create a website

A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts. (2016). Fukushige, Mototsugu ; Elamin, Niematallah.
In: Discussion Papers in Economics and Business.
RePEc:osk:wpaper:1622.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 22

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Almeshaiei, E., Soltan, H. 2011. A methodology for electric power load forecasting. Alexandria Engineering Journal 50: 137–144. doi: 10.1016/j.aej.2011.01.015.
    Paper not yet in RePEc: Add citation now
  2. Amjady, N. 2001. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Transactions on Power Systems 16(3): 498–503. doi: 10.1109/59.962429.
    Paper not yet in RePEc: Add citation now
  3. Bremnes, J. B. 2004. Probabilistic wind power forecasts using local quantile regression.
    Paper not yet in RePEc: Add citation now
  4. Chen, C., Wei, Y. 2005. Computational issues for quantile regression. Sankhyā: The Indian Journal of Statistics 67(2): 399–417. Retrieved from http://www.jstor.org/stable/25053439.
    Paper not yet in RePEc: Add citation now
  5. Dash, P. K., Liew, A. C., Rahman, S. 1995. Comparison of Fuzzy Neural Networks for the generation of daily average and peak load profiles. International Journal of System Science 26: 2091–2106. doi: 10.1080/00207729508929156.
    Paper not yet in RePEc: Add citation now
  6. Engle, R. F., Brown, S. J., Stern, G. 1988. A comparison of adaptive structural forecasting methods for electricity sales. Journal of Forecasting 7: 149–172. doi: 10.1002/for.3980070302.
    Paper not yet in RePEc: Add citation now
  7. García-Ascanio, C., Maté, C. 2010. Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy 38(2): 715–725. doi: 10.1016/j.enpol.2009.10.007.
    Paper not yet in RePEc: Add citation now
  8. Gibbons, C., Faruqui, A. 2014. Quantile regression for peak demand forecasting. Available at http://ssrn.com/abstract=2485657.
    Paper not yet in RePEc: Add citation now
  9. Haida, T., Muto, S. 1994. Regression based peak load forecasting using a transformation technique. IEEE Transaction on Power Systems 9 (4): 1788–1794. doi: 10.1109/59.331433.
    Paper not yet in RePEc: Add citation now
  10. Hao, L., Naiman, Q. D. 2007. Quantile Regression, SAGE publications: California.
    Paper not yet in RePEc: Add citation now
  11. Hong, T. 2010. Short term electric load forecasting. PhD dissertation, North Carolina State University.
    Paper not yet in RePEc: Add citation now
  12. Hong, T., Fan, S. 2016. Probabilistic electric load forecasting: A tutorial review.

  13. Hong, T., Maciejowska, K., Nowotarski, N., Weron, R. 2014. Probabilistic load forecasting via Quantile Regression Averaging of independent expert forecasts. Hugo Steinhaus Center, Wrocław University of Technology http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_14_10.pdf Juban, R., Ohlsson, H., Maasoumya, M., Poirier, L., Kolter J.Z. 2016. A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014. International Journal of Forecasting 32: 1094–1102. doi: 10.1016/j.ijforecast.2015.12.002.

  14. Koenker, R., Bassett, G. 1978. Regression quantiles. Econometrica 46(1): 33–50.

  15. Liu, B., Nowotarski, J., Hong, T., Weron, R. 2015. Probabilistic load forecasting via quantile regression averaging on sister forecasts. IEEE Transactions on Smart Grid (in press) McSharry, P. E., Bouwman S., Bloemhof, G. 2005. Probabilistic forecast of the magnitude and timing of peak electricity demand. IEEE Transaction on Power Systems 20(2): 1166– 1172. doi: 10.1109/TPWRS.2005.846071.

  16. Munoz, A., Sanchez-Ubeda, E. F., Cruz, A., Marin, J. 2010. Short-term forecasting in power systems: a guided tour. Energy Systems 2: 129–160. doi: 10.1007/978-3-64212686 -4_5.
    Paper not yet in RePEc: Add citation now
  17. Ohtsuka, Y., Oga, T., Kakamu, K. 2010. Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA Approach. Computational Statistics & Data Analysis 54(11): 2721–2735.

  18. Sadownik, R. Barbosa, E. P. 1999. Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting 18: 215–224. doi: 10.1002/(SICI)1099-131X(199905)18:3<215::AID-FOR719>3.0.CO;2-B.
    Paper not yet in RePEc: Add citation now
  19. Soares, L. J., Medeiros, M. C. 2008. Modeling and forecasting short term electricity load: A comparison of methods with an application to Brazilian Data. International Journal of Forecasting 24:630–644. doi: 10.1016/j.ijforecast.2008.08.003.

  20. Taylor, J. W., McSharry, P. E. 2007. Short-term load forecasting methods: An evaluation based on European data. IEEE Transaction on Power Systems 20(2): 1166–1172. doi: 10.1109/TPWRS.2007.907583.
    Paper not yet in RePEc: Add citation now
  21. Weron, R. 2007. Modeling and forecasting electricity loads and prices: A statistical approach. Wiley: Chichester.

  22. Xiong T., Bao, Y., Hu, Z. 2014. Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework. International Journal of Electrical Power and Energy Systems. doi: 10.1016/j.ijepes.2014.06.01. Accepted
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification. (2021). Jain, Rishee K ; Roth, Jonathan ; Chadalawada, Jayashree ; Miller, Clayton.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:5:p:1481-:d:513031.

    Full description at Econpapers || Download paper

  2. Influent Forecasting for Wastewater Treatment Plants in North America. (2019). Li, Zhong ; Snowling, Spencer ; Zhang, Qianqian ; Zhou, Pengxiao ; Boyd, Gavin ; Na, Dain.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:6:p:1764-:d:216611.

    Full description at Econpapers || Download paper

  3. Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview. (2019). Band, Shahab ; Shamshirband, Shahaboddin ; Fallah, Seyedeh Narjes ; Ganjkhani, Mehdi ; Chau, Kwok-Wing.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:3:p:393-:d:201101.

    Full description at Econpapers || Download paper

  4. A comparison of models for forecasting the residential natural gas demand of an urban area. (2019). Hribar, Rok ; Potonik, Primo ; Ilc, Jurij ; Papa, Gregor.
    In: Energy.
    RePEc:eee:energy:v:167:y:2019:i:c:p:511-522.

    Full description at Econpapers || Download paper

  5. A bottom-up bayesian extension for long term electricity consumption forecasting. (2019). Souza, Reinaldo C ; Cyrino, Fernando L.
    In: Energy.
    RePEc:eee:energy:v:167:y:2019:i:c:p:198-210.

    Full description at Econpapers || Download paper

  6. Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India. (2019). Gardumi, Francesco ; Riva, Fabio ; Colombo, Emanuela ; Tognollo, Annalisa.
    In: Energy.
    RePEc:eee:energy:v:166:y:2019:i:c:p:32-46.

    Full description at Econpapers || Download paper

  7. Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network. (2019). He, Yaoyao ; Qin, Yang ; Wang, XU.
    In: Applied Energy.
    RePEc:eee:appene:v:233-234:y:2019:i::p:565-575.

    Full description at Econpapers || Download paper

  8. The combination of interval forecasts in tourism. (2019). Zhou, Menglin ; Li, Gang ; Wu, Doris Chenguang ; Liu, Anyu.
    In: Annals of Tourism Research.
    RePEc:eee:anture:v:75:y:2019:i:c:p:363-378.

    Full description at Econpapers || Download paper

  9. Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO. (2018). Weron, Rafał ; Uniejewski, Bartosz ; Marcjasz, Grzegorz.
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1807.

    Full description at Econpapers || Download paper

  10. GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting. (2018). Yang, Lintao ; Liu, Haitao.
    In: Sustainability.
    RePEc:gam:jsusta:v:10:y:2018:i:1:p:217-:d:127251.

    Full description at Econpapers || Download paper

  11. Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting. (2018). Valero, Sergio ; Lopez, Miguel ; Senabre, Carolina ; Sans, Carlos.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:8:p:2080-:d:163007.

    Full description at Econpapers || Download paper

  12. Short-Term Load Forecasting with Multi-Source Data Using Gated Recurrent Unit Neural Networks. (2018). Bao, Zhejing ; Wang, Yixing ; Zhang, Senlin ; Liu, Meiqin.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:5:p:1138-:d:144422.

    Full description at Econpapers || Download paper

  13. Probabilistic Electricity Price Forecasting Models by Aggregation of Competitive Predictors. (2018). Ramirez-Rosado, Ignacio J ; Monteiro, Claudio ; Fernandez-Jimenez, Alfredo L.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:5:p:1074-:d:143481.

    Full description at Econpapers || Download paper

  14. Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables. (2018). Kittipiyakul, Somsak ; Chapagain, Kamal.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:4:p:818-:d:139250.

    Full description at Econpapers || Download paper

  15. Lambda-Based Data Processing Architecture for Two-Level Load Forecasting in Residential Buildings. (2018). Park, Kishik ; Cho, Jaiyoung ; Nugraha, Gde Dharma ; Choi, Deokjai ; Musa, Ardiansyah.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:4:p:772-:d:138532.

    Full description at Econpapers || Download paper

  16. Smart Meter Forecasting from One Minute to One Year Horizons. (2018). Marrocu, Marino ; Massidda, Luca.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3520-:d:191309.

    Full description at Econpapers || Download paper

  17. Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges. (2018). Girard, Robin ; Kariniotakis, George ; Gerossier, Alexis ; Bocquet, Alexis.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3503-:d:190888.

    Full description at Econpapers || Download paper

  18. Long-Term Electricity Load Forecasting Considering Volatility Using Multiplicative Error Model. (2018). Khuntia, Swasti R ; Rueda, Jose L.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3308-:d:185892.

    Full description at Econpapers || Download paper

  19. Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron. (2018). Kim, Yong Sung ; Son, Minjae ; Moon, Jihoon ; Hwang, Eenjun.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3283-:d:185389.

    Full description at Econpapers || Download paper

  20. Data-Driven Risk Analysis for Probabilistic Three-Phase Grid-Supportive Demand Side Management. (2018). Nguyen, Phuong ; Blaauwbroek, Niels ; Slootweg, Han.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:10:p:2514-:d:171263.

    Full description at Econpapers || Download paper

  21. Recent advances in electricity price forecasting: A review of probabilistic forecasting. (2018). Weron, Rafał ; Nowotarski, Jakub.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:81:y:2018:i:p1:p:1548-1568.

    Full description at Econpapers || Download paper

  22. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. (2018). Widen, J ; Munkhammar, J ; van der Meer, D W.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:81:y:2018:i:p1:p:1484-1512.

    Full description at Econpapers || Download paper

  23. Probabilistic forecasting of industrial electricity load with regime switching behavior. (2018). Müller, Alfred ; Hoffmann, Alex ; Berk, K ; Muller, A.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:34:y:2018:i:2:p:147-162.

    Full description at Econpapers || Download paper

  24. Benchmarking robustness of load forecasting models under data integrity attacks. (2018). Hong, Tao ; Fang, Shu-Cherng ; Luo, Jian.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:34:y:2018:i:1:p:89-104.

    Full description at Econpapers || Download paper

  25. Modeling and forecasting hourly electricity demand by SARIMAX with interactions. (2018). Fukushige, Mototsugu ; Elamin, Niematallah.
    In: Energy.
    RePEc:eee:energy:v:165:y:2018:i:pb:p:257-268.

    Full description at Econpapers || Download paper

  26. Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination. (2018). Zhang, Wenjie ; Quan, Hao ; Srinivasan, Dipti.
    In: Energy.
    RePEc:eee:energy:v:160:y:2018:i:c:p:810-819.

    Full description at Econpapers || Download paper

  27. A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil. (2018). Calili, Rodrigo F ; Souza, Reinaldo C ; Lourenco, Plutarcho M ; Cyrino, Fernando L.
    In: Energy.
    RePEc:eee:energy:v:144:y:2018:i:c:p:1107-1118.

    Full description at Econpapers || Download paper

  28. Short-run electricity load forecasting with combinations of stationary wavelet transforms. (2018). Fouquau, Julien ; Bessec, Marie.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:264:y:2018:i:1:p:149-164.

    Full description at Econpapers || Download paper

  29. A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model. (2018). Kumar, Sachin S ; Mohan, Neethu ; Soman, K P.
    In: Applied Energy.
    RePEc:eee:appene:v:232:y:2018:i:c:p:229-244.

    Full description at Econpapers || Download paper

  30. Robust optimization for day-ahead market participation of smart-home aggregators. (2018). Kariniotakis, Georges ; Correa-Florez, Carlos Adrian ; Michiorri, Andrea.
    In: Applied Energy.
    RePEc:eee:appene:v:229:y:2018:i:c:p:433-445.

    Full description at Econpapers || Download paper

  31. A maximum entropy approach to the estimation of spatially and sectorally disaggregated electricity load curves. (2018). Schroder, Thomas ; Tobben, Johannes.
    In: Applied Energy.
    RePEc:eee:appene:v:225:y:2018:i:c:p:797-813.

    Full description at Econpapers || Download paper

  32. Stochastic operation of home energy management systems including battery cycling. (2018). Kariniotakis, Georges ; Correa-Florez, Carlos Adrian ; Michiorri, Andrea ; Gerossier, Alexis.
    In: Applied Energy.
    RePEc:eee:appene:v:225:y:2018:i:c:p:1205-1218.

    Full description at Econpapers || Download paper

  33. Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem. (2018). Sigauke, Caston ; Fildes, Robert ; Lebotsa, Moshoko Emily ; Boylan, John E ; Bere, Alphonce.
    In: Applied Energy.
    RePEc:eee:appene:v:222:y:2018:i:c:p:104-118.

    Full description at Econpapers || Download paper

  34. Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa. (2018). Lemort, Vincent ; Altes-Buch, Queralt ; Orosz, Matthew ; Mueller, Amy.
    In: Applied Energy.
    RePEc:eee:appene:v:218:y:2018:i:c:p:382-390.

    Full description at Econpapers || Download paper

  35. Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data. (2018). Shepero, Mahmoud ; Widen, Joakim ; Munkhammar, Joakim ; van der Meer, Dennis.
    In: Applied Energy.
    RePEc:eee:appene:v:218:y:2018:i:c:p:159-172.

    Full description at Econpapers || Download paper

  36. Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes. (2018). Shepero, M ; Widen, J ; Munkhammar, J ; van der Meer, D W ; Svensson, A.
    In: Applied Energy.
    RePEc:eee:appene:v:213:y:2018:i:c:p:195-207.

    Full description at Econpapers || Download paper

  37. Quantile Regression Model for Peak Load Demand Forecasting with Approximation by Triangular Distribution to Avoid Blackouts. (2018). Fukushige, Mototsugu ; Elamin, Niematallah.
    In: International Journal of Energy Economics and Policy.
    RePEc:eco:journ2:2018-05-16.

    Full description at Econpapers || Download paper

  38. On the importance of the long-term seasonal component in day-ahead electricity price forecasting. Part II – Probabilistic forecasting. (2017). Weron, Rafał ; Uniejewski, Bartosz ; Marcjasz, Grzegorz.
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1702.

    Full description at Econpapers || Download paper

  39. Modeling and Forecasting Hourly Electricity Demand by SARIMAX with Interactions. (2017). Fukushige, Mototsugu ; Elamin, Niematallah.
    In: Discussion Papers in Economics and Business.
    RePEc:osk:wpaper:1728.

    Full description at Econpapers || Download paper

  40. Wind Speed for Load Forecasting Models. (2017). Hong, Tao ; Xie, Jingrui.
    In: Sustainability.
    RePEc:gam:jsusta:v:9:y:2017:i:5:p:795-:d:98155.

    Full description at Econpapers || Download paper

  41. Exploratory data analysis of the electrical energy demand in the time domain in Greece. (2017). Mamassis, Nikos ; Tzouka, Katerina ; Tyralis, Hristos ; Karakatsanis, Georgios.
    In: Energy.
    RePEc:eee:energy:v:134:y:2017:i:c:p:902-918.

    Full description at Econpapers || Download paper

  42. Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks. (2017). Ghanem, Roger ; Bassamzadeh, Nastaran .
    In: Applied Energy.
    RePEc:eee:appene:v:193:y:2017:i:c:p:369-380.

    Full description at Econpapers || Download paper

  43. Recent advances in electricity price forecasting: A review of probabilistic forecasting. (2016). Weron, Rafał ; Nowotarski, Jakub.
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1607.

    Full description at Econpapers || Download paper

  44. A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts. (2016). Fukushige, Mototsugu ; Elamin, Niematallah.
    In: Discussion Papers in Economics and Business.
    RePEc:osk:wpaper:1622.

    Full description at Econpapers || Download paper

  45. Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoothing) and Artificial Intelligence Models (ANN, SVM): The Case of Greek Electricity Market. (2016). Papaioannou, Panagiotis G ; Dikaiakos, Christos ; Dramountanis, Anargyros.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:8:p:635-:d:76042.

    Full description at Econpapers || Download paper

  46. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. (2016). Hyndman, Rob ; Hong, Tao ; Fan, Shu ; Pinson, Pierre ; Zareipour, Hamidreza ; Troccoli, Alberto.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:3:p:896-913.

    Full description at Econpapers || Download paper

  47. Electric load forecasting with recency effect: A big data approach. (2016). Hong, Tao ; Wang, PU ; Liu, Bidong .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:3:p:585-597.

    Full description at Econpapers || Download paper

  48. A hybrid model for GEFCom2014 probabilistic electricity price forecasting. (2016). Nowotarski, Jakub ; Maciejowska, Katarzyna.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:3:p:1051-1056.

    Full description at Econpapers || Download paper

  49. GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation. (2016). Hong, Tao ; Xie, Jingrui.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:3:p:1012-1016.

    Full description at Econpapers || Download paper

  50. Electric load forecasting with recency effect: A big data approach. (2015). Hong, Tao ; Wang, PU ; Liu, Bidong .
    In: HSC Research Reports.
    RePEc:wuu:wpaper:hsc1508.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-23 06:03:57 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.