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Abstract 

The creative process involves several cognitive processes, 
such as working memory, controlled attention and task 
switching. One other process is cognitive search over 
semantic memory. These search processes can be controlled 
(e.g., problem solving guided by a heuristic), or uncontrolled 
(e.g., mind wandering). However, the nature of this search in 
relation to creativity has rarely been examined from a formal 
perspective. To do this, we use a random walk model to 
simulate uncontrolled cognitive search over semantic 
networks of low and high creative individuals with an equal 
number of nodes and edges. We show that a random walk 
over the semantic network of high creative individuals “finds” 
more unique words and moves further through the network 
for a given number of steps. Our findings are consistent with 
the associative theory of creativity, which posits that the 
structure of semantic memory facilitates search processes to 
find creative solutions. 

Keywords: Creativity; Semantic Networks; Random Walks; 
Cognitive Search 

Introduction 
How do people vary in their creative ability? While 
creativity is a multifaceted construct, here we focus on the 
role of representation and search processes in memory to 
creative ability. One relevant theory of what differentiates 
low and high creative individuals focuses on bottom-up 
factors: the structure of semantic memory (Kenett, Anaki, & 
Faust, 2014). An alternative theory focuses on the role of 
top-down, executive processes. This theory argues that top-
down control is necessary to produce observed differences 
between low and high creative individuals (Benedek et al., 
2014). In this paper, we demonstrate that a bottom-up, 
associative account is sufficient to produce some of these 
results. 
    Previous work on the relation between creativity and 
cognitive search has examined how different search 
processes over semantic memory (memory for knowledge 
and facts, Jones, Willits, & Dennis, 2015) are related to 
goal-directed creative tasks (Christoff, 2013; Sawyer, 2011). 
One major distinction between search processes is whether 
they are controlled (goal-directed) or uncontrolled 
(undirected; Christoff, 2013). Controlled search processes 
involve goal directed search for a specific creative solution 
(Mednick, 1962). Uncontrolled search processes wander 
across semantic memory, which can lead to novel 
combinations and insight (Baird et al., 2012). According to 
this account, differences in creative behavior are related to 
differences in memory structure that facilitates random mind 

wandering to connect distant associations, which are then 
evaluated for their appropriateness (Christoff, 2013; 
Sawyer, 2011).  
   Recent studies have used computational network science 
to analyze semantic memory structure as a semantic 
network (e.g., Baronchelli et al., 2013). A semantic network 
is a set of nodes and edges, where nodes correspond to 
words or concepts and edges connect pairs of nodes and 
signify some sense of association between them. Previous 
theoretical work has proposed that creative solutions and 
insight are the result of either sophisticated search processes 
and/or the creation of new edges in semantic networks 
(Schilling, 2005). However, previous work has not 
examined the nature of this search process in creativity, 
whether it be controlled or uncontrolled.  

In this paper, we examine how well uncontrolled search 
on semantic networks can capture some of the differences in 
how low and high creative individuals conduct cognitive 
search. To this end, we simulate random walks over the 
semantic networks of low and high creative individuals. 
Based on the associative theory of creativity, we 
hypothesize that the structure of the semantic network of 
high creative individuals enables them to use simple search 
processes that reach further and to more weakly connected 
concepts, than low creative individuals. Specifically, we 
predict that random walks over the semantic network of 
high creative individuals will reach more nodes than the 
walks over the network of low creative individuals. Further, 
the similarity of the initial and final visited nodes in the 
walk will be weaker for the network of high creative 
individuals than for the network of low creative individuals. 
  The plan of the paper is as follows: First we describe 
previous work on uncontrolled search and differences in 
semantic memory structure between low and high creative 
individuals. Next, we investigate whether a purely 
uncontrolled random walk process on the two semantic 
networks captures differences in cognitive search 
performance between low and high creative individuals. We 
conclude with a discussion of the implications and 
limitations of our simulation results.	

Previous work 

Creative and Uncontrolled Search  
Current neurocognitive research has progressed our 
understanding of the roles of specific cognitive processes 
(such as working memory and attention) and how they 



interact to produce creative behavior (Sawyer, 2011). One 
of these processes is the ability to search through memory 
and connect seemingly unrelated concepts into something 
novel (Mednick, 1962). Mednick (1962) theorized that 
novel combinations of unconnected concepts are more 
creative the farther apart they are in memory (but see 
Sawyer, 2011 for an alternative viewpoint). He proposed 
that this will be evident in the type of associations low and 
high creative individuals generate to cue words: When 
presented with the cue word table, low creative individuals 
will generate responses that are mainly restricted to the 
common response chair. Conversely, high creative 
individuals will generate less frequent responses such as leg 
and food (Mednick, 1962). To test his theory, Mednick et al. 
(1964) had low and high creative individuals generate 
responses to cue words in a fixed amount of time. He found 
that high creative individuals generate more responses than 
low creative individuals. However, what can researchers 
infer about the differences in representation and processes 
of low and high creative individuals based on these results? 
To do so requires a formal account of the representation and 
processes responsible for producing responses to cognitive 
search tasks.  
   A classic uncontrolled search process is spreading 
activation (Collins and Loftus, 1975). According to this 
search process, activation spreads over links through words 
and quickly dissipates with time and distance. Spreading 
activation over networks can also capture similarity 
relations: Two words are similar to the extent that they 
activate each other. Computationally, spreading activation 
can be implemented as a random walk over a network. 
Starting at a particular node, a random walk selects an 
outbound edge with a probability proportional to the edge’s 
weight and moves across it. As this process progresses, it 
explores more nodes in the network. Analogous to how 
spreading activation decays over a network, the probability 
that a walk moves from one node to another decays in their 
distance. Thus, the probability of moving from one node to 
another in a small number of steps captures their similarity. 

Recent research has explored how random walk models 
can capture memory retrieval (Abbott, Austerweil, & 
Griffiths, 2015; Capitán et al., 2012; Griffiths, Steyvers, & 
Firl, 2007) and performance in creative tasks which require 
cognitive search (Bourgin, Abbott, Griffiths, Smith, & Vul, 
2014; Smith & Vul, 2015). These studies investigated how 
well a random walk on a representation captures general 
performance on cognitive search and creative tasks. 
However, they have not examined whether differences in 
creative ability can be understood in terms of the same 
random walk process on different representations. 

In the present study, we conduct naïve random walk 
simulations on the semantic networks of low semantic 
creative (LSC) and high semantic creative (HSC) 
individuals estimated in a previous study (Kenett et al., 
2014). This study found that the semantic networks of low 
and high creative individuals had different structural 
properties. This was the case despite both networks having 

an equal number of nodes, edges and average number of 
edges per node.  

Using Kenett et al.’s semantic networks of LSC and HSC 
individuals, we can test Mednick’s (1962) associative theory 
of creativity using random walks. We formalize the search 
process proposed by the associative theory as an 
uncontrolled random walk, and predict that (on average) a 
random walk over the semantic network of HSC individuals 
will visit more nodes that are weaker in similarity than an 
equivalent length random walk over the semantic network 
of LSC individuals. This would reproduce previously 
reported differences in human performance by LSC and 
HSC individuals in generating and judging the strength of 
associative responses to cue words (Mednick et al., 1964; 
Rossman & Fink, 2010). We test these predictions via 
random walk simulations to see whether differences in 
representation are sufficient to produce observed differences 
in creative performance. 

Semantic Networks of LSC and HSC Individuals 
Here we describe how Kenett et al., (2014) estimated 
different semantic networks for LSC and HSC individuals.  
    Creativity Assessment - Participants (N = 140) were 
recruited as part of a larger research study on individual 
differences in creative ability (Kenett et al., 2014). They 
completed the following creativity tasks: The Remote 
Association Test, which measures associative thinking 
related to creativity (Nevo & Levin, 1978), Tel-Aviv 
University Creativity Test (Milgram & Milgram, 1976), a 
battery of divergent thinking tests (e.g., what are all the 
things you can do with a brick), frequently used in creativity 
research (Runco & Acar, 2012), and the Comprehension of 
Metaphors task (Faust, 2012), which compares processing 
of word-pairs that have different semantic relations (either 
literal, conventional metaphoric, novel metaphoric, or are 
meaningless). Participants were classified as LSC or HSC 
individuals using these scores. To do so, Kenett et al. (2014) 
used the JMP classification and regression tree approach 
(Galimberti & Soffritti, 2011), to predict performance on the 
Remote Association Test based on their divergent thinking 
performance (scores on fluency and quality of responses). 
Using the decision tree, they defined participants in the 
lower third of performance as low creative and those in the 
upper third as high creative. This classification was verified 
based on the performance of the two groups on the 
Comprehension of Metaphors task (not used to construct the 
decision tree). 
    Semantic Network Estimation - The semantic networks of 
the LSC and HSC groups were computed using the 
computational approach developed by Kenett et al. (2011). 
This approach consists of two parts. First, participants 
generated continuous free association responses to cue 
words. The LSC and HSC groups generated free 
associations to a list of 96 cue words. The cue words were 
based on fluency norms collected to a list of 36 categorical 
norms gathered by Henik and Kaplan (2005; e.g. fruits, 
trees, countries). The top four high frequency words from 



each category were selected. These words were then tested 
for their degree of concreteness, on a seven point Likert 
scale, and only concrete words were selected (words scoring 
more than three points on the scale). The final pool of cue 
words consisted of 96 words from 24 categories. 

Kenett et al. (2014) used the associative responses for 
these 96 cue words to estimate semantic networks for LSC 
and HSC individuals. This was achieved in the following 
steps: First, the data was preprocessed to standardize 
responses and fix any spelling mistakes. This resulted in a 
matrix where each row was a unique associative response, 
each column was a cue word and each cell contained the 
amount of participants generating response i to cue word j. 
Second, a N x N association matrix A was constructed, 
where element (i, j) was the Pearson’s correlation of the 
response similarity between cue words i and j. Spurious 
correlations from the connectivity matrix were removed 
using a filter (planar maximal filtered graphs) and any non-
zero cells were binarized to equal one. Thus, the resulting 
semantic network is unweighted (the weight of any existing 
edge is one) and undirected (symmetric relations). Although 
we plan to explore weighted networks in the future, some 
previous work has found qualitatively similar behavior for 
unweighted and weighted semantic networks (Abbott et al., 
2015) and so, we used an unweighted network for simplicity 
and brevity. Importantly, the semantic networks for different 
groups (LSC and HSC) were comprised of the same nodes 
(96 cue words) and had an equal number of edges (282 
edges). Further, the average degree, the average amount of 
edges per node in both networks was equal (average of 5.88 
edges per node). Thus, differences in behavior between the 
random walks on the two networks cannot be explained as 
simply there being more connections in one of the networks. 

Current Work 
A naïve random walk approach was used to examine the 
theory that HSC individuals can search further in their 
semantic networks and reach weaker related nodes. 
Accordingly, we examine two properties of each walk: the 
amount of unique visited nodes (indicating the breadth of 
the search) and the distance between initial and final visited 
nodes (indicating the strength between initial and final 
nodes). The random walk analysis over the semantic 
networks of the two groups was conducted in the following 
steps: First, we computed the transition probability matrix 
for each group. As the networks are unweighted, and 
undirected, the transition probability 𝑇𝑖𝑗 of moving from 
node i to node j is 

 

          𝑇𝑖𝑗 =
𝐴𝑖𝑗

𝐴𝑘𝑗
𝑛
𝑘=1

       (1) 

 
where 𝐴𝑖𝑗 is the fully processed association matrix (1 if i is 
connected to j, and 0 otherwise) and the denominator is the 
number of nodes that node j is connected to.  

Second, we choose an initial starting node (cue word) for 
both networks from which the walk initiates. For each walk 
simulation, the initial node (𝑋𝐼𝑁) is randomly chosen from a 
uniform distribution over the 96 nodes in the network. The 
random walk starts at 𝑋0 = 𝑋𝐼𝑁, and then at step n 
randomly generates the next state 𝑋𝑛+1 according to  the 
transition matrix T. In this model, the transition matrix is 
unweighted, meaning that the next state is uniformly chosen 
at random from all nodes connected to node 𝑋𝑛. Further, our 
model is a non-jumping model, which means that the cue 
word simply initiates the walk. We did not include jumps 
because previous work found that they did not substantially 
affect the pattern of first visits to each node by random 
walks (Abbott et al., 2015). 

After running the random walk simulations on the LSC 
and HSC semantic networks, we examined differences in 
“search” behavior (the behavior of the random walks) due to 
the structure of the semantic networks. We computed two 
different measures of how “creative” a walk was to examine 
whether the random walks on the LSC and HSC networks 
capture differences in creativity.  

The first measure of walk creativity was the number of 
unique nodes visited by the search. This measure indicates 
the breadth of the search achieved by the walk. The second 
measure of walk creativity was the similarity between the 
initial and final node visited by the walk.  This was defined 
as 
 

𝑠 = exp (−𝐷!")    (3) 
 
where 𝐷𝑖𝑗 is the length of the shortest path between initial (i) 
and final (j) nodes through the network. The shortest path  
between two nodes is the smallest number of edges a walk 
could traverse to get from one node to the other node. Both 
measures were averaged over simulations per different 
numbers of steps and compared via Wilcoxon signed rank 
tests.  

Results 
We ran 10,000 random walks over both networks for a 
varying number of steps (10-200 steps in increments of 10 
steps). Similar results held for 100,000 simulations. At the 
start of each simulation, the initial node was randomly 
chosen and identical for both networks. For each simulation, 
we computed the mean number of unique nodes visited 
during the walk and the similarity score between initial and 
final nodes per amount of steps for the two groups (as 
described in the subsequent subsections). 

Unique Visited Nodes 
For both walks, the average amount of unique visited nodes 
in the network increased with the number of steps of the 
walk. For the walks on the LSC network, the average 
number of unique visited nodes ranged from 7.21 (1.42)1 for 

                                                             
1 We report standard deviation in parentheses.  



simulations taking 10 steps to 52.52 (10.35) for simulations 
taking 200 steps. For the walks on the HSC network, the 
average amount of unique visited nodes ranged from 7.24 
(1.43) for simulations taking 10 steps to 54.94 (9.34) for 
simulations taking 200 steps. Overall, walks over the HSC 
network visited more unique nodes for a given number of 
steps than over the LSC network (Wilcoxon rank test 
significant at p < 0.001 for all walks longer than 20-steps).  
 

 
 
Figure 1: Difference score of the number of unique nodes 
visited by walks over the LSC and HSC networks varying 
the number of steps. 
 
    As shown in Figure 1, the difference between the number 
of unique visited nodes by the HSC and LSC walks 
increases with the number of steps. Generally, the increase 
is monotonic, but it is not always. In these cases, it is likely 
that increasing the number of steps allowed the LSC walk 
(on average) to reach nodes it had not reached with fewer 
steps, but were already reached by the HSC walk. It is not 
simply noisy – running more simulations led to similar 
results. These results are consistent with previous work 
showing that high creative individuals generate more 
associative responses than low creative individuals 
(Mednick et al., 1964). 

Similarity Between Initial and Final Nodes 
For walks on both networks, the average similarity score 
between the initial and final node in the walk decreased with 
the number of steps taken by the walk. For the simulations 
on the LSC network, the average similarity score ranged 
from 0.22 (0.22) for simulations taking 10 steps to 0.07 
(0.14) for simulations taking 200 steps. For the simulations 
on the HSC network, the average similarity score ranged 
from 0.21 (0.22) for simulations taking 10 steps to 0.07 
(0.13) for simulations taking 200 steps. Up to 110 steps, 
HSC walks resulted in lower similarity scores between the 
initial and final nodes (Wilcoxon rank test significance at p 
< 0.1 for 20-steps and p < 0.01 for all other number of 
steps). This reflects that until 110 steps, walks on the LSC 
network tended to remain closer to the initial node than 

walks on the HSC network. Related to this, Beaty & Silvia 
(2012) found that as more responses are generated in 
fluency tasks, the responses become more “creative” (as 
judged by subjective measures of the novelty and 
uniqueness). From 120 steps onwards, the results are less 
consistent and even reverse. For example, at 150-160 steps, 
the walk over the LSC network had a smaller average 
similarity score than the walk over the HSC network (Figure 
2).  
     

 
 
Figure 2: Difference score of the average similarity (shortest 
path) between initial and final visited nodes by walks over 
the LSC and HSC networks varying the number of steps.  
     
This reversal in the difference score of the average 
similarity between initial and final visited walks by the two 
groups may be due to the large number of steps in the walk 
relative to the number of nodes (96), which enables the walk 
to traverse most of the network. Thus, the walk over the 
LSC network may reach farther in the network which will 
lower its average similarity score.  
    One question we had was whether the differences in 
similarity are simply due to the HSC network visiting more 
unique nodes. To control for this possible confound, we 
examined the similarity between the starting and ending 
node holding the number of visited nodes constant between 
walks on the two networks (rather than the number of steps). 
Due to the small amount of unique visited nodes for the 10 
and 20 step walks, the truncated final node (the kth unique 
visited node after the initial starting node) was set to three 
for the 10-step walk, four for the 20-step walk and five for 
30-step and onwards. Overall, walks over the HSC network 
resulted in a smaller similarity score between the initial and 
final truncated node compared to walks on the LSC network 
(Wilcoxon rank test significance at p < 0.01 for all steps; 
Figure 3). The reason that the relation between step size and 
similarity of initial and final node became unreliable in 
Figure 2 after 110 steps may be due to the HSC random 
walk traversing most of the network. We plan to investigate 
this in future work by examining whether the HSC random 
walk reaches stationarity before the LSC random walk. 
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Figure 3: Difference score of the average similarity (shortest 
path) between initial and final truncated visited nodes by 
walks over the LSC and HSC networks varying the number 
of steps.  

Discussion 
In this paper, we examined how differences in semantic 
memory structure and search processes interact and relate to 
individual differences in creative ability. According to the 
associative theory of creativity, individual differences in 
creativity should be related to differences in semantic 
memory structure, which in turn facilitate cognitive search 
(Kenett et al., 2014; Mednick, 1962). To test this theory, we 
conducted random walk simulations and examined 
differences in how uncontrolled search behaves over 
semantic memory for HSC and LSC individuals.  
   Our work is situated with a growing amount of research 
studying uncontrolled thought processes (Christoff, 2013), 
and complements existing research by examining the search 
processes of LSC and HSC individuals using computational 
methods. We found that a random walk process visits more 
unique nodes and that the similarity strength between initial 
and final nodes visited by the walk is weaker for walks over 
the HSC network than the LSC network. These results were 
robust to the starting node and the number of steps taken by 
the walk. Thus, individual differences in thought processes 
between LSC and HSC individuals can be produced by an 
uncontrolled search process on differing semantic networks, 
providing support for Mednick’s theory. 
    Notably, both networks have the same nodes, amount of 
edges, and average degree (number of edges per node). 
Thus, the differences between the random walks cannot be 
due to the HSC individuals merely having more connections 
in their semantic network. Rather, this reflects that HSC 
individuals have connections that enable a random walk to 
move quickly through the network. It is important to note 
that this demonstrates sufficiency, but not necessity: It does 
not rule out that different processes are being used by LSC 
and HSC individuals. Regardless, by showing how 
differences in representation can produce differences in 

search behavior, these findings support the associative 
theory of creativity, which posits that HSC individuals have 
a semantic memory structure that facilitates novel 
combinations (Kenett et al., 2014; Mednick, 1962).  
    There are limitations to this study. First, we treated 
creativity as a binary construct due to technical constraints 
(existing semantic network estimation techniques require 
large data sets). However, creativity is a continuous 
construct and not a categorical one. Future research should 
examine the search processes over semantic networks in 
individuals (see Zemla, Kenett, Jun, & Austerweil, 2016) to 
provide a better understanding of how search processes 
relate to creative ability. Second, we only explored 
undirected, unweighted random walks. Future research 
should also examine the effect of using directed and 
weighted random walks on the different semantic networks.  
Finally, the semantic networks of LSC and HSC individuals 
were constructed based on free associations. Some 
researchers have argued that explaining cognitive search 
behavior as a random walk over a semantic network 
estimated from free association data is potentially circular 
(Hills, Todd, & Jones, 2015). However, in our research, 
creative ability was measured independently with different 
tasks (divergent thinking) than those used for representing 
their semantic networks (free associations). Thus, our results 
are limited to the measures we used to classify participants 
into LSC and HSC individuals, as well as the way we 
constructed the semantic networks and measured the 
random walks. Future research should use different 
measures for estimating creativity, and the semantic 
networks of low and high creative individuals.  
    More generally, this work demonstrates how random 
walk models can be used to examine thought processes in 
different populations, such as LSC and HSC individuals. 
Random walks are a computational implementation of the 
theoretical concept of spreading activation. This enables 
researchers to use these models to investigate how well 
uncontrolled search processes can capture different 
cognitive processes operating on semantic memory, such as 
mind wandering or creative thought (Christoff, 2013). 
Specifically, such models can be used to understand the 
contribution of both bottom-up and top-down processes in 
creativity. We do not expect a completely uncontrolled 
search process (such as the naïve random walk) to explain 
creativity in all of its complexity. Rather, we intend to use it 
as a yardstick for determining whether controlled search 
processes are necessary or if randomness is sufficient to 
produce the observed variations in behavior (similar to 
studies of drift in computational models of evolutionary 
genetics; Reali & Griffiths, 2009). In future work, we also 
plan to incorporate controlled search processes into the 
model and see what sort of behavior it can produce that 
cannot be replicated by an uncontrolled search process 
(keeping the semantic networks constant). This will guide 
the development of experiments that provide stronger results 
capable of dissociating bottom-up and top-down processes 
contributing to creativity.  
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