Quantum mechanics has been successful beyond the wildest dreams of its founders. The lives and times of atoms, governed by quantum mechanics, play out before us on the grand stage of space and time. And the stage is an integral part of the show, bending and warping around the actors according to the rules of general relativity. The actors—atoms and molecules—respond to this shifting stage, but they have no influence on how it warps and flows around them.
This is puzzling to us. Why is it such a one directional thing: general relativity influences quantum mechanics, but quantum mechanics has no influence on general relativity? It's a puzzle that is born of human expectation rather than evidence. We expect that, since quantum mechanics is punctuated by sharp jumps, somehow space and time should do the same.
There's also the expectation that, if space and time acted a bit more quantum-ish, then the equations of general relativity would be better behaved. In general relativity, it is possible to bend space and time infinitely sharply. This is something we simply cannot understand: what would infinitely bent space look like? To most physicists, it looks like something that cannot actually be real, indicating a problem with the theory. Might this be where the actors influence the stage?
Quantum mechanics and relativity on the clock
To try and catch the actors modifying the stage requires the most precise experiments ever devised. Nothing we have so far will get us close, so a new idea from a pair of German physicists is very welcome. They focus on what's perhaps the most promising avenue for detecting quantum influences on space-time: time-dilation experiments. Modern clocks rely on the quantum nature of atoms to measure time. And the flow of time depends on relative speed and gravitational acceleration. Hence, we can test general relativity, special relativity, and quantum mechanics all in the same experiment.