- Bańbura, M., Giannone, D., and Reichlin, L. (2011). Nowcasting. Number 63-90. Oxford University Press. Bandyopadhyay, A. and Rajib, P. (2021). The asymmetric relationship between baltic dry index and commodity spot prices: evidence from nonparametric causality-in-quantiles test. Mineral Economics.
Paper not yet in RePEc: Add citation now
- Bouri, E., Gupta, R., Pierdzioch, C., and Salisu, A. A. (2021). El niño and forecastability of oil-price realized volatility. Theoretical and Applied Climatology, 144(3):1173–1180.
Paper not yet in RePEc: Add citation now
Brunner, A. D. (2002). El niño and world primary commodity prices: Warm water or hot air? The Review of Economics and Statistics, 84(1):176–183.
- Cambpell, J. Y. (2008). Viewpoint: estimating the equity premium. Canadian Journal of Economics, 41(1):1– 21.
Paper not yet in RePEc: Add citation now
Cashin, P., Mohaddes, K., and Raissi, M. (2017). Fair weather or foul? the macroeconomic effects of el niño. Journal of International Economics, 106:37–54.
Clark, T. E. and West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138(1):291–311.
Das, S., Demirer, R., Gupta, R., and Mangisa, S. (2019). The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis. Structural Change and Economic Dynamics, 50:132–147.
De Winne, J. and Peersman, G. (2021). The adverse consequences of global harvest and weather disruptions on economic activity. Nature Climate Change, 11(8):665–672.
- Demirer, R., Gupta, R., Nel, J., and Pierdzioch, C. (2022). Effect of rare disaster risks on crude oil: evidence from el niño from over 145 years of data. Theoretical and Applied Climatology, 147(1):691–699.
Paper not yet in RePEc: Add citation now
Foroni, C., Guérin, P., and Marcellino, M. (2018). Using low frequency information for predicting high frequency variables. International Journal of Forecasting, 34(4):774–787.
Foroni, C., Ravazzolo, F., and Rossini, L. (2019). Forecasting daily electricity prices with monthly macroeconomic variables. ECB Working Papers, 2250.
- Generoso, R., Couharde, C., Damette, O., and Mohaddes, K. (2020). The growth effects of el niño and la niña: Local weather conditions matter. Annals of Economics and Statistics, (140):83–126.
Paper not yet in RePEc: Add citation now
- Giglio, S., Kelly, B., and Stroebel, J. (2021). Climate finance. Annual Review of Financial Economics, 13(1):15–36.
Paper not yet in RePEc: Add citation now
Gneiting, T. and Raftery, A. (2007). Strictly proper scoring rules, prediction and estimation. Journal of American Statistical Association, 102(477):359–378.
Gneiting, T. and Ranjan, R. (2011). Comparing density forecasts using threshold and quantile weighted proper scoring rules. Journal of Business and Economic Statistics, 29(3):411–422.
Han, L., Wan, L., and Xu, Y. (2020). Can the baltic dry index predict foreign exchange rates? Finance Research Letters, 32:101157.
- Hsiang, S. M. and Meng, K. C. (2015). Tropical economics. American Economic Review, 105(5).
Paper not yet in RePEc: Add citation now
Hsiang, S. M., Meng, K. C., and Cane, M. A. (2011). Civil conflicts are associated with the global climate. Nature, 476(7361):438–441.
Katris, C. and Kavussanos, M. G. (2021). Time series forecasting methods for the baltic dry index. Journal of Forecasting, 40(8):1540–1565.
Koop, G. and Korobilis, D. (2010). Bayesian multivariate time series methods for empirical macroeconomics. Foundations and Trendsin Econometrics, 3(4):267–358.
Laosuthi, T. and Selover, D. D. (2007). Does el niño affect business cycles? Eastern Economic Journal, 33(1):21–42.
- Liu, M., Zhao, Y., Wang, J., Liu, C., and Li, G. (2022). A deep learning framework for baltic dry index forecasting. Procedia Computer Science, 199:821–828.
Paper not yet in RePEc: Add citation now
Makridakis, S., Merikas, A., Merika, A., Tsionas, M., and Izzeldin, M. (2020). A novel forecasting model for the baltic dry index utilizing optimal squeezing. Journal of Forecasting, 39(1):56–68.
- McPhaden, M. J., Santoso, A., and Cai, W. (2020). El Niño Southern Oscillation in a Changing Climate, volume 253. John Wiley & Sons.
Paper not yet in RePEc: Add citation now
Papailias, F., Thomakos, D. D., and Liu, J. (2017). The baltic dry index: cyclicalities, forecasting and hedging strategies. Empirical Economics, 52(1):255–282.
- Rossi, B. (2014). Density forecasts in economics and policymaking. Els Opuscles del The Centre de Recerca en Economia Internacional (CREI), 37(1):1–18.
Paper not yet in RePEc: Add citation now
Salisu, A. A., Gupta, R., Nel, J., and Bouri, E. (2021). The (asymmetric) effect of el niño and la niña on gold and silver prices in a gvar model. Working paper.
- Trenberth, K., Jones, P., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J., Rusticucci, M., Soden, B., and Zhai, P. (2007). Observations: Surface and atmospheric climate change. Cambridge University Press.
Paper not yet in RePEc: Add citation now
Ubilava, D. (2018). The role of el niño southern oscillation in commodity price movement and predictability. American Journal of Agricultural Economics, 100(1):239–263.
- UNCTAD (2021). Review of maritime transport. Sales No. E.21.11.D.21 New York and Geneva, United Nations publication.
Paper not yet in RePEc: Add citation now
- van Eyden, R., Gupta, R., Nel, J., and Bouri, E. (2022). Rare disaster risks and volatility of the term-structure of us treasury securities: The role of el niño and la niña events. Theoretical and Applied Climatology, 148(1):383–389.
Paper not yet in RePEc: Add citation now
Zhang, X., Chen, M. Y., Wang, M. G., Ge, Y. E., and Stanley, H. E. (2019). A novel hybrid approach to baltic dry index forecasting based on a combined dynamic fluctuation network and artificial intelligence method. Applied Mathematics and Computation, 361:499–516.