Andersen T.G., and Bollerslev T. (1998). Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4): 885â905.
- Barndorff-Nielsen, O.E., Kinnebrouk, S., and Shephard, N. (2010). Measuring downside risk: realised semivariance. Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle, (Edited by T. Bollerslev, J. Russell and M. Watson), Oxford University Press: 117â136.
Paper not yet in RePEc: Add citation now
Ben Nasr, A. Lux, T., Ajmi, A.N., and Gupta, R. (2016). Forecasting the volatility of the Dow Jones Islamic stock market index: Long memory vs. regime switching. International Review of Economics and Finance, 45(1), 559â571.
Bouri, E., Gkillas, K., Gupta, R., and Pierdzioch, C. (2020). Forecasting realized volatility of Bitcoin: The role of the trade war. Computational Economics, forthcoming.
- Breiman, L. (2001). Random forests. Machine Learning, 45: 5â32.
Paper not yet in RePEc: Add citation now
Cenesizoglu, T., and Timmermann, S. (2012). Do return prediction models add economic value?. Journal of Banking and Finance, 36: 2974â2987.
Ciner, C. (2019). Do industry returns predict the stock market? A reprise using the random forest. Quarterly Review of Econmics and Finance, 72: 152â158.
Clark, T.D., and West, K.D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138: 291â311.
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7: 174â196.
Elliott, G., Komunjer, I., and Timmermann, A. (2005). Estimation and testing of forecasting rationality under flexible loss. Review of Economic Studies, 72: 1107â1125.
Engle, R.F., and Rangel, J.G. (2008). The Spline-GARCH Model for LowFrequency Volatility and Its Global Macroeconomic Causes. Review of Financial Studies 21(3): 1187â1222.
Engle, R.F., Ghysels, E., and Sohn, B. (2013). Stock Market Volatility and Macroeconomic Fundamentals. The Review of Economics and Statistics 95(3): 776â797.
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29: 1189â1232.
Paper not yet in RePEc: Add citation now
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38: 367â378.
Giot, P., Laurent, S., and Petitjean, M. (2010). Trading activity, realized volatility and jumps.Journal of Empirical Finance, 17(1): 168â175.
- Greenwell, B., Boehmke, B., Cunningham, J. and GBM Developers (2020). gbm: Generalized boosted regression models. R package version 2.1.8. https://CRAN.R-project.org/package=gbm.
Paper not yet in RePEc: Add citation now
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). New York, NY: Springer.
Paper not yet in RePEc: Add citation now
Hong, H., Lim, T. and Stein, J.C. (2000). Bad news travels slowly: size, analyst coverage and the profitability of momentum strategies. Journal of Finance, 55: 265â295.
Hong, H., Torous, W., Valkanov, R. (2007). Do industries lead stock markets? Journal of Financial Economics, 83: 367â396.
Müller, U. A., Dacorogna, M. M., Davé, R. D., Olsen, R. B., and Pictet, O. V. (1997). Volatilities of different time resolutions â Analyzing the dynamics of market components. Journal of Empirical Finance, 4: 213â239.
- Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning, 7: 983â999.
Paper not yet in RePEc: Add citation now
Patton, A.J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160: 246â256.
Poon, S-H, and Granger, C. W. J. (2003). Forecasting Volatility in Financial Markets: A Review. Journal of Economic Literature, 41(2): 478â539.
Rangel, J.G., and Engle, R.F. (2011). The Factor-Spline-GARCH Model for High and Low Frequency Correlations. Journal of Business & Economic Statistics 30(1): 109â124.
Rapach, D.E. and Zhou, G. (2013). Forecasting stock returns. In: Elliott, G., and Timmermann, A. (Eds.), Handbook of Economic Forecasting. Volume 2A, Amsterdam: Elsevier: 328â383.
- Rapach, D.E., Strauss, J.K., and Wohar, M.E. (2008). Forecasting stock return volatility in the presence of structural breaks, in Forecasting in the Presence of Structural Breaks and Model Uncertainty, in David E. Rapach and Mark E. Wohar (Eds.), Vol. 3 of Frontiers of Economics and Globalization, Bingley, United Kingdom: Emerald: 381â416.
Paper not yet in RePEc: Add citation now
- Rapach, D.E., Strauss, J.K., Tu, J., and Zhou, G. (2019). Industry Return Predictability: A Machine Learning Approach, Journal of Financial Data Science 1(3): 9â28.
Paper not yet in RePEc: Add citation now
Reschenhofer, E., Mangat, M. K., Stark, T. (2020). Volatility forecasts, proxies and loss functions. Journal of Empirical Finance, 59: 133â153.
Salisu, A.A., Gupta, R., and Ogbonna, A.E. (2020). A Moving Average Heterogeneous Autoregressive Model for Forecasting the Realized Volatility of the US Stock Market: Evidence from Over a Century of Data. International Journal of Finance & Economics. DOI: https://doi.org/10. 1002/ijfe.2158.
- Tibshirani,J., Athey, S., and Wager, S. (2020). grf: Generalized Random Forests. R package version 1.1.0. https://CRAN.R-project.org/package=grf.
Paper not yet in RePEc: Add citation now
Tse, Y. (2015). Do industries lead stock markets? A reexamination. Journal of Empirical Finance, 34: 195â203.