The general theory of relativity is a remarkably successful model for gravity. However, many of the best tests for it don't push its limits: they measure phenomena where gravity is relatively weak. Some alternative theories predict different behavior in areas subject to very strong gravity, like near the surface of a pulsar—the compact, rapidly rotating remnant of a massive star (also called a neutron star). For that reason, astronomers are very interested in finding a pulsar paired with another high-mass object. One such system has now provided an especially sensitive test of strong gravity.
The system is a binary consisting of a high-mass pulsar and a bright white dwarf locked in mutual orbit with a period of about 2.5 hours. Using optical and radio observations, John Antoniadis and colleagues measured its properties as it spirals toward merger by emitting gravitational radiation. After monitoring the system for a number of orbits, the researchers determined its behavior is in complete agreement with general relativity to a high level of precision.
The binary system was first detected in a survey of pulsars by the Green Bank Telescope (GBT). The pulsar in the system, memorably labeled PSR J0348+0432, emits radio pulses about once every 39 milliseconds (0.039 seconds). Fluctuations in the pulsar's output indicated that it is in a binary system, though its companion lacked radio emissions. However, the GBT's measurements were precise enough to pinpoint its location in the sky, which enabled the researchers to find the system in the archives of the Sloan Digital Sky Survey (SDSS). They determined the companion object was a particularly bright white dwarf, the remnant of the core of a star similar to our Sun. It and the pulsar are locked in a mutual orbit about 2.46 hours in length.