators determine the connectivity 
between the states, and we have chosen to use operators that add or delete a single 
feature from a state, corresponding to the search space commonly used in stepwise 
methods in Statistics. Fig. 5 shows such the state space and operators for a four-feature 
problem. The size of the search space for n features is 0( 2”), so it is impractical to 
search the whole space exhaustively, unless n is small. We will shortly describe the 

different search engines that we compared. 
The goal of the search is to find the state with the highest evaluation, using a heuristic 

function to guide it. Since we do not know the actual accuracy of the induced classifier, 
we use accuracy estimation as both the heuristic function and the evaluation function 
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Feature Subset 

Training 
Set - 

Fig. 6. The cross-validation method for accuracy estimation (3-fold cross-validation shown), 

(see Section 7 for more details on the abstract problem). The evaluation function we use 
is five-fold cross-validation (Fig. 6)) repeated multiple times. The number of repetitions 

is determined on the fly by looking at the standard deviation of the accuracy estimate, 
assuming they are independent. If the standard deviation of the accuracy estimate is 
above 1% and five cross-validations have not been executed, we execute another cross- 

validation run. While this is only a heuristic, it seems to work well in practice and 
avoids multiple cross-validation runs for large datasets. 

This heuristic has the nice property that it forces the accuracy estimation to execute 

cross-validation more times on small datasets than on large datasets. Because small 
datasets require less time to learn, the overall accuracy estimation time, which is the 
product of the induction algorithm running time and the cross-validation time, does not 

grow too fast. We thus have a conservation of “hardness” using this heuristic: small 
datasets will be cross-validated many times to overcome the high variance resulting 

from small amounts of data. For much larger datasets, one could switch to a holdout 
heuristic to save even more time (a factor of five), but we have not found this necessary 

for the datasets we used. 
The termfonvard selection refers to a search that begins at the empty set of features; 

the term backward elimination refers to a search that begins at the full set of features 
[ 24,801. The initial state we use in most of our experiments is the empty set of features, 

hence we are using a forward selection approach. The main reason for this choice is 
computational: building classifiers when there are few features in the data is much faster. 
Although in theory, going backward from the full set of features may capture interacting 
features more easily, the method is extremely expensive with only the add-feature and 

delete-feature operators. In Section 4, we will introduce compound operators that will 
make the backward elimination approach practical. The following summary shows the 
instantiation of the search problem: 

State 

Initial state 

Heuristic/evaluation 

A Boolean vector, one bit per feature 

The empty set of features (O,O,O.. ,O) 

Five-fold cross-validation repeated multiple times 

with a small penalty (0.1%) for every feature 

Search algorithm 

Termination condition 

Hill-climbing or best-first search 

Algorithm dependent (see below) 
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A complexity penalty was added to the evaluation function, penalizing feature subsets 
with many features so as to break ties in favor of smaller subsets. The penalty was 

set to O.l%, which is very small compared to the standard deviation of the accuracy 
estimation, aimed to be below 1%. No attempts were made to set this value optimally 

for the specific datasets. It was simply added to pick the smaller of two feature subsets 
that have the same estimated accuracy. 

3. The search engine 

In this section we evaluate different search engines for the wrapper approach. We 
begin with a description of the experimental methodology used in the rest of the paper. 
We then describe the hill-climbing (greedy) search engine, and show that it terminates 
at local maxima too often. We then use a best-first search engine and show that it works 

much better. 

3.1. Experimental methodology 

We now describe the datasets we chose, the algorithms used, and the experimental 

methodology. 

3.1.1. Datasets 

Table 2 provides a summary of the characteristics of the datasets chosen. All datasets 
except for Corral were obtained from the University of California at Irvine repository 

[78], from which full documentation for all datasets can be obtained. Corral was 
introduced by John, Kohavi and Pfleger [47] and was defined above. The primary 
criteria were size (real datasets must have more than 300 instances), difficulty (the 
accuracy should not be too high after seeing only a small number of instances), age 
(old datasets at the UC Irvine repository, such as Chess, hypothyroid, and vote, were 
not considered because of their possible influence on the development of algorithms). 

A detailed description of the datasets and these considerations is given by Kohavi [ 571. 
Small datasets were tested using ten-fold cross-validation; artificial datasets and large 

datasets were split into training and testing sets (the artificial datasets have a well-defined 
training set, as does the DNA dataset from StatLog [ 1081). The baseline accuracy is 

the accuracy (on the whole dataset) when predicting the majority class. 

3.1.2. Algorithms 

We use two families of induction algorithms as a basis for comparisons. These are 
the decision-tree and the Naive-Bayes induction algorithms. Both are well known in 
the machine learning community and represent two completely different approaches to 
learning, hence we hope that our results are of a general nature and will generalize 
to other induction algorithms. Decision trees have been well documented by Quinlan 
[97], Breiman et al. [ 161, Fayyad [30], Buntine [ 171, and Moret [ 851; hence we 
will describe them briefly. The Naive-Bayes algorithm is explained below. The specific 
details are not essential for the rest of the paper. 
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Table 2 

Summary of datasets. Datasets above the horizontal line are “real” and those below are artificial. “CV” 

indicates ten-fold cross-validation 

No. Dataset 

I breast cancer 

2 cleve 

3 crx 

4 DNA 

5 horse-colic 

6 Pima 

7 sick-euthyroid 

8 soybean-large 

9 Corral 

10 m-of-n-3-7-10 

11 Monk1 

12 Monk2-local 

13 Monk2 

14 Monk3 

all 

10 

13 

15 

180 

22 

8 

25 

35 

6 

10 

6 

17 

6 

6 

Features No. Train Test Baseline 

classes size size accuracy 

nominal continuous 

0 10 2 699 CV 65.52 

7 6 2 303 cv 54.46 

9 6 2 690 CV 55.51 

180 0 3 2000 1186 51.91 

15 7 2 368 CV 63.04 

0 8 2 768 CV 65.10 

18 7 2 2108 1055 90.74 

35 0 19 683 CV 13.47 

6 0 2 32 128 56.25 

10 0 2 300 1024 77.34 

6 0 2 124 432 50.00 

17 0 2 169 432 67.13 

6 0 2 169 432 67.13 

6 0 2 122 432 52.78 

The C4.5 algorithm [97] is a descendant of ID3 [96], which builds decision trees 

top-down and prunes them. In our experiments we used release 7 of C4.5. The tree is 
constructed by finding the best single-feature test to conduct at the root node of the tree. 
After the test is chosen, the instances are split according to the test, and the subproblems 
are solved recursively. C4.5 uses gain ratio, a variant of mutual information, as the 
feature selection measure; other measures have been proposed, such as the Gini index 

[ 161, C-separators [31], distance-based measures [23], and Relief [64]. C4.5 prunes 

by using the upper bound of a confidence interval on the resubstitution error as the error 

estimate; since nodes with fewer instances have a wider confidence interval, they are 

removed if the difference in error between them and their parents is not significant. 
We reserve the term 103 to a run of C4.5 that does not execute the pruning step 

and builds the full tree (i.e., nodes are split unless they are pure or it is impossible 
to further split the node due to conflicting instances). The ID3 induction algorithm we 
used is really C4.5 with the parameters -ml -cl00 that cause a full tree to be grown 
and only pruned if there is absolutely no increase in the resubstitution error rate. A 
postprocessing step in C4.5 replaces a node by one of its children if the accuracy of 
the child is considered better [97, p. 391. In one case (the Corral database described 
below), this had a significant impact on the resulting tree: although the root split was 

incorrect, it was replaced by one of the children. 
The Naive-Buyesian classifier [ 7,26,29,40,72,108] uses Bayes’ rule to compute the 

probability of each class given the instance, assuming the features are conditionally 
independent given the label. Formally, 
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p(Y=y(X=x) 

=P(X=X I Y=Y) .p(Y=y)/p(X=x) by Bayes rule 

mp(X1 =xr,...,x, =x, 1 Y=y) .p(Y=y) 

p (X = X) is same for all label values 

= np(X, = xi 1 Y = y) .p(Y = y) by independence. 
i=l 

The version of Naive-Bayes we use in our experiments was implemented in MCC++ 

[ 621. The probabilities for nominal features are estimated from data using maximum 
likelihood estimation. Continuous features are discretized using a minimum-description 
length procedure described Dougherty, Kohavi and Sahami [27], and were thereafter 

treated as multi-valued nominals. Unknown values in a test instance (an instance that 
needs to be labeled) are ignored, i.e., they do not participate in the product. In case 
of zero occurrences for a label value and a feature value, we use the 0.5/m as the 
probability, where m is the number of instances. Other approaches are possible, such as 
using Laplace’s law of succession or using a beta prior [ 20,401. In these approaches, 
the probability for n successes after N trials is estimated at (n + a) / (N + a + b), where 

a and b are the parameters of the beta function. The most common choice is to set a 

and b to one, and estimating the probability as (n + 1) /(N + 2)) which is Laplace’s 

law of succession. 

3.1.3. Results 
When comparing a pair of algorithms, we will present accuracy results for each 

algorithm on each dataset. It is critical to understand that when we used ten-fold cross- 
validation for evaluation, this cross-validation is an independent outer loop, not the 
same as the inner, repeated five-fold cross-validation that is a part of the feature subset 
selection algorithms. Previously, some researchers have reported accuracy results from 

the inner cross-validation loop; such results are optimistically biased and are a subtle 
means of training on the test set. 

Our reported accuracies are the mean of the ten accuracies from ten-fold cross- 

validation. We also show the standard deviation of the mean. To determine whether 
the difference between two algorithms is significant or not, we report the p-values, 
which indicate the probability that one algorithm is better than the other, where the 

variance of the test is the average variance of the two algorithms and a normal dis- 
tribution is assumed. A more powerful method would have been to conduct a paired 

t-test for each instance tested, or for each fold, but the overall picture would not change 
much. 

Whenever we compare two or more algorithms, A1 and AZ, we give the table of 
accuracies, and show two bar graphs. One bar graph shows the absolute difference, 

A2 - Al, in accuracies and the second bar graph shows the mean accuracy difference 
divided by the standard deviation, i.e., (A2 - At)/std-dev. When the length of the 

bars on the standard-deviation chart are higher than two, the results are significant at the 
95% confidence level. Comparisons will generally be made such that A2 is the algorithm 
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Table 3 
A hill-climbing search algorithm 

1. Let u + initial state. 

2. Expand 11: apply ah operators to o, giving u’s children. 

3. Apply the evaluation function f to each child w of U. 

4. Let U’ = the child w with highest evaluation f(w). 

5. If f(u’) > f(u) then L’ - cl’; goto 2. 

6. Return ~1. 

proposed just prior to the comparison (the “new” algorithm) and Al is either a standard 
algorithm, such as C4.5, or the previous proposed algorithm. When the bar is above 
zero, AZ, the proposed algorithm, outperforms AI, the standard algorithm. 

When we report CPU time results, these are in units of CPU seconds (or minutes or 
hours) on a Sun Spare 10 for a single train-test sequence. 

3.2. A hill-climbing search engine 

The simplest search technique is hill-climbing, also called greedy search or steepest 

ascent. Table 3 describes the algorithm, which expands the current node and moves to 
the child with the highest accuracy, terminating when no child improves over the current 

node. 

Table 4 

A comparison of ID3 and Naive-Bayes with a feature subset selection wrapper (hill-climbing search). The 

“-FSS” suffix indicates an algorithm is run with feature subset selection. The first p-val column indicates the 

probability that feature subset selection (FSS) improves ID3 and the second column indicates the probability 

that FSS improves Naive-Bayes 

Dataset ID3 ID3-FSS p-val Naive-Bayes NB-FSS p-val 

breast cancer 94.51 f 0.9 94.71 f 0.5 0.58 97.00 f 0.5 96.57 f 0.6 0.22 

cleve 72.35 f 2.3 78.24 zt 2.0 1.00 82.88 f 2.3 79.56 f 3.9 0.15 

crx 81.16f 1.4 85.65 f 1.6 1 .oo 87.10f0.8 85.36 f 1.6 0.08 

DNA 90.64 f 0.9 94.27 f 0.7 1 .oo 93.34 f 0.7 94.52 f 0.7 0.96 

horse-colic 81.52f 2.0 83.15 f 1.1 0.84 79.86 f 2.5 83.15i2.0 0.93 

Pima 68.73 f 2.5 69.52 f 2.2 0.63 75.90 zt 1.8 74.34 f 2.0 0.2 1 

sick-euthyroid 96.68 f 0.6 97.06 f 0.5 0.76 95.64 f 0.6 97.35 f 0.5 1.00 

soybean-large 90.62 zt 0.9 90.77 f 1.1 0.56 91.80% 1.2 92.38 f 1.1 0.69 

9 Corral 100.00 f 0.0 75.00 f 3.8 0.00 90.62 f 2.6 75.00 f 3.8 0.00 

10 m-of-n-3-7-10 91.60f0.9 77.34 f 1.3 0.00 86.43f 1.1 77.34 f 1.3 0.00 

II Monk1 82.41 f 1.8 75.00i2.1 0.00 71.30f2.2 75.00 •lz 2.1 0.96 

12 Monk2-local 82.41 & 1.8 67.13f2.3 0.00 60.65 + 2.3 67.13 f 2.3 1 .oo 

13 Monk2 69.68 f 2.2 67.13 f 2.3 0.13 61.57 f 2.3 67.13 f 2.3 0.99 

14 Monk3 90.28 & 1.4 97.22 zt 0.8 I .oo 97.22 f 0.8 97.22 f 0.8 0.50 

Average real 84.53 86.67 87.94 87.90 

Average artif. 86.06 76.47 77.96 76.47 
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ACC ID3-NC-FSS minus ID3 cabs act) s.d. 
ID3-HC-FSS minus ID3 (s.d.) 

5 

Lhtaset # 2. 

-5 Dataset x 

-2. 
-10 

-15 -1. 

-20. -1 

-25~ -12. 

Fig. 7. ID3: absolute difference (FSS minus ID3) in accuracy (left) and in std-devs (right). 

ACC NE-HC-FSS minus NB labs act) 
s.d. 

NB-HC-FSS minus NB (s.d.) 

Fig. 8. Naive-Bayes: absolute difference in accuracy (left) and in std-devs (right). 

Table 4 and Figs. 7 and 8 show a comparison of ID3 and Naive-Bayes, both with and 
without feature subset selection. Table 5 and Figs. 9 and 10 show the average number 

of features used for each algorithm (averaged over the ten folds when relevant). The 
following observations can be made: 

l For the real datasets and ID3, this simple version of feature subset selection provides 
a regularization mechanism, which reduces the variance of the algorithm [ 36,611. 
By hiding features from ID3, a smaller tree is grown. This type of regularization is 

different than pruning, which is another regularization method, because it is global: 
a feature is either present or absent, whereas pruning is a local operation. As shown 

in Table 5 and Figs. 9 and 10, the number of features selected is small compared 
to the original set and compared to those selected by ID3. For ID3, the average 
accuracy increases from 84.53% to 86.67%, which is a 13.8% relative reduction in 

the error rate. The accuracy uniformly improves for all real datasets. 
l For the artificial datasets and ID3, the story is different. All the artificial datasets, 

except Monk3 involve high-order interactions. In the Corral dataset, after the corre- 
lated feature is chosen, no single addition of a feature will lead to an improvement, 

so the hill-climbing process stops too early; similar scenarios happen with the other 
artificial datasets, where adding a single feature at a time does not help. In some 
cases, such as m-of-n-3-7-10, Monk2-local, and Monk2, zero features were chosen, 
causing the prediction to be the majority class independent of the attribute values. 
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Table 5 

The number of features in the dataset, the number used by ID3 (since it does some feature subset selection), 

the number selected by feature subset selection (FSS) for ID3, and the number selected by FSS for Naive- 

Bayes. Numbers without a decimal point are for single runs, number with a decimal point arc averages for 

the ten-fold cross-validation 

Dataset 

Original dataset 

Number of features 

ID3 ID3-FSS NB-FSS 

1 breast cancer 10 9.1 2.9 4.3 

2 cleve 13 Il.4 2.6 3.1 

3 crx 15 13.6 2.9 1.6 

4 DNA 180 72 I1 11 

5 horse-colic 22 17.4 2.8 4.3 

6 Pima 8 8.0 1.0 3.8 

7 sick-euthyroid 25 14 4 3 

8 soybean-large 35 25.8 12.7 12.6 

9 Corral 6 4 I 1 

10 m-of-n-3-7-10 10 10 0 0 

11 Monk1 6 6 I 1 

12 Monk2-local 17 14 0 0 

13 Monk2 6 6 0 0 

14 Monk3 6 6 2 2 

Features No. of features for dataset, ID3, ID3-HC-FSS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Dataset # 

Fig. 9. lD3: Number of features in original dataset (left), used by ID3 (middle), and selected by hill-climbing 

feature subset selection (right). The DNA dataset has 180 features (partially shown). 
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Features No. of features for dataset, NB-HC-FSS 
40- 

35 - 

30 - 

25 - 

20 - 

15 

10 ICL 5 

12 3 
1,1 

5 6 I 1 9 10 11 12 13 14 
Dataset # 

Fig. 10. Naive-Bayes: Number of features in original dataset (left) and selected by hill-climbing feature subset 

selection (right). 

The concept for Monk3 is 

(jacket-color = green and holding = sword) or 

(jacket-color # blue and body-shape # octagon) 

and the training set contains 5% mislabeled instances. The feature subset selection 
algorithm quickly finds body-shape and jacket-color, which together yield the sec- 
ond conjunction in the above expression, which has accuracy 97.2%. With more 
features, a larger tree is built which is inferior. This is another example of the 
optimal feature subset being different than the subset of relevant features. 

l For the real datasets and Naive-Bayes, the average accuracy is about same, but very 
few features are used. 

l For the artificial datasets and Naive-Bayes, the average accuracy degrades because 
of Corral and m-of-n-3-7-10 (the relative error increases by 6.7%). Both of these 

require a better search than hill climbing can provide. An interesting observation 
is the fact that the performance on the Monk2 and MonM-local datasets improves 
simply by hiding all features, forcing Naive-Bayes to predict the majority class. 
The independence assumption is so inappropriate for this dataset that it is better to 

predict the majority class. 
l For the DNA dataset, both algorithms selected only 11 features out of 180. While 

the selected set differed, nine features were the same, indicating that these nine are 
crucial for both types of inducers. 
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Table 6 

The best-first search algorithm 

I. Put the initial state on the OPEN list, 

CLOSED list + 0, BEST +- initial state. 

2. Let 0 = argmaxWEopnN f(w) (get the state from OPEN with maximal f(w)). 

3. Remove u from OPEN, add u to CLOSED. 

4. If f(a) - E > f(BEST), then BEST - ~3. 

5. Expand a: apply all operators to U, giving U’S children. 

6. For each child not in the CLOSED or OPEN list, evaluate and add to the OPEN list. 

7. If BEST changed in the last k expansions, goto 2. 

8. Return BEST. 

293 

The results, especially on the artificial datasets where we know what the relevant 

features are, indicate that the feature subset selection is getting stuck at local maxima 
too often. The next section deals with improving the search engine. 

3.3. A best-jirst search engine 

Best-first search [ 38,101] is a more robust method than hill-climbing. The idea is 
to select the most promising node we have generated so far that has not already been 
expanded. Table 6 describes the algorithm, which varies slightly from the standard 
version because there is no explicit goal condition in our problem. Best-first search 
usually terminates upon reaching the goal. Our problem is an optimization problem, 

so the search can be stopped at any point and the best solution found so far can be 
returned (theoretically improving over time), thus making it an anytime algorithm [ 131. 

In practice, we must stop the run at some stage, and we use what we call a stale search: 
if we have not found an improved node in the last k expansions, we terminate the search. 
An improved node is defined as a node with an accuracy estimation at least E higher 

than the best one found so far. In the following experiments, k was set to five and F 
was 0.1%. 

While best-first search is a more thorough search technique, it is not obvious that it 
is better for feature subset selection. Because of the bias-variance tradeoff [ 36,611, it 

is possible that a more thorough search will increase variance and thus reduce accuracy. 

Quinlan [98] and Murthy and Salzberg [ 861 showed examples where increasing the 
search effort degraded the overall performance. 

Table 7 and Figs. 11 and 12 show a comparison of ID3 and Naive-Bayes with hill- 

climbing feature subset selection and best-first search feature subset selection. Table 8 
shows the average number of features used for each algorithm (averaged over the ten 
folds when relevant). The following observations can be made: 

l For the real datasets and both algorithms (ID3 and Naive-Bayes), there is almost 
no difference between hill climbing and best-first search. Best-first search usually 
finds a larger feature subset, but the accuracies are approximately the same. The 
only statistically significant difference is for Naive-Bayes and soybean, where there 
was a significant improvement with a p-value of 0.95. 
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Table 7 

A comparison of a hill-climbing search and a best-first search. The first p-val column indicates the probability 

that best-first search feature subset selection (BFS-FSS) improves hill-climbing feature subset selection (HC- 

FSS) for ID3 and the second column is analogous but for Naive-Bayes 

Dataset ID3 p-val Naive-Bayes p-val 

HC-FSS BFS-FSS HC-FSS BFS-FSS 

breast cancer 94.71 f 0.5 94.57 * 0.7 0.41 96.57 f 0.6 96.00 f 0.6 0.17 

cleve 78.24 f 2.0 79.52 f 2.3 0.73 79.56 zt 3.9 80.23 f 3.9 0.57 

crx 85.65 f 1.6 85.22 f 1.6 0.39 85.36 zt 1.6 86.23 f 1 .O 0.75 

DNA 94.27 f 0.7 94.27 f 0.7 0.50 94.52 f 0.7 94.60 & 0.7 0.55 

horse-colic 83.15% 1.1 82.07 f 1.5 0.21 83.15 & 2.0 83.42 ztz 2.0 0.55 

Pima 69.52 f 2.2 68.73 f 2.2 0.36 74.34 * 2.0 75.12 f 1.5 0.67 

sick-euthyroid 97.06 & 0.5 97.06 f 0.5 0.50 97.35 i 0.5 97.35 f 0.5 0.50 

soybean-large 90.77 f 1.1 91.65 & 1.0 0.81 92.38 f 1.1 93.70 * 0.4 0.95 

9 

10 

11 

12 

13 

14 

Corral 

m-of-n-3-7-10 

Monk 1 

Monk2-local 

Monk2 

Monk3 

Average real 

Average artif. 

75.00 f 3.8 100.00 f 0.0 

77.34 f 1.3 77.34 f 1.3 

75.00 f 2.1 97.22 f 0.8 

67.13 f 2.3 95.60 f 1 .O 

67.13 f 2.3 63.89 f 2.3 

97.22 -f 0.8 97.22 f 0.8 

86.67 86.64 

76.47 88.55 

1 .oo 75.00 zt 3.8 90.62 & 2.6 1.00 

0.50 77.34 zt 1.3 77.34 zt 1.3 0.50 

1.00 75.00 * 2.1 72.22 +z 2.2 0.10 

1.00 67.13f2.3 67.13 f 2.3 0.50 

0.08 67.13 f 2.3 67.13 f 2.3 0.50 

0.50 97.22 f 0.8 97.22 Ifr 0.8 0.50 

87.90 88.33 

76.47 78.61 

ACC ID)-BFS minus ID3-HC cabs xc) s.d. 
ID3-BFS minus ID3-HC (s.d.1 

I 
1 2 3 4 3 b 7 8 9101112m14 

Dataset # Dataset x 

Fig. 11. ID3: Absolute difference (best-first search FSS minus hill-climbing FSS) in accuracy (left) and in 

std-devs (right). 

l For the artificial datasets, there is a very large improvement for ID3. Performance 
drastically improves on three datasets (Corral, Monkl, Monk2-local), remains the 
same on two (m-of-n-3-l-10, Monk3), and degrades on only one (Monk2). Ana- 
lyzing the selected features, the optimal feature subset was found for Corral, Monkl, 
Monk2-local, and Monk3 (only two features out of the three relevant ones were 
selected for Monk3 because this correctly led to better prediction accuracy). The 
improvement over ID3 without FSS (Table 4) is less dramatic but still positive: 
the absolute difference in accuracy is 2.49%, which translates into a relative error 
reduction of 17.8%. 
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WC NB-BFS minus NB-HC labs act) 

2345678910 
Dataset # 

Fig. 12. Naive-Bayes: Absolute difference in accuracy (left) and in std-devs (right). 

The search was unable to find the seven relevant features in m-of-n-3-7-10. Be- 

cause of the complexity penalty of 0.1% for extra features, only subsets of two 

features were tried, and such subsets never improved over the majority prediction 
(ignoring all features) before the search was considered stale (five non-improving 

node expansions). The local maximum where the search stops in this dataset is 

too large for the current setting of best-first search to overcome. A specific ex- 
periment was conducted to determine how long it would take best-first search 
to find the correct feature subset. The stale limit (originally set to five) was 

Table 8 

The number of features in the dataset, the number used by ID3 (since it does some feature subset selection), 

the number selected by hill-climbing FSS for ID3, best-first search FSS for ID3, and analogously for Naive- 

Bayes 

Dataset Number of features 

1 breast cancer 

2 cleve 

3 crx 

4 DNA 

5 horse-colic 

6 Pima 

7 sick-euthyroid 

8 soybean-large 

Original 

dataset 

10 

13 

15 

180 

22 

8 

25 

35 

ID3 ID3-FSS NB-FSS 

HC BFS HC BFS 

9.1 2.9 3.6 4.3 5.2 

11.4 2.6 3.4 3.1 3.6 

13.6 2.9 3.6 1.6 5.9 

12 11 11 11 14 

17.4 2.8 3.4 4.3 5.1 

8.0 1.0 2.3 3.8 4.0 

14 4 4 3 3 

25.8 12.7 13.7 12.6 13.8 

9 Corral 6 4 1 4 1 5 

10 m-of-n-3-7-10 10 10 0 0 0 0 

11 Monk1 6 6 1 3 I 4 

12 Monk2-local 17 14 0 6 0 0 

13 Monk2 6 6 0 3 0 0 

14 Monk3 6 6 2 2 2 2 



296 R. Kohmi, G.H. John/Arti$cial Intelligence 97 (1997) 273-324 

increased until a node better than the node using zero features (predicting the 
majority label value) was found. The first stale setting that overcame the lo- 
cal maximum was 29 (any number above would do). At this setting, a node 

with three features from the seven is found that is more accurate than major- 
ity. Nine more node expansions lead to the correct feature subset. Overall, 193 
nodes were evaluated out of the 1024 possibilities. The total running time to find 
the correct feature subset was 33 CPU minutes, and the prediction accuracy was 
100%. 

In the Monk2 dataset, a set of three features was chosen, and accuracy significantly 

degraded compared to hill-climbing, which selected the empty feature subset. This 
is the only case where performance degraded significantly because best-first search 

was used (p-value of 0.08). The Monk2 concept in this encoding is unsuitable 
for decision trees, as a correct tree (built from the full space) contains 439 nodes 
and 296 leaves. Because the standard training set contains only 169 instances, it 

is impossible to build the correct tree using the standard recursive partitioning 
techniques. 

l For the artificial datasets, there was a significant improvement for Naive-Bayes only 
for Corral (p-value of 1.00)) and performance significantly degraded for Monk1 
(p-value of 0.10). The rest of the datasets were unaffected. 

The chosen feature subset for Corral contained features Ao, Al, Bo, BI, and the 

“correlated” feature. It is known that only the first four are needed, yet because 
of the limited representation power of the Naive-Bayes, performance using the 
“correlated” feature is better than performance using only the first four features. If 

Naive-Bayes is given access only to the first four features, the accuracy degrades 

from 90.62% to 87.50%. This dataset is one example where the optimal feature 
subset for different induction algorithms is known to be different. Decision trees 
are hurt by the addition of the “correlated” feature (performance degrades), yet 
Naive-Bayes improves with this feature. 
The Monk1 dataset degrades in performance because the features head-shape, body- 

shape, is-smiling, and jacket-color were chosen, yet performance is better if only 
jacket-color is used. Note that both head-shape and body-shape are part of the target 
concept, yet the representation power of Naive-Bayes is again limited and cannot 
utilize this information well. As with the Monk2 dataset for ID3, this may be an 
example of the search overfitting in the sense that some subset seems to slightly 
improve the accuracy estimation, but not the accuracy on the independent test set 

(see Section 6 for further discussion on issues of overfitting). 
The datasets m-of-n-3-7-10, Monk2-local, Monk2, and Monk3, all had the same 
accuracy with best-first search as with hill-climbing. The performance of Naive- 
Bayes on the Monk3 dataset cannot be improved by using a different feature 
subset. As with ID3, the search was unable to find a good feature subset for m- 
of-n-3-7-10 (the correct feature subset allows improving the accuracy to 87.5%). 
For the Monk2 and MonkZlocal datasets, the optimal feature subset is indeed the 
empty set! Naive-Bayes on the set of relevant features yields inferior performance 

to a majority inducer, which is how Naive-Bayes behaves on the empty set of 
features. 
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While best-first search generally gives better performance than hill-climbing, high- 
level interactions occurring in m-of-n-3-7- 10 cannot be caught with a search that starts at 
the empty feature subset unless the stale parameter is drastically increased. An alternative 
approach to forward selection tested here is backward elimination, which suffers less 
from feature interaction because it starts with the full set of features; however, the 
running time would make the approach infeasible in practice, especially if there are 
many features. 

The running times for the best-first search starting from the empty set of features 

range from about 5-10 minutes of CPU time for small problems such as Monkl, 

Monk2, Monk3, and Corral, to 15 hours for DNA. In the next section, we attempt to 
reorder the search space dynamically to allow the search to reach better nodes faster 

and make the backward feature subset selection feasible. 

4. The state space: compound operators 

If we try to gild the lily by using both options together 
-J.R. Quinlan [97 ] 

In the previous section, we looked at two search engines. In this section, we look at 
the topology of the state space and dynamically modify it based on accuracy estimation 

results. As previously described, the state space is commonly organized such that each 

node represents a feature subset, and each operator represents the addition or deletion 
of a feature. The main problem with this organization is that the search must expand 

(i.e., generate successors of) every node on the path from the initial feature subset 

to the best feature subset. This section introduces a new way to change the search 
space topology by creating dynamic operators that directly connect a node to nodes 

considered promising given the evaluation of its children. These operators better utilize 
the information available in the evaluated children. 

The motivation for compound operators comes from Fig. 13, which partitions the 
feature subsets into strongly relevant, weakly relevant, and irrelevant features. In practice, 
an optimal feature subset is likely to contain only relevant features (strongly and weakly 
relevant features). A backward elimination search starting from the full set of features 

(as depicted in Fig. 13) and that removes one feature at a time after expanding all 
children reachable using one operator, will have to expand all the children of each node 
before removing a single feature. If there are i irrelevant features and f features, (i . f) 
nodes must be evaluated. Similar reasoning applies to forward selection search starting 

from the empty set of features. In domains where feature subset selection might be most 
useful, there are many features but such a search may be prohibitively expensive. 

Compound operators are operators that are dynamically created after the standard set 

of children (created by the add and delete operators) has been evaluated. They are used 
for a single node expansion and then discarded. Intuitively, there is more information in 
the evaluation of the children than just the identification of the node with the maximum 

evaluation. Compound operators combine operators that led to the best children into 
a single dynamic operator. Fig. 14 depicts a possible set of compound operators for 
forward selection. The root node containing no features was expanded by applying four 
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- Delete operator 

___> Compound operator 

No features 

Relevant features 

or weakly relevant 

All features 

Fig. 13. The feature subset state space divided into irrelevant, weakly relevant, and strongly relevant feature 
subsets. The dotted arrows indicate compound operators. 

Fig. 14. The state space search with dotted arrows indicating compound operators. From the root’s children, 
the nodes (0, 1 , 0, 0) and (0.0, 1,O) had the highest evaluation values, followed by (0, 0, 0,l). 

add operators, each one adding a single feature. The operators that led to 0, I, 0,O 
and 0, 0, 1,O were combined into the first compound operator (shown in a dashed line 
going left) because they led to the two nodes with the highest evaluation (evaluation 
not shown). If the first compound operator led to a node with an improved estimate, 
the second compound operator (shown in a dashed line going right) is created that 
combines the best three original operators, etc. 
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real act 
crx - backward 

real act soybean - forward 

100 200 300 400 
Nodes 

Fig. 15. Comparison of compound (dotted line) and non-compound (solid line) searches. The accuracy 

(>T-axis) is that of the best node (as determined by the algorithm) on an independent test set after a given 

number of node evaluations (x-axis). The running time is proportional to the number of nodes evaluated. 

Formally, if we rank the operators by the estimated accuracy of the children, then we 
can define the compound operator ci to be the combination of the best i + 1 operators. 

For example, the first compound operator will combine the best two operators. If the 
best two operators each added a feature, then the first compound operator will add both; 
if one operator added and one operator deleted, then we try to do both in one operation. 
The compound operators are applied to the parent, thus creating children nodes that are 

farther away in the state space. Each compound node is evaluated and the generation 

of compound operators continues as long as the estimated accuracy of the compound 
nodes improves. 

Compound operators generalize a few existing approaches. Kohavi [ 541 suggested that 

the search might start from the set of strongly relevant features. If one starts from the full 
set of features, removal of any single strongly relevant feature will cause a degradation 

in performance, while removal of any irrelevant or weakly relevant feature will not. 

Since the last compound operator, representing the combination of all delete operators, 
connects the full feature subset to the empty set of features, the compound operators 

from the full feature subset plot a path through the strongly relevant feature sets. The 
path is explored by removing one feature at a time until estimated accuracy deteriorates, 
thus generalizing the original proposal. Caruana and Freitag [ 191 implemented SLASH, 
a version of feature subset selection that eliminates the features not used in the derived 
decision tree. If there are no features that improve the performance when deleted, 
then (ignoring orderings due to ties) one of the compound operators will lead to the 

same node that SLASH would take the search to. While the SLASH approach is only 

applicable to backward elimination, compound operators are also applicable to forward 
selection. 

Fig. 15 shows two searches with and without compound operators. Compound opera- 

tors improve the search by finding nodes with higher accuracy faster; however, whenever 
it is easy to overfit (e.g., for small datasets), they cause overfitting earlier (see Sec- 
tion 6). Experimental accuracies using compound operators are similar to those without 
them and the runs are usually faster. More significant time differences are achieved when 
the decision trees are pruned. Detailed results for that case are shown later in the paper 
(Table 11). 
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Table 9 

A comparison of a forward best-first search without compound operators and backward best-first search with 

compound operators. The p-val columns indicates the probability that backward is better than forward 

Dataset ID3 p-val Naive-Bayes p-val 

BFS-FSS BFS-FSS BFS-FSS BFS-FSS 

forward back forward back 

I breast cancer 

2 cleve 

3 crx 

4 DNA 

5 horse-colic 

6 Pima 

7 sick-euthyroid 

8 soybean-large 

94.57 f 0.7 

79.52 f 2.3 

85.22 f 1.6 

94.27 f 0.7 

82.07 f 1.5 

68.73 zt 2.2 

97.06 z!c 0.5 

91.65 f 1.0 

93.85 f 0.5 0.11 

75.89 & 3.7 0.12 

83.33 f 1.5 0.10 

91.23f0.8 0.00 

82.61 f 1.7 0.63 

67.44* 1.4 0.24 

97.06 f 0.5 0.50 

91.35 zt 1.0 0.38 

96.00 f 0.6 

80.23 f 3.9 

86.23 f 1 .O 

94.60 f 0.7 

83.42 f 2.0 

75.12f 1.5 

97.35 f 0.5 

93.70 f 0.4 

96.00 f 0.6 0.50 

82.56 f 2.5 0.76 

84.78 f 0.8 0.05 

96.12 f 0.6 0.99 

82.33 f 1.3 0.26 

76.03 f 1.6 0.72 

97.35 f 0.5 0.50 

94.29 f 0.9 0.81 

9 Corral 100.00 f 0.0 100.00 f 0.0 0.50 90.62 f 2.6 90.62 f 2.6 0.50 

10 m-of-n-3-7-10 77.34* 1.3 100.00 f 0.0 1 .oo 77.34 f 1.3 87.50 f 1 .O 1.00 

I1 Monk1 97.22 l 0.8 97.22 f 0.8 0.50 72.22 f 2.2 72.22 f 2.2 0.50 

12 Monk2-local 95.60f 1.0 95.60f 1.0 0.50 67.13 f 2.3 67.13 f 2.3 0.50 

13 Monk2 63.89 f 2.3 64.35 jz 2.3 0.58 67.13 f 2.3 67.13 f 2.3 0.50 

14 Monk3 97.22 f 0.8 97.22 f 0.8 0.50 97.22 f 0.8 97.22 XL 0.8 0.50 

Average real 86.64 85.35 88.33 88.68 

Average artif. 88.55 92.40 78.61 80.30 

AccID3-BBFS minus ID3-FBFS tabs acci 

20. 

s.d. ID3-BBFS minus ID3-FBFS 1s.d.) 
25. 

20. 

15. 
15. 

10. 10. 

5. 5- 

u 7 * 9 1011121314 mtaset # 7 8 9 1011121314 Dataset # 

Fig. 16. ID3: absolute difference (best-first search FSS backward with compound operators minus forward) 
in accuracy (left) and in std-devs (right). 

The main advantage of compound operators is that they make backward feature 

subset selection computationally feasible. Table 9 and Figs. 16 and 17 show the results 
of running the best-first search algorithm with compound operators but starting with 

the full set of features (backward elimination) compared with best-first search forward 
selection without compound operators. Accuracy results for forward selection with and 
without compound operators did not significantly differ on any dataset. Table 10 shows 
the number of features used for each of the different methods. When one starts from 

the full set of features, feature interactions are easier for the search to identify. The 
following observations can be made: 
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II 1.1. 
Dataset # 

6 7 8 9 10 1112 13 14 Dataset # 6 7 8 9 101112 13 14 

Fig. 17. Naive-Bayes: absolute difference in accuracy (left) and in std-devs (right) 

l Except for m-of-n-3-7- 10, the accuracy results for backward FSS with ID3 generally 

degraded. The main improvement was for m-of-n-3-7-10, where the correct seven 
bits were correctly identified, resulting in 100% accuracy. The feature subsets were 

generally larger, and apparently even best-first search cannot overcome some local 
maxima with our stale parameter setting. For example, the run on DNA stopped 

with 36 features, but pruning more features would improve the performance because 
the forward search found a subset of 11 features that was significantly better (the 
accuracy estimation for the 11 feature subset was higher than the one for the 36 

Table 10 

The number of features in the dataset, the number used by ID3 (since it does some feature subset selection), the 

number selected by best-first search FSS for ID3 forward without compound and backwards with compound, 

and analogously for Naive-Bayes 

Dataset 

Original 

dataset 

ID3 

Number of features 

ID3-FSS NB-FSS 

1 breast cancer 10 9.1 

2 cleve 13 11.4 

3 crx 15 13.6 

4 DNA 180 72 

5 horse-colic 22 17.4 

6 Pima 8 8.0 

7 sick-euthyroid 25 14 

8 soybean-large 35 25.8 

Forward Backward Forward Backward 

3.6 5.3 5.2 5.9 

3.4 4.6 3.6 7.9 

3.6 7.7 5.9 9.1 

11 36 14 48 

3.4 7.2 5.1 6.1 

2.3 5.7 4.0 4.4 

4 4 3 3 

13.7 17.7 13.8 16.7 

9 Corral 6 4 4 4 5 5 

10 m-of-n-3-7-10 10 10 0 7 0 7 

11 Monk1 6 6 3 3 4 4 

12 Monk2-local 17 14 6 6 0 5 

13 Monk2 6 6 3 3 0 0 

14 Monk3 6 6 2 2 2 2 
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feature subset, and because the same folds are used, if the best-first search were 
to get to this 1 l-feature node, it would prefer it over the final node selected in 
the backward search). In the next section, we use the backward search with C4.5. 

Because C4.5 prunes, the backward search is then more efficient with the best-first 

search algorithm. 
l For Naive-Bayes, backward FSS performs slightly better in terms of accuracy. Only 

on crx did the accuracy degrade significantly (p-val=O.O5), while on m-of-n-3-7- 
10 and DNA it significantly improved (p-val=l.OO and 0.99 respectively). In fact, 
for the DNA dataset, no other known algorithm outperformed Naive-Bayes on the 

selected feature subset. Taylor et al. [ 108, p. 1591 compared 23 algorithms on 
this dataset (with the same training and test sets), and the best was RBF (radial 
basis functions) using 720 centers with an accuracy of 95.9%. The Naive-Bayes 
algorithm with backward elimination had an accuracy of 96.12%. 

l The m-of-n-3-7-10 dataset with Naive-Bayes is a very interesting case. The fea- 
ture subset selection finds six out of the seven relevant features, and the seventh 

selected feature is an irrelevant one. Although m-of-n can be represented using a 
hyperplane, and although in a Boolean domain the surface represented by Naive- 
Bayes is always a hyperplane, it turns out that Naive-Bayes is unable to learn this 

target concept. The table below was constructed by giving Naive-Bayes all pos- 
sible instances and their correct classification for the 3-of-7 concept, and testing 

it on the same instances. We can see that Naive-Bayes is unable to learn 3-of- 
7, but what is intriguing is that fact that hiding one bit (feature) improves the 

accuracy. 

Features given 

I (all) 

6 

5 

Naive-Bayes 

accuracy 

83.59 

88.28 

82.03 

Perceptron 

accuracy 

100.00 

88.28 

82.03 

The explanation for this result is as follows. There are (i) + (T) + (i) = 29 in- 

stances out of 27 = 128 that have label 0. There are (y) + (i) .2 = 49 ones in these 
29 instances, so each of the seven features has 49/7 = 7 ones. We thus get the 

following: 

p(Y=o]xi=1)=7/29, 

p(Y = 0 1 xi = 0) = 22/29. 

Similarly, Cy=, (1) * i = 399, thus each of the seven features has 399/7 = 57 ones, 

giving the following: 

p(Y = 1 / xi = 1) = 57/99, 

p( Y = 1 1 xi = 0) = 42/99. 
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If there are only two ones in an instance, the probabilities computed by Naive-Bayes 
are: 

p(Y =0) cc29/128. (7/29)‘. (22/29)5=0.00331674, 

p(Y= 1) c~99/128~(57/99)~~(42/99)~=0.00352351, 

giving the label “one” a small advantage, and making the wrong prediction. Thus 
there are (z) = 21 mistakes out of the 128 possible instances, which is exactly 

83.59% accuracy. 
With only six features, the best thing to do is to predict a label of one when there 

two “on” bits, which is what the Naive-Bayes does (the calculation is omitted). 
This will correctly capture all instances that originally had three bits, but will 

continue to be wrong for those instances that had only two bits. However, out of 
the 21 instances that had two bits on, six will now have only one bit on because 
there were 42 bits total, and each of the seven bits had a one six times. Thus 

Naive-Bayes will now make only 21 - 6 = 15 mistakes, which yields an accuracy 

of 88.28%. 
This example shows that although the hypothesis space for Naive-Bayes in Boolean 
domains is a space of hyperplanes, it is unable to correctly identify this target 

concept, while a Perceptron can. More interesting, however, is the fact that any 
approach to feature subset selection based on relevance that is independent of the 

induction algorithm and that ranks each feature independently (conditioned on the 

label) must give the same rank to each one of the seven relevant features (due to 
symmetry), and thus such an approach will never pick a subset of six features as 
the wrapper approach does. The wrapper approach indeed finds the optimal subset 
for this target concept. 

Running times for the backward feature subset selection were about five times longer 
than the forward, which is not bad considering the fact that we started with the full set 
of features (also see the next section where compound operators help more when C4.5 
is used). 

5. Global comparison 

We have used ID3 and Naive-Bayes as our basic inducers for feature subset selection 
because they do no pruning and, therefore, the effect of feature subset selection can 

be seen more clearly. We have seen improvements in both algorithms, but an important 
remaining question is how the wrapper algorithm developed in Sections 3 and 4 compares 
to the filter approach, and how the feature subset selection versions of these algorithms 

compare to the original versions. Although we have presented arguments in favor of the 
wrapper approach in Section 2, we had to develop a high-performance wrapper algorithm 
for the empirical comparisons, and this was the purpose of the preceding sections. When 
used with C4.5, the hill-climbing wrapper often gets stuck in local minima, and the best- 

first search wrapper took too long, so the work in the previous sections was necessary 
for the experiments in this section, 
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Fig. 18. DNA: number of features evaluated as the search progresses (C4.5, best-first search, backward). The 
vertical lines signify a node expansion, where the children of the best node are expanded. The slanted line on 
the top shows how ordinary backward selection would progress. 

features Soybean - number of features 

;o 
Node evals 

Fig. 19. Soybean: number of features evaluated as the search progresses (C4.5, best-first search, backward). 
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With compound operators, running the wrapper with C4.5 tends to be even faster 
than running the wrapper with ID3 because the compound operators tend to quickly 
remove the features pruned by C4.5. Features that do not appear in the tree are removed 
because the accuracy estimate does not change and, with the small complexity penalty 
for every feature, the evaluation function improves. The compound operators can remove 
all such features after a single node expansion. Without pruning, many more features 
are used in the tree and they cause slight random variations in the accuracy estimates. It 

hence makes more sense to run the feature subset selection search backwards, which is 
what we have done. Figs. 18 and 19 show how the number of features used changes as 

the search progresses, i.e., as more nodes are evaluated. Notice how before each node 

expansion, the compound operators are applied and combine the operators leading to 

the best children, thus drastically decreasing the number of nodes. Without compound 
operators, the number of features could only decrease or increase by one at every 
node expansion. For example, in the DNA dataset with C4.5, “only” 3555 nodes were 
evaluated and a subset of 12 features was selected; without compound operators, the 
algorithm would have to expand ( 180 - 12) . 180 = 30,240 nodes just to get to this 

feature subset. 
Backward FSS with C4.5 is still very slow, but generally faster than backward FSS 

with ID3. Table 11 shows the running time for different versions of the algorithms; 
compared to the original algorithm, they are about two to three orders of magnitude 

slower. For example, running C4.5 on the DNA dataset takes about 1.5 minutes. The 

wrapper model has to run C4.5 five times for every node that is evaluated in the state 
space and in DNA there are hundreds of nodes. 

We shall investigate two hypotheses: first, that using a filter method will sometimes 

improve the accuracy of ID3 and Naive-Bayes on real datasets but will be fairly erratic 
(often hurting performance), and second, that improvements from using the wrapper 
approach will surpass the gains from the filter and will be more consistent. As a repre- 
sentative of the filter methods, we chose the Relieved-F algorithm (Section 2.4.2)) which 
seemed to have the most desirable properties among the filter algorithms discussed. For 
the reasons outlined in the preceding paragraphs, we use the backward best-first-search 

wrapper with compound operators as a representative of wrapper algorithms. The ex- 
perimental methodology used to run and compare algorithms is the same as described 

in Section 3.1. 
Since C4.5 is a modern algorithm that performs well on a variety of real databases, we 

might expect it to be difficult to improve upon its performance using feature selection. 

Table 12 shows that this is the case: overall, the accuracy on real datasets actually 
decreased when using Relieved-F, but the accuracy slightly increased using the wrapper 
(a 5.5% relative reduction in error). Note however that Relieved-F did perform well 
on some artificial databases, all of which (except for Corral) contain only strongly 
relevant and totally irrelevant attributes. On three artificial datasets, Relieved-F was 
significantly better than plain C4.5 at the 99% confidence level. On the real datasets, 

where relevance is ill-determined, Relieved-F often did worse than plain C4.5: on one 
dataset its performance was significantly worse at the 99% confidence level, and in no 

case was its performance better at even the 90% confidence level. The wrapper algorithm 
did significantly better than plain C4.5 on two real databases and two artificial databases, 
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Table 11 

The CPU time for different versions of the wrapper approach. Time is for a single fold when cross-validation 

was done in an outer loop to estimate accuracy. All tests used compound operators, except for ID3-FSS- 

Forward. The “time” command overflowed for ID3-FSS-back on DNA under Sun’s Solaris operating system. 

The command gave a negative number for execution time! 

Dataset 

ID3-FSS 

Forward 

CPU time (seconds) 

ID3-FSS C4.5FSS 

Backward Backward 

NB-FSS 

Backward 

breast cancer 439 741 1,167 51 

cleve 746 2,105 816 123 

crx 936 4,076 1,658 206 

DNA 42,908 overflow 165,62 1 88,334 

horse-colic 1,067 2,875 1,434 462 

Pima 963 2,178 719 57 

sick-euthyroid 3,764 12,166 7,386 504 

soybean-large 8,544 4,196 3,931 2,033 

Corral 165 26 47 4 

m-of-n-3-7-10 213 179 223 55 

Monk1 128 57 75 15 

Monk2-local 1,466 574 644 139 

Monk2 247 90 81 18 

Monk3 111 55 46 9 

and was never significantly worse. Note that the most significant improvement on a 
real database was on the one real dataset with many features: DNA. Relieved-F was 
outperformed by the wrapper significantly on two real datasets, but it outperformed the 

wrapper on the m-of-n-3-7-10 dataset. 
On the Corral dataset, the wrapper selected the correct features {Al, A2, Bl, B2) as 

the best node early in the search, but later settled on only the features Al and A2, which 

gave better cross-validation accuracy. The training set is very small (32 instances), so 
the problem was that even though the wrapper gave the ideal feature set to C4.5, it 
built the correct tree (100% accurate) but then pruned it back because according to its 
pruning criterion the training set data was insufficient to warrant such a large tree. 

Perhaps surprisingly, the Naive-Bayes algorithm turned out to be more difficult to 

improve using feature selection (Table 13). Both the filter and wrapper approaches 
significantly degraded performance on the breast cancer and crx databases. In both cases 
the wrapper approach chose feature subsets with high estimated accuracy that turned 
out to be poor performers on the real test data. The filter caused significantly worse 
performance in one other dataset, Pima diabetes, and never significantly improved on 
plain Naive-Bayes, even on the artificial datasets. This is partly due to the fact that 

the severely restricted hypothesis space of Naive-Bayes prevents it from doing well on 
the artificial problems (except for Monk3) for reasons discussed in Section 2.3, and 
partly because Naive-Bayes’ accuracy is hurt more by conditional dependence between 
features than the presence of irrelevant features. 
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Table 12 

A comparison of C4.5 with no feature selection, with the Relieved-F filter (RLF), and with the wrapper using 

backward best-first search with compound operators (BFS). The p-val columns indicates the probability that 

the top algorithm is improving over the lower algorithm 

Dataset c4.5 C4.5-RLF C4.5-BFS C4.5-RLF C4.5-BFS C4.5-BFS 

vs. c4.5 vs. c4.5 vs. C4.5-RLF 

breast cancer 

cleve 

crx 

DNA 

horse-colic 

Pima 

sick-euthyroid 

soybean-large 

95.42 f 0.7 

72.30 f 2.2 

85.94 f 1.4 

92.66 f 0.8 

85.05 f 1.2 

71.6Of 1.9 

97.73 f 0.5 

91.35 f 1.6 

94.42 f 1.1 

74.95 f 3.1 

84.06 f 1.2 

92.75 YIZ 0.8 

85.88 i 1 .O 

64.18 f 2.3 

97.73 f 0.5 

91.35 f 1.6 

95.28 f 0.6 0.14 0.41 0.83 

77.88 f 3.2 0.84 0.98 0.82 

85.80 f 1.3 0.07 0.46 0.91 

94.44 f 0.7 0.54 0.99 0.99 

84.77 & 1.3 0.17 0.41 0.17 

70.18 z!z 1.3 0.00 0.19 1.00 

97.91 f 0.4 0.50 0.65 0.65 

91.93 f 1.3 0.50 0.65 0.65 

Corral 81.25 f 3.5 81.25f3.5 81.25f3.5 0.50 0.50 0.50 

m-of-n-3-7-10 85.55 f 1.1 91.41 f 0.9 85.16 f 1.1 1.00 0.36 0.00 

Monk1 75.69 I!Z 2.1 88.89 f 1.5 88.89 f 1.5 1.00 1.00 0.50 

Monk2-local 70.37 i 2.2 88.43 f 1.5 88.43 f 1.5 1.00 1.00 0.50 

Monk2 65.05 f 2.3 67.13 f 2.3 67.13 f 2.3 0.82 0.82 0.50 

Monk3 97.22 f 0.8 97.22 f 0.8 97.22 f 0.8 0.50 0.50 0.50 

Average real 86.51 85.67 87.27 

Average artif. 79.19 85.72 84.68 

Table 13 

A comparison of Naive-Bayes (NB) with no feature selection, with the Relieved-F filter (RLF), and with the 

wrapper using backward best-first search with compound operators (BFS). The p-val columns indicates the 

probability that the top algorithm is improving over the lower algorithm 

Dataset NB NB-RLF NB-BFS NB-RLF NB-BFS NB-BFS 

vs. NB vs. NB vs. NB-RLF 

breast cancer 

cleve 

crx 

DNA 

horse-colic 

Pima 

sick-euthyroid 

soybean-large 

97.00 i 0.5 

82.88 f 2.3 

87.10 f 0.8 

93.34 f 0.7 

79.86 f 2.6 

75.90 f 1.8 

95.64 f 0.6 

91.80 f 1.2 

95.14f 1.3 

82.53 f 2.4 

85.51 f 0.8 

93.25 f 0.7 

80.95 i 2.3 

64.57 f 2.4 

95.64 f 0.6 

91.65f 1.2 

96.00 f 0.6 0.03 0.04 0.80 

82.56 f 2.5 0.44 0.45 0.50 

84.78 f 0.8 0.02 0.00 0.18 

96.12 +z 0.6 0.45 1.00 1.00 

82.33 ?c 1.3 0.67 0.89 0.77 

76.03 f 1.6 0.00 0.53 1.00 

97.35 f 0.5 0.50 1.00 1.00 

94.29 f 0.9 0.45 0.99 0.99 

Corral 90.62 f 2.6 90.62 f 2.6 90.62 f 2.6 0.50 0.50 0.50 

m-of-n-3-7-10 86.43 f 1.1 85.94f 1.1 87.50 f 1 .O 0.33 0.85 0.93 

Monk 1 71.3Of 2.2 72.22 f 2.2 72.22 f 2.2 0.66 0.66 0.50 

Monk2-local 60.65 f 2.4 63.43 & 2.3 67.13 f 2.3 0.88 1.00 0.95 

Monk2 61.57 z!z 2.3 63.43 f 2.3 67.13 zt 2.3 0.79 0.99 0.95 

Monk3 97.22 f 0.8 97.22 f 0.8 97.22 f 0.8 0.50 0.50 0.50 

Average real 87.94 86.16 88.68 

Average artif. 77.96 78.81 80.30 
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A comparison of ID3 with no feature selection, with the Relieved-F filter (RLF), and with the wrapper using 

backward best-first search with compound operators (BFS). The p-val columns indicates the probability that 

the top algorithm is improving over the lower algorithm 

Dataset ID3 ID3-RLF ID3-BFS ID3-RLF ID3-BFS ID3-BFS 

vs. ID3 vs. ID3 vs. ID3-RLF 

breast cancer 94.57 f 0.9 

cleve 72.35 f 2.3 

crx 81.16f 1.4 

DNA 90.64 f 0.9 

horse-colic 81.52f2.0 

Rima 68.73 i 2.5 

sick-euthyroid 96.68 zt 0.6 

soybean-large 90.62 f 0.9 

93.57 & 1.5 

72.96 zt 2.1 

78.70f 1.4 

91.57 f 0.8 

81.52f 1.3 

63.91 f 2.1 

96.78 f 0.5 

90.19 % 0.9 

93.85 f 0.5 0.21 0.16 0.60 

75.89 + 3.7 0.61 0.87 0.83 

83.33 i 1.5 0.04 0.93 1.00 

91.23 % 0.8 0.86 0.76 0.34 

82.61 f 1.7 0.50 0.72 0.76 

67.44 f 1.4 0.02 0.26 0.98 

97.06 f 0.5 0.57 0.75 0.7 1 

91.35 f 1.0 0.32 0.78 0.89 

Corral 100.00 f 0.0 100.00 f 0.0 100.00 * 0.0 0.50 0.50 0.50 

m-of-n-3-7- 10 9 1.60 f 0.9 100.00 f 0.0 100.00 It 0.0 1.00 1.00 0.50 

Monk1 82.41 f 1.8 97.22 f 0.8 97.22 zt 0.8 1.00 1.00 0.50 

Monk2-local 82.41 f 1.8 95.60f 1.0 95.60* 1.0 1.00 1.00 0.50 

Monk2 69.68 f 2.2 63.90 f 2.3 64.35 f 2.3 0.01 0.01 0.58 

Monk3 90.28 f 1.4 100.00 f 0.0 97.22 f 0.8 1.00 1.00 0.00 

Average real 84.53 83.65 85.34 

Average artif. 86.06 92.79 92.39 

In contrast, the wrapper approach significantly improved performance on five databases 

over the plain Naive-Bayes accuracy. In the Monk2 dataset it did so by discarding all 
features! Because the conditional independence assumption is violated, one actually ob- 
tains better performance with Naive-Bayes by throwing out all features and using only 

the marginal probability distribution over the classes (i.e., always predict the majority 
class). The wrapper approach significantly improved over the filter in six cases, and was 
never significantly outperformed by the filter approach. 

Table 14 shows similar results with ID3. In this case, the filter approach significantly 
degraded performance on one real dataset but significantly improved all of the artificial 
datasets except for Monk2, as did the wrapper approach. The Monk2 concept is exactly- 
2-of-6, so all features are relevant. Relieved-F judged two features to be irrelevant 
(due to poor statistics from the small training set) and the wrapper’s internal cross- 
validation gave an overly pessimistic estimate to the node representing the subset of 
all features, which was optimal. Note that our “ID3” is actually the C4.5 algorithm 

with command line arguments specifying no pruning. As it happens, command line 
arguments cannot turn off a tree postprocessing step that can swap a parent decision 
node with its child, and this swapping results in 100% accuracy on Corral with “plain 
ID3”. The wrapper significantly outperformed the filter on two of the real datasets, 
but performed significantly worse than the filter on the Monk3 dataset. In Monk3, the 
feature subset search did test the node with 100% test-set accuracy, but the internal 
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Table 15 
The number of features in each dataset, the number selected by Relieved-F, the number used by the plain 

versions of the algorithms, and the number used by the wrapped versions using backward best-first search 

with comnound operators (BFS) 

Dataset All RLF c4.5 C4.5-BFS NB-BFS ID3 ID3-BFS 

breast cancer 10 5.1 7.0 3.9 5.9 9.1 5.3 

cleve 13 10.5 9.1 5.3 1.9 11.4 4.6 

crx 15 11.5 9.9 7.7 9.1 13.6 7.7 

DNA 180 178 46 12 48 12 36 

horse-colic 22 18.2 5.5 4.3 6.1 17.4 7.2 

Pima 8 1.2 8.0 4.8 4.4 8.0 5.7 

sick-euthyroid 25 24 4 3 3 14 4 

soybean-large 35 34.8 22.0 17.1 16.1 25.8 17.7 

Corral 6 5 4 2 5 4 4 

m-of-n-3-7-10 10 I 9 6 7 10 I 

Monk1 6 3 5 3 4 6 3 

Monk2-local 17 8 12 6 5 14 6 

Monk2 6 4 6 0 0 6 3 

Monk3 6 3 2 2 2 6 2 

Average 

Reduction 30% 37% 40% 28% 6% 19% 

cross-validation estimated its accuracy to be lower than the node with 97.22% test-set 

accuracy. 
We have focused only on accuracy above, so other criteria merit some consideration. 

First, the wrapper method extends directly to minimizing misclassification cost. Most 
Irvine datasets do not include cost information and so accuracy is a natural performance 
metric, but one can trivially use a cost function instead of accuracy as the evaluation 
function for the wrapper. For filter approaches, adapting to misclassification costs is 

a research topic. Second, we should compare the number of features selected by the 
filter and wrapper. Table 15 shows the number of features in each dataset, the number 

selected by the Relieved-F filter (note that since the filter is independent of the induction 
algorithm, it prescribes the same set of features whether using ID3, C4.5, or Naive- 
Bayes), and the number selected by the plain versions of the algorithms and their 
wrapper-enhanced versions. (Plain Naive-Bayes always uses all features, so it does not 

have its own column.) The average reduction column shows the average percentage 
decrease in number of features between each column and its natural benchmark (e.g., 
RLF and C4.5 are compared to the original dataset, C4.5-BFS is compared to plain 
C4.5, etc.). 

It is also interesting to compare results between the original C4.5 algorithm and the 
wrapped versions of ID3, C4.5, and Naive-Bayes. Table 16 shows accuracy results for 
C4.5, ID3 with best-first forward feature subset selection, C4.5 with best-first backward 
FSS with compound operators, and Naive-Bayes with backward compound-operator FSS. 
The following observations can be made: 
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A comparison of C4.5 with lD3-FSS, C4.5-FSS, and Naive-Bayes-FSS. The p-val columns indicates the 
probability that the column before it is improving over C4.5 

Dataset c4.5 ID3-FSS 

original Frwd-BFS 

p-val C4.5-FSS 

Back-BFS 

p-val NB-FSS 

Back-BFS 

p-val 

breast cancer 95.42 f 0.7 94.57 f 0.7 0.11 95.28 f 0.6 0.41 96.00 f 0.6 0.81 

cleve 72.30 + 2.2 79.52 f 2.3 1.00 77.88 f 3.2 0.98 82.56 f 2.5 1.00 

crx 85.94 f 1.4 85.22 f 1.6 0.31 85.80* 1.3 0.46 84.78 f 0.8 0.15 

DNA 92.66 f 0.8 94.27 * 0.7 0.99 94.44 f 0.7 0.99 96.12 zt 0.6 1.00 
horse-colic 85.05 f 1.2 82.07 f 1.5 0.01 84.77 f 1.3 0.41 82.33 f 1.3 0.01 
Pima 71.60f 1.9 68.73 f 2.2 0.08 70.18 f 1.3 0.20 76.03 f 1.6 0.99 

sick-euthyroid 97.73 f 0.5 97.06 ct 0.5 0.09 97.91 f 0.4 0.66 97.35 f 0.5 0.2 1 

soybean-large 91.35 f 1.6 91.65f 1.0 0.59 91.93f 1.3 0.65 94.29 f 0.9 0.99 

Corral 81.25 f 3.5 

m-of-n-3-7-10 85.55 f 1.1 

Monk1 75.69 f 2.1 

Monk2-local 70.37 f 2.2 

Monk2 65.05 f 2.3 

Monk3 97.22 f 0.8 

Average real 86.51 

Average artif. 79.19 

100.00 f 0.0 1.00 

77.34 f 1.3 0.00 

97.22 f 0.8 1.00 

95.60f 1.0 1.00 

63.89 f 2.3 0.31 

97.22 zt 0.8 0.50 

86.64 

88.55 

81.25 f 3.5 

85.161 1.1 

88.89 f 1.5 

88.43 f 1.5 

67.13f2.3 

97.22 zk 0.8 

87.27 

84.68 

0.50 90.62 f 2.6 1.00 

0.36 87.50f 1.0 0.97 

1.00 72.22 A 2.2 0.05 

1.00 67.13 f 2.3 0.07 

0.82 67.13 f 2.3 0.82 

0.50 97.22 f 0.8 0.50 

88.68 

80.30 

For real datasets, ID3-FSS and C4.5 perform approximately the same, but ID3-FSS 

uses fewer features. For the artificial datasets, ID3-FSS significantly outperforms 

C4.5 on three datasets (Corral, Monkl, Monk2-local), and is significantly inferior 

in one (m-of-n-3-7-10). 
C4.5-FSS significantly outperforms C4.5 on two real datasets (cleve and DNA), 

two artificial datasets (Monk1 and Monk2-local), and is never significantly out- 
performed by C4.5. The relative error is reduced by 5.6% for real datasets and by 
26.4% for the artificial datasets. 
What is perhaps most interesting is how C4.5 and Naive-Bayes with feature subset 
selection compare. While there are datasets for which either one is better than 
the other, on the real datasets, C4.5 is significantly better only for the horse-colic 
dataset, but Naive-Bayes is significantly better for cleve, DNA, Pima, and soybean- 
large. The relative error of Naive-Bayes is smaller by 16.1%. For the artificial 

datasets, the two are about equal: C4.5 is significantly better on two datasets 
(Monkl, Monk2-local), and Naive-Bayes is better on two (Corral, m-of-n-3-7- 

10). 
In summary, feature subset selection using the wrapper approach significantly im- 

proves ID3, C4.5 and Naive-Bayes on some of the datasets tested. On the real datasets, 
the wrapper approach is clearly superior to the filter method. Perhaps the most surprising 
result is how well Naive-Bayes performs on real datasets once discretization and feature 
subset selection are performed. Some explanations for the apparently high accuracy of 



R. Kohavi. G.H. John/Art$cial Intelligence 97 (1997) 273-324 311 

Naive-Bayes even when the independence assumptions are violated, are explained by 
Domingos and Pazzani [26]. However, we can see that in some real-world domains 
such as DNA, the feature selection step is important to improve performance. 

6. Overfitting 

Still, it is an error to argue in front of your data. You find yourself insensibly twisting 

them round to fit your theories. 

-Sherlock Holmes, The Adventure of Wisteria Lodge. 

An induction algorithm ovelJits the dataset if it models the training data too well 
and its predictions are poor. An example of an over-specialized hypothesis, or classifier, 
is a lookup table on all the features. Overfitting is closely related to the bias-variance 
tradeoff [ 16,36,61]: if the algorithm fits the data too well, the variance term is large, 

and hence the overall error is increased. 
Most accuracy estimation methods, including cross-validation, evaluate the predictive 

power of a given hypothesis over a feature subset by setting aside instances (holdout 
sets) that are not shown to the induction algorithm and using them to assess the 
predictive ability of the induced hypothesis. A search algorithm that explores a large 

portion of the space and that is guided by the accuracy estimates can choose a bad 
feature subset: a subset with a high accuracy estimate but poor predictive power. 

Overuse of the accuracy estimates in feature subset selection may cause overfitting 
in the feature-subset space. Because there are so many feature subsets, it is likely that 
one of them leads to a hypothesis that has high predictive accuracy for the holdout sets. 
A good example of overfitting can be shown using a no-information dataset (Rand) 

where the features and the label are completely random. The top graph in Fig. 20 shows 
the estimated accuracy versus the true accuracy for the best node the search has found 

after expanding k nodes. One can see that especially for the small sample of size 100, 
the estimate is extremely poor (26% optimistic), indicative of overfitting. The bottom 

graphs in the figure show overbtting in small real-world datasets. 
Recently, a few machine learning researchers have reported the cross-validation es- 

timates that were used to guide the search as a final estimate of performance, thus 
reporting overly optimistic results. Instead, experiments using cross-validation to guide 
the search must report the accuracy of the selected feature subset on a separate test 

set or on holdout sets generated by an external loop of cross-validation that were never 
used during the feature subset selection process. 

The problem of overfitting in feature subset space has been previously raised in the 
machine learning community by Wolpert [ 1161 and Schaffer [ 1021, and the subject 
has received much attention in the statistics community (cf. Miller [ 801). Although 
the theoretical problem exists, our experiments indicate that overfitting is mainly a 
problem when the number of instances is small. Kohavi and Sommerlield [60] re- 

ported that out of 70 searches for feature subsets with datasets containing over 250 
instances, ten searches were optimistically biased by more than two standard deviations 
and one was pessimistically biased by more than two standard deviations; 3.5 searches 
(5% of 70) are expected to be biased. While the problem clearly exists, it was not 
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Fig. 20. Overhtting in feature subset selection. The top graph shows the estimated and true accuracies for a 

random dataset and ID3. The solid line represents the estimated accuracy for a training set of 100 instances, 

the thick grey line for a training set of 500 instances, and the dotted line shows the real accuracy. The bottom 

graphs graphs show the accuracy for real-world datasets. The solid line is the estimated accuracy, and the 

dotted line is the accuracy on an independent test set. 

very severe on the datasets examined (all datasets contained more than 250 instances 
in the training set). Moreover, even if the estimates are biased, the algorithm may 

still choose the correct feature subsets because it is the relative accuracy that matters 

most. 

7. Subset selection as search with probabilistic estimates 

We now look at the problem of feature subset selection as search with probabilistic 
estimates, which generalizes standard search with deterministic state evaluations. The 

wrapper approach, using accuracy estimation for node evaluation as the heuristic func- 
tion, complicates the common state-space search paradigm. The fact that the accuracy 
estimation is a random variable implies that there is uncertainty in the returned esti- 
mate. One way to decrease the variance is to run the accuracy estimation (e.g., k-fold 
cross-validation) more than once and average the results, as we have done. Increasing 
the number of runs shrinks the confidence interval for the mean, but requires more 
time. The tradeoff between more accurate estimates and more extensive exploration of 
the search space is referred to as the exploration versus exploitation problem [49]. 
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We can either exploit our knowledge and shrink the confidence intervals of the ex- 
plored nodes to make sure we select the right one, or we can explore new nodes in 
the hope of finding better nodes. The tradeoff leads to the following abstract search 

problem. 

Definition 7 (Search with probabilistic estimates). Let S be a state space with oper- 
ators between states. Let f : S H JR be an unbiased probabilistic evaluation function 

that maps a state to a real number, indicating how good the state is. The number re- 
turned by f(s) comes from a distribution D(s) with mean f*(s), which is the actual 
(unknown) value of the state. The goal is to find the state s with the maximal value 

of f*(s). 

The mapping of this definition to the feature subset selection problem is as follows. 
The states are the subsets, and the operators are the common ones (add feature, delete 
feature, create compound node). The evaluation function is the accuracy estimation. 

Although some accuracy estimation techniques, such as cross-validation, are biased, 
they can be viewed as unbiased estimators for a different quantity; for example, k- 

fold cross-validation is unbiased for datasets of size m - m/k. Furthermore, for model 

selection, this pessimism is of minor importance because the bias may cancel out. We 
now describe work that falls under this general framework of search with probabilistic 
estimators. 

Greiner [41] described a method for conducting a hill-climbing search when the 
evaluation function is probabilistic. The algorithm stops at a node that is a local optimum 
with high probability, based on the Chernoff bound. Yan and Mukai [ 1191 analyzed an 

algorithm based on simulated annealing and showed that it will find the global optimum 

if given enough time. 

Maron and Moore [77], in an approach similar to Greiner’s, attempted to shrink the 
confidence interval of the accuracy for a given set of models, until one model can be 
proven to be optimal with high probability. The evaluation function is a single step in 
leave-one-out cross-validation, i.e., the algorithm is trained on randomly chosen n - I 
instances and tested on the one that is left. The induction algorithm used is instance- 
based learning, which leads to an extremely fast evaluation because training is not 
necessary. A step of leave-one-out is merely a test of whether an instance is classified 
correctly by its nearest-neighbor. Note, however, that f(s) always returns either a zero 
or a one. The instance is either correctly classified, or not. This step must be repeated 
many times to get a reasonable confidence bound. 

The general idea is to race competing models, until one is a clear winner. Models 
drop out of the race when the confidence interval of the accuracy does not overlap 
with the confidence interval of the accuracy of the best model (this is analogous to 

imposing a higher and lower bound on the estimation function in the B* algorithm 
[ 111). The race ends when there is a winner, or when all IZ steps in the leave-one-out 
cross-validation have been executed. The confidence interval is defined according to 
Hoeffding’s formula [ 431, 

p(lf*(s) - f^(s)l > E) < 2e-2nE2/B2, 
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where f^< s) is the average of m evaluations and B bounds the possible spread of point 
values. Given a confidence level, one can determine E, and hence a confidence interval 

for f*(s), from the above formula. Maron and Moore [77], however, do not discuss 
any search heuristic, and assumes that a fixed set of models is given by some external 

source. 
Moore and Lee [ 841 describe an algorithm for feature subset selection that has both 

ingredients of the abstract problem: it has a search heuristic, and it uses the probabilistic 
estimates in a non-trivial manner. The algorithm does a forward selection and backward 
elimination, but instead of estimating the accuracy of each added (deleted) feature using 
leave-one-out cross-validation, all the features that can be added (deleted) are raced in 
parallel until there is a clear winner. 

Schemata search [ 841 is another search variant that allows taking into account inter- 
actions between features. Instead of starting with the empty or full set of features, the 
search begins with all features marked as “unknown”. Each time a feature is chosen 
and raced between being “in” or “out”. All combinations of “unknown” features are 
used in equal probability, thus a feature that should be “in” will win the race, even if 

correlated with another feature. Although this method uses the probabilistic estimates in 
a Bayesian setting, the basic search strategy is simple hill-climbing. 

Fong [ 321 gives bounds for the sample complexity (the number of samples one needs 
to collect before termination) in the k-armed bandit problem. His y-IE approach allows 
trading off exploitation and exploration, thus generalizing Kaelbling’s interval estimation 
strategy [49]. However, in all cases the worst-case bound remains the same and the 
optimal tradeoff between exploration and exploitation was empirically determined to be 

domain dependent. 

When using the wrapper method, it is important to explore a sufficient portion of 
the search space. By using search algorithms that take advantage of the probabilistic 

nature of accuracy estimates, it is possible to explore a larger portion of the space if the 

evaluation time for a state can be reduced based on statistical estimates. Future work 
on the abstract problem presented above might improve the applicability of the wrapper 

method to larger state spaces. 

8. Related work 

The pattern recognition literature [ 10,24,53], statistics literature [ 28,79,80,88], and 
recent machine learning papers [5,6,50,51,63] consist of many measures for feature 

subset selection that are all based on the data alone. 
Most measures in the pattern recognition and statistics literature are monotonic, i.e., 

for a sequence of nested feature subsets F, 2 F2 > . . . 2 Fk, the measure f obeys 

I 3 f(F2> > ... 2 f( Fk). Notable selection measures that satisfy the mono- 
tonicity assumption are residual sum of squares (RSS), adjusted R-square, minimum 
mean residual, Mallow’s C, [ 751, discriminant functions, and distance measures, such 
as the Bhattacharyya distance and divergence. The PRESS measure (Prediction sum of 
squares), however, does not obey monotonicity. For monotonic functions, branch and 
bound techniques can be used to prune the search space. Furnival and Wilson [35] 



R. Kohavi, G.H. John/Artificial Intelligence 97 (1997) 273-324 315 

show how to compute the residual sum of squares (RSS) for all possible regressions 
of k features in less than six (!) floating-point operations per regression; furthermore, 

the technique can be combined with branch and bound algorithms as described in their 

paper. 4 Narendra and Fukunaga [ 871 apparently rediscovered the branch-and-bound 
technique, which was later improved by Yu and Yuan [ 1201. Most machine learning 
induction algorithms do not obey monotonic restrictions, and so this type of dynamic 
programming cannot be used. Even when branch and bound can be used, the search is 
usually exponential, and when there are more than 30 or 40 features, heuristic methods 

need to be used. 
Searching in the space of feature subsets has been studied for many years. Se- 

quential backward elimination, sometimes called sequential backward selection, was 

introduced by Marill and Green [ 761. Kittler [52] generalized the different variants 
including forward methods, stepwise methods, and “plus C - take away r”. Cover and 

Campenhout [ 211 showed that even for multivariate normally distributed features, no 
hill-climbing procedure that uses a monotonic measure and that selects one feature at 

a time can find the best feature subset of a desired size; even a 2-l algorithm that 
adds the best pair and removes the worst single feature can fail. More recent papers 
attempt to use AI techniques, such as beam search and bidirectional search [ 1041, 
best-first search [ 1181, and genetic algorithms [ 114, 1151. All the algorithms described 

above use a deterministic evaluation function, although in some cases they can easily 
be extended to probabilistic estimates, such as cross-validation that we use. Recently, 
Bala et al. [9] used the wrapper approach with holdout for accuracy estimation and a 
genetic algorithm to search the space. Langley [69] reviewed feature subset selection 
methods in machine learning and contrasted the wrapper and filter approaches. Atke- 

son [ 81 used leave-one-out cross-validation to search a multidimensional real-valued 

space which includes feature weights in addition to other parameters for local learn- 

ing. 
The theory of rough sets defines notions of relevance that are closely related to the 

ones defined here [ 891. The set of strongly relevant features form the core and any set 
of features that allow a Bayes classifier to achieve the highest possible accuracy forms a 

reduct. A reduct can only contain strongly relevant and weakly relevant features. Pawlak 
[89] shows that the core is the intersection of all the reducts and that every reduct 
consists only of the core features and weakly relevant features. Pawlak [90] wrote that 
one of the most important and fundamental notions to the rough sets philosophy is the 

need to discover redundancy and dependencies between features, and there has been 
a lot of work on feature subset selection coming from the rough sets community (cf. 

[ 831 and [ 1211) . While the goal of finding a good feature subset is the same, Kohavi 
and Frasca [58] have claimed that relevance does not necessarily imply usefulness for 
induction tasks (see also Section 2.3). 

While we concentrated on selection of relevant features in this paper, an alternative 
method is to weigh features, giving each one a degree of relevance. Theoretical results 

4 The Forest Service must have been really interested in this problem. Fumival was at the School of Forestry 

at Yale University, and Wilson was from the USDA Forest Service! One would think that they should have 

been working on tree pruning and not on linear regression. 
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have been shown for multiplicative learning algorithms, which work well for linear 
combinations of features (e.g., Perceptrons) [ 741. 

Skalak [ 1061 used the wrapper approach for feature subset selection and for decreas- 
ing the number of prototypes stored in instance-based methods. He showed that very few 
prototypes sometimes suffice. This is an example of choosing relevant training instances 

as opposed to relevant features. 
Turney [ 11 l] defined a feature to be primary if there is one feature value such that 

the probability of a class changes when conditioned on this value. 5 A primary feature 

is thus informative about the class when considered all by itself. He then defined a 

contextual feature as a non-primary relevant feature. A feature is contextual only if it 
helps in the context of all others. Contextual features are harder to find because they 

involve interactions. These definitions are orthogonal to ours: a feature may be primary 
and either strongly or weakly relevant, or contextual and either strongly or weakly 
relevant. 

Since the introduction of the wrapper approach [47], we have seen it used in a 
few papers. Langley and Sage [ 701 used the wrapper approach to select features for 
Naive-Bayes (but without discretization) and Langley and Sage [ 711 used it to select 
features for a nearest-neighbor algorithm. Pazzani [91] used the wrapper approach to 

select features and join features (create super-features that compound others) for Naive- 
Bayes and showed that it indeed finds correct combinations when features interact. 

Singh and Provan [ 1051 and Provan and Singh [93] used the wrapper approach to 
select features for Bayesian networks and showed significant improvements over the 
original K2 algorithm. Street et al. [ 1071 use the wrapper in the context of a linear 
programming generalizer. All the algorithms mentioned above use a hill-climbing search 

engine. 
The idea of wrapping around induction algorithms appeared several times in the 

literature without the explicit name “wrapper approach”. The closest formulation is the 
Search of the Bias Space approach described by Provost and Buchanan [95] and which 

dates back to Provost [ 941. 
Aha and Bankert [2] used the wrapper for identifying feature subsets in a cloud 

classification problem with 204 features and 1633 instances; they concluded that their 
empirical results strongly support the claim that the wrapper strategy is superior to filter 

methods. Aha and Bankert [ 31 compared forward and backward feature subset selection 
using the wrapper approach and a beam-search engine and concluded that forward 
selection is better. In other work, we have applied the wrapper approach to parameter 

tuning as well (specifically, setting the parameters of C4.5 for maximal performance) 
in [ 591. MladeniC [ 821 independently extended the use of wrappers from feature subset 

selection to parameter tuning. Doak [ 251 has developed a method similar to the wrapper 
approach independently, and compared many search engines for feature subset selection; 
however, the optimistically-biased internal cross-validation results were reported rather 

than unbiased results from an outer cross-validation as we have done. 

5 A longer discussion of contextual features may be found in Tumey [ I lo], although the definitions originally 

given were found to be flawed as mentioned in Tumey [ I I 11. 



R. Kohavi, G.H. John/Art@cial Intelligence 97 (1997) 273-324 317 

9. Future work 

Many variations and extensions of the current work are possible. We have examined 
hill-climbing and best-first search engines. Other approaches could be examined, such 

as simulated annealing approaches that evaluate the better nodes more times [68]. 

Looking at the search, we have seen that one general area of the search space is 
explored heavily when it is found to be good. It might be worthwhile to introduce some 
diversity into the search, following the genetic algorithm and genetic programming 

approaches [ 39,44,65]. The problem has been abstracted as search with probabilistic 
estimates (Section 7)) but we have not done experiments in an attempt to understand 

the tradeoff between the quality of the estimates and the search size, i.e., exploration 

versus exploitation experiments. 
The search for a good subset is conducted in a very large space. We have started the 

search from the empty set of features and from the full set of features, but one can start 

from some other initial node. One possibility is to estimate which features are strongly 
relevant, and start the search from this subset, although compound operators seem to be 
a partial answer to this problem. Another possibility is to start at random points and 
conduct a series of hill-climbing searches. We could also start with the set of features 
suggested by Relieved-F, or at least ensure that this set is explored by the wrapper at 

some point during the search. 
The wrapper approach is very slow. For larger datasets, it is possible to use cheaper 

accuracy estimation methods, such as holdout, or decrease the number of folds. Further- 
more, some inducers allow incremental operations on the classifiers (add and delete 

instances), leading to the possibility of doing incremental cross-validation as sug- 
gested by Kohavi [55], thus drastically reducing the running time. Although C4.5 

does not support incremental operations, Utgoff [ 1121 has shown that this is pos- 

sible and has implemented a fast version of leave-one-out for decision trees [ 1131. 
The wrapper approach is also very easy to parallelize. In a node expansion, all chil- 
dren can be evaluated in parallel, which will cut the running time by a factor equal 

to the number of attributes assuming enough processors are available (e.g., 180 for 
DNA). 

In theory, every possible feature subset identifies a different model, so the problem 
can be viewed as that of model selection [73] in Statistics. If there are only a few 
models, as is the case when one chooses between three induction algorithms, one can 

estimate the accuracy of each one and select the one with the highest accuracy [ 1021 
or perhaps even find some underlying theory to help predict the best one for a given 

dataset [ 141. For all but the smallest problems, the space of possible feature subsets is 
too large for brute-force enumeration of all possibilities, and we must resort to heuristic 
search. 

Recently, aggregation techniques, sometimes called stacking, have been advocated by 

many people in machine learning, neural networks, and Statistics [ 15,17,33,34,66,67, 
92, 103,117]. It is possible to build many models, each one with a different parameter 
setting or with a different feature subset, and let them vote on the class. Aggregation 
techniques reduce the variance of the models by aggregating them, but they make it 
extremely hard to interpret the resulting classifier. 
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10. Summary 

We have described the feature subset selection problem in supervised learning, which 

involves identifying the relevant or useful features in a dataset and giving only that subset 
to the learning algorithm. We have investigated the relevance and irrelevance of features, 

and concluded that weak and strong relevance are needed to capture our intuition better. 
We have then shown that these definitions are mainly useful with respect to an optimal 

rule, i.e., Bayes rule, but that in practice one should look for optimal features with 
respect to the specific learning algorithm and training set at hand. Such optimal features 

do not necessarily correspond to relevant features (either weak or strong) as shown in 
Section 2.3. The optimal features depend on the specific biases and heuristics of the 

learning algorithm, and hence the wrapper approach naturally fits with this definition. 
Feature relevance helped motivate compound operators, which work well in practice and 

are currently the only practical way to conduct backward searches for feature subsets 
using the wrapper approach when the datasets have many features. 

The wrapper approach requires a search space, operators, a search engine, and an 
evaluation function. For the evaluation function, we used cross-validation as our accuracy 
estimation technique, based on the results of Kohavi [ 561. We have used the common 

search space with add and delete operators as the basis for comparing two search engines: 
hill-climbing and best-first search. We have then defined compound operators that use 
more information in the children of an expanded node, not just the maximum value. 

These compound operators make a backward search, starting from the full set of features, 
practical. Best-first search with compound operators seems to be a strong performer and 
improves ID3, C4.5, and Naive-Bayes, both in accuracy, and in comprehensibility, as 

measured by the number of features used. 
We showed several problems with filter methods that attempt to define relevance 

independently of the learning algorithm. These problems include: inability to remove 
a feature in symmetric targets concepts such as m-of-n-3-7-10 where removal of one 
feature improves performance (Section 4), inability to include irrelevant features that 

may actually help performance (Example 3)) and inability to remove correlated features 

that may hurt performance (Section 2.4.4). Not only have we given theoretical reasons 
why relevance should be defined relative to an algorithm, but we conducted experiments 

comparing the wrapper approach with Relieved-F, a filter approach to feature subset 
selection. 

Our comparisons include two different families of induction algorithms: decision trees 
and Naive-Bayes. Significant performance improvement is achieved for both on some 
datasets. For the DNA dataset, which was extensively compared in the StatLog project, 
the wrapper approach using Naive-Bayes reduced the error rate from 6.1% to 3.9% 
(a relative error reduction of 36%), making it the best known induction algorithm for 

this problem. One of the more surprising results was how well Naive-Bayes performed 
overall: in the global comparison (Table 16), Naive-Bayes outperforms C4.5 (with and 
without feature selection) on the real datasets. On average, the performance using feature 

subset selection improved both algorithms. 
Our experiments were done on real and artificial datasets. In some cases, the results 

varied dramatically between these two sets. One reason is that many of the real datasets 
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were already preprocessed to include only relevant features (DNA being the only ex- 
ception), while the artificial ones included irrelevant features on purpose. The artificial 
datasets were mostly noise-free (except monk3), while the real ones contained noise. 
Finally, the artificial problems contained high-order interactions, which make it harder 

for hill-climbing algorithms such as C4.5 to find the optimal feature subset. We expect 
that tougher problems containing interactions will occur more in unprocessed datasets 
coming from the real world. 

We have also shown some problems with the wrapper approach, namely overfitting 
and the large amounts of CPU time required, and we defined the search problem as an 

abstract state space search with probabilistic estimates, a formulation that may capture 
other general problems and that might be studied independently to solve the existing 
problems. The time issue seems to be the most important, although with larger amounts 
of data, cross-validation can be replaced with holdout accuracy estimation for an im- 

mediate improvement in time by a factor of five. Ovefitting is a problem of lesser 
importance and seems to occur mostly in small training sets; as more data is available 

for training, overfitting it by chance is much harder. 
In supervised classification learning, the question of whether a feature in a dataset is 

relevant to a given prediction task is less useful than the question of whether a feature 
is relevant to the prediction task given a learning algorithm. If the goal is to optimize 
accuracy, one should ask whether a set of features is optimal for a task given the learning 
algorithm and the training set. Different algorithms have different biases and a feature 
that may help one algorithm may hurt another. Similarly, different training set sizes 
might imply that a different set of features is optimal. If only a small training set is 
given, it may be better to reduce the number of features and thus reduce the algorithm’s 

variance; when more instances are given, more features can be chosen to reduce the 

algorithm’s bias. 
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