References contributed by pfo235-7077
Andersen, T. G., T. Bollerslev, F. X. Diebold and P. Labys (2003). Modeling and forecasting realized volatility. Econometrica 71, 529–626. Audrino, F. and P. Buhlmann (2001). Tree-structured GARCH models. Journal of Royal Statistical Society, Series B. 63, 727–44.
- Avramidis, P. (2002). Local maximum likelihood estimation of volatility function. Working Paper, London School of Economics.
Paper not yet in RePEc: Add citation now
Baillie, R. T., T. Bollerslev and H. O. Mikkelsen (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74, 3–30.
Barndorff-Nielsen, O. E. and N. Shephard (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B64, 253–80.
Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde and N. Shephard (2008). Designing realized kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica 76, 1481–536.
Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde and N. Shephard (2009). Realized kernels in practice: trades and quotes. Econometrics Journal 12, C1–C32.
Blair, B. J., S. H. Poon and S. J. Taylor (2001). Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns. Journal of Econometrics 105, 5–26.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics31, 307–27.
Bollerslev, T. and H. O. Mikkelsen (1996). Modeling and pricing long-memory in stock market volatility. Journal of Econometrics 73, 151–84.
Chen, R., L. Yang and C. Hafner (2004). Nonparametric multistep-ahead prediction in time series analysis. Journal of the Royal Statistical Society,SeriesB69, 669–86.
Chiras, D. P. and S. Manaster (1978). The information content of option prices and a test for market efficiency. Journal of Financial Economics 6, 213–34.
Christensen, B. J. and N. R. Prabhala (1998). The relation between implied and realized volatility. Journal of Financial Economics 50, 125–50.
Diebold, F. X. and A. Inoue (2001). L ong memory and regime switching. Journal of Econometrics 105,131–59.
Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics 13, 253–63.
Ding, Z. and C. W. J. Granger (1996). Modeling volatility persistence of speculative returns: a new approach. Journal of Econometrics 73, 185–215.
Ding, Z., C. W. J. Granger and R. F. Engle (1993). A long memory property of stock market returns and anew model. Journal of Empirical Finance 1, 83–106.
Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. Inflation. Econometrica 50, 987–1008.
Engle, R. F. and G. J. Lee (1999). A long-run and short-run component model of stock return volatility. In R. Engle and H. White (Eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honour of Clive W.J. Granger, 475–497. Oxford: Oxford University Press.
Engle, R. F. and J. G. Rangel (2008). The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. Review of Financial Studies 21, 1187–222.
- Engle, R. F. and T. Bollerslev (1986). Modelling the persistence of conditional variance. Econometric Reviews 5, 1–50, 81–7.
Paper not yet in RePEc: Add citation now
Engle, R. F. and V. K. Ng (1993). Measuring and testing the impact of news on volatility. Journal of Finance48, 1749–78.
Fan, J. and Q. Yao (1998). Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85, 645–60.
- Fleming, J. (1998). The quality of market volatility forecasts implied by S&P 100 index option prices. Journal of Empirical Finance 5, 317–45.
Paper not yet in RePEc: Add citation now
Giot, P. (2003). The information content of implied volatility in agricultural commodity markets, Journal of Futures Markets 23, 441–54.
Granger, C. W. J. and N. Hyung (2004). Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of Empirical Finance 11, 399–421.
Han, H. and J. Y. Park (2008). Time series properties of ARCH processes with persistent covariates. Journal of Econometrics 146, 275–92.
Hansen, P. R. and A. Lunde (2006). Consistent ranking of volatility models. Journal of Econometrics 131,97–121.
- Hardle, W. and A. B. Tsybakov (1997). Local polynomial estimators of the volatility function. Journal of Econometrics 81, 223–42.
Paper not yet in RePEc: Add citation now
- Heber, G., A. Lunde, N. Shephard and K. Sheppard (2009). OMI’s Realised Library, Version 0.1. Oxford-Man Institute, University of Oxford.
Paper not yet in RePEc: Add citation now
- Hurvich, C. M. and P. Soulier (2009). Stochastic volatility models with long memory. In T. G. Andersen, R. A. Davis, J. P. Kreiss and Th. Mikosch (Eds.), Handbook of Financial Time Series, 157–168. Berlin: Springer.
Paper not yet in RePEc: Add citation now
Jensen, S. T. and A. Rahbek (2004). Asymptotic inference for nonstationary GARCH. Econometric Theory 20, 1203–26.
- Karlsen, H. A., T. Myklebust and D. Tjøstheim (2007). Nonparametric estimation in a nonlinear cointegration type model. Annals of Statistics 35, 252–99.
Paper not yet in RePEc: Add citation now
Kim, W. and O. B. Linton (2004). A local instrumental variable estimation for generalized additive volatility models. Econometric Theory 20, 1094–139.
Latane, H. A. and R. J. Rendleman (1976). Standard deviations of stock price ratios implied in option prices. Journal of Finance 31, 369–81.
- Linton, O. B. (2009). Semiparametric and nonparametric ARCH modeling. In T. G. Andersen, R. A. Davis, J. P. Kreiss and Th. Mikosch (Eds.), Handbook of Financial Time Series, 157–168. Berlin: Springer.
Paper not yet in RePEc: Add citation now
Linton, O. B. and E. Mammen (2005). Estimating semiparametric ARCH(8) models by kernel smoothing methods. Econometrica 73, 771–836.
- Loretan, M. and P. C. B. Phillips (1994). Testing the covariance stationarity of heavy-tailed time series. Journal of Empirical Finance 1, 211–48.
Paper not yet in RePEc: Add citation now
Masry, E. and D. Tjøstheim (1995). Nonparametric estimation and identification of nonlinear ARCH time series: strong convergence and asymptotic normality. Econometric Theory 11, 258–89.
Mikosch, T. and C. Starica (2004). Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Review of Economics and Statistics 86, 378–90.
- Pagan, A. R. and G. W. Schwert (1990a). Alternative models for conditional stock volatility. Journal of Econometrics 45, 267–90.
Paper not yet in RePEc: Add citation now
Pagan, A. R. and G. W. Schwert (1990b). Testing for covariance stationarity in stock market data. Economics Letters 33, 165–70.
- Pagan, C. R. and Y. S. Hong (1991). Nonparametric estimation and the risk premium. In W. Barnett, J.Powell and G. E. Tauchen (Eds.), Nonparametric and Semiparametric Methods in Econometrics and Statistics. Cambridge: Cambridge University Press.
Paper not yet in RePEc: Add citation now
Park, J. Y. (2002). Nonstationary nonlinear heteroskedasticity. Journal of Econometrics 110, 383–415.
Park, J. Y. and P. C. B. Phillips (1999). Asymptotics for nonlinear transformations of integrated time series. Econometric Theory 15, 269–98.
Park, J. Y. and P. C. B. Phillips (2001). Nonlinear regressions with integrated time series. Econometrica 69,117–61.
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160, 246–56.
- Patton, A. J. and K. Sheppard (2009). Evaluating volatility and correlation forecasts. In T. G. Andersen, R. A. Davis, J. P. Kreiss and Th. Mikosch (Eds.), Handbook of Financial Time Series, 801–838. Berlin: Springer.
Paper not yet in RePEc: Add citation now
Shephard, N. and K. Sheppard (2010). Realising the future: forecasting with high frequency based volatility (HEAVY) models. Journal of Applied Econometrics 25, 197–231.
Starica, C. and C. W. J. Granger (2005). Nonstationarities in stock returns. Review of Economics and Statistics 87, 503–22.
- Wang, Q. and P. C. B. Phillips (2009a). Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory 25, 1–29.
Paper not yet in RePEc: Add citation now
- Wang, Q. and P. C. B. Phillips (2009b). Structural nonparametric cointegrating regression. Econometrica77, 1901–48.
Paper not yet in RePEc: Add citation now
West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica 64, 1067–84.
Yang, L. (2006). A semiparametric GARCH model for foreign exchange volatility. Journal of Econometrics 130, 2, 365–84.
Yang, L., W. Hardle and J. P. Nielsen (1999). Nonparametric autoregression with multiplicative volatility and additive mean. Journal of Time Series Analysis 20, 579–604.