- Ahmad, I., Leelahanon, S., Li, Q., 2005. Efficient estimation of a semiparametric partially linear varying coefficient mode. The Annals of Statistics 33, 258-283.
Paper not yet in RePEc: Add citation now
Cai, Z., 2002a. Regression quantile for time series. Econometric Theory 18, 169-192.
Cai, Z., 2002b. Two-step likelihood estimation procedure for varying-coefficient models. Journal of Multivariate Analysis 82, 189-209.
Cai, Z., Fan, J., 2000. Average regression surface for dependent data. Journal of Multivariate Analysis 75,112-142.
Cai, Z., Fan, J., Yao, Q., 2000. Functional-coefficient regression models for nonlinear time series. Journal of the American Statistical Association 95, 941-956.
- Cai, Z., Gu, J., Li, Q., 2009. Recent developments in nonparametric econometrics. Advances in Econometrics 25, 495-549.
Paper not yet in RePEc: Add citation now
Cai, Z., Masry, E., 2000. Nonparametric estimation of additive nonlinear ARX time series: Local linear fitting and projection. Econometric Theory 16, 465-501.
Cai, Z., Xu, X., 2008. Nonparametric quantile estimations for dynamic smooth coefficient models. Journal of the American Statistical Association 103, 1596-1608.
- Chaudhuri, P., 1991. Nonparametric estimates of regression quantiles and their local Bahadur representation. The Annals of Statistics 19, 760-777.
Paper not yet in RePEc: Add citation now
- Chaudhuri, P., Doksum, K., Samarov, A., 1997. On average derivative quantile regression. The Annuals of Statistics 25, 715-744.
Paper not yet in RePEc: Add citation now
De Gooijer, J., Zerom, D., 2003. On additive conditional quantiles with high dimensional covariates. Journal of the American Statistical Association 98, 135-146.
Dette, H., Spreckelsen, I., 2004. Some comments on specification tests in nonparametric absolutely regular processes. Journal of Time Series Analysis 25, 159-172.
- Doukhan, P., 1994. Mixing. Lecture Notes in Statistics, Vol. 85. Springer-Verlag, Heielberg.
Paper not yet in RePEc: Add citation now
- Engle, R., Granger, C.W.J., Rice, R., Weiss, A., 1986. Nonparametric estimates of the relation between weather and electricity sales. Journal of the American Statistical Association 81, 310-320.
Paper not yet in RePEc: Add citation now
- Fan, J., Gijbels, I., 1996. Local Polynomial Modeling and Its Applications. Chapman and Hall, London.
Paper not yet in RePEc: Add citation now
- Fan, J., Huang, T., 2005. Profile likelihood inferences on semiparametric varyingcoefficient partially linear models. Bernoulli 11, 1031-1057.
Paper not yet in RePEc: Add citation now
Gao, J., 2007. Nonlinear Time Series: Semiparametric and Nonparametric Methods. Chapman and Hall, London.
- He, X., Liang, H. 2000. Quantile regression estimates for a class of linear and partially linear errors-in-variables models. Statistica Sinica 10, 129-140.
Paper not yet in RePEc: Add citation now
- He, X., Ng, P., 1999. Quantile splines with several covariates. Journal of Statistical Planning and Inference 75, 343-352.
Paper not yet in RePEc: Add citation now
He, X., Ng, P., Portnoy, S., 1998. Bivariate quantile smoothing splines. Journal of the Royal Statistical Society, Series B 60, 537-550.
- He, X., Portnoy, S., 2000. Some asymptotic results on bivariate quantile splines. Journal of Statistical Planning and Inference 91, 341-349.
Paper not yet in RePEc: Add citation now
He, X., Shi, P., 1996. Bivariate tensor-product B-splines in a partly linear model. Journal of Multivariate Analysis 58, 162-181.
Honda, T., 2000. Nonparametric estimation of a conditional quantile for α-mixing processes. Annals of the Institute of Statistical Mathematics 52, 459-470.
- Honda, T., 2004. Quantile regression in varying coefficient models. Journal of Statistical Planning and Inferences 121, 113-125.
Paper not yet in RePEc: Add citation now
Horowitz, J.L., Lee, S., 2005. Nonparametric estimation of an additive quantile regression model. Journal of the American Statistical Association 100, 1238-1249.
- Khindanova, I.N., Rachev, S.T., 2000. Value at risk: Recent advances. Handbook on Analytic-Computational Methods in Applied Mathematics, CRC Press LLC, Boca Raton, FL.
Paper not yet in RePEc: Add citation now
- Kim, M.-O., 2007. Quantile regression with varying coefficients. The Annals of Statistics 35, 92-108.
Paper not yet in RePEc: Add citation now
- Koenker, R., 2004. Quantreg: An R Package for Quantile Regression and Related Methods. http://cran.r-project.org.
Paper not yet in RePEc: Add citation now
Koenker, R., 2005. Quantile Regression. Econometric Society Monograph Series, Cambridge University Press, New York.
Koenker, R., Bassett, G.W., 1978. Regression quantiles. Econometrica 46, 33-50.
- Koenker, R., Ng, P., Portnoy, S., 1994. Quantile smoothing splines. Biometrika 81, 673-680.
Paper not yet in RePEc: Add citation now
Koenker, R., Xiao, Z., 2006. Quantile autoregression. Journal of the American Statistical Association 101, 980-990.
- Lee, A.J., 1990. U-Statistics: Theory and Practice. Marcel Dekker, New York.
Paper not yet in RePEc: Add citation now
Lee, S., 2003. Efficient semiparametric estimation of partially linear quantile regression model. Econometric Theory 19, 1-31.
Li, Q., Huang, C.J., Li, D., Fu, T., 2002. Semiparametric smooth coefficient model. Journal of Business & Economics Statistics 20, 412-422.
Robinson, P.M., 1988. Root-N-consistent semiparametric regression. Econometrica 56, 931-954.
Robinson, P.M., 1989. Hypothesis testing in semiparametric and nonparametric models for econometric time series. Review of Economic Studies 56, 511-534.
- Ruppert, D., Wand, M., 1994. Multivariate locally least squares regression. The Annals of Statistics 22, 1346-1370.
Paper not yet in RePEc: Add citation now
- Speckman, P., 1988. Kernel smoothing partial linear models. The Journal of Royal Statistical Society, Series B 50, 413-426.
Paper not yet in RePEc: Add citation now
- Yu, K., Jones, M.C., 1998. Local linear quantile regression. Journal of the American Statistical Association 93, 228-237.
Paper not yet in RePEc: Add citation now
Yu, K., Lu, Z., 2004. Local linear additive quantile regression. Scandinavian Journal of Statistics 31, 333-346.
Zhang, W., Lee, S.Y., Song, X., 2002. Local polynomial fitting in semivarying coefficient model. Journal of Multivariate Analysis 82, 166-188. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 (a) 5% significance level line tau=0.2 n=200 n=500 n=800 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 (b) 5% significance level line tau=0.4 n=200 n=500 n=800 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 (c) 5% significance level line tau=0.6 n=200 n=500 n=800 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 (d) 5% significance level line tau=0.8 n=200 n=500 n=800