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Abstract

Transliteration is the process of converting terms written in one language into their approx-

imate spelling or phonetic equivalents in another language. Transliteration is defined for a

pair of languages, a source language and a target language. The two languages may differ in

their orthographic systems and phonetic inventories. In the context of a Machine Translation

system, one has to first identify which terms should be transliterated rather than translated,

and then produce a proper transliteration for these terms.

We present a Hebrew to English transliteration method in the context of a Machine

Translation system. Our method uses machine learning to determine which terms are to

be transliterated rather than translated. The training corpus for this purpose includes only

positive examples, acquired semi-automatically from a corpus of articles from Hebrew press

and web-forums. Our classifier reduces more than 38% of the errors made by a baseline

method. The identified terms are then transliterated based on a Statistical Machine Transla-

tion technique. The transliteration model was trained with a parallel corpus extracted from

Wikipedia using a fairly simple method which requires minimal linguistic knowledge. The

correct result is produced as the Top-1 result in more than 76% of the cases, and in 95%

of the instances it is one of the Top-5 results. We also demonstrate an improvement in the

performance of a Hebrew-to-English MT system that uses our transliteration module.
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Chapter 1

Introduction

1.1 Machine Translation

Contemporary approaches to machine translation follow for the most part the paradigm of

Statistical Machine Translation (SMT) (Brown et al., 1993). SMT is based on ideas used in

Information Theory and in particular Shannon’s noisy-channel model. The purpose of this

model is to identify a message which is transmitted through a communication channel and is

hence prone to errors due to the channel’s quality. Adapting this model, SMT systems treat

the source text as a version of the target text which has gone through a noisy channel. The

translation task is therefore reduced to recovering the original message.

According to this model, when translating a string f in the source language into the

target language, a string ê is chosen out of all target language strings e if it has the maximal

probability given f :

ê = arg max
e
{Pr(e|f)} = arg max

e
{Pr(f |e) · Pr(e)}

where Pr(f |e) is the translation model and Pr(e) is the target language model. In phrase-

based translation, f is divided into phrases f̄1 . . . f̄I , and each source phrase f̄i is translated

into a target phrase ēi according to a phrase translation model. Target phrases may then be

reordered using a distortion model.
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In order for the above formula to hold, SMT systems require terms in the source language

to have translation equivalents in the target language. However, language is subject to

changes, as new expressions are introduced in speech and media frequently. As a result,

lexicons might be lacking, in terms of adequately representing speakers’ word inventories.

This results in zero probability when trying to find the translation of such terms. Such

words, which are in actual use but do not appear in published vocabularies, are called Out

Of Vocabulary (OOV) terms, and are often handled by transliteration rather than translation.

1.2 Transliteration

Transliteration is the process of converting terms written in one language into their approx-

imate spelling or phonetic equivalents in another language. Transliteration is defined for a

pair of languages, a source language and a target language. The two languages may differ

in their writing systems and phonetic inventories. This work addresses transliteration from

Hebrew to English in the context of a machine translation system.

Transliteration has acquired a growing interest recently, in particular in the field of ma-

chine translation. It handles those terms where no translation would suffice or even exist.

Failing to recognize such terms would result in poor performance of the translation system.

In the context of MT systems, one has to first identify which terms should be transliterated

rather than translated, and then produce a proper transliteration for these terms. We address

both tasks in this work.

Identification of Terms To-be Transliterated (TTT) must not be confused with recognition

of Named Entities (NE). Named Entities, such as names of persons, locations or organizations,

are often transliterated. However, this cannot be a general method for processing them. On

the one hand, many NEs should be translated rather than transliterated, for example:1

1To facilitate readability, examples are presented with interlinear gloss, including an ASCII representation
of Hebrew orthography followed by a broad phonemic transcription, a word-for-word gloss in English where
relevant, and the corresponding free text in English. The following table presents the ASCII encoding of
Hebrew used in this document:

א! ב! ג! ד! ה! ו! ז! ח! ט! י! כ|! ל! מ|! נ|! ס! ע! פ|! צ|! ק! ר! ש! ת!
a b g d h w z x @ i k l m n s & p c q r $ t
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!Mהמשפטי משרד

m$rd hm$p@im

[misrad] [hamiSpatim]

ministry-of the-sentences

‘Ministry of Justice’

!Nהתיכו Mהי

him htikwn

[hayam] [hatiXon]

the-sea the-central

‘the Mediterranean Sea’

צרפת!

crpt

[ţarfat]

‘France’

On the other hand, there are terms that are not NEs that should be transliterated rather

than translated. These include both borrowed words (or borrowings) and culturally specific

terms.

Borrowings are words that are adopted by speakers of one language from another language,

with which they are in contact, in cases where no proper equivalent would suffice (Nir, 1979).

The vocabulary of Modern Hebrew is enriched through a variety of terms borrowed mainly

from European languages and American English, as shown by the following example:

!Mאקזיסטנציאליז

aqzis@ncializm

[EkzistEnţializ@m]

‘Existentialism’

This example illustrates what is treated here as the default case of borrowed words, that

is, a case in which the borrowed word has no equivalent term in Hebrew. This entails that

MT systems should approach such cases not as candidates for translation, but inherently as

strings that should be transliterated.

Borrowings in general can be linguistically distinguished from native words. Particularly

relevant for the present work is the fact that they reflect both phonological and morphological

deviations from the canonic structure of native words (Schwarzwald, 2002). For example, bor-

rowed words in Hebrew are marked by the use of non-native consonants as well as by specific

prefixes and suffixes used for inflection and derivation (see, also, Bolozky (1978)).Consider

the following examples:
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’יפ|! ג!

g’ip

[Ãip]

‘Jeep’

אנרכיסט!

anrkis@

[anarXist]

‘Anarchist’

The word ג!’יפ|! in this example both contains the non-Hebrew consonant [Ã] and displays

a distinct distribution of consonants which is atypical of Hebrew – the pronunciation of [p]

in word-final position. The word אנרכיסט! illustrates that not only bases but also inflectional

morphemes can be borrowed into Hebrew and are perceived by native Hebrew speakers as

foreign strings that require transliteration. Even foreign derivational suffixes, as -יה! ,in the

example below, only resemble Hebrew suffixes (Rosner, 2007), and cannot be considered

candidates for translation, since no transfer of meaning is involved.

טרנסליטרציה!

trnsli@rcih

[transliteraţia]

‘Transliteration’

Such features will assist us in the task of identifying TTTs (section 4). There are other

properties that may distinguish foreign words from native words, such as location of word

stress, and consonant-clusters in the word. These features, however, cannot be revealed from

Hebrew texts in general, since the standard Hebrew orthography does not indicate stress,

and leaves many of the vowels implicit.

In contrast, culturally specific terms cannot be identified based on surface features as in

the case of borrowings. Consider the following example:

טלית!

@lit

[talit]

‘Tallit’

The word טלית! is of Hebrew origin, and cannot be distinguished from other native words
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based on orthography alone. As will be suggested below (section 4), words of this type are

assumed to appear in particular syntactic contexts that can be used to identify them.

Tranlisteration of terms from Hebrew into English is a hard task, for the most part

because of the differences in the phonological and orthographic systems of the two languages.

On the one hand, there are cases where a Hebrew letter can be pronounced in more than

one way. For example, Hebrew ב! can be pronounced either as [b] or as [v], פ|! can be

pronounced either as [p] or as [f] and ש! can be pronounced as either [S] or as [s]. On the

other hand, two different Hebrew sounds can be mapped into the same English letter. For

example, both ת! and ט! are in most cases mapped to [t]. A major difficulty stems from the

fact that in the Hebrew orthography (like Arabic), words are represented as sequences of

consonants where vowels are only partially and very inconsistently represented. Even letters

that are considered as representing vowels may sometimes represent consonants, specifically ו!

[v]/[o]/[u] and י! [y]/[i]. As a result, the mapping between Hebrew orthography and phonology

is highly ambiguous.

The following examples present the ASCII representation of Hebrew letters aligned with

the phonetic form. Note that words that have seemingly very similar surface forms may have

distinctively different pronunciations.

ברק!

b r q

[b a r a k]

‘lightning’

!Kבר

b r k

[b e r e X ]

‘knee’

דור!

d w r

[d a v a r]

‘postman’

דור!

d w r

[d o r]

‘generation’

One usually distinguishes between two types of transliteration (Knight and Graehl, 1997):

Forward transliteration, where an originally Hebrew term is to be transliterated to English;

and Backward transliteration, in which a foreign term that has already been transliterated

into Hebrew is to be recovered. Forward transliteration may result in several acceptable

alternatives. This is mainly due to phonetic gaps between the languages and lack of standards

for expressing Hebrew phonemes in English. For example, the Hebrew term cdiq may be

transliterated as Tzadik, Tsadik, Tsaddiq, etc. On the other hand, backward transliteration
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is more restrictive. There is usually only one acceptable way to express the transliterated

term. So, for example, the name wiliam can be transliterated only to William and not , for

example, to Viliem, even though the Hebrew character w may stand for the consonant [v]

and the character a may be vowelized as [e].

1.3 Research Objectives

The objective of this work is to improve the quality of Hebrew to English MT by implementing

a transliteration module for this pair of languages. We divide this task into two sub-tasks,

which we address separately: First, we classify which words in the text are to be transliterated

rather than translated, using machine learning techniques (Chapter 4). Then (Chapter 5),

we describe a transliteration model based on Statistical Machine Translation (SMT). Each

module is evaluated separately, and both perform as well as (or better than) state-of-the-art

methods for similar language pairs. The two modules are then combined and integrated

in a Hebrew to English MT system (Chapter 6), and we use the MT system as an external

evaluation framework for the combined method. The performance of the MT system is shown

to improve when the transliteration module is added.
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Chapter 2

Previous Work

In this section we sketch some related works, focusing on transliteration from Hebrew and

Arabic, and on the context of machine translation.

Arbabi et al. (1994) present a hybrid algorithm for romanization of Arabic names using

neural networks and a knowledge based system. The program applies vowelization rules,

based on Arabic morphology and stemming from the knowledge base, to unvowelized names.

This stage, termed the broad approach, exhaustively yields all valid vowelizations of the in-

put. To solve this over-generation, the narrow approach is then used. In this approach, the

program uses a neural network to filter unreliable names, that is, names whose vowelizations

are not in actual use. The vowelized names are converted into a standard phonetic repre-

sentation which in turn is used to produce various spellings in languages which use Roman

alphabet. The broad approach covers close to 80% of the names given to it, though with

some extraneous vowelization. The narrow approach covers over 45% of the names presented

to it, with higher precision than the broad approach.

This approach requires vast linguistic knowledge in order to create the knowledge base of

vowelization rules. In addition, these rules are applicable only for names that adhere to the

Arabic morphology .

While Arbabi et al. (1994) focuse on transliterating Arabic names, Stalls and Knight

(1998) propose a method for back transliteration of names that originate in English and

appear in Arabic texts. Their method is based on a phonemic model, and uses a sequence
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of probabilistic models to convert names written in Arabic into the English script. First,

an Arabic name is passed through a phonemic model that produces a network of possible

English sound sequences, where the probability of each sound is location-dependent. Next,

phonetic sequences are transformed into English phrases. Finally, each possible result is

scored according to a unigram word model. This method translates correctly about 32% of

the tested names. Those not translated are frequently not foreign names.

This method uses a pronunciation dictionary and is therefore restricted to transliterating

only words of known pronunciation. Both of the above methods perform only unidirectional

transliteration, that is, either forward- or backward- transliteration, while transliteration in

the context of machine translation should handle both.

Al-Onaizan and Knight (2002) describe a system which combines a phonetic-based model

with a spelling-based model for transliteration. This method is restricted to transliterating

NEs, and performs best for person names. The spelling based-model directly maps sequences

of English letters into sequences of Arabic letters without the need of English pronunciation,

as in a phonemic model. Transforming into a phonetic representation requires an additional

phase which introduces additional imprecision due to the probabilistic model. Therefore, a

transliteration method which does not include such a phase may have an improved accuracy.

The method uses a translation model based on IBM Model 1 (Brown et al., 1993), in which

translation candidates of a phrase are generated by combining translations and translitera-

tions of the phrase components, and matching the result against a large corpus. The system

was tested using a blind test set, consisting of 20 newspaper articles which have translated by

professionals from Arabic to English. The system’s overall accuracy is about 72% for Top-1

results and 84% for the Top-20 results.

Studies that use more sophisticated conversion rules are mostly suited for source languages

which encode phonetic information explicitly. For example, Oh and Choi (2002) introduce

a correspondence-based model for transliteration of English to Korean. This model uses

contexts of source language graphemes and their corresponding source language phonemes

when producing target language graphemes. Oh and Choi (2002) present the notion of
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pronunciation-units : a chunk of graphemes that can be mapped to a phoneme. First, En-

glish pronunciation units are aligned with their corresponding English phonemes. Then,

context sensitive rewrite rules, incorporating this correspondence, are used to generate Ko-

rean graphemes. Evaluation was performed using two evaluation metrics: word accuracy,

which measures the ratio of words generated correctly to all generated words, and character

accuracy, which measures the edit distance between the generated word and the reference.

This method achieves character accuracy of 93.49% and word accuracy of 67.83% for words

appearing in a pronunciation dictioanry. For words which are not registerd in the dictionary,

the respective accuracies are 91.47% and 52.40%.

Oh et al. (2006) provide a comprehensive comparison between different models of translit-

eration for English-Korean and English-Japanese: grapheme-based, phoneme-based, hybrid

(combining both) and correspondence-based. They offer convincing arguments for preferring

hybrid and correspondence-based models over the other models. However, in Arabic and

Hebrew vowels are often not represented in the script. Phonetic representation of source-

language strings in these languages cannot be implied by their surface forms, as demonstrated

in the introduction, and therefore a different approach is required.

Alignment methods have been successfully applied to languages such as Arabic and Per-

sian. AbdulJaleel and Larkey (2003) present a technique for English to Arabic transliteration

using a list of English proper nouns and their Arabic translations. The method consists of two

alignment stages; the first stage aligns characters of the word pairs with Arabic as the source

language and English as target language. Cases where a sequence of English characters is

aligned to a single Arabic characters are tallied to find the most frequent among these char-

acter sequences. The second stage consists of aligning these word pairs, where English is the

source language and Arabic is the target language, such that the English character-sequences

mentioned above are grouped to act as a single character. Both stages use GIZA++ (Och

and Ney, 2003), a tool which was originally designed for word alignment in parallel corpora.

The transliteration model is then based on counting alignments generated by GIZA++, to

calculate conditional probabilities. A letter-bigram model of Arabic is used as a language

9



model. This technique achieves accuracy of 69.3% for the Top-1 results and 88.3% for the

Top-20 results.

Applying a word alignment tool to align characters is indeed good. Using such a tool

assumes no prior knowledge related to a specific language. However, the task discussed

here is simpler than full transliteration. First, it handles only forward transliteration, where

multiple results are accepted. In addition, observe that English-to-Arabic (or English-to-

Hebrew) transliteration is easier than Arabic-to-English (or Hebrew-to-English), because in

the former vowels should be deleted whereas in the latter they should be generated. When

Hebrew is the source language, sequences of consonants are to be vowelized, and a vast range

of options exists for vowelization, but usually only one is valid.

Karimi et al. (2007) extend the notion of alignment to meta-characters. They propose

an algorithm for transliterating from English to Persian, using a two step alignment method.

The first step represents parallel words in a bilingual corpus as reduced consonant-vowel se-

quences, that is, sequences where each meta-character denotes either a cluster of consonants

(C) or a sequence of vowels (V). The resulting parallel meta-character sequences are com-

pared, and if they are equal (e.g., a CVC sequence is generated for both English and Persian

due to consonant-vowel reduction), the aligned consonant clusters and vowel sequences are

added to the alignments repository. As for transliteration from Persian to English, a back-

transliteration method is used. It utilizes reverse segmentation, where reduced consonant-

vowel sequences that were generated during the process of English-to-Persian alignment are

used for the segmentation of words in Persian that are typically lacking in the represen-

tation of vowels. Aligned data are then used to derive probabilistic transformation rules.

To generate transliterations, a source word is first segmented following the process used for

training. Then, target words are generated according to the conditional probabilities of each

segment’s transliteration, and are ranked based on their probabilities. For English-Persian

transliteration, this method achieves mean word accuracy of 72.2% in Top-1 and 93.5% in

Top-10 results. Persian-English transliteration achieves mean word accuracy of 48.2% in

Top-1 results and 75.7%, when using the proposed alignment method including the reverse-
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segmentation technique.

This method requires language knowledge for segmenting words to consonant-vowel se-

quences. The collapsed-vowel model is based on particular characteristics of Persian such

as the tendency of Persian speakers to change diphthongs to monophtongs in loan words.

It also handles issues that are specific to Persian-English transliteration, such as epenthesis

and elision. The low accuracy of Persian to English transliteration stresses the complexity

of transliterating from languages which do not encode vowels explicitly in their script.

Matthews (2007) presents a model for transliteration from Arabic to English based on

SMT. The translation model is acquired from a parallel corpus which includes approximately

2500 pairs, a part of a bilingual person name corpus (Intel, 2005). The language model used

in this work consists of 10K entries of names. The system achieves accuracy of 43% when

transliterating from Arabic to English. Like Matthews (2007), we rely on phrase-based SMT

for transliteration (see Chapter 5). Matthews (2007) relies on domain specific resources,

biasing the model towards transliterating person names. In contrast, our method is general.

We also address the question of which terms to transliterate. Finally, our choice of resources

allows for much more accurate transliteration.

Huang (2005) proposes a framework for cluster-specific transliteration of names, and ap-

plies it to Chinese-to-English transliteration. Starting with a list of transliteration pairs

of names, whose original language is labeled, language and transliteration models are con-

structed for each original language. Models from different original languages are recursively

merged to form clusters, and transliteration and language models are then trained for each

cluster. Given a name in the source language, it is first classified into the most likely cluster.

Then, it is transliterated according to the corresponding models of this cluster using SMT

technique. The overall accuracy of this method is 56% for Top-1 results and 62.6% for Top-5

results.

This method requires a list of names labeled with their original languages. Labeling such

a list manually is labor intensive, and may be ambiguous in Hebrew, where homographs may

correspond to names from different origins. In addition, this method was trained with a list
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of names and is therefore biased to transliterating person names,

Several studies employ a discriminative, rather than generative, approach to the translit-

eration task. Methods using a discriminative approach determine for two strings occurring

in a parallel corpus (ws, wt) whether wt, a target language string, is a transliteration of ws,

a source language string.

Yoon et al. (2007) suggest to solve the transliteration problem by constructing a classifier

that determines whether a word in the target language is a transliteration of a name in the

source language. The candidates for the classifier are NEs extracted from the source language

and the set of all words in the target language, and terms in both sets are converted to a

phonemic representation. The classifier is based on the Winnow algorithm (Littlestone, 1987)

and use features such as place and manner of articulation, vowel length, as well as patterns

of insertion/deletion/substitution of such features, based on the position in the syllable. The

baseline for this method is described in Tao et al. (2006) and uses purely linguistic knowledge.

This baseline achieves Mean Reciprocal Rank (MRR) (see Chapter 3 for a definition) of 0.66

for the case of transliteration from English to Arabic. The method presented in Yoon et al.

(2007) improves this result by 7%.

This technique involves knowledge about phonological characteristics, such as elision of

consonants based on their position in the word, which requires expert knowledge of the

language. Conversion of terms into a phonemic representation poses hurdles in representing

short vowels in Arabic and will have similar behavior in Hebrew. As mentioned, English

to Arabic transliteration is easier than Arabic to English. In addition, transliteration of

terms that do not appear in the target-language side of a parallel corpus cannot be evaluated

properly by this method. The latter is true also for names that do not have a standard

transliteration, and for which multiple transliterations are acceptable, which is often the case

in forward transliteration.

Very few studies concern Hebrew to English transliteration. Goldwasser and Roth (2008a)

propose a discriminative approach to transliteration, and demonstrate it for English-Hebrew

(as well as English-Russian). In this setup, a bilingual, comparable corpus is given, in which
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named entities are annotated on the source side. In addition, a reference set consisting of

50,000 NEs in the source language (English) is given (this set was automatically extracted

from Wikipedia). The method further uses an “oracle”, which is capable of matching a named

entity in the source language with its counterpart in the target; the oracle was acquired from

Wikipedia, by identifying the topic of two topic-aligned documents in the Biography section.

This implementation relies on the fact that topics of biography articles are person names, and

are hence transliterations of one another. The core of the system is a process that identifies a

small yet informative subset of the NEs in the reference set, along with their transliterations

as provided by the oracle. This set is used to train a linear classifier (SNoW (Carlson

et al., 1999), with perceptron as the update rule); the features for the classifier are pairs

of character substrings, taken from the source and target words. The classifier is evaluated

on 300 English-Hebrew and English-Russian pairs; each English term is paired with all the

possible terms in the target language, and the percentage of the original 300 pairs identified

correctly is reported. In the case of Hebrew, 52% of the pairs were identified correctly. When

the top-five candidates are considered, the correct transliteration is identified in 88% of the

cases.

In a subsequent work, Goldwasser and Roth (2008b) acknowledge the difficulties of the

discriminative model, and attribute them to the inability of pairwise character n-gram fea-

tures to capture contextual constraints that affect the transliteration. They therefore suggest

to view the transliteration task as a constrained optimization problem with more global con-

straints. The features for the classification task remain pairs of character n-grams, each

associated with a weight. This representation is refined by solving a constrained optimiza-

tion problem that maximizes the score of a candidate pair subject to a set of constraints that

account for interdependencies among features. This method is evaluated in the same way,

but the measure here is MRR (see Chapter 3). The best result is MRR of 0.894.

The main drawback of the discriminative approach is that it can be used to identify

transliteration terms, but not to generate them. That is, the correct transliteration cannot

be generated by the system if it is not included in the bilingual corpus. In addition, the two
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methods use parallel corpora of person names only. This may bias the transliteration model,

and patterns which are infrequent in person names but nevertheless occur in other TTTs,

would therefore be under-represented.

Despite the importance of identifying TTTs, this task has been addressed only recently.

Goldberg and Elhadad (2008) present a loosely supervised method for identification of words

that are phonologically close to English pronunciation, in the Hebrew script. Their approach

focuses on words in isolation, ignoring their context, and they assume that these words can be

distinguished from Hebrew ones based on character n-grams. The method is a Naive-Bayes

classifier which learns from noisy data. The native language model is estimated using a

corpus consisting mainly of words of Hebrew origin. That is, they categorize words as native

ones according to the degree to which they conform with words occurring in texts in Modern

Hebrew. The foreign language model is acquired by over-generation of transliterations. This

is accomplished using mappings from the phonemic representation of words in the foreign

script to the Hebrew script. Precision and recall for the task of identifying such words are

80% and 82%, respectively.

This system does not identify TTTs in the broad sense of the word, as defined here

(Chapter 4). Rather, they identify only those strings whose phonemic representation in

Hebrew correspond exactly with that in English. For example, the word טרנדי! (@rndi) is

identified by this system since it conforms with the orthographic representation of the word

in English - trendy, but the word אלכוהולי! (alkwhwli) is not identified by this system, since

the word is written differently in English - alcoholic. This means that foreign words that

do not have the same surface form as Hebrew words are not identified. Words that can be

read as either Hebrew or foreign are not recognized as well, since context is required for their

correct identification.

Hermjakob et al. (2008) describe a method for identifying NEs that should be transliter-

ated in Arabic texts. Given an English-Arabic parallel corpus, the method first tries to find

a matching English word for each Arabic word in this corpus. Matching is based on a scoring

model which assigns manually-crafted costs to pairs of Arabic and English substrings, allow-
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ing for context restrictions. Arabic names are then marked as either names (i.e., candidates

for transliteration) or non-names based on this matching algorithm. A number of language

specific heuristics, such as considering only capitalized words as candidates and using lists of

stop words, are used to enhance the algorithm’s accuracy.

This work also presents a transliteration model from Arabic to English. English names are

mapped to consonant skeletons based on Arabic consonant classes, to serve as reference data.

Given an Arabic word to transliterate, English name candidates that match its consonant

skeleton are retrieved. These candidates are then ranked according to the scoring model

described above. The model is integrated into a machine translation system, and its accuracy,

measured by the percentage of correctly translated names, is 89.7%.

Our work is very similar in its goals, but in contrast to Hermjakob et al. (2008) we use

minimal amount of supervision, and in particular, we do not use a parallel corpus. We also do

not use manually-crafted weights for (hundreds of) bilingual pairs of strings. More generally,

our transliteration model is much more language-pair neutral.
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Chapter 3

Methodolgy

Our work consists of two sub-tasks: Identifying TTTs and then transliterating them. We ap-

ply machine learning techniques to address both. Specifically, we use the following resources

and methods for this work: For the identification task we use a large un-annotated corpus of

articles from Hebrew press and web-forums (Itai and Wintner, 2008) consisting of 16 million

tokens. The corpus is morphologically analyzed (Yona and Wintner, 2008) and POS-tagged

(Bar-Haim et al., 2008). We assume that TTTs appear in similar morpho-syntactic contexts

and learn these contexts. We acquire training data automatically by marking words that

with high probability are to be transliterated, namely, borrowed words. As noted in the

introduction, such words have distinctive phonetic and orthographic attributes that assist

in identifying them without any context. We use orthographic features consisting of rare

Hebrew character n-grams as tagging rules (Chapter 4.1) to generate a set of positive, high-

precision examples for TTTs, in the tagged corpus. POS tags for the positive examples and

their surrounding tokens are used as features for training a one-class SVM to identify TTTs

(Chapter 4.2).

Transliteration itself is viewed as a simple form of statistical machine translation, where

characters are viewed as words, and words are viewed as sentences. We apply Moses (Koehn

et al., 2007), a phrase-based SMT toolkit, for training and later for decoding. SMT algorithms

make use of a parallel corpus of translation pairs to train a translation model, and a large

monolingual corpus of the target language to train a language model (see Chapter 1). We
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extract transliteration pairs automatically from titles of Wikipedia articles in Hebrew and

English. Retrieving the appropriate pairs relies on a simple mapping of Hebrew consonants

to their English counterparts (Chapter 5.2). We construct an English language model by

applying SRILM (Stolcke, 2002) to the unigram section of Web 1T corpus (Brants and Franz,

2006).

Previous studies relied on language specific knowledge which needs to be encoded by ex-

perts. Hermjakob et al. (2008) use manually-crafted rules for (hundreds of) bilingual pairs

of strings to match transliteration pairs in a parallel corpus. They also use heuristics such

as considering only capitalized words as transliteration candidates, to enhance the accuracy

of their method. Yoon et al. (2007) model sound change patterns for consonants depending

on their position in the syllable, and Karimi et al. (2007) explicitly and directly handle spe-

cific issues in English-Persian and Persian-English transliteration such as elision, epenthesis

and monophtongization. In contrast, our method employs knowledge which can be easily

acquired, and requires only very basic knowledge in language specific features. In particular,

we do not use a pre-compiled parallel corpus of transliteration pairs, but rather extract one

from publicly available resources; nor do we use a parallel bilingual corpus of sentences. Our

approach is more language-pair neutral and can therefore be easily adapted to other language

pairs with similar resources.

Our evaluation method for the TTT identification task is based on Error Rate Reduction

(ERR) of the tagging accuracy. Accuracy is defined as Accuracy = C
N

, where C is the number

of tokens which have been correctly tagged for either transliteration or translation, and N

is the total number of tokens. Accuracy error is defined as ε = 1 − Accuracy. We compare

the error rate of our method, ε, with that of a baseline ε0 to obtain the error rate reduction

(section 4.3):

ERR =
ε− ε0
ε0

.

We evaluate transliteration by measuring its accuracy: the proportion of the tokens with

correct transliteration that occur among a list of top-n possible transliterations ranked by
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their accuracy (n = 1, 2, 5, 10). We also experiment with two methods where the list of possi-

ble transliteration is of variable length, depending on the accuracy scores of the transliteration

options (section 5.3).

An alternative evaluation method for transliteration is Mean Reciprocal Rank (MRR)

(Voorhees, 1999), a measure borrowed from the field of information retrieval. This measure

is used when there is a single correct answer among several options and these options are

ranked by their probability of correctness, as calculated by the information retrieval system.

For a set of queries Q, MRR is the mean of the inverse ranks of the correct answers for the

queries qi ∈ Q.

MRR =
1

|Q|

|Q|∑
i=1

1

rank(qi)

In the context of transliteration the correct answer is the option that matches the reference

in the parallel corpus. This measure, however, requires a parallel corpus from which possible

transliterations are extracted. Particularly, this method is not suitable when transliterating

terms that do not occur in the parallel corpus or if such corpus does not exist.

We integrate our system as a module in an existing MT system (Lavie et al., 2004a)

and provide an external evaluation for the MT system with and without the transliteration

module using BLEU and METEOR scores (Chapter 6).
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Chapter 4

What to transliterate

The task in this phase, then, is to determine for each token in a given text whether it should

be translated or transliterated. We developed a set of guidelines to determine which words

are to be transliterated. These rules are used for manually tagging the evaluation corpus.

The following guidelines define which terms are to be transliterated rather then translated:

• Persons’ first and last names

• Names of streets

• Names of geographical sites such as mountains or rivers e.g., Himalaya - הימליה!

• Names of cities and other settlements e.g., London - !Nלונדו, unless a different substitute

is commonly used (as in e.g., Jerusalem - !Mירושלי)

• Names of countries e.g., Congo - ,קונגו! unless translation or other substitute exists (as

in e.g., France - ,צרפת! Côte d’Ivoire - השנהב! Pחו)

• Names of regions within a country e.g Galicia - גליציה!

• Names of brands and firms, e.g., Chevrolet - ,שברולט! Elite - עלית!

• Names of bands and sport groups, e.g., HaPoel Tel-Aviv - תלÊאביב! הפועל

• Names of vessels, e.g., Queen Elizabeth - אליזבת! Nקווי, Voyager - וויאג!’ר!
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• Loanwords which retain the sound patterns of their original language with no semantic

translation involved, e.g., Internet - ,אינטרנט! Compilation - קומפילציה!

• Culturally specific terms, with no equivalent in the target language, e.g., Shofar - .שופר!

We use information obtained from morphological analysis (Itai and Wintner, 2008) and

POS tagging (Bar-Haim et al., 2008) to address the problem of identifying TTTs. Each

token is assigned a POS and possible morphological analyses given this POS. Tokens are

additionally marked if they are not found in a lexicon (Itai et al., 2006), in which case they

are considered Out Of Vocabulary (OOV) terms. Our evaluation metric is tagging accuracy,

that is, the ratio of correctly tagged tokens, for either translation or transliteration.

4.1 Rule based tagging

Our basic assumption is that OOVs should be transliterated since there is no way to handle

them more accurately. However, not all TTTs are OOVs, since many of the TTTs do appear

in the lexicon.

Some TTTs can be identified by their surface forms. These words are mainly loan words.

For example, the word ברודקסטינג! (broadcasting) contains a sequence of graphemes that are

not frequent in Hebrew: נג! (ng) in a word-final position (Schwarzwald, 2002), and its length

is much longer than the average length of Hebrew words (which is approximately 4). We

take advantage of these properties and create a simple heuristic system which can recognize

some of the TTTs based on their surface form, favoring precision over recall.

We manually generated a list of such features to serve as tagging rules. To construct

this list we used 38 character bigrams, 14 trigrams, 8 fourgrams and 6 unigrmas, that are

highly unlikely to appear in words of Hebrew origin. Rules associate n-grams with scores,

depending on their position (word-initial, word-medial or word-final) and these scores are

summed when applying the rules to tokens. A typical rule is of the form: if σ1σ2 are the final

characters of w, add c to the score of w, where w is a word in Hebrew, σ1 and σ2 are Hebrew

characters, and c is an integer in the range [0, 10].
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The value of c is determined by corpus statistics, where higher values reflect less frequent

n-grams in the specific position. A word is tagged for transliteration if the sum of the scores

associated with its substrings is higher than a predefined threshold of 10. The two examples

below illustrate these rules:

• if קג! (qg) occurs in w then add 7 to the score of w.

The relatively high score associated with this bigram is due to the fact that it is rare

in Hebrew.

• if קט! (q@) occur in word-final position in w then add 4 to the score of w.

This bigram is infrequent only at the ends of Hebrew words, and therefore its position

is specified in the rule.

We apply these rules to a large Hebrew corpus and create an initial set of instances of

terms that, with high probability, should be be transliterated rather than translated. Of

course, many TTTs, especially those whose surface forms are typical of Hebrew, will be

missed when using this tagging technique. Our solution is to learn the contexts in which

TTTs tend to occur, and contrast these contexts with those in which translated terms tend

to occur. The underlying assumption is that these contexts are syntactically determined, and

are independent of the actual surface form of the term (and of whether or not it occurs in

the lexicon). Since the result of the rule-based tagging is considered as examples of TTTs,

we use this automatically-annotated corpus to extract such contexts and bootstrap a TTT

classifier, similarly to Collins and Singer (1999).

4.2 Training with one class classifier

The above process provides us with 40279 examples of TTTs out of a total of more than

16 million tokens. These examples, however, are only positive examples. In order to learn

from the incomplete data we utilize a One Class Classifier. Classification problems generally

involve two or more classes of objects. A function separating these classes is to be learned
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and used by the classifier. One class classification utilizes only target class objects to learn

a function that distinguishes them from any other objects.

SVM (Support Vector Machine) (Vapnik, 1995) is a classification technique which finds

a linear separating hyperplane with maximal margins between data instances of two classes.

The separating hyperplane is found for a mapping of data instances into a higher dimension,

using a kernel function. Schölkopf et al. (2000) introduce an adaptation of the SVM method-

ology to the problem of one-class classification. We used one-class SVM as implemented in

LIBSVM (Chang and Lin, 2001).

We trained the classifier using feature vectors generated for the positive examples ex-

tracted as described in Section 4.1. Features were based on information obtained from mor-

phological analysis (Itai and Wintner, 2008) and POS tagging (Bar-Haim et al., 2008). The

features we used are: Part of Speech (23 values); Definiteness (4 values); Status (5 values);

Tense (9 values); Person (6 values); Number (7 values); Gender (3 values);

We experimented with the choice of morpho-syntactic features as well as window size and

different kernel functions for the TTTs identification task. The minimal window contains

only the the positive example (the target word). Wider windows include also features of

adjacent words, with a maximal window of two words to the left and two words to the right

of the target word. As for the choice of features, we compared a representation using POS

only with one utilizing all the features produced by the morphological analyzer.

To evaluate the tagging accuracy of the One-Class SVM classifier, we used an evaluation

corpus consisting of 163 sentences of the same genre and domain as the training corpus, con-

taining 1793 tokens. This corpus was tagged according to the guidelines described earlier in

this chapter. Table 4.1 presents the identification accuracy obtained for different configura-

tions by features and kernel functions. Each row presents a configuration for a given window,

and each cell compares the accuracy obtained for the two choices of features we experimented

with: POS only, and all-features obtained from the morphological analysis.

The best identification accuracy was obtained using sigmoid as a kernel function, where

each TTT is represented by its POS and the POS of the token preceding it in the sentence.
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The results obtained from the classifier show that no single model is substantially better than

the others for this task. Moreover, using additional features other than the POS does not

necessarily contribute to improving tagging accuracy. This is especially true when taking

into consideration tokens occurring after the target word.

T-2 T-1 T T+1 T+2 Linear Polynomial Radial Sigmoid
+ 90.13/ 91.34 90.13/ 91.34 90.13/ 91.34 90.13/ 93.42

+ + 91.21/ 92.25 92.70/ 92.02 90.40/ 92.06 94.05/ 92.20
+ + + 92.47/ 92.11 92.11/ 92.06 89.67/ 91.93 91.84/ 92.11

+ + 90.13/ 92.60 93.78/ 92.11 93.82/ 92.60 92.67/ 92.65
+ + + 92.40/ 89.0 93.33/ 89.90 84.72/ 91.70 92.74/ 88.95

+ + + 92.43/ 92.38 92.92/ 91.84 90.94/ 91.02 93.01/ 92.38
+ + + + 92.29/ 91.12 92.06/ 91.03 89.31/ 90.78 92.29/ 91.12
+ + + + + 92.65/ 86.16 92.29/ 86.11 87.24/ 89.27 92.65/ 86.16

Table 4.1: TTT identification results for different configurations (% of the instances identified
correctly, using POS-only/all features)

4.3 Results

To evaluate the TTT identification model we created a gold standard, tagged according to

the guidelines described above, by a single lexicographer. The test corpus consists of 25

sentences, from the same genre and domain as the training and evaluation corpora, and

contains 98 TTTs. We compare with two baseline models. The näıve baseline always decides

to translate; a slightly better baseline consults the lexicon, and tags as TTT any token

that the morphological analyzer fails to analyze. We measure our performance in error rate

reduction of tagging accuracy compared with our baseline, as described in section 3.

Our initial approach consisted of consulting only the decision of the one-class SVM.

However, since there are TTTs that can be easily identified using features obtained from

their surface form, as described in section 4.1, our revised method uses a combination of

surface-based and contextual features. We first examine each token to determine whether it

can be identified using surface-form features. If a token has no surface features that identify

it as a TTT we consult the one-class SVM and take its decision.

Table 4.2 presents the different configurations we experimented with and their results for
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the evaluation set (Dev.) and for the test set (Test). The first two columns present the two

baselines we used, as explained above. The third column (OCS) shows the results based

only on decisions made by the One Class SVM. The penultimate column shows the results

obtained by our method as described above. The rightmost column presents the Error Rate

Reduction (ERR) achieved using our method, compared with the second baseline. As can

be observed, our method increases classification accuracy both for the evaluation set and for

the test set: more than 38% of the errors (in the test set) are reduced.

Näıve Baseline OCS Our method ERR

Dev. 89.3 93.2 94.04 94.4 17.65
Test 79.9 84.23 88.04 90.26 38.24

Table 4.2: TTT identification results (% of the instances identified correctly)

The importance of the recognition process is demonstrated in the following example. The

underlined phrase was recognized correctly by our method.

kbwdw habwd $l bn ari

kvodo heavud shel ben ari

His-honor the-lost of Ben Ari

‘Ben Ari’s lost honor ’

Both words ben and ari have literal meanings in Hebrew: son and lion, respectively, and

their combination might be interpreted as a phrase since it is formed as a Hebrew noun

construct. Recognizing such terms is crucial for the performance of translation systems.
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Chapter 5

How to transliterate

Once a token is classified as a TTT, it is sent to the transliteration module. Our approach

handles the transliteration task as a case of phrase based SMT, based on the noisy channel

model.

It is appealing to use SMT techniques in order to perform the transliteration task. This

approach views transliteration pairs as aligned sentences, and characters are viewed as words.

In the case of phrase-based SMT, phrases are sequences of characters. Alignment models are

then used to learn the transliteration from source to target. Furthermore, some problems

that are present in SMT are not encountered when using SMT techniques for transliteration:

• Transliteration is monotonic, and therefore reordering of the terms (distortion) is un-

necessary.

• Language models do not suffer from sparsity caused by OOV “words”.

Several works use this approach for name transliteration (AbdulJaleel and Larkey, 2003;

Virga and Khudanpur, 2003; Zhao et al., 2007). AbdulJaleel and Larkey (2003) and Virga

and Khudanpur (2003) use it to transliterate names from English, where phonetic information

is more apparent than in Hebrew; Zhao et al. (2007) use an alignment method specifically

suited for forward-transliteration from Arabic to English. Our work focuses on the hard

direction of Hebrew to English transliteration. We do not limit the task to person names or

named entities in general. Furthermore, our method works for both forward and backward
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transliteration. The key to our high accuracy is the choice of resources, which we detail

below.

We use Moses (Koehn et al., 2007), a phrase-based SMT toolkit, for training the trans-

lation model (and later for decoding). In order to extract phrases, bidirectional word level

alignments are first created, both source to target and target to source. Alignments are

merged heuristically if they are consistent, in order to extract phrases.

5.1 Target (English) language model

We created a target language model from unigrams of Web 1T corpus (Brants and Franz,

2006). The unigrams are viewed as character n-grams to fit into the SMT system. We used

SRILM (Stolcke, 2002) with a modified Kneser-Ney smoothing, to generate a language model

of n-gram of order 5.

5.2 Hebrew-English translation model

No parallel corpus of Hebrew-English transliteration pairs is available. Instead, we extracted

a parallel list of Hebrew and English terms from Wikipedia and automatically generated such

a corpus. The terms are parallel titles of Wikipedia articles and thus can safely be assumed

to denote the same entity. In many cases these titles are transliterations of one another (see

Table 5.1).

From this list we extracted transliteration pairs according to the similarity of consonants

in parallel English and Hebrew entries. The similarity measure is based only on consonants

since vowels are often not represented at all in Hebrew.

We constructed a table mapping Hebrew and English consonants based on common knowl-

edge patterns that relate sound to spelling in both languages. Sound patterns that are not

part of the phoneme inventory of Hebrew but are nonetheless represented in the Hebrew

orthography were also included in the table. For that purpose, the Hebrew alphabet was

extended with ג!’ [Ã] ז!’, [Z] and צ|!’ [Ù]. This is true as well for cases where Hebrew encodes

26



sounds which are not part of the set of English phonemes (such as צ|! [ţ] or ח! [è]). In such

cases, we used a sequence of graphemes that approximates the Hebrew sound (based, for

example, on sound patterns of languages such as German, where ח! = CH). Every entry in

the mapping table consists of a Hebrew letter and a possible Latin letter or letter sequence

that might match it. A typical entry is the following:

SH|S|CH:ש! |SCH

such that SH, CH, SCH or S are possible candidates for matching the Hebrew letter .ש! This

table contains 35 entries, of which 10 are mappings of digits to themselves. Constructing

such table is trivial and can be done easily by every native Hebrew speaker.

Since we check for similarity of consonants, English words were stripped of their vowels.

Hebrew words were stripped of letters that might indicate the presence of vowels ,א!) ,ו! ,י! (ע! and

these letters also do not appear in the table. Both Hebrew and English titles in Wikipedia

may be composed of several words, and words composing the entries in each of the languages

may be ordered differently. Therefore, every word in Hebrew has to be matched against every

word in English, assuming that titles are short enough. The example in Table 5.1 presents

an aligned pair of multi-lingual Wikipedia entries with high similarity of consonants. This

is therefore considered as a transliteration pair. In contrast, the title empty set which is

translated to הריקה! הקבוצה (hqbwch hriqh) shows a low similarity of consonants. This pair

is not selected for the training corpus.

g r a t e f u l d e a d
g r i i @ p w l d d

Table 5.1: Titles of Wikipedia entries

Out of 41914 Hebrew and English terms retrieved from Wikipedia, more than 20000 were

determined as transliteration pairs. Out of this set, 500 were randomly chosen to serve as a

test set, 500 others were chosen to serve as a development set and the rest are the training

set.

Minimum error rate training has been done on the development set to optimize translation
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performance obtained by the training phase.1 For decoding, we prohibited Moses form per-

forming character reordering (distortion). While reordering may be needed for translation,

we want to ensure the monotone nature of transliteration

5.3 Results

We applied Moses to the test set to obtain a list of top-n transliteration options for each

entry in the set. The results attained by Moses were further re-ranked to take into account

their frequency as reflected in the unigrams of Web 1T corpus (Brants and Franz, 2006).

The re-ranking method first normalizes the scores of Moses’ results to the range [0, 1]. The

respective frequencies of these results in Web1T are normalized as well to this range. The

score s for each transliteration option is a linear combination of these two elements:

s = αsM + (1− α)sW ,

where sM is the normalized score obtained for the transliteration option by Moses, and

sW is its normalized frequency. We experimented with different values for α, of the range

[0.5, . . . , 1]. The value for α which turned out to be optimal in this case is 0.75.

Re-ranking may dramatically affect the transliteration results. Table 5.2 demonstrates a

few examples of transliteration results obtained after re-ranking. The top line presents the

Hebrew source and the correct transliteration. Each of the following lines is a transliteration

option accompanied by its original Moses score (normalized), and the score after re-ranking.

As can be observed, the correct transliteration option, for each of the above examples,

does not have the highest Moses score. Nevertheless, re-ranking promotes the correct option

for transliteration, in these examples, from the third, fifth and penultimate positions to the

first position.

Table 5.3 summarizes the proportion of the terms transliterated correctly across top-n

results as achieved by Moses, and the improved results after re-ranking. We experimented

1We used moses-mert.pl in the Moses package.

28



ברטי! : bertie

translit option Moses score score

bertie 0.1456 0.2975
berti 0.1611 0.1452
berty 0.1639 0.1330
brati 0.1383 0.1039
barti 0.1135 0.0865
varti 0.1040 0.0781
brti 0.1036 0.0780
brty 0.0678 0.0512
barty 0.0 0.0181
berte 0.0021 0.0081

!Nשו : sean

translit option Moses score score

sean 0.1001 0.229
shon 0.2376 0.179

shawn 0.1517 0.169
shaun 0.1302 0.125
shun 0.1270 0.100
shōn 0.0705 0.053
ssoon 0.0673 0.050
chon 0.0621 0.048
schun 0.0525 0.040
schon 0.0 0.006

שופנהאואר! : schopenhauer

translit option Moses score score

schopenhauer 0.0047 0.250
chopinhauer 0.2864 0.215
chopinhower 0.2822 0.211
shopenhauer 0.1765 0.134
shopnhower 0.1069 0.080

chopinhousar 0.0491 0.036
shofenhauer 0.0363 0.027
shopaneauer 0.0319 0.024
shupenhauer 0.0259 0.019
shopnhauer 0.0 1.466E-6

Table 5.2: Transliteration example after re-ranking

with two sizes of the candidate list to which re-ranking was applied: 10 and 20, and the rows

in the table are marked accordingly.

Since Web1T corpus covers millions of unigrams in English and their frequencies as ob-

served by Google Inc., re-ranking the transliteration options using only these frequencies may

seem as a sufficient criterion. However, experiments show that the accuracy obtained when

using this method is lower than our re-ranking method. This may be the result of several

factors. In some cases all transliteration options produced by Moses do not occur in Web1T

corpus, as demonstrated in Table 5.4a. In this case all the options are equally likely. This is

equivalent to not assigning weights at all. In other cases, some transliteration options, which

do not match the reference transliteration, are extremely common words in English. Thus,
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Results Top-1 Top-2 Top-5 Top-10 Top-20

Moses 68.4 81.6 90.2 93.6 96.6
Re-ranked-10 76.6 86.6 92.6 93.6 -
Re-ranked-20 69.4 86.6 95.2 96.0 96.6

Table 5.3: Transliteration results (% of the instances transliterated correctly)

each of these words gets a very high score which leaves the other options behind, including

the one that matches the reference, as shown in Table 5.4b

זנגרייה! : zangariyye

translit option score

zangarier 0.1
zangariia 0.1

zangariyye 0.1
zangrier 0.1
zengrier 0.1
zangreyh 0.1

zangarilleux 0.1
zangariah 0.1
sengreyh 0.1

sengariyye 0.1

(a)

אלל! : allele

translit option score

all 0.9958
alle 0.0016
alla 0.0012

allele 0.0008
ell 4.1311E-4

allel 3.3706E-5
alal 4.9253E-6
a’all 8.4628E-10
aalal 8.4628E-10
élél 8.4628E-10

(b)

Table 5.4: Transliteration results (% of the instances transliterated correctly), re-ranking
according to Web1T frequencies only

We further experimented with two methods for reducing the number of transliteration

options by taking a variable number of candidates, depending on different measures. This

is important for limiting the search space of MT systems. In both methods we start from

the re-ranked list and select dome of its top candidates according to different criteria. The

first method (var1) measures the ratio between each two consecutive options and returns the

candidate that scored lower only if this ratio exceeds a predefined threshold. We experimented

with threshold values in the range [0.4, . . . , 0.8], where the lower bound is approximately the

average ratio between the first and the second options, and the upper bound is approximately

the ratio between other pairs of consecutive options of the top-5. We found that the best
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setting for the threshold is 0.75, resulting in an accuracy of 88.6% and an average of 2.32

results per token.

Our second method (var2) views the score as a probability mass, and returns all the

results whose combined probabilities are at most p. We experimented with p values in the

range [0.4, . . . , 0.75] so that most of the probability mass would be included. The best value

in this case was 0.5 , resulting in accuracy of 0.874, and 1.92 results per token on average.

Both methods outperform the top-2 accuracy.

Comparing the transliteration quality across different pairs of languages is usually not

very meaningful, due to the nature of the attributes associated with different language pairs.

Nevertheless, we note that our success rate is similar to or even higher than those reported for

languages which share orthographic features with Hebrew, i.e., Arabic-English (AbdulJaleel

and Larkey, 2003; Al-Onaizan and Knight, 2002; Matthews, 2007) or Persian-English (Karimi

et al., 2007). Our method uses relatively little knowledge about the two specific languages.

We do not rely on any pre-compiled list of name pairs, but rather extract one from a more

general resource which is publicly available, and we do not use a parallel corpus.

Table 5.5 presents a few examples from the test set that were correctly transliterated by

our method. Incorrect transliterations are demonstrated in Table 5.6.

Source Transliteration
נפש! np$ nefesh

הלמסברגר! hlmsbrgr hellmesberger
!Nסמבטיו smb@iwn sambation

היפרבולה! hiprbwlh hyperbola
שפרד! $prd shepard
בשה! ba$h bachet

חתשפסות! xt$pswt hatshepsut
ברגנצה! brgnch berganza
אלישר! ali$r elissar
ג!’ובאני! g’wbani giovanni

Table 5.5: Transliteration examples generated correctly from the test set
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Source Transliteration Target
רבינדרנת! rbindrnt rbindrant rabindranath

אסוירה! aswirh asuira essaouira
כמפיט! kmpi@ champit chamaephyte
בודלר! bwdlr bodler baudelaire
לורה! lwrh laura lorre
הוליס! hwlis ollies hollies

!Mונו wnwm onom venom

Table 5.6: Incorrect transliteration examples
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Chapter 6

Integration with machine translation

We evaluated both parts of the model independently; we now provide an external evaluation

in the context of a Hebrew-to-English MT system. We have integrated our system as a

module in a Machine Translation system, based on Lavie et al. (2004a). The system consults

the TTT classifier described in section 4 for each token, before translating it. If the classifier

determines that the token should be transliterated, the transliteration procedure described

in section 5 is applied to the token to produce the transliteration results. The evaluation

measures we use are BLUE (Papineni et al., 2001) and Meteor (Lavie et al., 2004b); we

compare the performance of the MT system with and without the transliteration module.

When integrating our method in the MT system we use the best-n transliteration options

produced by the transliteration module. The testing corpus consists of 19 Hebrew sentences

out a parallel Hebrew-English corpus designed to examine the performance of the MT sys-

tem. The sentences were chosen such that each of them contains at least one TTT which

is transliterated in the parallel English sentence. We implemented an oracle which predicts

precisely which tokens are TTTs and transliterates them accurately. This oracle provides an

upper bound for the MT system with respect to influence of the transliteration module.

We have experimented with several language models for English, trained on various text

sources. The translation evaluation results are presented in Table 6.1, compared to the basic

MT system where no transliteration takes place, for each language model used.

The configuration that yields the best translation results uses a language model trained on
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news-parl-430MW corpus, as demonstrated in Table 6.1e. Using the transliteration module

with this language model shows statistically significant improvement in METEOR scores (p <

0.05). METEOR scores are a better evaluation measure here since they reflect improvement

in recall, but note that the BLEU scores improve as well.

System BLEU METEOR

Base 8.23 33.94823
Top-1 8.06 43.87316
Top-10 8.67 35.60303
upper bound 12.19 43.87316

(a) nyt-heb

System BLEU METEOR

Base 9.02 34.54124
Top-1 8.85 36.70513
Top-10 9.35 35.60303
upper bound 12.63 36.61574

(b) nyt-heb-300M

System BLEU METEOR

Base 8.62 35.31502
Top-1 8.57 38.13971
Top-10 8.96 37.59647
upper bound 12.51 44.42637

(c) ArabicPlusXinhuaNewsPlusAENewsBi

System BLEU METEOR

Base 10.64 36.68081
Top-1 10.86 38.99727
Top-10 9.76 37.70229
upper bound 14.62 46.36910

(d) OneGigaWordPlusHebNyt

System BLEU METEOR

Base 9.35 35.33127
Top-1 9.85 38.37584
Top-10 9.18 37.95336
var1 8.72 37.28186
var2 8.71 37.11948
upper bound 12.58 44.89328

(e) news-parl-430MW

Table 6.1: Integration of transliteration module in MT system using English language models
trained on different text sources

We further experimented with a method which uses Minimum Error Rate Training to

learn the contribution of the transliteration module to the translation process. The results

of learning the weight this module are presented in Table 6.2 compared to the MT system

where it was not used. Ideally, the scores of the transliteration options should also be taken

into account when considering the translation. Unfortunately, the current system cannot

exploit this information and we therefore provide all the results without their scores.
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System BLEU METEOR

Base 8.715 35.37779
Translit 10.35 39.15054

Table 6.2: Integration of transliteration module in MT system using MERT
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Chapter 7

Conclusions

We presented a method for transliteration in the context of Machine Translation. This

method identifies, for a given text, tokens that should be transliterated rather than translated,

and applies a transliteration procedure to the identified words. The method uses only positive

examples for learning which words to transliterate. It reduces over 38% of the errors compared

to the baseline. In contrast to previous studies this method does not use any parallel corpora

for learning the features which define the transliterated terms. The simple transliteration

scheme is accurate and requires minimal, easy to obtain resources. The correct transliteration

is generated in more than 76% of the cases, and in more than 95% of the instances it is one

of the top-5 results. We have integrated our method with an existing MT system, to provide

an external evaluation, and demonstrated a small yet significant improvement.

We believe that some simple extensions could further improve the accuracy of the translit-

eration module, and these are the focus of current and future research. First, we would like to

use available gazetteers, such as lists of place and person names available from the US census

bureau, http://world-gazetteer.com/ or http://geonames.org. Then, we consider uti-

lizing the bigram and trigram parts of Web 1T (Brants and Franz, 2006), to improve the TTT

identifier with respect to identifying multi-token expressions which should be transliterated.

In addition, we would like to take into account the weights of the different transliteration op-

tions when deciding which to select in the translation. Finally, we are interested in applying

this module to different language pairs, especially ones with limited resources.
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