Computational properties of Unification

Grammars

Daniel Feinstein

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE MASTER DEGREE

University of Haifa
Faculty of Social Science

Department of Computer Science

October, 2004



Computational properties of Unification

Grammars

By: Daniel Feinstein

Supervised By: Dr. Shuly Wintner

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE MASTER DEGREE

University of Haifa
Faculty of Social Science

Department of Computer Science

October, 2004

Approved by: Date:

(supervisor)

Approved by: Date:

(Chairman of M.A Committee)



Acknowledgment

The research was done under the supervision of Dr. Shulynéfirmh the department of Computer

Science.

I would like to thank Shuly for his excellent guidance, assise and support throughout this work.
Shuly is a great adviser and a wonderful person to be with laaakis to him this whole experience

was of great benefit to me.

Of course my special thanks to my parents Berta and Jose$tegirfor their unconditional support.

Last but not least my thanks to my sweet girlfriend Natalytfer patience.



Contents

1 Introduction

1.1 Mildly context-sensitive grammars . .

1.2 Unificationgrammars . . . . . . . . . . . e e e e

1.3 Researchobjectives . . . . . . . . . . .. . e

2 Context-free Unification Grammars

3 Mildly Context Sensitive Unification Grammars

3.1 Linear Indexed Grammars

3.2 One-reentrant Unification Grammars

3.3 Mapping of Linear Indexed Grammars to one-reentranfitition Grammars . . . .

3.4 Mapping of one-reentrant Unification Grammars to Linedexed Grammars . . . .

4 Conclusions

5 Bibliography

12

14

20
20
26
28
37

73

75



Computational properties of Unification Grammars

Daniel Feinstein

Abstract

There is currently considerable interest among computatitnguists in grammatical formalisms
with highly restricted generative power. This is based andlgument that a grammar formalism
should not merely be viewed as a notation, but as part of tigriistic theory. It is now generally
accepted that CFGs lack the generative power needed fguitpsse. Unification grammars have the
ability to describe phonological, morphological, syntaend semantic properties of languages and
thus they are linguistically plausible for modeling natuaamguages. However, unification grammars
are Turing equivalent in their generative capacity: thegadtion problem for unification grammars
is undecidable in the general case. It is therefore impbttaconstrain the expressivity of unification
grammars in a way that would still permit an account of ndtiareguages.

Mildly context-sensitive languages are a natural clasamjliages for characterizing natural lan-
guages. These formalisms were proved to have recognitgoritdims with polynomial time com-
plexity and there is no evidence that any natural languagetside of the mildly context-sensitive
class of languages. In this work we define a constraint onaaifin grammars which ensures that
grammars satisfying the constraint generate all and omdyrthdly context-sensitive languages. We

thus provide a linguistically plausible formalism whichciemputationally tractable.
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Chapter 1

Introduction

There is currently considerable interest among compuraltibnguists in grammatical formalisms
with highly restricted generative power. This is based andlgument that a grammar formalism
should not merely be viewed as a notation, but as part of tigiistic theory. It should make pre-
dictions about the structure of natural language and itsevi lessened to the extent that it supports
both good and bad analyses. In order for a grammar formalishate such predictive power its
generative capacity must be constrained. This has ledeceisitin the use of context-free grammars
(CFG) as a notation with which to express linguistic thearidowever, it is now generally accepted
that CFGs lack the generative power needed for this purpdsgbfegts, 1984; Shieber, 1985; Culy,

1985). Typical natural language constructions that requans-context-free power are:
e reduplication, leading to constructions of the fofmw | w € ¥*}
e multiple agreement, corresponding to constructions ofdha {a"b"a’ | 0 < j < n},
e crossed agreement, as modeled byo™c*d™ | n,m > 0},

As a result there is substantial interest in the developraadtstudy of constrained grammar for-

malisms whose generative power exceeds CFG.



1.1 Mildly context-sensitive grammars

Several linguistic formalisms have been proposed as capdlsthodeling the above mentioned phe-
nomena. The class ofildly context-sensitive (MCS) languageslefined by Joshi (1985) as a class
including all formalisms which properly extend CFG, can regs “limited cross-serial dependen-
cies”, exhibit the constant growth property and can be phmsepolynomial time. We consider
four mildly context-sensitive formalisms here: Linear émeéd Grammars (LIG), Head Grammars
(HG), Tree Adjoining Grammars (TAG) and Combinatory CateoGrammars (CCG). The four
formalisms under consideration were developed indepdlydend superficially differ considerably

from one another.

e LIG (Gazdar, 1988) can be viewed as a generalization of CF@hich each nonterminal is
associated with an unbounded stack of items drawn from saonite §et. Rules are permitted
to push items onto, pop items from, and copy the stack. Fanphe a rule A[..| — aBl[i..] is
similar to the CFG ruled — a B, except that it copies the stack 4fto B, pushing the element

1 onto B’s stack.

e HG (Pollard, 1984) can be viewed as a generalization of CF@hich a wrapping operation
is used in addition to concatenation. The nonterminals of& @erive strings of terminals
(w1 ... wg); the nonterminals of HG derivieeaded stringswhich are pairs of terminal strings
(w1 ... ws, wiq1 ... wy), denotedw; ... wywit1 ... wy. The rules of HG are similar to those of
CFG, but where CFG only defines concatenation of the dawgimeach rule, HG allows an ad-
ditional operationwrapping to be defined over the (two) daughtei¥:(s;t, u1v) = (sujvt).
Derivations in HG are simple rewritings which apply eithencatenation or wrapping, as spec-

ified in the rules.

e TAG (Joshi, 1985; Joshi, 2003) is a tree manipulation systemrammar consists of two sets
of treesjnitial andauxiliary. TAG defines two operations on treesibstitution which replaces
a node labeled! in a tree by a tree whose root is labelédandadjunction which takes a tree

7 in which some internal node is labeleld and an auxiliary tree in whicH labels both the root

1 A[..] denotes a nonterminal symhdlwith any stack content.



and some node on the frontier, and splices the auxiliaryitree replacing the node labeled
A by the entire auxiliary tree. The closure of the set of ihitiaes with respect to these two
operations defines the tree language of a grammar, and ithg Istnguage is defined as the set

of all terminal yields of the tree language.

e Categorial grammars (CG) define a finite set of primitive gaties. Each terminal symbol is
assigned a finite number of primitive or complex categottas Jatter obtained from the former
by means of the operatoxsand/. For example, if the set of primitive categorie§ 1§, N P, S},
then complex categories includg NP, N P/N, NP\(S/N P) etc. The intuition behind hav-
ing two directional slashes is that it allows one to code ymagtic order of (for example)
arguments of a verb in a lexicalized grammar: a transitive wehich takes aVv P to the left
and an/V P to the right and yields a sentence, could be writteVd®\ (S/N P). There are only
two category-combination rules in CGj /s - ag — a1 andas - ag\az — a3 Whereq; is a
(complex or primitive) category. Combinatory CG (CCG, $tman (2000)) adds a few more
combination rules, the motivation being coordination atigebcomplex linguistic phenomena.

These include functional composition; /as - s /as — aq/as andag \as - asz\a; — as\as.

Informally, differences between the formalisms can be @xeld in terms of the way in which
they can be seen to extend CFG. For example, in additionit@ystoncatenation, HG introduces a
wrapping operation with which one pair of strings can be \wegparound another. In other respects
HG are identical to CFG since the derivation process inwlsentext-free rewriting of members
of a finite set of non-terminal symbols. Both CCG and LIG, oa tther hand, use only string
concatenation. However, they differ from CFG in that theirigation process involves rewriting of
unbounded stack-like structures. The status of TAG, a traeipalating system, is ambiguous since
it is possible to interpret TAG as extending CFG in eitherhafse ways.

Despite these differences, all four formalisms are weakjyivalent (Vijay-Shanker and Weir,
1994). We use the termildly context-sensitivia this paper to refer to the class of the languages that
the four formalism defined. These formalisms were provedii@ recognition algorithms with time
complexity O(n®), considering the size of the grammar a constant factor y\gjaanker and Weir,

1990; Satta, 1994). As a result of the weak equivalence dfifaiependently developed (and linguis-
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tically motivated) extensions of CFG, the class of mildiyntaxt-sensitive languages is considered to
be linguistically meaningful. There is no evidence that aagural language is outside of the mildly
context-sensitive class of languages. Mildly contextsgier languages, therefore, are a natural class

of languages for characterizing natural languages.

1.2 Unification grammars

Unification grammars (Shieber, 1986; Shieber, 1992; Caepel092) have originated as an extension
of context-free grammars, the basic idea being to augmentdhtext-free rules with non context-
free annotations (feature structures) in order to expresgesadditional information. Unification
grammars have the ability to describe phonological, mdaaical, syntactic and semantic properties
of languages and thus they are linguistically plausibleriodeling natural languages. Today, several
formulations of unification grammars exist, some of whichrahd assume an explicit context-free
backbone. They are used extensively by computationalibtgyto describe the structure of a variety
of natural languages.

We assume familiarity with theories of feature structuregscamulated, e.g., by Shieber (1992)
or Carpenter (1992). We summarize below the few conceptatkaneeded for the rest of this paper
in order to set up notation, adapting the description of dadgancez, and Wintner (2004). We begin

with a formal definition of attribute-value matrices (AVM).

Definition 1 (AVMs). Given a signature consisting of a finite ggtoms of atoms and a finite set

FEATS of features, the setvMms of AVMs is the least set such that

1. [i] a € Avwms for every variabldi] anda € ATOMS;

2.[i] [] € Avwms for every variablgi] ;

3. for every variabl@ ,F1,...,F, € FEATSandAq,..., A, € AVMS, n > 1,
Fi: A
A=l[i] |} € AVmS
Frn: A,

Thevalue of the featurer; in A, denotedval (A, F;), is A;.

4



Definition 2 (multi-AVM). Given a signature consisting of a finite getoms of atoms and a finite
set FEATS of features, anulti-AVM of length n is a sequencéAq,...,A,) such that for each,

1 <4 < n, A; is an AVM over the signature.

Meta-variables4, B range over feature structures ang over multi-AVMs. An multi-AVMs o
can be viewed as an ordered sequefg ..., A,) of (not necessarily disjoint) feature structures.
We identify multi-AVMs of length 1 with feature structures.

We now define another representation of feature structumbledcabstract feature structures
which is easier to work with mathematically. We start witlepabstract feature structures, which
consist of three components: a $étof paths, corresponding to the paths defined in the intended
feature graphs (taken as sequences of features); a fur@tibat labels the end points of some of
the paths (corresponding to the labeling of some of the smigsaphs); and an equivalence relation
specifying what sets of paths lead to the same node in thedategraph, without an explicit specifi-
cation of the node’s identity. Abstract feature structimespre- abstract feature structures with some
additional constraints imposed on them, which guarantagtiie specification indeed corresponds to

some concrete feature graph. We denote the set of all patrsras (PATHS = FEATS®).

Definition 3 (Abstract feature structures). A pre- abstract feature structurépre-AFS) is a triple

(I1, ©, ~), where
e II C PATHS is a non-empty set of paths
e O :II — ATOMS s a partial function, assigning an atom to some of the paths
e ~ C II x ITis a relation specifying reentrancy
An abstract feature structur€dAFS) is a pre-AF3A for which the following requirements hold:
e Il is prefix-closed: ifr - « € II thenw € II (wherer, o € PATHS)
e Ais fusion-closed: ifr -« € Tand7 ~ 7' thent’ -a e [Tandn’ - a ~ 7 - «

e ~ is an equivalence relation with a finite index (wits] the set of its equivalence classes)

including at least the paife, €)



e O is defined only for maximal paths: &(x) | then there exists no path- « € II such that

aFe

e O respects the equivalence: 7ff ~ w5 then either both undefined or both are defined and

O(m) = O(m2)

A non-reentrant feature structuris a feature structure whose reentrancy relation contaihs o
pairs of equal paths. Let®Fssbe the set of all non-reentrant feature structures oversthigature.
An abstruct multi-rooted structur@AMRS) of lengthn is a sequence of abstract feature structures,

with possible reentrancies among elements of the sequence.

Definition 4 (Abstract multi-rooted structures). A pre-abstract multi rooted structure (pre-

AMRS) is a quadruple = (Ind,II, ©, ~), where:
e Ind € Nis the number oindicesof o

e IT C {1,2,...,Ind} x PATHS is a set ofindexed pathssuch that for each, 1 < i < Ind,

there exists some € PATHS with (i, 7) € II
e O: Il — ATOMS s a partial function, assigning an atom to some of the paths
e ~ C II x ITis a relation specifying reentrancy

An abstract multi-rooted structure (AMRS) is a pre-AMRS for which the following require-

ments, naturally extending those of AFSs, hold:
e Il is prefix-closed: if(i, 7o) € I then(i,m) € II

o is fusion-closed: ifi, 7o) € ITand (i, w) ~ (i, 7') then(i, 7)) € M and (i, 7a) ~ (¢, 7’ )

~ is an equivalence relation with a finite index (wils] the set of its equivalence classes)

including at least the pair§ (i, €) ~ (i,e) | 1 <i < Ind}, and if (i, e) ~ (j,¢) theni = j

© is defined only for maximal paths: @((i, 7)) | then there exists no paifi, 7a) € II such

thata # ¢

O respects the equivalence: (i, 1) ~ (i2, m2) thenO((i1, m)) = O((iz, m2))
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In the sequel, given a feature structuke we write (IT4,© 4,~4) for its abstract representa-
tion. Similarly, an AMRSo is written as(Ind,,Il,,0,,~,). For any AMRSo, we denote a
reentrancy relation between pattisr,), (j, m2) € Il,, wherei, j < Ind and((i, 71), (j, m2)) €~,
by (i, 71) « (j,m2).

Feature structures and AMRSs are partially ordereditysumptiondenoted £’. The least
upper bound with respect to subsumption is timfication operator, denoted.f' (we use the term
‘unification’ both for the operator and for the result of itgadication). Unification is a partial operator;
whenA U B is undefined we say that the unificatifails and denote it ad LI B = T. Unification
is lifted to AMRSSs: given two AMRS% andp, it is possible to unify theé-th element o> with the
j-th element ofp. This operation, callednification in contexaind denotedo, i) U (p, j), yields two
modified variants ob and p: as the unification is donim the contexiof the entire AMRSSs, other
elements might be affected. Hence, the result of unificatiatontext (when it is defined) is a pair
(o', p).

One of the advantages resulting from the representatiomgdiktic information by means of
abstract feature structures is the relative simplicitguiisumptiorandunification The subsumption

relation becomes not much more thaetinclusion; and unification is basically set union.

Definition 5 (AFS subsumption). Let C be a relation over AFSs such thatC B iff the following

three conditions hold:
e II4 ClIlp
o ) C ~p
o if ©4(m) | thenOp(w) | and© 4(7) = Op(n).

Namely,A is more general thaR if and only if all the paths oA are also paths iB, if a (maximal)
path is labeled i then it is labeled identically i and every reentrancy i is a reentrancy iif3.

The unification of two AFSs can be defined in terms of set uniwhthe closure operations:

Definition 6 (AFS unification). The unification of two AFSS and B (denotedA LI B) is defined only

if for every pathr which is defined in botlA and B, either® 4(7) and © 5 () are both defined and



equal, or neithei® 4 () nor ©z() is defined, or only one is defined ands a maximal path in the

other. The closure operations are:
e CI(A) is the least fusion-closed pre-AFS that exteAds
e Fq(A) is the least extension &f in which= is an equivalence relation;
e T'y(A) is the least extension &f in which © respects thex relation.
If the unification is defined) LB = T'y(Eq(C1(C))), where
o Ilo =114, UIlg

o o=~y U~=p

(

O 4(m) if Op(m) 1
Op(m) if©a(m) 7
Op(m) if ©4(7) = Op(n)

undefined otherwise

The unification fails if there exists a pathin both A and B, such that9 4(7) # Opg(n), or if
© 4 () | andr is not a maximal path iB, or if © 5(7) | andr is not a maximal path iA. Otherwise,
its result is obtained by first computirfg by union of the paths and the reentrancie ahdB, taking
care of the types of the atoms; and then applying the cloqueeations:C'! adds necessary paths and
reentranciesFq completes the resulting pre-AFS to one in whielis an equivalence relation and
finally, T'y sets the types of the added paths. Trivially, the result i8RS.

While formally we manipulateébstractfeature structures and MRSs, we depict them using the
common AVM notation to facilitate readability. We use thente feature structures and MRSs for

both representations in the sequel.

Definition 7. Unification grammarsare defined over a signature consisting of a finiteAssbms of
atoms; a finite seFEATS of features and a finite s oRDs of words. Aunification grammaris a

tupleG* = (R", L, A®) where:



e R" is a finite set of rules, each of which is an MRS of lengtlx 1, with a designated first
element, thénead of the rule, followed by ithbody The head and body are separated by an

arrow (—).

e L is alexicon, which associates with every woide WoORDSa finite set of feature structures,

L(w).
e A is a feature structure, thstart symbal
We use meta-variables® (with or without subscripts) to denote unification grammars

Example 1 (Unification grammar). LetGY,, be a unification grammar over the signatu@Toms,
FEATS, WORDS), where FEATS = {LIST,HD,TL}, ATOMS = {s,elist,ta,tb} and WORDS =
{a,b}. The grammar has two rules, each an MRS of length 3, and tvizaleantries, one for each

element ofNORDS.

HD : s
A% = |LIST:
TL : elist
HD : s
LIST : — [LIST: } [LIST: ]
TL : elist
R’IJ, — L L
HD:|1 HD :|1
LIST : — [UST . ] LIST :
TL : TL : elist
HD : ta HD : tb
L(a) = ¢ |LIST: L(b) = LIST :
TL : elist TL : elist

We extend the definition of unification to AMRSs. The inputhe bperation is a pair of AMRSs,

with two indices pointing to the elements that are to be utjféend the output is a pair of AMRSSs.

Definition 8 (Unification in context). Leto, p be two AMRSs of lengths,, n,,, respectively. The uni-
fication of thei-th element i with thej-th element irp, denoted o, i) LI (p, 7), is defined only if <

ne andj < n,, in which case itis a pair of AMRS&1”, p”") = (T'y(Eq(Cl(d"))), Ty(Eq(ClL(p")))),



wheres’ andp’ are defined as follows:
Ind, = Ind,
I, =11, U {<Z77T> ’ <j,7'('> € HP}

o =g U{((i1, 1), (i2,m2)) | (J1,71) =, (j2, ™)}

O, ((k, 7)) ifk#i

O (k7)) = O, ((k, 7)) ifk=iand©,((i,x)) |
O,((j.)) ik =iand®,((j.m) | andey (i) 1
undefined  otherwise

Ind, = Ind,

Oy =1L, U{{j,m) | (i,m) € Il;}

~py =r~ U{((J1,m1), (J2,m2)) | (i1, m1) =g (i, m2)}
O,((k,m) ifk#j

0,/ ((k, 7)) — Op((k,m)) ifk=jandO,((j,m)) |
O ((i,m)) ifk=jandO,((i,m)) | and©,((j,m)) T

undefined otherwise

The unificatiorfails if there exists a pathr such thato, ((i, 7)) | and©,((j,)) | but©,((i,7)) #
©,((j,)); or if there exist pathsr, a, wherea # ¢, such that eithe©,((i, 7)) | but (j, 7o) € 11,

or ©,((j,m)) | but (i, 7ar) € IL,.

Compare the above definition to definition 6 and observe bHeadifferences are minor. The uni-
fication returns two AMRSs;” andp”, which are extensions (with respect to the closure operstio
Ty, Eq andCl) of o/ andy/, respectively.

To define thdanguagegenerated by a unification gramm@t, we extend the notion dbrms
a form is simply an MRS. A formv4 = (A4,...,A;) immediately derivesinother formop =
(B1,...,By) (denoted by 4 :1>u op) iff there exists a rule* € R“ of lengthn that licenses
the derivation. The head of the rule is matched against soemee@t A; in o4 using unification in
context: (o4,7) U (r*,0) = (o/4,7’). If the unification does not failyz is obtained by replacing
thei-th element of’; with the body ofr’. The reflexive transitive closure oféu’ is denoted by

‘== ”. An empty derivation sequence means that an empty sequémnakes is applied to the source

10



MRS and is denoted byéu’, for exampleo 4 :0>u oA

Definition 9. Thelanguageof a unification grammaé&™ is L(G*) = {s € WORDS* | s = wy - - - wy,

andA® ==, o; such thato; is unifiable with(Ay, ..., A,)}, whereA; € £(w;) for 1 <i < n.

Example 2 (Derivation sequence)As an example, consider again the gramrogy,, of example 1.
The following is a derivation sequence for the stringa with this grammar. Note that the scope of
variables is limited to a single MRS (so that multiple ocemges of the same tag in a single form

denote reentrancy, whereas across forms they are unrélated

HD : s
As = |LIST: apply rule 1 to the single element of the form
TL : elist
o1 = |LIST: } [LIST : } apply rule 2 to the second element
HD:|1 HD:|1
o9 = LIST : {UST . ] LIST : apply rule 2 to the first element
TL : TL : elist
r HD : HD :
o3 = |LIST: LIST : LIST : LIST :
L TL : elist TL : elist

Now consider the MRS obtain by concatenating (the singteets of£(b), L(a), L(b), L(a)):

HD : tb HD : ta HD : tb HD : ta
o; = |LIST: LIST : LIST : LIST :

TL : elist TL : elist TL : elist TL : elist

Sinceo; and o3 are unifiable, the stringaba is in L(GY,,). In fact, L(GY,,) = {ww | w €
{a,0}*}.

Unification grammars are Turing equivalent in their geneeatapacity: determining whether a
given string is generated by a given grammar is as hard adidgavhether a Turing machine halts
on the empty input (Johnson, 1988). Therefore, the redognitroblem for unification grammars is
undecidable in the general case. In order to ensure deligaifithe recognition problem, several
constraints on unification grammars, commonly known a®ffiine parsability (OLP) constraints
were suggested, such that the recognition problem is daeidiar off-line parsable unification gram-

mars (see Jaeger, Francez, and Wintner (2004) for a survey).

11



The idea behind all the OLP definitions is to rule out gramnvainich license trees in which
unbounded amount of material is generated without expgnithie frontier word. This can happen
due to two kinds of rulese-rules (whose bodies are empty) and unit rules (whose badiesist of
a single element). When grammars are context-free, it iay@vwpossible to remove grammar rules
which can cause such unbounded growth of the trees: in pkaticone can always remove cyclic
sequences of unit rules (which can be applied unboundedtlyput expanding the yield of the tree).
However, with unification grammars such a procedure turnig@mibe more problematic. It is not
trivial to determine when a sequence of unit-rules is, idgdegclic; and when a rule is redundant.

Recently, Jaeger, Francez, and Wintner (2004) defined d @& constraint which is shown to
be effectively testable. However, even grammars which die &cording to their definition are not

guaranteed to have a polynomial parsing time.

1.3 Research objectives

The main objective of this work is to define constraints oriication grammars which will guarantee
efficient (polynomial) processing. There are naive cemsis which restrict the expressiveness of
unification grammars in a way which ensures polynomial pgr§ime, but they are too strong. One
example is Generalized Phrase Structure Grammar (GPS@JéGat al., 1985). Among current
syntactic theories, GPSG provides an appealing solutiorddscribing natural languages with its
modular system of composite categories, rules, constraimi feature propagation principles. GPSG
is known to be equivalent to CFG, thus inducing a polynomiip?), recognition parsing time.
Another example of such a constraint (which we show in thjzepas the first step towards a more
interesting constraint) is to disallow reentrancies irtdeastructures. In both cases above the result-
ing formalisms are equivalent to CFG which, as we mentiortam/@, is not enough for describing
natural languages.

Our main goal in this work is to define an effectively testadjatactic constraint on unification
grammars which will ensure that grammars satisfying thestaimt generate all and only the mildly

context-sensitive languages. This is beneficial for bottottbtical and practical reasons:

e From a theoretical point of view, constraining unificatiorammars to generate exactly the

12



class of mildly context-sensitive languages will resultaigrammatical formalism which is,
on one hand, powerful enough for linguists to express Istgugeneralizations in, and on the

other hand cognitively adequate;

e Practically, such a constraint can provide an efficientgad@n time algorithm for the limited

class of unification grammars.

In this work we show the solution for the theoretical aspéthe problem by defining a mapping

from unification grammars to one of mildly context-sensittermalisms, Linear Indexed Grammar.

13



Chapter 2

Context-free Unification Grammars

In this section we define a constraint on unification grammaduish ensures that grammars satisfying
it generate all and only the context-free languages. Thistcaint disallowsany reentrancies in the
rules of the grammar. When rules are non-reentrant, apgphirule implies that an exact copy of the
body of the rule is inserted into the generated (senterftath, not affecting neighboring elements
of the form the rule is applied to. The only difference betweele application in non-reentrant
unification grammars and the analog operation in cont@d-frammars is that the former requires
unification whereas the latter only calls for identity chedh this section we show that this small
difference does not affect the generative power of the fosma.

Let G/ = (Vy, Vi, R, ST be a context-free grammar. For the sake of simplicity, i thi
section we assume that the start symboti6f occurs only on the left side of rules. If this is not the
case, rename the original start symbosgt;ﬁd and introduce a new start symbéF,f , and an additional
unit rule S/ — S/ We also assume, for simplicity, that the grammar is givea irormal form,
where each rule has either a sequence of (zero or more) noim#ds in its body or a single terminal.

The set of all such context-free grammars is denoted<C

Definition 10 (Non-reentrant unification grammar). A unification grammaiG* = (R", A% L)
over the signaturd AToms, FEATS, WORDS) is non-reentrantiff for any ruler* € R, r* is non-

reentrant. LetUG,,,- be the set of all non-reentrant unification grammars.

We show that the class of languages generated by non-reeotrdication grammars is exactly



the class of context-free languages. The trivial direcisdn map a CFG to a non-reentrant unification

grammar, since every CFG is, trivially, such a unificatioargmar.

Definition 11 (Mapping from CrFGsto UG,,,.). Let cfg2ug: CFGs+— UG,,,. be a mapping o€CFGs
to UG,,,, such that ifG*/ = (Viy, V;, R, S¢/) and G* = (R*, A%, L) = cfg2ug G</) thenG" is

over the signaturé ATomMs, FEATS, WORDS) and:
e ATOMS=Vny UV,

FEATS = ()

WORDS = V;

° Aszscf

Forall t; € Vi, forall A — t; € R, A € L(t;)
e If By— By...B, € R thenBy — By ...B, € R".
Theorem 1. LetG¢/ be a CFG grammar. Theh(G</) = L(cfg2ug G¢/)).

Proof. Since all feature structures are atomic, unificatioofg2ug G/ ) is reduced to identity check.
As there is a one-to-one correspondence between featustsers incfg2ug G¢/) and terminal and
non-terminal symbols i/, rule application in both grammars is identical. Hence ptimmars

induce the same derivation relation on forms, and therafereerate the same language. O

We now define a mapping from UGto CFGs. The non-terminal symbols of a context-free gram-
mar in the image of the mapping are the set of all feature tsires defined in the source unification

grammar.

Definition 12 (Mapping from UG, to CFGS). Let ug2cfg: UG,, — CFGS be a mapping of
UG, to CFGs, such that ifG* = (R“,A?, L) is over the signaturé ATOMS, FEATS, WORDS) and

G = (Vn, Vi, RS, S¢f) = ug2efgd G¥), then:

e Vn ={AJU{A; Ao = A1...A, e R, 1<i<n}U{A| A€ L(a),a € ATOMS}. Vv is

the set of all the feature structures occurring in any of thkes or the lexicon ofs".
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e V, = WORDS
° Scf — AS

e R consists of the following rules:

. LetAy — A;...A, € R*andB € L(b). If forsomei, 1 < i < n, A;UB # T, then

Ai—>b€Rcf

CIfAg— AL A, € R andAs LUAy # T thenS</ — A, ... A, € R,

. Letrf{ = Ap — Ay... A, andry = By — By ... B,,, wherer{, r{ € R". If for some,

1<i<n,A;UBy#T,thentheruleA; — B;...B,, € R/

Example 3 (Mapping from UG,,, to CFGS). LetG* = (R“, A%, L) be a non-reentrant unification

grammar for the languagéa™b™ | 0 < n} over the signaturé AToMs, FEATS, WORDS), such that:

e ATOMS = {v,u,w}

FEATS = {F1,F2}

WORDS = {a, b}

AS Fi:w

Fo:w

The lexicon is defined a&(a) = {[,:2 . U} }andL(b) = {{FQ : u}}

The set of ruleR" is defined as:

Fp1:w
1 — €

Fo:w

[ Fi1:u Fi:v
2. Fo:w| — Fo:w

- Fo:v Fo:u

Then the context-free gramma¥’ = (Viy, V3, R¢/, S¢f) = ug2cfg G) is defined as:

Fi1:w Fi1:u Fi1:v
Fo:vl|s|Fa:uls|[Fe:wl> ) s
Fo @ w Fo:v Fo:u

16
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e V; = WoORDs= {a,b}

F1:w
o 5f—ps— |

Fo :w

e The set of ruleR</ is defined as:

F1:u
1 —a

Fo:v

Fi1:v
2 —b

Fo:u

Fi:w
3. — €

Fo :w
4. ngw}ﬂﬁ

Fi:w Fi:u F1:v
5. — Fo @ w

Fo:w Fo:v Fo:u

F1:u F1:v

6. |[Fy:w| — Fa:w

L Fo v Fo i u

Note that the size ofig2cfdG*) is polynomial in the size o&*: |R¢/| < |R¥| x |R"|. The
following lemma shows that non-reentrant unification graarsrare very limited, and in particular
cannot “add information” beyond that which exists in theerilif A; is an element of a sentential

form induced by such a grammar, tha&pis an element in the body of some grammar rule.

Lemma 2. Let G* = (R“ A%, L) be a non-reentrant unification grammar over the signature
(ATOMS, FEATS, WORDS) andA® ==, A; ... A, be a derivation sequence. Then for All there

exist a ruler € R* such that* = By — By ...B,, and anindex, 0 < j < m, for whichB; = A;.

Proof. We prove by induction on the length of the derivation seqaefide induction hypothesis is
that if A® :k>u A; ... A, then for allA;, wherel < ¢ < n, there are a rule* = B; — B;...B,,,
r* € R* and anindey such thaB; = A;. If k = 1, thenthereisarul€ — A; ... A,,AUC# T,
and allA; are part of the rule’s body because a non-reentrant rule niaepropagate information

from the rule head to the body. Assume that the hypothesigsHol everyi, 0 < I < k; let the length

17



of the derivation sequence e If AS '“:’%u Dqy...Dy, :1>u A1...A, then there exist an indek

andaruler” = C — A;...A,_p,4; € R such that:
1. Cu Dj #T

A, i<y
2.D0;,=¢ "
Aivn-m 1>
By the induction hypothesis for all;, where: < j ori > n — m + j, there is a rule that contains

in its body. ForA;, wherej < i < n —m + j, the ruler* completes the proof. O
With this lemma we can now prove the main result of this chapte

Theorem 3. Let G* = (R",A®, L) be a non-reentrant unification grammar over the signature

(ATOMS, FEATS, WORDS) and G/ = (Vy, Vi, R/, S°/) = ug2cfd G*). ThenL(G</) = L(GY).

Proof. We prove by induction on the length of a derivation sequehe¢ A®> ==, A;...A, iff
Sef =0 Ar. . Ay

Assume thatA® ==, A;...A,. The induction hypothesis is that X =k>u Ai... A, then
sef :k>cf A . A, If k=1,thenthereisarul€ — A;...A,, AU C# T, and by the definition
of ug2cfg S/ — A;...A, € R%. Thens</ gcf A;...A,. Assume that the hypothesis holds
for everyl, 0 < [ < k; let the length of the derivation sequenceibdf A® kz_iu Dy...D,, =1>u

A1 ... A, then there exist an indekand aruler} = C — A; ... A,_4; € R" such that:
1. CuU Dj 7§ T

A; 1<
2.0, ={ ’
Aivn-m 1>
By lemma 2 there is some rul§ € R" such thaD, is an element of its body. Hence, by definition 12
there isarules = Dj — A;...A,_p; € RS which is a result of combining! andry. By the

induction hypothesis</ kz_icf D; ... D, and by application of the rule; we obtain:

k
S = D1 Dj 1A Ajin—mDjs1 . Dy = Ar LA,
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AssumeSe’ ==.; A;...A,.! The induction hypothesis is that f°/ :k>cf A;...A, then
A’ :k>u Ai...A,. If k=1, thenthereisarul8< — A;...A, € R and by definition ofig2cfg
(note thatS</ is not a part of any rule body iR°f), C — A; ... A, € R*, whereA* LIC # T. Then
As gu A1...A,. Assume that the hypothesis holds for everg < i < k; let the length of the
derivation sequence be If 5S¢/ gcf Dy...Dy, :1>cf A1 ... A, then there exist an indexand a
ruler; =Dj — Aj ... Ap_pmi; € R such that:

D, A, i<
Aitn-m 1>]

By definition 11 there are rule§ = By — By ...B,, 7§ = C — Aj... Ay iINR* and an

indext, 1 <t < p,suchthaB, =D;andCLUD; # T.

By the induction hypothesig\* gu D, ...D,, and by application of the rulgj we obtain:

A* £, Dy...D; 1A Aj i mDji1... Dy = ArL L A,

Insum,A® ==, A; ... A, iff S/ ==_; A;...A,. Hence,L(G) = L(ug2cfgG")). O

Corollary 4. The class of languages generated by non-reentrant unificagrammars (G,,,.) is

equivalent to the class of context-free languages.
Proof. Immediate from theorem 1 and theorem 3. O

Definition 13 (Atomic Unification Grammars (AUG)). A unification grammaG* = (R", L, A®)
is atomicif all rules in R* contains only atomic feature structures (feature struesulefine by case 1

of definition 1).

Since AUG is just a notational variant of CFG it does emplesiie idea that non-reentrant feature

structures add nothing of substance to UG, at least in tefmeak generative capacity.

!Recall that all elements dfy are feature structures, and therefore all the elements©F&] sentential form can be

represented a&;, whereA,; is a feature structure.
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Chapter 3

Mildly Context Sensitive Unification

Grammars

In this section we define a constraint on unification grammduish ensures that grammars satisfying
it generate all and only the mildly context-sensitive laages. In section 3.1 we recall one of the
mildly context-sensitive formalisms, Linear Indexed Graar. Section 3.2 defines the constraint,
namely one-reentrant unification grammars. Then, in se&i8 we show the mapping of LIGs to
one-reentrant unification grammars. The mapping of onetraet unification grammars to LIGs is

shown in section 3.4.

3.1 Linear Indexed Grammars

In this section we use the definition of Vijay-Shanker andME&94). In a Linear indexed grammar
(LIG), strings are derived from nonterminals with an asated stack denoted(l; .. . [, ], whereA is

a nonterminal, each is a stack symbol fot < i < n, andl; is the top of the stackA[ | denotes the
nonterminald associated with the empty stack. Since stacks can grow tblréounded size during

a derivation, some way of partially specifying unboundeatks in LIG productions is needed. We
useA[l; ...l,..] to denote the nonterminal associated with any staskwhose toprn. symbols are
l1,l5...,1, where0 < n. The set of all nonterminals i, associated with stacks whose symbols

come fromV, is denoted/y [V].



Definition 14. A Linear Indexed Grammaiis a five tupleG' = (Vi, V;, Vs, RY, S) where
e Vy is afinite set of nonterminals,

V; is a finite set of terminals,

Vs is a finite set of indices (stack symbols),

S € Vi is the start symbol and

RY is a finite set of productions, having one of the following famns:

1. Production with dixed stack at the headN;[p; ...p,] — «

2. Production with arunboundedstack at the headN;[p; ... p,..] = aNj[q1 ... Gm..|8
whereN;, N; € Vi, p1...Pn,q1 ---qm € Vs, n,m > 0anda, § € (V; U Vy[VF])*".

Definition 15. Given a LIGGY” = (Viy, V;, Vi, RY, S), thederivation relation‘=;;" is defined as

follows:
o If Ni[p1...ps] — a € Rlithen forally, Uy € (Viy[VI]U VL),

\IllNi[pl .. .pn]\IIQ 1 @10[‘1’2

o If Ni[p1...pn-] — aNjlq1-..qm.]8 € R thenforall¥,, ¥y € (Vy[VF]UV;)* andn € V7,
Uy Ni[p1 - .. o0 W2 = ViaNq1 - . . qmn) 52

whereN;, N; € Vy,p1...Dn,q1---Gm € Vs, n,m > 0anda, 5 € (V; U Vn[V])*. Thelanguage
L(G"), generated bya", is {w € V;* | S[] == w}, where ==’ is the reflexive, transitive closure

of '—;’.

We change the definition above by adding the following préidadorm with anunboundedstack
at the head:

Nz’[pl .. pn] —
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whereN; € Vy, p1...pn, € Vs, 0 < nanda € (V; U Vy[V])*. The derivation relation==;;" for

the added production form is defined as follows:
UiN;[p1 ... pan| V2 =g V1aWs

whereW,, ¥y € (Vy[VS] U V,)*. Itis easy to see that such productions can be simulatedeby th
two production forms given in definition 14, so the extendeufalism is (weakly) equivalent to the
original one.

LIG is one of the four formalisms that are known to be mildintaxt-sensitive. The following

languages are known to be MCS:

o Li = {wwlww? | w e {a,b}}

o Ly ={ww|wée {a,b}}

o Ly ={a"b"c"d" |0 <n}

To demonstrate the expressiveness of this class of langwegprovide below a grammar fa.
Example 4 (LIG for L,). LetGY = (Vy, Vi, Vi, RY, S), where:

e Vy ={S, Ny, N3}

o V;={a,b}

o Vs=V,

o R = {r,ry,73,74,75,76, 77}, Where

1.1 = S[] — Ny[]
2. 1y = No[.] = Nafa.]a
3. r3 = Nal.] — Nofb.]b
4. 74 = Nol.] — Ns[.]

5. r5 = N3fa.] — aNs[.]
6. 16 = N3[b..] — bN3[.]
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7. 177 =N3[] —e€
It is easy to see that(GY) = L,. For example, a derivation of the wotdbabb is
S =y No[] 1
= N5 [b]b r3
= Na[bblbb 13
=, NaJabblabb 1o
=—>;;  N3labblabb 14
—>;  aNs[bblabb 15
—>;  abN3[blabb g
—;; abbNs[labb 16
= abbabb r7
In contrast, seemingly similar languages are beyond midhtext-sensitive and hence cannot be
generated by LIG (Vijay-Shanker and Weir, 1994):
o Ly ={www|w e {a,b}}
o Ly={a"|0<n}
o Lg={a"b"c"d"e" |0 <n}
A crucial characteristic of LIG is that onignecopy of the stack can be copied tgiagleelement

in the body of a rule. Once more than one copy is allowed, thpesssive power grows beyond MCS.

This is demonstrated by the following definition and exaraple

Definition 16. Linear indexed grammar 2 (LIG2) is an extension of LIG. Thédince is in the

definition of the productions set, where one more rule forail@ved:

Nz’[pl .. pn] — Nj[Ql e Qm--]Nk[Tl e ’I“l..]

WhereN;, N;, N, € Vy andpy...pp,q1-..qm,71...71 € V. The derivation relation==;;" for

the production form is defined as follows:

U N;[p1 ... pan¥o =1 V1N (g1 - .. gmn) Ni[r1 ... ] ¥
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whereW, ¥y € (Vn[VS U Vi)*.

We demonstrate the additional expressiveness by providiag grammars for., and L5, which
are trans-MCS. Note that the grammar of example 5 is obtdioed the grammar of example 4 by

adding a single rule;,.
Example 5 (LIG2 for Ly). LetGY = (Vi, Vi, Vi, RY, S), where:
o Vy = {S, N, N3}
o Vi ={a,b}
o Vi=V
o R = {ry,ro,73,74,75, 76,77}, Where

1.1 =S — Ny[]

2. 1y = No[.] = Nafa.]a

3. r3 = Na[.] — Nafb.]b

4. 74 = No[.] — Ns[.]N3]..]
5. r5 = N3Ja.] — aNs[.]

6. 16 = N3[b..] — bN3[.]

7.r7=N3[] —€

Itis easy to see that(GY) = L4. For example, a derivation of the wordbabbabb is

S =iz Nol] Ll
=12 No[b]b T3
=2 Ny [bb]bb T3
=0 Ns[abblabb )

=0 N3 [abb]N:; [abb]abb T4

=2 aN3[bb|N3[abblabb s
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=2 abN3[b|N3[abblabb rg
=12 abbN3[ | N3[abblabb g
=0 abbNslabblabb 17
=2 abbaNs[bblabb 15
==1i2 abbabN3[blabb ¢
=0 abbabbNs[labb  rg

=2 abbabbabb r7

Example 6 (LIG2 for Ls). LetGY = (Vy, Vi, Vi, RY, S), where:

Vv = {85, N2, N3}

Vi = {a}
« Vo=V,
o Rl = r1,79,73,74,75, 76, r7, Where

1.1 =S — Nyfq]
2. 1y = Na[.] — N3[.]Ns[aa. ]
3. r3 = Nal.] — Ns[.]

4. 74 = Nsfa.] — aNs[.]

5. 15 = Ny[] — ¢

The grammar is based on the observation that= 1+ 3+ 5+ ... + (2n — 2). Itis easy to see that

L(GY) = Ls. For example, a derivation of the wordiaa is

S =2 Na|a] 1
=2 Nsl[a|Na[aaa] 7o
=2 Nsl[a]Ns[aaa] 73
=0 aN3[|aaaNs[] 74 x 4

*

=i aaaaq rs X 2
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3.2 One-reentrant Unification Grammars

In this section we define a constrained variant of unificagoammars, namelgne-reentrant unifi-
cation grammarsthat generates exactly the mildly context-sensitivesctafdanguages. The major
constraint on unification grammars is that each rule camdecht most one reentrancy, reflecting the

LIG situation where stacks can be copied to exactly one deugheach rule.

Definition 17 (One-reentrant unification grammar). A unification grammarG* = (R", A% L)
over the signaturer = (ATOMS, FEATS, WORDS) is one-reentrantiff for every ruler* € R", r*
includes at most one reentrancy, between the head of thandesome element of the body.

LetUG;, be the set of all one-reentrant unification grammars.

Example 7 (One-reentrant unification grammar). LetG* = (R", A%, L) be a one-reentrant unifi-

cation grammar over the signatufdtoms, FEATS, WORDS), such that

e ATOMS = {s,t,u,v}

FEaTs = {F,G}

WORDS = {a, b, ¢, d};

AS =
G:s

The lexicon is defined &&(a) = {s}, £L(b) = {t}, L(c) = {u} and L(d) = {v}.

The set of production®" is defined as

r N F:s
F:s
1 — S F:s v
G: G:
- - G:
F:s F:t
2. —
G G:[1]
F:t
F:t
3 F:s —t u
G G:
G:
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F:t
4. — €
G:s
ThenL(G") = {a™b"c"d"™ | n > 0}.
One-reentrant unification grammars induce highly constai(sentential) forms: in such forms,

there are no reentrancies whatsoever, neither betweanctlisiements nor within a single element.

Lemma 5. If 7 is a sentential form induced by a one-reentrant grammar there are no reentran-

cies between elements70br within an element of.

Proof. By simple induction on the length of a derivation sequendee proposition follows directly
from the fact that rules in a one-reentrant unification granhave no reentrancies between elements

of their body. O

Since all the feature structures in forms induced by a oratrant unification grammar are non-
reentrant, unification is simplified. The following propeit phrased in terms of abstract feature

structures (see definition 3):

Lemma 6. Let A and B be unifiable non-reentrant feature structures. Tlea A LI B is defined as
follows:
o IIo=1I4Ullp
©4(m) if©a(m) |
® Oc(m) =4 Op(r) fO4(r)] andOp(x) |
undefined otherwise
o ~o={(m,m) | melc}
Crucially, C is also anon-reentrantfeature structure whose set of paths is the uniofl gfand

II5.
Proof. Immediate from the definition of unification. O

To simplify the construction of a mapping from LIG to UG, wesfidefine a simplified variant
of one-reentrant unification grammars, which we presentbyve to be equivalent to the original

definition.
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Definition 18 (Simplified one-reentrant unification grammars). A one-reentrant unification gram-
mar G* = (R", A, L) over the signature = (ATOMS, FEATS, WORDS) is simplifiediff the lexical
categories of words are inconsistent with any feature stmac(except themselves). Formallyrif
is a sentential form induced b and 7% is an element of then for each wordz € WORDS,

L(a) = {A}, whereA Ui 7% # T iff A = 7.

Definition 19 (Lexicon simplification procedure). Let lexSmp be a mapping of one-reentrant
UGs to simplified one-reentrant UGs such that Gf* = (R",A® L) over the signature
(ATOMS, FEATS, WORDYS) is a one-reentrant UG and lexSif(g") = Gu = (7/5“, A®, 2>, thenG* is

over the signaturé AToMS, FEATS, WORDS) where:
e ATOMS = ATOMS U WORDS

e If « € WoRDSthenZ(a) = {a}. Note thata is a word, whereaga} is a set of feature

structures that includes a single feature structure cdmgisof the single atom.

—~

e RY=R"U{A—a|A€ L(a)}

Trivially, lexSmpG*) is a simplified one-reentrant unification grammar. It is a&agy to verify
that L(G") = L(lexSmpG")). In the rest of this section we restrict the discussion topéifiad

one-reentrant unification grammars.

3.3 Mapping of Linear Indexed Grammars to one-reentrant Unfica-

tion Grammars

In order to simulate a given LIG with a unification grammar,eglidated signature is defined based

on the parameters of the LIG.

Definition 20. Given a LIGGY = (Viy, V;, Vs, R, S), let T be (ATOMS, FEATS, WORDS), where
e ATOMS = Vi U V; U {elist};
e FEATS = {HEAD, TAIL };

e WORDS=V};
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We user throughout this section as the signature over which unifinaframmars are defined. We
will use feature structures over the signatar® represent and simulate LIG symbols. In particular,
feature structures will encode lists in the natural waydeehe featureseAD andTAIL . For the sake

of brevity, we use standard list notation when feature stines encode lists. Thus,

HEAD : py

1. fA= ' , thenA is depicted asp1, . .., pn)-
TAIL : HEAD : py,

TAIL : elist

Note that an empty list;) depicts the feature structu{eA”_ - eli st} .

HEAD : py

2. IfA= ' , thenA is depicted aspi, . .., pn,|i] ).
TAIL : HEAD : py,

TAIL : [i] []

Note that the list{ m ) depicts the feature structu{eA”_ ;m []}

With this list representation, LIG symbols are mapped ttuieastructures as follows.

Definition 21 (Mapping of LIG symbols to feature structures). Let toFs be a mapping of a linear

indexed grammar symbols to feature structures, such that:
1. Ift € V; then toFst) = (t)
2. If N € Vy andn € V., then toF$§N[n]) = (N) - n

Example 8. Let G = (Vy,V;,V,,R%, S) be a LIG such that’y = {S}, V; = {ti,t2} and
Vs = {s1,s2}. Then
toFs(S[s1]) = (S, s1)
toFs(t1) = (t1)
toFs(S|[s2, s1,51]) = (S, s2, 81, 81)
When feature structures that are images of LIG symbols areertned, unification is reduced to

identity, as the following lemma shows.
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Lemma7. Let X, Xy € Vy [V U V. If toFs(X ) L toFS(X3) # T then toF$.X ;) = toFS(X>).
Proof. Simple induction on the length of; . O

When a feature structure which is represented as an unbduisti¢a list that is not terminated

by elist) is unifiable with an image of a LIG symbol, the former is a prefi the latter.

Lemma 8. Let X € Vy[V;]UV; andC = (p1,...,pn,[i] ) be a non-reentrant feature structure,

wherepy, ..., p, € Vs. ThenC U toFS(X) # T iff toFs(X) = (p1,...,pn) - @, Wherea € V.

Proof. Assume thaC L toFSX) # T. By definition 21,toFs(X) is a feature structure that is rep-
resented as a list, terminated &yst, whose elements are atoms. Hence by definition of unification
the prefix of lengthn of toFS(X) equals to(py,...,p,). ThereforetoFSX) = (p1,...,pn) - @,
wherea € V'

Assume that LI toFs(X') = T. By definition of unification for ale € V*, (p1, ... ,pn,m ) U

(p1,...,pn) - @ # T. Therefore, we obtain that for all € V*, toFS(X) # (p1,...,pn) - . O

The mappingoFsis extended to sequences of symbols in the natural way, bggaiFsa5) =
toFs(a)toFs(3), wherea, 5 € (Vy[V]U V;)*. Note that the mapping is one to one because the LIG
symbol can be deterministicly restored from its image (#addre structure). If the list contains only
a single element then the LIG symbol is either a terminal syirob a non-terminal symbol with an
empty stack. When the list representation of a feature tstreiconsists of more than one element,
the first element of the list is a non-terminal symbol and tvaainder of the list is the non-terminal
stack content.

To simulate LIG with a unification grammar we represent ealéh $ymbol in the grammar as a
feature structure, encoding the stack of LIG non-termiaalists. Rules that propagate stacks (from

mother to daughter) are simulated by means of value shaxegtfancy) in the unification grammar.

Definition 22 (Mapping from LiGsto UGy, ). Let lig2ug be a mapping dfiGsto UG, such that
if G = (Vy, Vi, Vi, R%,S) and G* = (R%, A%, L) = lig2ug(G") thenG™ is over the signature
(definition 20) and:

o AS = toFS(S[])
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e Forallt € Vi, L(t) = {toFs(t)}.
e R"is defined by:

1. ALIG rule of the typeXy — «, whereX € Vy [V anda € (Vi [V UV;)*, is mapped
to the unification rule:

toFs(Xo) — toFs(a)

2. ALIG rule of the typeV;[p1, ..., pn..] — a Njlq1, ..., qm-.] B, Wherea, 5 € (Vy[VSU

Vi)*, N;yNj € Vy andpy,...,pn,q1,-- -, qm € Vs, is mapped to the unification rule:

<Ni’p1"" apna > - tOFS(Oé) <Njaq1,"' ana >tOFS(ﬁ)

Evidently, lig2ug(G") € UG;, for any LI grammaiG¥ because each of its rules has at most one

reentrancy.

Example 9 (Mapping from LI1GS to UG;,). We map the LIGGY of example 4 above t6* =
lig2ug(G") defined above the signatureof definition 20, with the start symbol tof& ]). The
lexicon is defined for the wordsandb as £(a) = {(a)} and L(b) = {(b)}. The set of productions

RY, is defined as follows:
1. r{ = (S) — (N2), where the LIG rule i3, = S[] — No[ ]
2. 1% = (Na,[1] ) — (No,a,[1] ){a), where the LIG rule igs = Na[..] — Nafa..]a
3. 7% = (Na,[1] ) — (N, b,[1] )(b), where the LIG rule is3 = Na[..] — Nab..]b
4. r¥ = (Na,[1] ) — (N3,[1] ), where the LIG rule is;y = Na[..]| — N3]..]
5. 7¢ = (N3,a,[1] ) — (a)(N3,[1] ), where the LIG rule is5 = Ns3[a..]| — aN3|..]
6. 7 = (N3,b,[1] ) — (b)(N3,[1] ), where the LIG rule iss = Ns[b..] — bN3]..]
7. r¥ = (N3) — ¢, where the LIG rule ig7 = N3[] — ¢

Lemma 9. The mapping lig2ug of definition 22 is one to one.

Proof. Immediately follows from the fact that the mappitaf-sis one-to-one. O
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To show that the unification grammbg2ug(G¥) correctly simulates the LIG grammaét’ we
first prove that every derivation in the latter has a corradpay derivation in the former (theorem 10).

Theorem 11 proves the reverse direction.

Theorem 10. Let G = (Vy,V;, Vs, RY, S) be a LIG andG* = (RY, A®, L) be lig2ugGY). If

S[] == o thenA® ==, toFs(«), wherea € (Vi [V] U V;)*.

Proof. We prove by induction on the length of the derivation seqaefite induction hypothesis is

that if S[] ==; a, thenA® =%, toF(a). If k = 1, then
1. 5[] = o
2. HenceS[] — a € RY;
3. By definition 22toFg(S) — toFg«) € RY;
4. SinceA® = toFgS) we obtain that\® — toFs(«) € RY;

5. ThereforeAs 2=L, toFs«)

Assume that the hypothesis holds for every < ¢ < k; let the length of the derivation sequence

bek.

k—1 1 * *
1. LetS[]| =i 71 N[p1,---,pn] 72 =1 71 @ 72, Wherey, v, € (Vn[VS] U V)*. Let

r € RY be a LIG rule that is applied t&[pi, . .. , p,,] at stepk of the derivation.
2. By the induction hypothesig* k:_% toFs(y1 Nilp1, .-, pn] 72)-
3. By definition 21,

toFS(yv1 N[p1,...,pn]y2) = tOFS(y1) toFS(N[p1,...,py]) tOF(v2)

= tOFS(le) <N7p17---7pn7> tOFd’YQ)
4. From (2) and (3)A® k:’iu toFS(v1) (N, p1,...,Dn) tOFS(72).
5. The ruler can be of either of two forms as follows:

(@) Letr beNp1,...,pn] — .
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i. By definition 22,R" includes the rul¢oFs(Np1,...,p,]) — toFs(«).
ii. Thisrule is applicable to the formin (4), providiny =k>u toFs(7 ) toFs(«) toFs(2).
iii. By definition 21, toF(y1) toFs(a) toFs(72) = tOFS(y; a 72). Hence,A® =,
toFs(y1 a 72).
(b) LetrbeN[pi,...,ps..] = a1 Mlq1,...,qm..] a2, Wwherex <n, M € Vy,q1,...,qm €
Vs andag, ag € (V[VS]U V)™

i. By applying the rule- at the last derivation step in (1) we obtain:
S A 3 Nipry ey pal Y2 =1 71 1 M[@1,- -y Gy Dot -+ s ] @2 72
ii. By definition 22,R* includes the rule
(N,pl,...,px, ) — toFs(ay) (M,ql,...,qm, ) toFs(a)
iii. By applying this rule to the form in (4) we obtain

k-1
A® =, toFs(v1) (N,p1,...,pn) tOF(y2)
1
=, tOFg(y) toFs(a1) (M, q1,. .., qm:Dz+1,--.,Dn) tOFSas) tOFS(72)

iv. By definition 21,
toFS(M[q1,- -y Gm, Pat1s---sPn)) = (M, q1, -y Qs Dot1y- -+ s Pn)
Hence
A® = toFS(y1) toFS(a1 ) tOFS(M[q1, . . ., Gy Pt 1s - - - » P]) 1OFS(@2) tOFS(72)

k
v. Therefore A =, toFS(y; a1 M[q1, .- -, Gm,Pat1s--->Dn] 02 V2).

0

Theorem 11. Let G = (Vy, Vi, Vs, RY, S) be a LIG andG* = (R*,A®, L) = lig2ug(G") be a
one-reentrant unification grammar. K* ==, A;...A, thenS[] == X, ... X, such that for

everyi, 1 <i<n,A; =toFyXj;).
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Proof. We prove by induction on the length of the (unification) datiwn sequence. The induction

hypothesis is that iA* :k>u Ai...A,, thenS]] =k>li X1 ...X, such that for every, 1 < i < n,

A; = toFS(X;). If k£ = 1, thenA® gu Ai...A,. Hence A — A;...A, € R". By definition 22,

As =

toFs(S[ ]). SincetoFsis a one-to-one mapping we obtain that the unification rulerésted

from the LIG rule S[] — X;...X,, € R, where for everyi, 1 < i < n, A; = toFs(X;).

Therefore,5"| | :km X; ... X, and for everyi, 1 <i <mn, A; = toFgX;).

Assume that the hypothesis holds for every < [ < k; let the length of the derivation sequence

bek.

. Assume tha® ==, A, ... A,. ThenAs ==L B, ... B,, ==, A;...A,.

. The last step of the unification derivation is establighedugh arule* = Cy — Cy ... Cy_mt1,

r* € R*, and an indey, such that:

((Bl7 ey Bm>7]) U (<C07 ey Cn—m+1>70) =
((Bl, ey ijl, Q, Bj+1, ey Bm>, (Q,Aj, ce aAj+n7m>)

. By lemma 5, the sentential forfd,, ..., A,) has no reentrancies between its elements, hence

for everyi, 1 <i< j,A; =B;andfori,j <i <m,Aj1p_m = B;.

. By the induction hypothesis, X* k:_% B;...B,, thenS"[] k:‘%— Y;...Y,, and

(B1,...,Bmn) = (toFyY7), ..., toFgY,,))

. Hence A’ kz_iu toF(Y7) ... toFgY;,) :1>u Ai...A, and from (3), for every, 1 < ¢ < j,

A; = toFgY;) and fori, j < i < m, Aj4n—m = tOFYY;).

. By definition 22, the rule" is created from a LIG rule. We now show that the rulecan be

applied to the elemeri; of the LIG sentential form(Y7,...,Y},), and the resulting sentential
form, (X4,...,X,), for everyi, 1 < i < n, satisfies the equatioh; = toFs(X;). Since from
(5), for everyi, 1 <i < j, A; = toFYY;) and fori, j < i < m, Ajyn—m = tOFSY;), we just

need to show thak; = toFg X;) for everyi, j <i <n—m+ j.

. By definition of LIG the rule- has one of the following forms:
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(a) Letr = Ny[p1,...,pz| — Z1... Zyn—m+1- Hence, by definition 22, the unification rule

(b)

ris

toFS(N;[p1, ..., pz]) — tOFS(Zy) .. . tOFS(Z),—pt1)
whereCy = toFs(N;[p1,...,p,]) and foreveryi, 1 <i <n-—m+1, C; = toFg%Z;).
Note that there are no reentrancies between the elemente aiification rule-* and
hence(A;,..., An_m4j) = (Ci, ..., Chmmgr)-
We now show that the rule can be applied to the elemeYit of the LIG sentential form.
SinceCy LI B; = Cp LU toFs(Y;) = toFS(N;[p1,...,ps]) LtoFSY;) # T we obtain, by
lemma 7, that

toFsY;) = toFs(N;[p1, ..., pz))

SincetoFsis one-to-one mapping we obtain thet = N;[pi,...,p,]. Hence the LIG
rule r can be applied td’;.
We now show tha#\; = toFs(X;) for everyi, j < i < n—m+ j. We apply the rule:

to Y; as follows:
Vi Y Y =y Xuo X170 D1 Xt - - X
Hence(X;, ..., Xn_m+;) = (Z1,..., Zn—m+1). Therefore,
A, Ay = (G, Cummr)
= (toF(Zy),...,10FS(Z,_m+1))
= (toFX}),...,toFS( Xy _m+;))

Letr = Ni[pla---apm-'] — 1. Leq Nf[ql,...,qy..] ZeJrl...Zn,erl, wherel <

e < n —m+ 1. Hence, by definition 22, the unification ruté is defined as

(Ni, D1y D2s 1] ) = ©OFS(Z1 . Ze1) (Nfy @1y -+, Qs [1] ) OFS(Zett - . Zpmimt1)

whereCy = (N;,p1,...,ps,[1] ), Ce = (N, q1,...,qy,[1] ) and for everyi, i # e,

C;, = toF9Z;). Note that there is a reentrancy betwé&grandC.. We now calculate the
information propagated froB; to A;,._; during the last step of the unification deriva-
tion (see 2). Sinc€, LIB; = Co LItoFSY;) # T we obtain by lemma 8, thadFsY;) =

(Ni,p1,- .0z, 77), Wherey € V. ThereforeAjc—1 = (Nf,q1,...,qy,7)-
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We now show that the LIG rule can be applied to the elemeit of the LIG sentential
form. SincetoFsis one-to-one antbFSY;) = (N;,p1,...,pz,y) We obtain that; =
N;i[Ni,p1, ..., ps, 7). Hence the LIG rule can be applied td;.

We now show tha#\; = toFs(X;) for everyi, j < i < n—m + j. We apply the rule:

to Y; as follows:

1
Vi Y. Yy =y
X1 .. .Xj,1 Z1 .. .Ze,1 Nf[ql,. .. ,qy,’)/] ZeJrl e anerl Xn7m+j+1 .. Xn
HenCe<Xj, c aXn7m+j> = (Zl, Ceey Zefl,Nf[ql, c. ,qy,’y],ZeJrl, ey anm+1>- There-

fore,

(Ajy e Aoty A )

=Ci...Comt (Nelar, -5 ay:7]) Ceq1 o - Crmmgt

=1tOFS(Z; ... Ze_1) OFS(N¢[q1, - - -, Gy V) OFS(Zet1 - .. Znmi1)
= (toOFS(X;), ..., toFS( X, i)

0

Corollary 12. If G* = (Vy, V;, Vi, R, S%) is a LIG then there exists a unification gramnG =

lig2ug(G') such thatZL(G%) = L(G").

Proof. Let G = (Vy,V;, Vi, R, N) be a LIG andG* = (R, A%, L) = lig2ug(G"). Then by
theorem 10, ifS[ | ==, « thenA®* ==, toFg«), wherea = wy,...,w, € V. By defi-
nition 22, for everyi, L(w;) = {toF(w;)}, hencetoFsa) = toFgw,),...,toFsw,). Hence
A* =, toFs(w1), ... ,toFs(w,) € L(GY).

Assume thatA® =, A,,...,A,, where A;,...,A, is a pre-terminal sequence and
Ai,...,A, =, wi,...,w,. By theorem 11, there is the LIG derivation sequence such tha
S[] = Xi,..., X, and for alli, toF X;) = A;. By definition 22, each entrg (w;) = {A;} inthe
lexicon of G* is created from a terminal rul§; — w; in R'. Therefore S[] ==; X1,..., X, =

Wiy ewwy Wi [l
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3.4 Mapping of one-reentrant Unification Grammars to Linear Indexed

Grammars

We are now interested in the reverse direction, namely magppnification grammars to LIG. Of
course, since unification grammars are more expressivelit@as only a subset of the former can
be correctly simulated by the latter. The differences betwihe two formalisms can be summarized

along three dimensions:
e The basic elements

— UG manipulates feature structures; rules (and forms) ar&8)Rhereas
— LIG manipulates terminals and non-terminals with stackelefents; rules (and forms)

are sequences of such symbols.

e Rule application
— In UG arule is applied bwnification in contexbf the rule and a sentential form, both of
which are MRSs, whereas
— In LIG, the head of a rule and the selected element of a seéaltéotm must have the
same non-terminal symbol and consistent stacks.

e Propagation of information in rules

— In UG information is shared through reentrancies, whereas

— In LIG, information is propagated by copying the stack frdre head of the rule to one

element of its body.

We will show that one-reentrant unification grammars, asndefiin definition 17, can all be
mapped correctly to LIG. For the rest of this section we fixgnature(ATomS, FEATS, WORDS)
over which unification grammars are defined.

One-reentrant unification grammars are highly constraifideey induce non-reentrant (senten-

tial) forms, and unification of non-reentrant feature dinues is highly simplified (see section 3.2,
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lemma 5 and lemma 6). Still, it is important to note that evetih\wuch grammars, feature struc-
tures can grow unboundedly deep, and representing them bpsved LIG symbols is the greatest

challenge of our solution.

Definition 23. LetA be a feature structure with no reentrancies. Heghtof A, denotedA|, is the

length of the longest path iv. This is well-defined since non-reentrant feature struggiare acyclic.

Definition 24. LetG* = (R",A®, L) € UGy, be a one-reentrant unification grammar. Thexi-
mum heightof the grammar, maxH&"), is the height of the highest feature structure in the gramma
defined as:

maxH{G") = u
(GY) Tﬁ%u(ogggu‘(\m))

wherer} is thei-th element of-*. This is well defined since by definition of one-reentrantgraars

all feature structures of the grammar are non-reentrant.

The following lemma indicates an important property of @aentrant unification grammars. In-
formally, in any feature structure that is an element of aesgral form induced by such grammars,
if two paths are long (specifically, longer than the maximugight of the grammar), then they must

have a long common prefix.

Lemma 13. Let G* = (R",A®, L) € UGy, be a one-reentrant unification grammar. Letbe a
sentential form derived bg" and A be an element ok. If = - (F;) - 7,7 - (F) - m2 € 114, where

Fj, Fr € FEATS, F; # F and|m| < |mof, then|m| < maxH(G").

Proof. We prove by induction on the length of the derivation seqeehat if A ==, A;...A,,
then the lemma conditions hold. Let= maxH{G").

The induction hypothesis is thatA® :k>u A;...A,, then the lemma conditions hold for aAy,
wherel <[ < n. If k = 0, then by definitionAs :0>u As. Since|A®| < h then for anyj,m and,
such thatr - (F;) - m1 € Ias, |7 - (F;) - m1| < h. Therefore|m;| < h.

Assume that the hypothesis holds for every < ¢ < k; let the length of the derivation sequence
bek. Let As k:_% Bi...B, :1>u A1 ...A,. Then by definition of UG, derivation, there are an

indexj andarule = Cy — Cy...Cp_ppr1, 7" € RY, such that

((Cose s Crmmt1), 0) LU ((B1,y ..., B), 7)) = ((Qos - -+ s Quem+1), (B1, .-, Bj—1,Q0, Bjs1, ..., Bm))
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where
1. (Ay,...,A;j_1) = (B1,...,Bj_1)
2. (A, A ) = Q1 Qo)
3. (Anmtjstr- > An) = (Bjit,. .., B

By the induction hypothesis, in cases (1) and (3) the lemnmaitions hold forA;, wherel <
l<jorn—m+j+1<I[<n.Wenow analyze case (2). SinG¥ is one-reentrant there are only

two options for the rule-*:
1. ¥ has no reentrancies;
2. (0,mo) & (e,me), wherel <e<n-—m+1,

If " is non-reentrant,Cy, ..., Cp—my1) = (Qu1,-- -, Quom+1) = (Aj, ..., Au_m;). Hence for
anyl,j <1l <n—-—m+j,|A] < h. Hence, for any, = andm, such thatr - (F;) - 71 € Ila,,
|7 - (Fj) - m1| < h. Therefore|m| < h.

If (0,m0) s (e, me) then by the definition of unificatiorQ; = C;if 1 <l <eore <1 <
n —m+ 1, hence|Q;| < h. Therefore, the lemma conditions hold for aQy, wherel # e. We
now check whether the lemma conditions hold@r. The ruler®, when applied td;, can result in
modifying the body of the rule(; ... C,,_,,11. However, due to the fact that is one-reentrant, only
a single element, can be modified. Furthermore, the only possible modificattorC, are addition
of paths and further specification of atoms (lemma 6). Theddtas no effect on path length, so we
focus on the former. The only way for a path - = to be added is if some patty - = already exists

in B;. Hence, letP be a set of paths such that:
P={m-m|m-mellg;}

By definition of unificationllq, = P U Ilc, . To check the lemma conditions we only need to check
the pairs of paths where both members are longer thastherwise the conditions trivially hold.
Since for any pathr, = € Iic_, |7| < h, we check only the pairs of paths frof to evaluate the

lemma conditions. Let, - 71,7 - 12 € P C Ilg,, Where|m| < |ms|, 1 andm, differ in the first
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feature. By definition o, mo - 71,7 - m2 € Ilg,. Hence, by the induction hypothesis;| < h.

Therefore, for any pair of paths ilg, the lemma conditions hold. O

Lemma 13 provides an important property of one-reentraification grammars that facilitates a
view of all the feature structures induced by a such gramméun@boundedly long) lists of elements
drawn from a finite, predefined set. The set consists of dlifea in FEATS and all the non-reentrant
feature structures whose height is limited by the maximéaihteof the unification grammar. Note
that even with one-reentrant unification grammars, featrtestures can be unboundedly deep. What
lemma 13 establishes is the fact that if a feature structutleded by a one-reentrant unification
grammar is deep, then it can be represented single “core” path which is long, and all the sub-
structures which “hang” from this core are depth-boundede Wk this property to encode such

feature structures ards

Definition 25 (Cords). Let ¥ : NRFSs x PATHS — (FEATS U NRFsSS)* be a mapping of pairs

of non-reentrant feature structures and paths to sequentdsatures and feature structures such

that if A is a non-reentrant feature structure and= (Fy,...,F,) € 114, then thecord ¥(A, ) is
(A1,F1, ..., Ap, Fry, Apt1), Where forl < i < n+ 1, A; are non-reentrant feature structures such
that:

o 1Ty, ={c}U{(G) -7 | G € FEATS, m € PATHS, (F1,...,Fi—1,G) - m € 114, wheni < n,G # F;}

o If©O4((F1,...,Fi—1)-m) L then© 4, (1) = ©A((F1,...,Fi—1) - 7), otherwiseO 4, (7) is undefined.

We also define two operators on coMi$A, ) as follows:
e last(V(A, 7)) = Ant1
e butLast¥ (A, 1)) = (A1, F1,...,Ap, Fpn)

Theheight of a cord is defined a8l (A, 7)| = max;<;<,+1(|A;|). For each cord¥ (A, ) we refer
to A as thebase feature structurand tor as thebase path Thelength of a cord is the length of the

base path.

Example 10. LetA be a non-reentrant feature structure and= (Fy,...,F,) € II4 be a path. Then
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A may be represented as follows:

F1 Fo Fpn
At A Ani1
V(A7) = (A1, F1,...,An, Fn, A1), WhereAq, ..., A, 1 are non-reentrant feature structures.

Example 11. Let A be a non-reentrant feature structure over the signatteats = {Fq, Fo, F3},

ATOMS = {a, b}: ] )
F1:b
A
a=| Jeen
F3: |Fe:a
I _Fsi[Flz[]L |

If 7 = (F2,F1) then the cord representation &f on the pathr is U(A,7) = (A1, Fa, A2, F1,As),

where

Fi1:b

S S RSO

I _F33[F1:[]]__

And the graph representation is

) F1

Al Ay Ag
Note that the function?’ is one to one. In other words, givanA, 7), bothA andr are uniquely
determined. The path is determined by the sequence of the features on the 86Ad ), in the
order they occur in the cord. Sin@eis non-reentrant, al\; in ¥(A, r) are non-reentrant feature

structures, i.e., trees. To see thais uniquely determined, simply view as a branch of a tree and
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“hang” the subtreed,; on r, in the order determined by the features in the cord, to nt#ainique

feature structure.

Lemma 14. Let G* be a one-reentrant unification grammar and kebe an element of a sentential
form induced byG". Then there is a patlr € II4 such that the height o¥' (A, ) is less then
maxH{G").

Proof. An immediate corollary of lemma 13. 0

Later in this section we manipulate cords: concatenate twdscnto one cord and split a cord in
two. Two cords can be concatenated by adding a feature betivem. The only requirement is that
the resulting cord be well defined: the added feature mudieptesent in the last element of the first
cord. To split a cord into two cords we do the reverse proaessove one of the cord’s features. This
is similar to splitting a tree (a non-reentrant featurectrte) by removing one of its arcs (a feature

in the feature structure). The following lemma providesafal base for these operations.

Lemma 15. Let A andB be two non-reentrant feature structures. kgt 7 be paths such that, €

114, 7p € Ilp and last¥ (A, m4)) ¢ ATOMS. And letG be a feature such thdt) ¢ jastwama)-

Then¥ (A, 74) - (G) - U(B,np) is a cord.

Let W(A,m4) = (A1,F1,..-, AiFis A1, ..., Fny Apg1). Then for anyi, 1 < i < n, the se-
quencesAq,Fy, ..., A;) and(A;4q,. .., Fn, Apt1) are cords.
Proof. Immediate from the definition of cords. [l

Example 12. Let A be a feature structure over the signatuddoms = (a, b), FEATS = (Fy,F2),

such that

Fo:a

ThenW (A, (Fi,F2,F1)) = ([;:2 ; a] ,F1, [F1 :b} . Fa, {FQ : a} ,F1, {FQ : b]>- We can split this cord

in two by removing one of the features. For example, remotfiegfeaturer, creates the following
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two cords: n = ([,:2 : a] ,F1, [,:1 ;bb andy = <{|:2 . a] ,F1, {,:2 . bb, where the base feature

. F1 |:F1 : b:|
structure of the cordy is
Fo:a
We can concatenate the corgandn with the featurer; as follows:

’7‘<F1>'77:<[F2:a] ,F1, |:F2:b:| ,F1, [Fg:a} ,F1, [Flzb]>

The base feature structure of the coyd (Fy) - n is the feature structur®:

Fi: |:F1 b:|
Fqp:

Fi: Fo:a

Fo:b

Fo:a

Theny - (F1) - n = ¥(B, (F1, F1,F1)).

So far we have shown how to map non-reentrant feature stagcto lists whose elements are
drawn from a finite domain. This mapping resolves the firstamdjfference between LIG and UG,
by providing a representation of tihasic elementsWe use cords as the stack contents of LIG non-
terminal symbols: cords can be unboundedly long, but so d@nsttacks; the crucial point is that
cords are height limited, implying that they can be repressbmusing afinite number of elements,
which will be LIG stack symbols in our mapping.

We now investigate how to resolve the second major differdretween LIG and UGQule ap-
plication. A unification rule can be applied to a sentential form onlthié head of the ruleC,, and
some selected element in the forby, are unifiable. In contrast, a linear indexed rule can beiegpl

to a sentential form only if the head of the ruk&y, and some selected element in the foi,
¢ have the same non-terminal symbol; and
e either the content of the stack &f, andY; are equalf{jxedhead of a LIG rule), or
e the stack ofX is unbounded and is a prefix B} (unboundedhead of a LIG rule).

We now show how to simulate, in LIG, the unification in contekt rule and a sentential form. The

first step is to have exactly one non-terminal symbol; whémah-terminal symbols are identical,
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only the content of the stack has to be taken into accounte Mwtt in order for a LIG rule to be
applicable to a sentential form, the stack of the rule’s hraadt be grefix of the stack of the selected
element in the form. The only question is whether the twokstace equal (fixed rule head) or not
(unbounded rule head). Since the contents of stacks are,asecheed a property relating two cords,
on one hand, with unifiability of their base feature struesjron the other. Lemma 16 establishes
such a property. Informally, if the base path of one cord isediy of the base path of the other cord
and all feature structures along the common path of bothscard unifiable, then the base feature

structures of both cords are unifiable. The reverse dineetiso holds.

Lemma 16. Let A,B € NRFSsbe non-reentrant feature structures ang, 7o € PATHS be paths

such that
® T € HB,
o 7 -mo € Il4,
° \I’(A,Trl . 7T2) = (tl,Fl, .. ->F|7r1\>t|7r1\+1>':|7r1\+1>' .. ,t‘ﬂl,ﬂ2‘+1>,
e U(B,m)=(s1,F1,--- S|z |+1), and

<F|7r1|+1> ¢ Hs\w1\+1
thenforalli, 1 <i<|m|+1,s;Ut; #TIiffFAUB#T.

Proof. Assume that for every < i < |m|+1,s; Ut; # T. Since the prefixes o¥(B, ;) and

W (A, - mp) are consistent up t8, ;1 and the suffix of the cor@ (A, m; - 2) does not occur in

U (B, ), and hence does not contradict wghthe feature structures andB are unifiable.
Assume thatA LU B # T. Then all subtrees of the feature structures are consistérarefore,

s;Ut; # T, foreveryl <i <|m|+ 1. O

Given some one-reentrant unification grammar, the set tfffeatructures which are the heads of
all rules in the grammar is a finite set. However, these feattmuctures are unified during derivation
with elements of sentential forms induced by the grammat,thase can constitute an infinite set.

We take advantage in our construction of the fact that atihoa potentially infinite set of feature
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structures is involved, these feature structures can alépesented as cords, with height-bounded
feature structures hung on their base paths.

The length of a cord of an element of a sentential form indusgdhe grammar cannot be
bounded, however the length of any cord representation afeahead is limited by the grammar
height. By lemma 16, unifiability of two feature structuremde reduced to a comparison of two
cords representing them and only the prefix of the longer ¢asdong as the shorter cord) affects
the result. Since the cord representation of any grammaisrbkad is limited by the height of the
grammar we always choose it as the shorter cord in the cosgmarHence only a prefix of the cord
in sentential forms, limited by the grammar height, affesigication and, therefore, rule application.
Since the set of rule heads is finite, so is the set of their mpesentations; each element of this set
is a cord of a limited length. In a similar way, it is possilbecbnstruct dinite set of the prefixes of all
the cord representations of all the feature structuresiwéie elements of sentential forms induced

by the grammar. We use the grammar height as the limit of eorgth in this set.

Example 13. LetD be a selected element of a sentential form induced by a @ardreat unification
grammarG*". LetC be the head of a unification rule applied Bo Let ¥ (D, 7p) be a cord whose
height is limited by the grammar height, wherg = (Fy,---,F|;,|). Letmc be the maximal prefix
of 7p such thatr¢ € g, ¢ = (F1,"*+, Fixg|) @A (F1, -+, Flroj41) € Ile. Such a prefix always
exists becauseis a common prefix of all paths iPaTHS. Note that the height of the com(C, =)

is limited by the grammar height because the height &f limited by the grammar height. The cord

U (D, 7p) is graphically represented as:

Fi1. R Flral  Flrel+1 Flrpl

Di1 Do Dircl+1 Dirpl+1
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Whereasl (C, m¢) is similarly represented as:

F1 Fo F‘WC‘
G G Clre|+1

By lemma 16DLIC # T iff D;UC; # T forall 4,1 < i < |rc|+1. Note that the feature structures
D;, wherei > |r¢| + 1, do not affect the unifiability d andC. In other words, to determine whether
C is unifiable with some feature structul® whose cord is¥(D, 7p), it is sufficient to check the

unifiability of C with the feature structurd, where¥ (A, 7¢) is:

Fi  Fy Flrc|
D; Do Direl+1

Example 13 motivates the following corollary:

Corollary 17. LetW(A,m4), ¥(B,mp), ¥(C,74) be cords, wher® 4(w,) 1. LetG be a feature

such that:
e (G) ¢ H|aSt(\I/(A,7rA)) and

e (G) ¢ Hlast(\p(c,m))

Consider the cordV (A, 74) - (G) - ¥(B,n5) (by lemma 15, this is well defined) and write it as

U(D,74-(G) 7). ThRenCLA £ Tiff CLUD # T.

We now define, for a feature structutgwhich is a head of a rule) and some pattthe set that
includes all feature structures that are both unifiable Widnd can be represented as a cord whose
height is limited by the grammar height and whose base path We call this set theompatibility
setof C andx. Latter in this section, we use the compatibility set to define set of all possible

prefixes of cords whose base feature structures are unifiathleC (see definition 27). Crucially, the
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compatibility set ofC is finite for any feature structur@ since the heights and the lengths of the cords

are limited.

Definition 26 (Compatibility set). Given a non-reentrant feature structul€, a path m =
(F1,...,Fn) € Il and a natural numbeh, thecompatibility setT'(C, 7, h), is defined as the set of

all feature structures\ such that
e CUA#T,
e meclly,and
o |[U(A )| <h

The compatibility set is defined for a feature structure amivan path (wherh is taken to be
the grammar height). We now define two similar seixEDHEAD and UNBOUNDEDHEAD, for a
given feature structure, independently of a path. Latehis $ection, when we map rules of a one-
reentrant unification grammar to LIG rules (definition 28k setrFiXEDHEAD will be used to define
heads of fixed rules in LIG and the sstBOUNDEDHEAD to define heads of unbounded rules. Each
unification rule will be mapped to setof LIG rules, each with a different head. The stack of the
head will be some member of the setsEDHEAD anduUNBOUNDEDHEAD. Each such member is a

prefix of the stack of potential elements of sentential fothad the LIG rule can be applied to.

Definition 27. Let C be a non-reentrant feature structure ahde a natural number. We define the
fixed rule headset,FIXEDHEAD(C, &), and theunbounded rule headet,UNBOUNDEDHEAD(C, h)

as follows:

FIXEDHEAD(C, h) = {¥(A,7) | 7 € I, A € T'(C, 7, h)}
UNBOUNDEDHEAD(C, h) =

{@(A,m) - (F) | ¥(A,7) € FIXEDHEAD(C, h), O¢(w) T, F € FEATS, (F) & Ujastg(cun )}
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Informally, letC be a head of a unification rule and= (Fy,...,F,) € IIc be a path such that

U(C,m) = (Cy,Fq,...,Cphy1). Graphically, this situation is depicted thus:

F1. Fo Fn

Cl C2 Cn+1

ThenrIXEDHEAD(C, h) consists of cords like

Fi. Fo Fn
A Ay Ant1
whereA; L C;, 1 < i < n+ 1. LetA be the base feature structure of the cohd, F1, ..., Apt1).

Then by definition ofFiXEDHEAD(C, k), AL C # T. When the LIG symbolV[A1,Fi,. .., Anti1]
occurs as the head of a rule, this rule is applicable only entesitial form with an identical element.
For each such\ we create a LIG rule whose head’§A+,Fq,...,A,+1]. This is possible because

the setrFIXEDHEAD(C, h) is finite.

Similarly, UNBOUNDEDHEAD(C, h) consists of cord prefixes like

Fi. Fo Frn Fnt+1

At A Ani1

where the value of the patl#, 1) in A,,+1 U C,11 is undefined. LeA be the base feature structure
of the cord(A1,Fy,..., A1) and letn = (A,12, Fryo, ..., Ant1) be acord, wheren > n. Then
by corollary 17, the base feature structireof the cord(A;,Fy,...,A.+1) is unifiable withC for
any cordn. In contrast to the previous case, a rule whose head [, Fy,...,A,+1, Fpt1..] IS

applicable to any element of the forM[A1, F1, ..., A,,+1]. Note that the content of the stack of such

a LIG symbol is a cord of the form:
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F1 ) Fn Fn+1 Fm
A A Ant1 Amt1
Example 14. To illustrate the structure of the selsxEDHEAD and UNBOUNDEDHEAD we give

here some examples of the elements in these sets for theefsttictureC, the head of the rulef of

example 9. Recall that

HEAD : N3
C= HEAD : a
TAIL :
TAIL @[]

Let GY be the unification grammar of the example 9. The grammar h@b&" is 2 and the set of
all paths inCis

IIc = {e, (HEAD), (TAIL ), (TAIL , HEAD), (TAIL , TAIL ) }

Hence there are five compatibility sets for one for each path il as follows: I'(C, ¢, 2),
I'(C, (HEAD), 2), T'(C, (TAIL ), 2), T'(C, (TAIL ,HEAD), 2) and I'(C, (TAIL , TAIL ), 2). For example,

here are some elements of the compatibility[§&t, (HEAD), 2):

HEAD : N3
HEAD : [ |
HEAD : [ ] and
TAIL : TAIL : H
TAIL : N

similarly, some examples of elements of the compatib#ity' &, (TAIL , TAIL ), 2) are

HEAD : [ ]
HEAD : a
- - 17 HEAD : [ |
HEAD : a
HEAD : and HEAD : [ ]
TAIL : TAIL : NV TAIL :
TAIL : - - TAIL : H
HEAD : NV,
TAIL :
TAIL @[]




An example of an element of the seteEDHEAD(C, 2) is the sequence contributed by the feature

HEAD : [ |
structure , an element of (C, (HEAD), 2):

TAIL : []

([TAIL : []] ,HEAD, [ ])

The same feature structure contributes also another seguerIXeDHEAD(C, 2) when it is viewed

as a member of the compatibility 9&tC, (TAIL ), 2):

([HEAD : []} S TAILL [])

Finally, the setunBOUNDEDHEAD(C, 2) includes the following sequences that are contributed by

the same feature structure above:

<[TA|L : []] ,HEAD,[],TAIL>,([TA||_ : []} ,HEAD, [ ], HEAD)

<[HEAD : []} ,TAIL,[],TAIL>,([HEAD : []] ,TAIL,[],HEAD)

We have shown that the two cases abau®eEDHEAD and UNBOUNDEDHEAD, cover all the
possible feature structures that are unifiable with a ruéglie This accounts for the second major
difference between LIG and one-reentrant UG, namely application We now investigate the last
major differencepropagation of information in rules

In one-reentrant unification grammars information is stidetween the rule’s head and a single
element of the rule’s body. We have shown above how the sthekldG rule, simulating some
unification rule, is defined. We have also discussed the lplessptions for the stacks of candidate
elements in potential sentential forms to which the LIG ede be applied. We now discuss the body
of the LIG rule, when the head — and in particular its stackkni@wvn.

Without loss of generality, let* = (Cop,...,C,) be a unification rule such th&o, 1) s
(e, e), Wherel < e < n. This rule is mapped to setof LIG rules. Letr be a member of this set,
and letX, and X, be the head and theth element of-, respectively. We now explain how structure
sharing in the unification rule is modeled in the LIG rule. Gider X first; it was created to reflect
a potential unification betweely, the head of*, and some feature structuidg. The stack ofXj is

U(Ap, mo), WwhereW (Ag, mp) is the maximal prefix oft (D;, 7;) such thatA, € I'(Cy, 7o, k) (notice
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that it follows from corollary 17 that unifiability is depeedt on the prefix only, and the remainder
of D; can be safely ignored). In other words, was defined to reflect the unification 6§ andA,.

Consider now the effect of this unification, namely

((A0),0) U (r*,0) = ((Po), (Poy ..., Pey..., Pp))

When the rule-* is applied toA,, information is shared betwedh andP. where the shared values
areval(Py, po) andval (P, ue ). Xo can have two forms: either it has a fixed stack or an unbounded
stack. If the stack ofX is fixed, the LIG rule can be applied only to an element (of aesdial
form) with an identical stack, i.e., with the same cord. Hfere, X. should be a LIG representation
of P.. Hence, the stack value df, can be defined as a cord whose base feature structltg is
The only caveat is the base path of this cord: we have to béutdaoedefine the cord such that its
height is limited by the grammar height. Observe that thglitedf the value of the path, in P, can
exceed the grammar height and recall that due to the undicatiul(P., i) = val(Py, 1) (@and, in
particular, both are of the same height). What we know foraier however, is that the stack af,

is obtained byW(Ag, o). FurthermoreP is obtained by unifyingCy with A, so that¥ (P, ) is
well defined and, in particular, its height is limited by theugmar height.¥ (P, mp) is graphically

depicted in figure 3.1.

U(F,m,)

AVAVANA

Figure 3.1: The cord (Pg, 7).

Consider now the patf, and, in particularpal(Pg, 10). If po is nota prefix ofry then the height

of val(Pg, po) is limited by the height oft (P, y) and hence by the grammar height (see figure 3.2
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and figure 3.3). Henceual (P, 11.) (which is identical towal (P, 10)) is also limited by the grammar

height. In this case, we ‘han§. on the base path,. (see figure 3.4).

Figure 3.2: Py, when the stack oK is fixed andu is not a prefix ofrg.

Figure 3.3:Fy, when the stack oK is unbounded angdy is not a prefix ofr.

If uo is a prefix of rg, however, letrg = po - v. Again, consider two sub-cases. In the first
sub-case, the stack &f is fixed. This situation is graphically depicted in figure.3bthis case we
can limit the height obal(Py, 1o) by the height of the cor@ (P, 7p) and the length of the path,
lval(Po, po)| < |W(Po,mo)| + |v| and the same holds fami(P., 1. ). Since the height of the cord

U (Pg, o) is limited by the grammar height, we obtain thatval(P., .)| < h + |v|. In this case
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AVAVAWA

val(F qpr, )=val(Fppy)

Figure 3.4:P,, when the path is not a prefix ofrg.

we use the patp. - v as the base path on whi¢h is ‘hung’ (see figure 3.6).

£

ANVAN

waE(PD?HU)

Figure 3.5:F, when the stack oK is fixed andry = pqg - v.

However, when the stack df is unbounded andg, = p - v, the fixed part of the stack contains
not only a cord but also a feature (see definition 27); detnisefeature byr. In this case the height of
val(P., pe) cannot be bounded because only a subset of the informatistpropagated is known

when the mapping is computed (see figure 3.7).
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ANWAN

val( P u )=val( Py p,)

Figure 3.6:P., when the stack oK is fixed andry = g - v.

ANVAN

”E.JEI.EI:PD”LLU)

Figure 3.7:F,, when the stack oK is unbounded andy = pg - v.
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Let D be an element of a sentential form artd= (Co,...,C.,...,C,) be a one-reentrant rule

applicable taD such that(0, 1) & (e, pe). Let(Qo,...,Qe,...,Q,) be defined as

(<D>70) U (Tu70) = (<Q0>7 <Q07 Qe 7Qn>)

Let W (D, mp) be a cord oD whose height is limited by the grammar height andrgbe the maximal
prefix of mp such thatry € Il (recall that in our casgy is a prefix ofmy, such thatrg = o - v).

We divide the cordl (Qq, 7p) into three parts as follows (see figure 3.8):

e The first part of the cord (1) is the prefix of the cord whose térig|.|. This part of the cord

is not propagated tQ..

e The second part (Il) is a prefix of the propagated cord thatféxd by the unification o€,
with D. By lemma 16, the length of this part of the cord is limited bg tength of the cord

¥(Cp, mp) and hence by the grammar height.

e The third part of the cord (lll), the suffix, is propagatedpounchanged

V(Qy7p)
@

AN

Y (Pmﬂr;l)

Figure 3.8: The three parts of the cobdQq, 7p).
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The only problem is propagating the second part of the candesLIG has no provisions for
propagating run-time changeable stacks. However, we khawthe length of part Il of the cord is
limited by the grammar height. Therefore, we can calculageunification of this part of the cord
with all possible cords of all rules’ heads of the grammarcattfipile” time and use the result to define
the contents of the stack of tleeh element of the LIG rule. LeR, be a feature structure whose cord
U(Py, o) is a prefix of the cordl (Qp, 7p). Let A be a feature structure such that the c@r@\, )

is a prefix of ¥ (D, 7p). HencePy = Cy LI A (see figure 3.9).

@(Haﬂg)

L g
A A

NN

Figure 3.9: The three parts of the cobdD, 7).

ARA

The information propagated from part Il of the cobdQy, 7p) can be calculated by the unifica-

tion in context ofA with the ruler®. Let the sequencéy,...,P.,...,P,) be defined as

(<A>7O) U (ruv 0) = (<P0>7 <P07 N Pn>)
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The ruler* has only one reentranctf), o) «~ (e, u.), henceP; = C; for all i # 0 andi # e. LetF
be a feature such th&¥' (A, ), F) is a prefix of¥(D, wp). Then in this case we map the ruféto
N[¥(A,m),F..] = N[U(Cy,e)]... N[U(Pe, e - v),F..] ... N[¥(Cp, )]

whereXy = N[V(A, ), F..] andX, = N[¥(Pe, u.-v), F..]. The resulting cord oP., U(P,, e -v),
is limited by the grammar height for the same reason as in dse of X, with a fixed stack (see

figure 3.10).

P

e

ANWAN

val(P 1 )=val(Py,r)

Figure 3.10:F,., when the stack oK is unbounded andy = pg - v.

The featurer at the end of the fixed part of the stack of the LIG rule head teddo avoid

generation of ill-defined cords in the stacks of elementslGf $entential forms (see example 15).

Example 15. LetP, = [Fl : {FQ : {,:3 . a} ] } e = (F1) and pe - v = (F1,F2). Then for some
G € FEATS thee-th element of the LIG rule body & [¥ (P, p. - v),G..]. If G = F3 the sequence

(¥(Pe, pe - v), G) is not a valid cord prefix sinceal(last(V (P, pe - v)), (F3)) 1.

We now combine all the solutions for the three major diffeenbetween one-reentrant unifica-
tion grammars and LIG to define the mapping from the formehelatter. In a LIG simulating a
one-reentrant UG, feature structures are representeaas sif symbols. The set of stack symbols
Vs, therefore, is defined as a set of height bounded non-regrigature structures. Also, all the fea-

tures of the UG are stack symbols. The Bets finite due to the restriction on feature structures (no
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reentrancies and height-boundedness). The set of tesninals the set of words of the UG. There
are exactly two non-terminal symbold, and.S, the latter of which is the start symbol.

The set of rules can be divided to four: start rule, termings, non-reentrant rules and one-
reentrant rules. Thetart ruleonly applies once in a derivation. It simulates the situaiounification
grammars of a rule whose head is unifiable with the start synmiboLIG, the start rule applies to
the start symbols only; and once applied, it yields a sentential form of lengjtitonsisting of the
non-terminalN with a stack representation of the unification grammar startbol.

Since the source unification grammar is simplified (definiti®),terminal rulesare just a straight-
forward implementation of the lexicon in terms of LISon-reentrant rulesire simulated in a similar
way to how rules of a non-reentrant unification grammar areikited by CFG (see section 2). The
major difference is the head of the rul€y, which is defined as explained abo@ne-reentrant rules
are simulated in a similar way to non-reentrant rules. THg difference is in the selected element

of the rule body,X., which is defined as explained above.

Definition 28 (Mapping from UG, to L1GS). Let ug2lig be a mapping dfG,,. to L1GS, such that
if G* = (R, A®, L) € UGy, then ug2lidG") = (Vy, V4, Vi, RY, S), where:

Vn = {N, S}, whereN and S are fresh symbols.

V; = WORDS

Vs = FEATSU {A | A € NRFss, |A| < maxH{(G")}

The set of rulesRY, is defined as follows:

Let Cy be a non-reentrant feature structure, then tiie headset,LIGHEAD(Cy), is defined

as:
LIGHEAD(Cy) = {N|[n|] | n € FIXEDHEAD(Cy, maxH{G"))}

U {N[n.]|n € uNBOUNDEDHEAD(Cy, maxH{G"))}
1. S[] — N[¥(A% )]

2. For everyw € WORDS such thatL(w) = {Cy} and for everyry, € Ilc,, the rule

N[®(Co,mp)] — wisinRY.
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3. Letr* = (Co,...,C,) € R" be anon-reentrant rule. Then for eveky € LIGHEAD(Cy)
the rule Xog — N[¥(Cy,e)]... N[¥(C,, )] isin RY.
4. Letr" = (Cy,...,Cp) € R* and (0, o) o (e, ite), Wherel < e < n. Then for every

Xo € LIGHEAD(Cp) the rule
Xo — N[U(Cy,e)]... N[¥(Ceoq,6)] Xe N[¥(Ceqpi,6)]... N[U(Cp,e)]

is in RY, where X, is defined as follows. Let, be the base path ok, and A be the
base feature structure ofy. Applying the ruler* to A, we now examine the possible
modifications taC, by defining((A),0) U (r*,0) = ({(Po), (Po,...,Pe,...,Pn)).
(@) If po is not a prefix ofrg then X, = N[U (P, ue)].
(b) If mg = po - v, v € PATHS then

i. If Xg=N[¥(A, m)|thenX, = N[¥(P,, pte - V)]

ii. If Xo = N[U(A, m),F.]thenX, = N[¥(P,, y - v),F.].

In order for the construction to be well defined, all cords tiaesshown to have heights limited

by the grammar height. This was informally shown in the diston above.

Example 16. To illustrate the mapping of one-reentrant unification site LIG rules we give here

some examples of LIG rules created from the ntifeof the example 9. Recall that the rutg is

defined as:
HEAD : N3
HEAD : a HEAD : N3
HEAD : a -
TAIL : TAIL : elist | |TAIL :
TAIL :
In this rule 1o = (TAIL, TAIL ) and pze = po = (TAIL).
HEAD : [ ]
e Case 4ayy is not a prefix ofry. Letmy = (HEAD) andA = HEAD : a | |- Then
TAIL :
TAIL : b
the LIG rule is
HEAD : a HEAD : a
N |rar HEAD,[]] = N | N[[HEAD ; N3] TAIL D)
TAIL : b TAIL : elist
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e Case 4(b)i,ug is a prefix ofrg and the stack of the head of the LIG rule is fixed. tgt=
HEAD : []

(TAIL,, TAIL ) andA = HEAD : a | |- Thenthe LIG rule is
TAIL :

TAIL : b

NI|HEAD : []] , TAIL, [HEAD:(L] S TAIL, b ] —

HEAD : a
N[ ]N[[HEAD:Ng],TAIL,b]
TAIL : elist

e Case 4(b)ii,uug is a prefix ofrg and the stack of the head of the LIG rule is unbounded. Let

mo = (TAIL, TAIL ) and

HEAD : [ ]

A= HEAD : a
TAIL :

TAIL : [HEAD : b]

Then the LIG rule is
N[[HEAD : []} s TAIL, [HEAD : al s TAIL, [HEAD : b} S TAIL .| —

HEAD : a
]N[{HEAD : N3:| ,TAIL, {HEAD : b] , TAIL ..]

TAIL : elist

Theorem 18. LetG" = (R", A%, L) be a one-reentrant unification grammar aAd =, A A,

be a derivation sequence. @ = (Vi,V;, Vi, R, S) = ug2lig(G*) then there is a sequence of

paths(ry, ..., m,), such thatS[] ==, N[¥(A;,m)]... N[¥(A,, ).

Proof. We prove by induction on the length of the derivation seqaenthe induction hypothesis

is that if A* =2, A;...A,, then there is a sequence of paths, ..., m,), such thatS| ] LAS

N[¥(Ay,m1)]... N[W(A,,m)]. If k=0, then
1. By the definition of derivation in UGA® :0>u A%,

2. By definition 28 case (1), the rul{ | — N[¥(A%, ¢)] is in RY.
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3. HenceS[] L N[¥ (A% )] andN[¥ (A% ¢)] is well defined sincal (A%, ) = (A%), |A®] <
maxH{G").
Assume that the hypothesis holds for eveéry0 < i < k. Assume further thaf’ kz_iu

Di...Dp ==y A;... A,

1. By definition of UG derivation, there are an indgxand a ruler = Cy — Cy...Cph_pr1,

r* € R, such that* is applicable td;:
((Cos -+ Crmg1):0) LU (D1, ..., D) i) = ({Qos - - Quemt1)s (D1 ... D;j_1QoDj41 ... D))
where

e (A;,...,A;_1) = (Dy,...,Dj 1)
o (Aj, ... An_mis) = Q1 o, Quomt1)
o (Anmiitts AL = (Dji1,...,Dp)
Note that it is only possible to write the MR®, ..., A,) in such a way due to the fact that

the grammalr=* is one-reentrant: by lemma 5, no reentrancies can occur gmanelements

in a sentential form.
k
2. HenceA®* =, D; ... Dj—lQl Ce Qn—m+1Dj+1 ...Dm

3. By the induction hypothesis there is a sequence of gaths. ., v,,) such that

S[] =4 N[¥(D1,01)] ... N[U(Dp, vm)]

4. We denotel (D, vj) as(B1, F1, ..., B, 4+1) (recall thatj is the index of the selected element
in the sentential form).
We now want to show the existence of a rule R", created from-* by the mappingig2lig,
which can be applied tg-th element of the LIG sentential forn{[¥(D;, v;)]. We define the
feature structurd to be a “bridge” betweed; andCy which together with a pathy (a prefix

of the pathy;) defines the head of the rute
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5. Letmo be a maximal prefix of; such thatry € Il¢,. Recall thatBi, Fy, ..., B 41) isapre-
fix of U(D;, v;) becauser, is a prefix ofv;. LetA be such tha¥l (A, 7o) = (B1,F1, ..., Bjrg|41)-

By the induction hypothesif; < maxH{(G"), 1 < ¢ < |v;| + 1. We will show thatA is unifi-

able with bothD; andCy.

6. We first show thatA € I'(Cy, maxH{G")). SinceD; L Cy # T andA is a substructure of
D, we obtain thatA LI Cy # T. Sincer, € 114 and|B;|legmaxH{G"), 1 < i < |v;| +1,
A € I'(Cp, maxH{(G")).

7. We now show that there is a LIG rutea mapping of*, which is applicable taV[¥(D;, v;)].

There are two possibilities for the relation betwegrandy; (recall thatr is a prefix ofv;):

o If v; = my thenA = D; and¥(A,m9) = ¥(D;,v;). Hence, every rule of the form
N[¥(A,m)] — o is applicable to¥(D;, ;). SinceA € I'(Cy, maxH{G")) we obtain
that N[¥(A, )] € LIGHEAD(Cy). Hence, the ruleV [T (A, m)] — ais in RY, where

a € (V[VS]UV)* is determined by*.

o If Vj # M thenyj = 7o - <F|7ro\+17"'7F|uj

>. Recall thatval(B‘,mHl,(F‘,m|+1>) T
becausel(Dj,v;) = (B1,F1,..., B, +1) and|mo| +1 < |v;[ + 1. Since¥ (A, m) =
(B1,F1,- -+, Bjry+1), We obtain that every rule of the ford [V (A, o), Firo41-] — @

is applicable taV[¥(D;, v;)]. SinceA € I'(Cy, maxH{G")) we obtain that
N[¥(A,m0), Flro|+1--] € LIGHEAD(Cp)

Hence, the ruleN[¥ (A, mg), Firy41-] — ais in RY, wherea € (Vy[VZ] U Vi)* is
determined by-“.
8. The LIG ruler whose existence was established in (7) is appliel t& (D}, v;)] as follows:

S[] =, N[¥(Dy,21)] ... N[¥(Dy, V)]

:1>liN[\IJ(D1, lll)] e N[\IJ(Djfl, I/j,1>] Y1 e Ynferl N[\I/(D]url, l/jJrl)] N N[\P(Dm, l/m)]

9. We now investigate the possible outcomes of applyinguteerrto the selected element of the

sentential form. Let = Xy — «, wherea € (Vy[V] U V})*. To complete the proof we have
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to show that for some sequence of paths, . .., m,—m+t1),
(Y1, Yoomi1) = (N[Y(Qr, m)]s -+ s N[W(Qn-m+1, Tn—m+1)])
whereQq, ... Q,_mn11 are determined by the unification grammar, see (1) above.

e Assume that® has no reentrancies. Hend®;, = C;, 1 < i < n —m + 1. By defini-

tion 28 case ( 3), the LIG rule body is

a= (N¥(C),e)],-. ., N[¥(Coomar] o)) = (N[T(Qu),€)], - N[ (Qnma];€)])

Since the rule- does not copy the stack,= (Y7, ...,Y,_+1). Therefore,
Y1,...,Yoomy1) = (N[¥(Q1,9)], ..., N[¥(Qnom+1,€)])

e Assume that(0, ug) Zos (e,pe), wherel < e < n. Hence,Q; = C, andY; =
N[¥(Qi,¢)] is well defined for alli, i # e. By definition 28 case ( 4), the LIG rule
body is

a = (N[¥(Cpe)l,... . N[¥(Ceor,€)], Xe, N[¥(Ceqr,€)]- -, N[W(Crmy,€)])
= (N[¥(Q1,e)], ..., N[¥(Qe-1,8)}, X, N[¥(Qet1,6)], - - -, N[W(Quomt1,6)])
This case is similar to the previous case, with the excepifoK., which may be more
complicated due to the propagation of the stack ftgn We therefore focus oX . (other

elements ofy are as above). Recall that by definition 28y, ..., P, _,,+1) is a sequence

of feature structures such that
(<A>7O) U (T,u70) = (<P0>7 <P0 v Pn—m+1>)

We now analyze all the possible valuesXyf, according to definition 28 case ( 4):

(a) Case 4a: ify is not a prefix ofry then by definition 28X, = N[¥ (P, p.)]. Letn

be the maximal prefix ofy and g such thatuy = 7 - p,. We denotell (Cy, mp) as
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(s1,F1, -+ S|xl+1)» @nd graphically represent it as:

Fi. R Flr|  Flzj+1 Fimol

S1 S2 S|z|+1 S|mo|+1

The cord¥ (D, v;) with its prefix U(A, 7) are represented as follows:

\I’(A, 7T(])

Fi. P2 Firl  Flal+1 Firol  Flmol+1 Flu|

Bi Bs Bla|+1 Bimol+1 Bluj+1

Note that the case, = v; is just a special case of the figure above. The cord

U(D; U Co, v;) with its prefix W (A L Cy, mo) are represented as follows:

\II(A U C0> 7T0)
Firl  Flal+1 Fimol  Flmol+1 Flu|
BiUs; Balsy Birj41 U Sjrj41 Bimol+1 U Sjmo|+1 Bluj+1

Hence,val(A U CQ,}L()) = val(B|7rH—1 U s‘,r|+1,,u’0) = val(Dj U CQ,}L()). By defi-

nition of unification in contexal(Pe, e) = val(A U Co, o) andval(Qe, pe) =

64



val(D; U Co, po). Hencepal (Pe, p1e) = val(Qe, p1e) andQ, = P.. Therefore,

a= Yi,....Y 1)
= (N[(Q1,8)],- s N[(Qe, te)]; - - N[ (Qusnt1,€)])
(b) Case 4b: ifug is a prefix ofmg, let 7y = o - v, v € PATHS. Then by definition 28,
the following holds:
— Case 4(b)i:
If Xo=N[¥(A,m)]thenX, = N[V (P, . - v)]. SinceN[¥ (A, )] is appli-
cable toN[¥(D;, ;)] we obtain thatry = v; andA = D;. Hence,P. = Q..

Therefore,

a= Y1,..., Y0 my1)
= (N¥(Qu,e)],.... N[¥(Qe, pre - V)], ., N[¥(Quomy1,€)])
— Case 4(b)ii:
If Xo = N[¥(A,70),Fjro|+1--] then Xe = N[W(P., pie - V), Firy41-]. Let
B = (Bjro|+25 Fimol+2> - - - » B|,,+1)- By definition of A, ¥(D;, v;) = ¥ (A, ) -

(Fixo|+1) - B- We apply the LIG rule- to N[¥(D;, v;)] and obtain

(Y1,.. ., Yo_my1)

= (N[¥(Qu,8)],..., N[W(Pe, tre - V), Firgl 115 Bls - -+, N[¥(Quem+1,€)])
By definition of unification in contex, differs fromQ,. only in the value of the
path - v - (Fix,+1)- The difference is in the value of the path- v - (Fj; 1),
itis not defined inP. and equals? in Q.. Hence, W (Pe, pte - ) - (Firo+1) - B =

U (Qe, pe - v). Therefore,

<Y1, N 7Yn—m+1> = <N[\I’(Q1,€)], ‘e ,N[\I’(Qe, Vj)], e ,N[\I’(Qn_m+1,€)]>

Note that in this cas&, is well defined because it was created by applying a LIG

rule to a well defined non-terminal symbol.
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Theorem 19. Let G* = (R“, A% L) be a one-reentrant unification grammar ar@’ =
(Vn, Vi, Vo, R N) = ug2lig(G*) be LIG. If S[] ==; Y1...Y,, whereY; € Vy[Vi], 1 < i <n,
then there are a sequence of paths, ..., ,) and a derivation sequend®® ==, A;...A,, such

Proof. We prove by induction on the length of the LIG derivation sEaee. The induction hypothesis
is that if S| | :km Y7 ...Y,, whereY; € Vy[V}], 1 < i < n, thenA® '“:’%u A;...A,, such that for

some sequence of paths,, ..., m,), Y; = N[V (A;,m)], 1 <i <n.If k=1, then

1. By definition 28, the only rule that may be applied to thetssgmbol S in G¥ is the rule
defined by case (1) of the definitioS] | — N[¥ (A%, ¢)].

2. Hence, fork = 1, the only derivation sequence$$ | L N[¥ (A% ¢)]
3. By the definition of derivation in UGA# :0>u As,

Assume that the hypothesis holds for every < i < k; let the length of the derivation sequence

bek + 1.

1. Assume thas[] 2, v1...Y,. ThenS[] =5, Y'1 ... Y, == Vi ... Y.

2. By the induction hypothesis, there exists a sequencetio§pa, . . . , v,,) and feature structures
D1,...,Du, such that forl < i < m, Y’; = N[¥(D;,v;)], andAs® gu D;...D,,. We

therefore write:

S[] =54 N[¥(D1,11)]... N[ (Do, vin)] =54 Vi .. Yy

3. Furthermore, let = Xy — X ... X, .41 be theG" rule used for the last derivation step,

andj be the index of the element to whiehis applied, such that

N[¥(Dy,1)] ... N[ (D, V)] =1

N[W(Dy, )] ... N[¥(Dj1,v-1)1Yj .. Yoo N[¥(Dnm i, Vnometjt1)] - - - N[¥ (D, vin)]

4. We denoteIf(Dj, Vj) aS<t1, Fi,... 7t|uj\+1>
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5. By definition 28, the rules that may be appliedN¢¥ (D;, ;)] are created by cases (3) and
(4) of the definition, because the rule created by case (B¥addéd by the non-terminal symbol
S and the rules created by case (2) do not derive non-termymbals. Letr* = Cy —
Ci...Cu_ma1 be arule inR™ such that the rule is created from*. Note that there may be

more than one such rule.

6. We now show tha€, LI D; # T. In both cases (3) and (4) of definition 28 the head of the rule
r, Xo, is a member ofIGHEAD(Cy). Sincer is applicable taV[¥(D;, ;)] we obtain thatX

has one of the following forms:

(@ Xo = N[¥(Dj,v;)]. By definition 27, ¥(D;,v;) € FIXEDHEAD(Cp, maxH{G")).
SinceV is a one-to-one mapping, we obtain thate I, andD; € I'(Co, v;, maxH{G")).

By definition ofI', D; L1 Cy # T.

(b) Xo = N{n..], wheren is a prefix of¥(D;, v;). Hence, we obtain that

n= <tla Fi,... >t|7r0\+1> F|7r0\+1>

wheremy is a prefix ofv;. By definition 27,7 € UNBOUNDEDHEAD(Cp, maxH{G")).
Hence, there are a patfy € Il and a feature structure € I'(Cy, mp, maxH{G")) such
thatn = W(A, o) - (Fjxo|41)- By definition of ', AUCy # T. Therefore, by corollary 17,
CouD; #T.

7. SinceCo U D; # T, the ruler* is applicable td); as follows:

AsEL po.D,

1
=, Di... Dj—lQl - Qn—m+1Dn—m+j+1 ...Dp,
whereQq, ..., Q,_m,11 are feature structures.
8. From (6) above, X uniquely definesmy, A and F ;. We denote¥(Co,m) as

(sl,Fl,...,s|,r0‘+1>. Recall that for everyl < i < |mo|+ 1, s; Ut; # T becauseA e

I'(Co, mp, maxH(G")). Let (P, ..., P,_m+1) be the sequence of feature structures such that

(<A>’0) U (Tu70) = (<P0>a <P0, ceey Pn7m+1>)
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9. Now we show that there is a sequence of paths. . ., m,—,+1) such that
<}/}> cee >Yn7m+j> = <N[\I’(Q1, 771)]3 e aN[\I](anerla 7Tn7m+1)]>

Without loss of generality, if* is reentrant we assume that its reentrant path,ig. ), that is,
(0, o) & (e, ie), Wherel < e < n. By the definition of LIG there are two options for the

ruler:

(a) The ruler does not copy the stack from the head to the body. HE¢g,. .., X —mt1) =
(Yj,...,Y,_myj). Consider the possible sources of the rylaccording to definition 28:
e Case (3):
The ruler® is non-reentrant. Hence, far< : <n-m+1,C, = Q; andX; =

N[¥(Cj,e)] = N[¥(Qq,€)]. Therefore,
<Y} cee ’Yn*m+j> = (N[\I](Qh 6)]7 cee ’N[\I](Qn*erlv 5)]>

e Case (4a):
If 1o is not a prefix ofry then for alli, i # e, X; = Y ;1 = N[U(C,e)] =
N[¥(Qi,¢e)], and X, = N[¥(Pe, ue)]. Letn be the maximal prefix ofry and o

such thafuy = 7 - u;,. The cord¥(D; LI Cy, v;) is graphically represented as:

\II(A U COa 770)
L PR Fial  Flal+1 Fimol  Flmol+1 Flusl
tiUsy tollso tr|+1 U Sjr|+1 Yrol+1 Y Sjmg|+1 t|yj‘+1

Hence,val(A U Co, o) = val(tjz41 U Sjx|+1, o) = val(Dj U Co, o). By defi-

nition of unification in contexal(Pe, ie) = val(A U Co, o) andval(Qe, pte) =
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val(D; U Co, po). Hence,val(Pe, pe) = val(Qe, pe) and Q. = P.. Therefore,
Xe == N[\I/(Qe”ue)] and

<Yjv s =Yn—m+j> = <N[\Il(Q17 8)]7 s 7N[\IJ(Q€7 Me)]v s 7N[\I/(Qn—m+17 8)]>

e Case (4(b)i):
If 70 = po - v, v € PATHS then X, = N[¥ (P, pe - v)]. SinceN[¥ (A, )] is
applicable toN[¥(D;, v;)] we obtain thatrg = v; andA = D;. HenceP, = Q..

Therefore, X, = N[V(Qe, pe - v)] and

(Y, .., Yoomey) = (N[¥(Qu,e)],... . NW(Qe, pte - V)], .- ., N ¥(Qu—m+1,€)])

(b) The ruler copies the stack fronX to X.. By definition 28, is created from a reentrant
unification rule,-*, by case (4(b)ii) of the definition 28. Let = 7o - uj’. andmy = o - v,
vi,v € PATHS. By the definition for alli, i # e, Xi; = Yiij-1 = N[¥(C;,¢)] =

N[¥(Q;,e)] and X, = N[V (Pe, pte - V), Fizol41--]- HENCE We just have to show that for
some pathr, € PATHS, Y -1 = N[¥(Q,, m)]. We will show that this equation holds
for me = pe - v - 1/ . Sincem, A andF .+ are uniquely defined by, we obtain the

following:

o U C(),Tr()) <51,F1,...,S|ﬂ.o‘+1>

S

D

° ]71/3 :<t17F15"'7t|Uj|+1>

.
S

(
(
(D;j U Co,vj) = ¥(Qo, V) = (s1 U1, Fi, ooy Simgl+1 U o +15 Flmo 15 - - - ,t|uj|+1>
o W(ALCo,mo) = W(Po,m0) = (51 LUt1,F1,. o’ Sjmo|4+1 U tjmg|+1)

(P

o U(P.,pe-v) =butlastW(Ce, tie)) - (S|uo|+1 U tiuol+15 Fluo|+1> - - - » Sjmol+1 U tmo|+1)

® U(Qe,mo V) =

butLas(\I/(Ce, ,U,e)) . <S“LO|+1 Ut o) +15 Fluol+15 - - 5 Sjmol+1 U Yjmo|+15 Flmo|+15 - - - ,t|l,j|+1>
The cord¥ (Co, mo) = (s1,F1, - -, S|x|+1) IS graphically represented as:
Fi. P2 Flugl Fluol+1 Fimol
S1 52 S|pol+1 S|mol+1
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The cord¥(D;,v;) = (t1,Fi,... ,t‘yj|+1> whose prefix is the cord’ (A, v;) is graphi-

cally represented as:

\I’(A, 7T(])

Fi. R Fluol  Fluol+1 Fimol  Flmol+1 Flu,|

th to tluol+1 timol+1 )41

The COfd‘I’(DjUCQ, I/j) = U (Qo, l/j) = (s; Uty,Fq,... 3 S|mol+1 U tjmo|+15 Flmg|+15 - - - ’t\VjH-1>
whose prefix is the cordl (A U Co, mg) = ¥(Po,m0) = (51 Ut1,F1,. .., Simgl+1 U tjmg+1) 1S

graphically represented as:

\I’(A L Co, 7T0)

F1 F2 Fluol  Fluol+1 Firol  Flmol+1 Flu|

ssUti s Ut Sluol+1 H ol +1 Sfmol+1 U tmol +1 B +1

The relation between the cords

\IJ(Pe, Me I/) = bUtLaS(\IJ(Ce, ,LLG)) . <SW0|+1 (] ol +1s Fluol+1s -+ s S|mo|+1 (] t|ﬂ'o\+1>

and

‘I’(Qe,ﬁo ' Vj/) =

butLas(\I/(Ce, Lhe)) - <Sm0‘+1 Ut o) +15 Fluol+1s - - 5 Sjmol+1 Y Yymo|+15 Flmo|+15 - - - ,t|l,j|+1>
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is graphically represented as:

\I/(Pev He * V)
Fluol+1 Firol  Flmol+1 Flu,|
butLast¥(Ce; pte)) | Sjuol+1 U tjuol+1  Simol+1 H tmol+1 Eluyl1
Hence,
Yo =N[W(Pe, fie - V), Flag|+15 tmol+25 Flmo|+25 - - 5 | +1]]
:N[bUtLaS(\I/(Ce, ,ue)), S|pol+1 U tuo|+15 Fluol+15+ + - » Sjmol+1 U Yo +15 Flmo|+15 - - - ’t‘yj‘Jrl]

—N[¥(Q. 0 - V)]

Therefore,

<Yja . "Yn—m+j> = <N[\I/(Q175)]a T ’N[W(Qevﬂo ’ V;‘)]a s aN[qJ(Qn—m+175)]>

Corollary 20. LetG" € UGy, thenL(G") = L(ug2lig(G*)).

Proof. LetG* = (R%, A*, L) be a one-reentrant unification grammar aiti= (Viy, V;, Vs, R, N) =

ug2lig(G*). Then by theorem 18, there is a sequence of paths . ., 7,) such that

*

if AS ==, A;...A, thenS[] == N[¥(A;,71)]... N[¥(A,, 7))

Where A* =, A;...A, is a pre-terminal sequence. Assume tAat ==, A;...A, =,
wi, ... wy,, Wherew; € WORDS 1 < i < n. Hence,L(w;) = {D;} andA; UD; # T. Since
the grammar is a simplified unification grammar (definition), 2§ = D,. By definition 28 case (2),
the rule N[U(A;, ;)] — w; is in RY. Therefore,S[| == N[¥ (A}, m)]... N[T(A,, 1)) =i
W1,y - .. Wy.

By theorem 19, ifS[ | == Yi...Y, then there are a sequence of paths,...,,), and
a derivation sequencA® =, A;...A, such that for0 < i < n, Y; = N[W(A;, ;). As-

sume thatS[ | == N[¥(A;,m)]... N[U(A,,m,]) =5 wi,...w,, w; € V. Then the rules
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N[¥(A;,m;)] — w;in R 1 < i <. By definition 28, each such rule is created from a lexicon

entry £(w;) = {A;}. Hence A® ==, A, ... A, ==, w1, ... w,. O
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Chapter 4

Conclusions

In this work we explore the influence of reentrancies on threegative power of unification grammars.
Our main contribution is the definition of two constraintsuonification grammars which dramatically
limit their expressivity. We prove that non-reentrant wafion grammars generate exactly the class
of context-free languages; and that one-reentrant unditarammars generate exactly the class of
mildly context-sensitive languages. While these resuitaat characterize the classes of unification
grammars that license context free languages and mildlyegbsensitive languages (because the
restrictions are sufficient but not necessary), they pmvigo linguistically plausible constrained
formalisms whose computational processing is tractable.

This work can be extended in a number of directions. We aré¢ avedre of the fact that our
mapping of one-reentrant unification grammars to LIG is ligherbose. In particular, it results
in LIGs with a huge number of rules, many of which will nevertmapate in any derivation. We
believe that it should be possible to optimize the mappird $hat much smaller LIGs are generated.
Furthermore, the equivalence proofs of section 3.4 areratbmplex, perhaps owing to the choice
of LIG as the target formalism. It would be interesting to esiment with a mapping of one-reentrant
unification grammars to some other mildly context-sensifarmalism, notably TAG.

The two constraints on unification grammars (non-reentadtone-reentrant) are parallel to the
first two classes of the Weir hierarchy of languages (Wei§2)9 A possible extension of this work

could be a definition of constraints on unification grammhbag tould generate all the classes of the



hierarchy.

Another direction is an extension of one-reentrant unificagrammars, where the reentrancy
inside a grammar rule does not have to be between the headnanelement in the body, but can
also be, for example, between two elements of the body orirwith element. We believe that a
formalism of one-reentrant unification grammars, wherertentrancy inside a grammar rule can
only be between two elements of the body, generates all alycdcontext free languages. A formal
characterization of the class of languages generated lhygammars is an interesting direction for
future research. Then it is interesting to explore the pasfdwo-reentrant unification grammars,
possibly with limited kinds of reentrancies.

It may also be possible to extend one-reentrant UGs to madtitrant UGs without extending
their generation power. One research direction is to allemeskind of disjoint reentrancies, where

the reentrant paths have no common edges.
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