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Computational properties of Unification Grammars

Daniel Feinstein

Abstract

There is currently considerable interest among computational linguists in grammatical formalisms

with highly restricted generative power. This is based on the argument that a grammar formalism

should not merely be viewed as a notation, but as part of the linguistic theory. It is now generally

accepted that CFGs lack the generative power needed for thispurpose. Unification grammars have the

ability to describe phonological, morphological, syntactic and semantic properties of languages and

thus they are linguistically plausible for modeling natural languages. However, unification grammars

are Turing equivalent in their generative capacity: the recognition problem for unification grammars

is undecidable in the general case. It is therefore important to constrain the expressivity of unification

grammars in a way that would still permit an account of natural languages.

Mildly context-sensitive languages are a natural class of languages for characterizing natural lan-

guages. These formalisms were proved to have recognition algorithms with polynomial time com-

plexity and there is no evidence that any natural language isoutside of the mildly context-sensitive

class of languages. In this work we define a constraint on unification grammars which ensures that

grammars satisfying the constraint generate all and only the mildly context-sensitive languages. We

thus provide a linguistically plausible formalism which iscomputationally tractable.
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Chapter 1

Introduction

There is currently considerable interest among computational linguists in grammatical formalisms

with highly restricted generative power. This is based on the argument that a grammar formalism

should not merely be viewed as a notation, but as part of the linguistic theory. It should make pre-

dictions about the structure of natural language and its value is lessened to the extent that it supports

both good and bad analyses. In order for a grammar formalism to have such predictive power its

generative capacity must be constrained. This has led to interest in the use of context-free grammars

(CFG) as a notation with which to express linguistic theories. However, it is now generally accepted

that CFGs lack the generative power needed for this purpose (Huybregts, 1984; Shieber, 1985; Culy,

1985). Typical natural language constructions that require trans-context-free power are:

• reduplication, leading to constructions of the form{ww | w ∈ Σ∗}

• multiple agreement, corresponding to constructions of theform {anbnaj | 0 < j ≤ n},

• crossed agreement, as modeled by{anbmcndm | n,m > 0},

As a result there is substantial interest in the developmentand study of constrained grammar for-

malisms whose generative power exceeds CFG.



1.1 Mildly context-sensitive grammars

Several linguistic formalisms have been proposed as capable of modeling the above mentioned phe-

nomena. The class ofmildly context-sensitive (MCS) languagesis defined by Joshi (1985) as a class

including all formalisms which properly extend CFG, can express “limited cross-serial dependen-

cies”, exhibit the constant growth property and can be parsed in polynomial time. We consider

four mildly context-sensitive formalisms here: Linear Indexed Grammars (LIG), Head Grammars

(HG), Tree Adjoining Grammars (TAG) and Combinatory Categorial Grammars (CCG). The four

formalisms under consideration were developed independently and superficially differ considerably

from one another.

• LIG (Gazdar, 1988) can be viewed as a generalization of CFG inwhich each nonterminal is

associated with an unbounded stack of items drawn from some finite set. Rules are permitted

to push items onto, pop items from, and copy the stack. For example,1 a ruleA[..] → aB[i..] is

similar to the CFG ruleA → aB, except that it copies the stack ofA to B, pushing the element

i ontoB’s stack.

• HG (Pollard, 1984) can be viewed as a generalization of CFG inwhich a wrapping operation

is used in addition to concatenation. The nonterminals of a CFG derive strings of terminals

(w1 . . . wk); the nonterminals of HG deriveheaded strings, which are pairs of terminal strings

(w1 . . . wi, wi+1 . . . wk), denotedw1 . . . wi↑wi+1 . . . wk. The rules of HG are similar to those of

CFG, but where CFG only defines concatenation of the daughters in each rule, HG allows an ad-

ditional operation,wrapping, to be defined over the (two) daughters:W (s↑t, u↑v) = (su↑vt).

Derivations in HG are simple rewritings which apply either concatenation or wrapping, as spec-

ified in the rules.

• TAG (Joshi, 1985; Joshi, 2003) is a tree manipulation system. A grammar consists of two sets

of trees,initial andauxiliary. TAG defines two operations on trees:substitution, which replaces

a node labeledA in a tree by a tree whose root is labeledA; andadjunction, which takes a tree

τ in which some internal node is labeledA, and an auxiliary tree in whichA labels both the root

1
A[..] denotes a nonterminal symbolA with any stack content.
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and some node on the frontier, and splices the auxiliary treein τ , replacing the node labeled

A by the entire auxiliary tree. The closure of the set of initial trees with respect to these two

operations defines the tree language of a grammar, and the string language is defined as the set

of all terminal yields of the tree language.

• Categorial grammars (CG) define a finite set of primitive categories. Each terminal symbol is

assigned a finite number of primitive or complex categories,the latter obtained from the former

by means of the operators\ and/. For example, if the set of primitive categories is{N,NP, S},

then complex categories includeS\NP , NP/N , NP\(S/NP ) etc. The intuition behind hav-

ing two directional slashes is that it allows one to code the syntactic order of (for example)

arguments of a verb in a lexicalized grammar: a transitive verb, which takes anNP to the left

and anNP to the right and yields a sentence, could be written asNP\(S/NP ). There are only

two category-combination rules in CG:α1/α2 · α2 → α1 andα2 · α1\α2 → α1 whereαi is a

(complex or primitive) category. Combinatory CG (CCG, Steedman (2000)) adds a few more

combination rules, the motivation being coordination and other complex linguistic phenomena.

These include functional composition:α1/α2 ·α2/α3 → α1/α3 andα1\α2 ·α3\α1 → α3\α2.

Informally, differences between the formalisms can be explained in terms of the way in which

they can be seen to extend CFG. For example, in addition to string concatenation, HG introduces a

wrapping operation with which one pair of strings can be wrapped around another. In other respects

HG are identical to CFG since the derivation process involves context-free rewriting of members

of a finite set of non-terminal symbols. Both CCG and LIG, on the other hand, use only string

concatenation. However, they differ from CFG in that their derivation process involves rewriting of

unbounded stack-like structures. The status of TAG, a tree manipulating system, is ambiguous since

it is possible to interpret TAG as extending CFG in either of these ways.

Despite these differences, all four formalisms are weakly equivalent (Vijay-Shanker and Weir,

1994). We use the termmildly context-sensitivein this paper to refer to the class of the languages that

the four formalism defined. These formalisms were proved to have recognition algorithms with time

complexityO(n6), considering the size of the grammar a constant factor (Vijay-Shanker and Weir,

1990; Satta, 1994). As a result of the weak equivalence of four independently developed (and linguis-
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tically motivated) extensions of CFG, the class of mildly context-sensitive languages is considered to

be linguistically meaningful. There is no evidence that anynatural language is outside of the mildly

context-sensitive class of languages. Mildly context-sensitive languages, therefore, are a natural class

of languages for characterizing natural languages.

1.2 Unification grammars

Unification grammars (Shieber, 1986; Shieber, 1992; Carpenter, 1992) have originated as an extension

of context-free grammars, the basic idea being to augment the context-free rules with non context-

free annotations (feature structures) in order to express some additional information. Unification

grammars have the ability to describe phonological, morphological, syntactic and semantic properties

of languages and thus they are linguistically plausible formodeling natural languages. Today, several

formulations of unification grammars exist, some of which donot assume an explicit context-free

backbone. They are used extensively by computational linguists to describe the structure of a variety

of natural languages.

We assume familiarity with theories of feature structures as formulated, e.g., by Shieber (1992)

or Carpenter (1992). We summarize below the few concepts that are needed for the rest of this paper

in order to set up notation, adapting the description of Jaeger, Francez, and Wintner (2004). We begin

with a formal definition of attribute-value matrices (AVM).

Definition 1 (AVMs). Given a signature consisting of a finite setATOMS of atoms and a finite set

FEATS of features, the setAVMS of AVMs is the least set such that

1. i a ∈ AVMS for every variable i anda ∈ ATOMS;

2. i [ ] ∈ AVMS for every variable i ;

3. for every variable i , F1, . . . , Fn ∈ FEATS andA1, . . . ,An ∈ AVMS, n ≥ 1,

A = i




F1 : A1

...

Fn : An



∈ AVMS

Thevalueof the featureFj in A, denotedval(A, Fj), is Aj.
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Definition 2 (multi-AVM). Given a signature consisting of a finite setATOMS of atoms and a finite

set FEATS of features, amulti-AVM of length n is a sequence〈A1, . . . ,An〉 such that for eachi,

1 ≤ i ≤ n, Ai is an AVM over the signature.

Meta-variablesA,B range over feature structures andσ, ρ over multi-AVMs. An multi-AVMs σ

can be viewed as an ordered sequence〈A1, . . . ,An〉 of (not necessarily disjoint) feature structures.

We identify multi-AVMs of length 1 with feature structures.

We now define another representation of feature structures called abstract feature structures,

which is easier to work with mathematically. We start with pre- abstract feature structures, which

consist of three components: a setΠ of paths, corresponding to the paths defined in the intended

feature graphs (taken as sequences of features); a functionΘ that labels the end points of some of

the paths (corresponding to the labeling of some of the sinksin graphs); and an equivalence relation

specifying what sets of paths lead to the same node in the intended graph, without an explicit specifi-

cation of the node’s identity. Abstract feature structuresare pre- abstract feature structures with some

additional constraints imposed on them, which guarantee that the specification indeed corresponds to

some concrete feature graph. We denote the set of all paths asPATHS (PATHS = FEATS∗).

Definition 3 (Abstract feature structures). A pre- abstract feature structure(pre-AFS) is a triple

〈Π,Θ,≈〉, where

• Π ⊆ PATHS is a non-empty set of paths

• Θ : Π → ATOMS is a partial function, assigning an atom to some of the paths

• ≈ ⊆ Π × Π is a relation specifying reentrancy

Anabstract feature structure(AFS) is a pre-AFSA for which the following requirements hold:

• Π is prefix-closed: ifπ · α ∈ Π thenπ ∈ Π (whereπ, α ∈ PATHS)

• A is fusion-closed: ifπ · α ∈ Π andπ ≈ π′ thenπ′ · α ∈ Π andπ′ · α ≈ π · α

• ≈ is an equivalence relation with a finite index (with[≈] the set of its equivalence classes)

including at least the pair〈ε, ε〉
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• Θ is defined only for maximal paths: ifΘ(π) ↓ then there exists no pathπ · α ∈ Π such that

α 6= ε

• Θ respects the equivalence: ifπ1 ≈ π2 then either both undefined or both are defined and

Θ(π1) = Θ(π2)

A non-reentrant feature structureis a feature structure whose reentrancy relation contains only

pairs of equal paths. Let NRFSS be the set of all non-reentrant feature structures over thissignature.

An abstruct multi-rooted structure(AMRS) of lengthn is a sequence ofn abstract feature structures,

with possible reentrancies among elements of the sequence.

Definition 4 (Abstract multi-rooted structures). A pre-abstract multi rooted structure (pre-

AMRS) is a quadrupleσ = 〈Ind,Π,Θ,≈〉, where:

• Ind ∈ N is the number ofindicesof σ

• Π ⊆ {1, 2, . . . , Ind} × PATHS is a set ofindexed paths, such that for eachi, 1 ≤ i ≤ Ind,

there exists someπ ∈ PATHS with (i, π) ∈ Π

• Θ : Π → ATOMS is a partial function, assigning an atom to some of the paths

• ≈ ⊆ Π × Π is a relation specifying reentrancy

An abstract multi-rooted structure (AMRS) is a pre-AMRSσ for which the following require-

ments, naturally extending those of AFSs, hold:

• Π is prefix-closed: if〈i, πα〉 ∈ Π then〈i, π〉 ∈ Π

• σ is fusion-closed: if〈i, πα〉 ∈ Π and〈i, π〉 ≈ 〈i′, π′〉 then〈i, πα〉 ∈ Π and〈i, πα〉 ≈ 〈i′, π′α〉

• ≈ is an equivalence relation with a finite index (with[≈] the set of its equivalence classes)

including at least the pairs{〈i, ε〉 ≈ 〈i, ε〉 | 1 ≤ i ≤ Ind}, and if 〈i, ε〉 ≈ 〈j, ε〉 theni = j

• Θ is defined only for maximal paths: ifΘ(〈i, π〉) ↓ then there exists no pair〈i, πα〉 ∈ Π such

that α 6= ε

• Θ respects the equivalence: if〈i1, π1〉 ≈ 〈i2, π2〉 thenΘ(〈i1, π1〉) = Θ(〈i2, π2〉)
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In the sequel, given a feature structureA, we write 〈ΠA,ΘA,≈A〉 for its abstract representa-

tion. Similarly, an AMRSσ is written as〈Indσ,Πσ ,Θσ,≈σ〉. For any AMRSσ, we denote a

reentrancy relation between paths(i, π1), (j, π2) ∈ Πσ, wherei, j ≤ Ind and((i, π1), (j, π2)) ∈≈σ,

by (i, π1)
σ

! (j, π2).

Feature structures and AMRSs are partially ordered bysubsumption, denoted ‘v’. The least

upper bound with respect to subsumption is theunificationoperator, denoted ‘t’ (we use the term

‘unification’ both for the operator and for the result of its application). Unification is a partial operator;

whenA t B is undefined we say that the unificationfails and denote it asA t B = >. Unification

is lifted to AMRSs: given two AMRSsσ andρ, it is possible to unify thei-th element ofσ with the

j-th element ofρ. This operation, calledunification in contextand denoted(σ, i) t (ρ, j), yields two

modified variants ofσ andρ: as the unification is donein the contextof the entire AMRSs, other

elements might be affected. Hence, the result of unificationin context (when it is defined) is a pair

(σ′, ρ′).

One of the advantages resulting from the representation of linguistic information by means of

abstract feature structures is the relative simplicity ofsubsumptionandunification. The subsumption

relation becomes not much more thansetinclusion; and unification is basically set union.

Definition 5 (AFS subsumption). Letv be a relation over AFSs such thatA v B iff the following

three conditions hold:

• ΠA ⊆ ΠB

• ≈A ⊆ ≈B

• if ΘA(π) ↓ thenΘB(π) ↓ andΘA(π) = ΘB(π).

Namely,A is more general thanB if and only if all the paths ofA are also paths inB, if a (maximal)

path is labeled inA then it is labeled identically inB and every reentrancy inA is a reentrancy inB.

The unification of two AFSs can be defined in terms of set union and the closure operations:

Definition 6 (AFS unification). The unification of two AFSsA andB (denotedAtB) is defined only

if for every pathπ which is defined in bothA andB, eitherΘA(π) andΘB(π) are both defined and

7



equal, or neitherΘA(π) nor ΘB(π) is defined, or only one is defined andπ is a maximal path in the

other. The closure operations are:

• Cl(A) is the least fusion-closed pre-AFS that extendsA;

• Eq(A) is the least extension ofA in which≈ is an equivalence relation;

• Ty(A) is the least extension ofA in whichΘ respects the≈ relation.

If the unification is defined,A t B = Ty(Eq(Cl(C))), where

• ΠC = ΠA ∪ ΠB

• ≈C = ≈A ∪ ≈B

• ΘC(π) =






ΘA(π) if ΘB(π) ↑

ΘB(π) if ΘA(π) ↑

ΘB(π) if ΘA(π) = ΘB(π)

undefined otherwise

The unification fails if there exists a pathπ in both A andB, such thatΘA(π) 6= ΘB(π), or if

ΘA(π) ↓ andπ is not a maximal path inB, or if ΘB(π) ↓ andπ is not a maximal path inA. Otherwise,

its result is obtained by first computingC, by union of the paths and the reentrancies ofA andB, taking

care of the types of the atoms; and then applying the closure operations:Cl adds necessary paths and

reentrancies,Eq completes the resulting pre-AFS to one in which≈ is an equivalence relation and

finally, Ty sets the types of the added paths. Trivially, the result is anAFS.

While formally we manipulateabstractfeature structures and MRSs, we depict them using the

common AVM notation to facilitate readability. We use the terms feature structures and MRSs for

both representations in the sequel.

Definition 7. Unification grammarsare defined over a signature consisting of a finite setATOMS of

atoms; a finite setFEATS of features and a finite setWORDS of words. Aunification grammar is a

tupleGu = 〈Ru,L,As〉 where:

8



• Ru is a finite set of rules, each of which is an MRS of lengthn ≥ 1, with a designated first

element, theheadof the rule, followed by itsbody. The head and body are separated by an

arrow (→).

• L is a lexicon, which associates with every wordw ∈ WORDSa finite set of feature structures,

L(w).

• As is a feature structure, thestart symbol.

We use meta-variablesGu (with or without subscripts) to denote unification grammars.

Example 1 (Unification grammar). LetGu
ww be a unification grammar over the signature〈ATOMS,

FEATS, WORDS〉, whereFEATS = {LIST, HD, TL}, ATOMS = {s, elist, ta, tb} and WORDS =

{a, b}. The grammar has two rules, each an MRS of length 3, and two lexical entries, one for each

element ofWORDS.

As =


LIST :




HD : s

TL : elist







Ru =







LIST :




HD : s

TL : elist





 →

[
LIST : 3

] [
LIST : 3

]


LIST :




HD : 1

TL : 2





 →

[
LIST : 2

]

LIST :




HD : 1

TL : elist












L(a) =







LIST :




HD : ta

TL : elist











L(b) =







LIST :




HD : tb

TL : elist












We extend the definition of unification to AMRSs. The input to the operation is a pair of AMRSs,

with two indices pointing to the elements that are to be unified, and the output is a pair of AMRSs.

Definition 8 (Unification in context). Letσ, ρ be two AMRSs of lengthsnσ, nρ, respectively. The uni-

fication of thei-th element inσ with thej-th element inρ, denoted(σ, i)t (ρ, j), is defined only ifi ≤

nσ andj ≤ nρ, in which case it is a pair of AMRSs,〈σ′′, ρ′′〉 = 〈Ty(Eq(Cl(σ′))), T y(Eq(Cl(ρ′)))〉,

9



whereσ′ andρ′ are defined as follows:

Indσ′ = Indσ

Πσ′ = Πσ ∪ {〈i, π〉 | 〈j, π〉 ∈ Πρ}

≈σ′ =≈σ ∪{(〈i1, π1〉, 〈i2, π2〉) | 〈j1, π1〉 ≈ρ 〈j2, π2〉}

Θσ′(〈k, π〉) =






Θσ(〈k, π〉) if k 6= i

Θσ(〈k, π〉) if k = i andΘσ(〈i, π〉) ↓

Θρ(〈j, π〉) if k = i andΘρ(〈j, π〉) ↓ andΘσ(〈i, π〉) ↑

undefined otherwise

Indρ′ = Indρ

Πρ′ = Πρ ∪ {〈j, π〉 | 〈i, π〉 ∈ Πσ}

≈ρ′ =≈ρ ∪{(〈j1, π1〉, 〈j2, π2〉) | 〈i1, π1〉 ≈σ 〈i2, π2〉}

Θρ′(〈k, π〉) =






Θρ(〈k, π〉) if k 6= j

Θρ(〈k, π〉) if k = j andΘρ(〈j, π〉) ↓

Θσ(〈i, π〉) if k = j andΘσ(〈i, π〉) ↓ andΘρ(〈j, π〉) ↑

undefined otherwise

The unificationfails if there exists a pathπ such thatΘσ(〈i, π〉) ↓ andΘρ(〈j, π〉) ↓ butΘσ(〈i, π〉) 6=

Θρ(〈j, π〉); or if there exist pathsπ, α, whereα 6= ε, such that eitherΘσ(〈i, π〉) ↓ but 〈j, πα〉 ∈ Πρ,

or Θρ(〈j, π〉) ↓ but 〈i, πα〉 ∈ Πσ.

Compare the above definition to definition 6 and observe that the differences are minor. The uni-

fication returns two AMRSs,σ′′ andρ′′, which are extensions (with respect to the closure operations

Ty, Eq andCl) of σ′ andρ′, respectively.

To define thelanguagegenerated by a unification grammarGu, we extend the notion offorms:

a form is simply an MRS. A formσA = 〈A1, . . . ,Ak〉 immediately derivesanother formσB =

〈B1, . . . ,Bm〉 (denoted byσA
1

=⇒u σB) iff there exists a ruleru ∈ Ru of lengthn that licenses

the derivation. The head of the rule is matched against some elementAi in σA using unification in

context: (σA, i) t (ru, 0) = (σ′
A, r′). If the unification does not fail,σB is obtained by replacing

the i-th element ofσ′
A with the body ofr′. The reflexive transitive closure of ‘

1
=⇒u’ is denoted by

‘
∗

=⇒u’. An empty derivation sequence means that an empty sequenceof rules is applied to the source

10



MRS and is denoted by ‘
0

=⇒u’, for exampleσA
0

=⇒u σA.

Definition 9. Thelanguageof a unification grammarGu is L(Gu) = {s ∈ WORDS∗ | s = w1 · · ·wn

andAs ∗
=⇒u σl such thatσl is unifiable with〈A1, . . . ,An〉}, whereAi ∈ L(wi) for 1 ≤ i ≤ n.

Example 2 (Derivation sequence).As an example, consider again the grammarGu
ww of example 1.

The following is a derivation sequence for the stringbaba with this grammar. Note that the scope of

variables is limited to a single MRS (so that multiple occurrences of the same tag in a single form

denote reentrancy, whereas across forms they are unrelated).

As =


LIST :




HD : s

TL : elist





 apply rule 1 to the single element of the form

σ1 =

[
LIST : 3

] [
LIST : 3

]
apply rule 2 to the second element

σ2 =


LIST :




HD : 1

TL : 2







[
LIST : 2

]

LIST :




HD : 1

TL : elist





 apply rule 2 to the first element

σ3 =

[
LIST : 2

]

LIST :




HD : 1

TL : elist







[
LIST : 2

]

LIST :




HD : 1

TL : elist







Now consider the MRS obtain by concatenating (the single elements of)〈L(b),L(a),L(b),L(a)〉:

σl =


LIST :




HD : tb

TL : elist








LIST :




HD : ta

TL : elist








LIST :




HD : tb

TL : elist








LIST :




HD : ta

TL : elist







Sinceσl and σ3 are unifiable, the stringbaba is in L(Gu
ww). In fact, L(Gu

ww) = {ww | w ∈

{a, b}+}.

Unification grammars are Turing equivalent in their generative capacity: determining whether a

given string is generated by a given grammar is as hard as deciding whether a Turing machine halts

on the empty input (Johnson, 1988). Therefore, the recognition problem for unification grammars is

undecidable in the general case. In order to ensure decidability of the recognition problem, several

constraints on unification grammars, commonly known as theoff-line parsability (OLP) constraints,

were suggested, such that the recognition problem is decidable for off-line parsable unification gram-

mars (see Jaeger, Francez, and Wintner (2004) for a survey).
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The idea behind all the OLP definitions is to rule out grammarswhich license trees in which

unbounded amount of material is generated without expanding the frontier word. This can happen

due to two kinds of rules:ε-rules (whose bodies are empty) and unit rules (whose bodiesconsist of

a single element). When grammars are context-free, it is always possible to remove grammar rules

which can cause such unbounded growth of the trees: in particular, one can always remove cyclic

sequences of unit rules (which can be applied unboundedly, without expanding the yield of the tree).

However, with unification grammars such a procedure turns out to be more problematic. It is not

trivial to determine when a sequence of unit-rules is, indeed, cyclic; and when a rule is redundant.

Recently, Jaeger, Francez, and Wintner (2004) defined a novel OLP constraint which is shown to

be effectively testable. However, even grammars which are OLP according to their definition are not

guaranteed to have a polynomial parsing time.

1.3 Research objectives

The main objective of this work is to define constraints on unification grammars which will guarantee

efficient (polynomial) processing. There are naı̈ve constraints which restrict the expressiveness of

unification grammars in a way which ensures polynomial parsing time, but they are too strong. One

example is Generalized Phrase Structure Grammar (GPSG) (Gazdar et al., 1985). Among current

syntactic theories, GPSG provides an appealing solution for describing natural languages with its

modular system of composite categories, rules, constraints and feature propagation principles. GPSG

is known to be equivalent to CFG, thus inducing a polynomial,O(n3), recognition parsing time.

Another example of such a constraint (which we show in this paper as the first step towards a more

interesting constraint) is to disallow reentrancies in feature structures. In both cases above the result-

ing formalisms are equivalent to CFG which, as we mentioned above, is not enough for describing

natural languages.

Our main goal in this work is to define an effectively testablesyntactic constraint on unification

grammars which will ensure that grammars satisfying the constraint generate all and only the mildly

context-sensitive languages. This is beneficial for both theoretical and practical reasons:

• From a theoretical point of view, constraining unification grammars to generate exactly the

12



class of mildly context-sensitive languages will result ina grammatical formalism which is,

on one hand, powerful enough for linguists to express linguistic generalizations in, and on the

other hand cognitively adequate;

• Practically, such a constraint can provide an efficient recognition time algorithm for the limited

class of unification grammars.

In this work we show the solution for the theoretical aspect of the problem by defining a mapping

from unification grammars to one of mildly context-sensitive formalisms, Linear Indexed Grammar.
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Chapter 2

Context-free Unification Grammars

In this section we define a constraint on unification grammarswhich ensures that grammars satisfying

it generate all and only the context-free languages. This constraint disallowsany reentrancies in the

rules of the grammar. When rules are non-reentrant, applying a rule implies that an exact copy of the

body of the rule is inserted into the generated (sentential)form, not affecting neighboring elements

of the form the rule is applied to. The only difference between rule application in non-reentrant

unification grammars and the analog operation in context-free grammars is that the former requires

unification whereas the latter only calls for identity check. In this section we show that this small

difference does not affect the generative power of the formalisms.

Let Gcf = 〈VN , Vt,R
cf , Scf 〉 be a context-free grammar. For the sake of simplicity, in this

section we assume that the start symbol ofGcf occurs only on the left side of rules. If this is not the

case, rename the original start symbol toScf
old and introduce a new start symbol,Scf , and an additional

unit ruleScf → Scf
old. We also assume, for simplicity, that the grammar is given ina normal form,

where each rule has either a sequence of (zero or more) non-terminals in its body or a single terminal.

The set of all such context-free grammars is denoted CFGS.

Definition 10 (Non-reentrant unification grammar). A unification grammarGu = 〈Ru,As,L〉

over the signature〈ATOMS, FEATS, WORDS〉 is non-reentrant iff for any rule ru ∈ Ru, ru is non-

reentrant. LetUGnr be the set of all non-reentrant unification grammars.

We show that the class of languages generated by non-reentrant unification grammars is exactly



the class of context-free languages. The trivial directionis to map a CFG to a non-reentrant unification

grammar, since every CFG is, trivially, such a unification grammar.

Definition 11 (Mapping from CFGS to UGnr). Let cfg2ug: CFGS 7→ UGnr be a mapping ofCFGS

to UGnr, such that ifGcf = 〈VN , Vt,R
cf , Scf 〉 andGu = 〈Ru,As,L〉 = cfg2ug(Gcf ) thenGu is

over the signature〈ATOMS, FEATS, WORDS〉 and:

• ATOMS = VN ∪ Vt

• FEATS = ∅

• WORDS= Vt

• As = Scf

• For all tj ∈ Vt, for all A → tj ∈ Rcf , A ∈ L(tj)

• If B0 → B1 . . . Bn ∈ Rcf thenB0 → B1 . . . Bn ∈ Ru.

Theorem 1. LetGcf be a CFG grammar. ThenL(Gcf ) = L(cfg2ug(Gcf )).

Proof. Since all feature structures are atomic, unification incfg2ug(Gcf ) is reduced to identity check.

As there is a one-to-one correspondence between feature structures incfg2ug(Gcf ) and terminal and

non-terminal symbols inGcf , rule application in both grammars is identical. Hence bothgrammars

induce the same derivation relation on forms, and thereforegenerate the same language.

We now define a mapping from UGnr to CFGS. The non-terminal symbols of a context-free gram-

mar in the image of the mapping are the set of all feature structures defined in the source unification

grammar.

Definition 12 (Mapping from UGnr to CFGS). Let ug2cfg : UGnr 7→ CFGS be a mapping of

UGnr to CFGS, such that ifGu = 〈Ru,As,L〉 is over the signature〈ATOMS, FEATS, WORDS〉 and

Gcf = 〈VN , Vt,R
cf , Scf 〉 = ug2cfg(Gu), then:

• VN = {As} ∪ {Ai | A0 → A1 . . . An ∈ Ru, 1 ≤ i ≤ n} ∪ {A | A ∈ L(a), a ∈ ATOMS}. VN is

the set of all the feature structures occurring in any of the rules or the lexicon ofGu.
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• Vt = WORDS

• Scf = As

• Rcf consists of the following rules:

1. LetA0 → A1 . . . An ∈ Ru andB ∈ L(b). If for somei, 1 ≤ i ≤ n, Ai t B 6= >, then

Ai → b ∈ Rcf

2. If A0 → A1 . . . An ∈ Ru andAs t A0 6= > thenScf → A1 . . . An ∈ Rcf .

3. Letru
1 = A0 → A1 . . . An andru

2 = B0 → B1 . . . Bm, whereru
1 , ru

2 ∈ Ru. If for somei,

1 ≤ i ≤ n, Ai t B0 6= >, then the ruleAi → B1 . . . Bm ∈ Rcf

Example 3 (Mapping from UGnr to CFGS). Let Gu = 〈Ru,As,L〉 be a non-reentrant unification

grammar for the language{anbn | 0 ≤ n} over the signature〈ATOMS, FEATS, WORDS〉, such that:

• ATOMS = {v, u,w}

• FEATS = {F1, F2}

• WORDS= {a, b}

• As =




F1 : w

F2 : w




• The lexicon is defined asL(a) = {

[
F2 : v

]
} andL(b) = {

[
F2 : u

]
}

• The set of rulesRu is defined as:

1.




F1 : w

F2 : w


 → ε

2.

[
F2 : w

]
→




F1 : u

F2 : v




[
F2 : w

]



F1 : v

F2 : u




Then the context-free grammarGcf = 〈VN , Vt,R
cf , Scf 〉 = ug2cfg(Gu) is defined as:

• VN = 




[
F2 : v

]
,

[
F2 : u

]
,

[
F2 : w

]
,




F1 : w

F2 : w


,




F1 : u

F2 : v


,




F1 : v

F2 : u








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• Vt = WORDS= {a, b}

• Scf = As =




F1 : w

F2 : w




• The set of rulesRcf is defined as:

1.




F1 : u

F2 : v


 → a

2.




F1 : v

F2 : u


 → b

3.




F1 : w

F2 : w


 → ε

4.

[
F2 : w

]
→ ε

5.




F1 : w

F2 : w


 →




F1 : u

F2 : v




[
F2 : w

]



F1 : v

F2 : u




6.

[
F2 : w

]
→




F1 : u

F2 : v




[
F2 : w

]



F1 : v

F2 : u




Note that the size ofug2cfg(Gu) is polynomial in the size ofGu: |Rcf | ≤ |Ru| × |Ru|. The

following lemma shows that non-reentrant unification grammars are very limited, and in particular

cannot “add information” beyond that which exists in the rules: if Ai is an element of a sentential

form induced by such a grammar, thenAi is an element in the body of some grammar rule.

Lemma 2. Let Gu = 〈Ru,As,L〉 be a non-reentrant unification grammar over the signature

〈ATOMS, FEATS, WORDS〉 andAs ∗
=⇒u A1 . . . An be a derivation sequence. Then for allAi there

exist a ruleru ∈ Ru such thatru = B0 → B1 . . . Bm and an indexj, 0 < j ≤ m, for whichBj = Ai.

Proof. We prove by induction on the length of the derivation sequence. The induction hypothesis is

that if As k
=⇒u A1 . . . An then for allAi, where1 ≤ i ≤ n, there are a ruleru = B0 → B1 . . . Bm,

ru ∈ Ru and an indexj such thatBj = Ai. If k = 1, then there is a ruleC → A1 . . . An, As tC 6= >,

and allAi are part of the rule’s body because a non-reentrant rule doesnot propagate information

from the rule head to the body. Assume that the hypothesis holds for everyl, 0 < l < k; let the length
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of the derivation sequence bek. If As k−1
=⇒u D1 . . . Dm

1
=⇒u A1 . . . An then there exist an indexj

and a ruleru = C → Aj . . . An−m+j ∈ Ru such that:

1. C t Dj 6= >

2. Di =






Ai i < j

Ai+n−m i > j

By the induction hypothesis for allAi, wherei < j or i > n − m + j, there is a rule that containsAi

in its body. ForAi, wherej ≤ i ≤ n − m + j, the ruleru completes the proof.

With this lemma we can now prove the main result of this chapter.

Theorem 3. Let Gu = 〈Ru,As,L〉 be a non-reentrant unification grammar over the signature

〈ATOMS, FEATS, WORDS〉 andGcf = 〈VN , Vt,R
cf , Scf 〉 = ug2cfg(Gu). ThenL(Gcf ) = L(Gu).

Proof. We prove by induction on the length of a derivation sequence that As ∗
=⇒u A1 . . . An iff

Scf ∗
=⇒cf A1 . . . An.

Assume thatAs ∗
=⇒u A1 . . . An. The induction hypothesis is that ifAs k

=⇒u A1 . . . An then

Scf k
=⇒cf A1 . . . An. If k = 1, then there is a ruleC → A1 . . . An, As tC 6= >, and by the definition

of ug2cfg, Scf → A1 . . . An ∈ Rcf . ThenScf k=1
=⇒cf A1 . . . An. Assume that the hypothesis holds

for everyl, 0 < l < k; let the length of the derivation sequence bek. If As k−1
=⇒u D1 . . . Dm

1
=⇒u

A1 . . . An then there exist an indexj and a ruleru
1 = C → Aj . . . An−m+j ∈ Ru such that:

1. C t Dj 6= >

2. Di =






Ai i < j

Ai+n−m i > j

By lemma 2 there is some ruleru
2 ∈ Ru such thatDj is an element of its body. Hence, by definition 12

there is a ruler3 = Dj → Aj . . . An−m+j ∈ Rcf which is a result of combiningru
1 andru

2 . By the

induction hypothesisScf k−1
=⇒cf D1 . . . Dn, and by application of the ruler3 we obtain:

Scf k
=⇒cf D1 . . . Dj−1Aj . . . Aj+n−mDj+1 . . . Dm = A1 . . . An
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AssumeScf ∗
=⇒cf A1 . . . An.1 The induction hypothesis is that ifScf k

=⇒cf A1 . . . An then

As k
=⇒u A1 . . . An. If k = 1, then there is a ruleScf → A1 . . . An ∈ Rcf and by definition ofug2cfg

(note thatScf is not a part of any rule body inRcf ), C → A1 . . . An ∈ Ru, whereAs t C 6= >. Then

As k=1
=⇒u A1 . . . An. Assume that the hypothesis holds for everyi, 0 < i < k; let the length of the

derivation sequence bek. If Scf k−1
=⇒cf D1 . . . Dm

1
=⇒cf A1 . . . An then there exist an indexj and a

rule r1 = Dj → Aj . . . An−m+j ∈ Rcf such that:

Di =






Ai i < j

Ai+n−m i > j

By definition 11 there are rulesru
2 = B0 → B1 . . . Bp, ru

3 = C → Aj . . . An−m+j in Ru and an

indext, 1 ≤ t ≤ p, such thatBt = Dj andC t Dj 6= >.

By the induction hypothesis,As k−1
=⇒u D1 . . . Dn, and by application of the ruleru

3 we obtain:

As k
=⇒u D1 . . . Dj−1Aj . . . Aj+n−mDj+1 . . . Dm = A1 . . . An

In sum,As ∗
=⇒u A1 . . . An iff Scf ∗

=⇒cf A1 . . . An. Hence,L(Gcf ) = L(ug2cfg(Gu)).

Corollary 4. The class of languages generated by non-reentrant unification grammars (UGnr) is

equivalent to the class of context-free languages.

Proof. Immediate from theorem 1 and theorem 3.

Definition 13 (Atomic Unification Grammars (AUG)). A unification grammarGu = 〈Ru,L,As〉

is atomic if all rules inRu contains only atomic feature structures (feature structures define by case 1

of definition 1).

Since AUG is just a notational variant of CFG it does emphasize the idea that non-reentrant feature

structures add nothing of substance to UG, at least in terms of weak generative capacity.

1Recall that all elements ofVN are feature structures, and therefore all the elements of a (CFG) sentential form can be

represented asAi, whereAi is a feature structure.
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Chapter 3

Mildly Context Sensitive Unification

Grammars

In this section we define a constraint on unification grammarswhich ensures that grammars satisfying

it generate all and only the mildly context-sensitive languages. In section 3.1 we recall one of the

mildly context-sensitive formalisms, Linear Indexed Grammar. Section 3.2 defines the constraint,

namely one-reentrant unification grammars. Then, in section 3.3 we show the mapping of LIGs to

one-reentrant unification grammars. The mapping of one-reentrant unification grammars to LIGs is

shown in section 3.4.

3.1 Linear Indexed Grammars

In this section we use the definition of Vijay-Shanker and Weir (1994). In a Linear indexed grammar

(LIG), strings are derived from nonterminals with an associated stack denotedA[l1 . . . ln], whereA is

a nonterminal, eachli is a stack symbol for1 ≤ i ≤ n, andl1 is the top of the stack.A[ ] denotes the

nonterminalA associated with the empty stack. Since stacks can grow to be of unbounded size during

a derivation, some way of partially specifying unbounded stacks in LIG productions is needed. We

useA[l1 . . . ln..] to denote the nonterminalA associated with any stackη whose topn symbols are

l1, l2 . . . , ln where0 ≤ n. The set of all nonterminals inVN , associated with stacks whose symbols

come fromVs, is denotedVN [V ∗
s ].



Definition 14. A Linear Indexed Grammaris a five tupleGli = 〈VN , Vt, Vs,R
li, S〉 where

• VN is a finite set of nonterminals,

• Vt is a finite set of terminals,

• Vs is a finite set of indices (stack symbols),

• S ∈ VN is the start symbol and

• Rli is a finite set of productions, having one of the following twoforms:

1. Production with afixedstack at the head:Ni[p1 . . . pn] → α

2. Production with anunboundedstack at the head:Ni[p1 . . . pn..] → αNj [q1 . . . qm..]β

whereNi, Nj ∈ VN , p1 . . . pn, q1 . . . qm ∈ Vs, n,m ≥ 0 andα, β ∈ (Vt ∪ VN [V ∗
s ])∗.

Definition 15. Given a LIGGli = 〈VN , Vt, Vs,R
li, S〉, thederivation relation ‘=⇒li’ is defined as

follows:

• If Ni[p1 . . . pn] → α ∈ Rli then for allΨ1,Ψ2 ∈ (VN [V ∗
s ] ∪ Vt)

∗,

Ψ1Ni[p1 . . . pn]Ψ2 =⇒li Ψ1αΨ2

• If Ni[p1 . . . pn..] → αNj [q1 . . . qm..]β ∈ Rli then for allΨ1,Ψ2 ∈ (VN [V ∗
s ]∪Vt)

∗ andη ∈ V ∗
s ,

Ψ1Ni[p1 . . . pnη]Ψ2 =⇒li Ψ1αNj [q1 . . . qmη]βΨ2

whereNi, Nj ∈ VN , p1 . . . pn, q1 . . . qm ∈ Vs, n,m ≥ 0 andα, β ∈ (Vt ∪ VN [V ∗
s ])∗. Thelanguage,

L(Gli), generated byGli, is{w ∈ V ∗
t | S[ ]

∗
=⇒li w}, where ‘

∗
=⇒li’ is the reflexive, transitive closure

of ‘=⇒li’.

We change the definition above by adding the following production form with anunboundedstack

at the head:

Ni[p1 . . . pn..] → α
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whereNi ∈ VN , p1 . . . pn ∈ Vs, 0 ≤ n andα ∈ (Vt ∪ VN [V ∗
s ])∗. The derivation relation ‘=⇒li’ for

the added production form is defined as follows:

Ψ1Ni[p1 . . . pnη]Ψ2 =⇒li Ψ1αΨ2

whereΨ1,Ψ2 ∈ (VN [V ∗
s ] ∪ Vt)

∗. It is easy to see that such productions can be simulated by the

two production forms given in definition 14, so the extended formalism is (weakly) equivalent to the

original one.

LIG is one of the four formalisms that are known to be mildly context-sensitive. The following

languages are known to be MCS:

• L1 = {wwRwwR | w ∈ {a, b}}

• L2 = {ww | w ∈ {a, b}}

• L3 = {anbncndn | 0 ≤ n}

To demonstrate the expressiveness of this class of languages we provide below a grammar forL2.

Example 4 (LIG for L2). LetGli
2 = 〈VN , Vt, Vs,R

li, S〉, where:

• VN = {S,N2, N3}

• Vt = {a, b}

• Vs = Vt

• Rli = {r1, r2, r3, r4, r5, r6, r7}, where

1. r1 = S[ ] → N2[ ]

2. r2 = N2[..] → N2[a..]a

3. r3 = N2[..] → N2[b..]b

4. r4 = N2[..] → N3[..]

5. r5 = N3[a..] → aN3[..]

6. r6 = N3[b..] → bN3[..]
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7. r7 = N3[ ] → ε

It is easy to see thatL(Gli
2 ) = L2. For example, a derivation of the wordabbabb is

S =⇒li N2[ ] r1

=⇒li N2[b]b r3

=⇒li N2[bb]bb r3

=⇒li N2[abb]abb r2

=⇒li N3[abb]abb r4

=⇒li aN3[bb]abb r5

=⇒li abN3[b]abb r6

=⇒li abbN3[ ]abb r6

=⇒li abbabb r7

In contrast, seemingly similar languages are beyond mildlycontext-sensitive and hence cannot be

generated by LIG (Vijay-Shanker and Weir, 1994):

• L4 = {www | w ∈ {a, b}}

• L5 = {an2

| 0 ≤ n}

• L6 = {anbncndnen | 0 ≤ n}

A crucial characteristic of LIG is that onlyonecopy of the stack can be copied to asingleelement

in the body of a rule. Once more than one copy is allowed, the expressive power grows beyond MCS.

This is demonstrated by the following definition and examples.

Definition 16. Linear indexed grammar 2 (LIG2) is an extension of LIG. The difference is in the

definition of the productions set, where one more rule form isallowed:

Ni[p1 . . . pn..] → Nj [q1 . . . qm..]Nk[r1 . . . rl..]

WhereNi, Nj , Nk ∈ VN andp1 . . . pn, q1 . . . qm, r1 . . . rl ∈ Vs. The derivation relation ‘=⇒li’ for

the production form is defined as follows:

Ψ1Ni[p1 . . . pnη]Ψ2 =⇒li Ψ1Nj [q1 . . . qmη]Nk[r1 . . . rlη]Ψ2
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whereΨ1,Ψ2 ∈ (VN [V ∗
s ] ∪ Vt)

∗.

We demonstrate the additional expressiveness by providingLIG2 grammars forL4 andL5, which

are trans-MCS. Note that the grammar of example 5 is obtainedfrom the grammar of example 4 by

adding a single rule,r4.

Example 5 (LIG2 for L4). LetGli
4 = 〈VN , Vt, Vs,R

li, S〉, where:

• VN = {S,N2, N3}

• Vt = {a, b}

• Vs = Vt

• Rli = {r1, r2, r3, r4, r5, r6, r7}, where

1. r1 = S → N2[ ]

2. r2 = N2[..] → N2[a..]a

3. r3 = N2[..] → N2[b..]b

4. r4 = N2[..] → N3[..]N3[..]

5. r5 = N3[a..] → aN3[..]

6. r6 = N3[b..] → bN3[..]

7. r7 = N3[ ] → ε

It is easy to see thatL(Gli
4 ) = L4. For example, a derivation of the wordabbabbabb is

S =⇒li2 N2[ ] r1

=⇒li2 N2[b]b r3

=⇒li2 N2[bb]bb r3

=⇒li2 N2[abb]abb r2

=⇒li2 N3[abb]N3[abb]abb r4

=⇒li2 aN3[bb]N3[abb]abb r5
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=⇒li2 abN3[b]N3[abb]abb r6

=⇒li2 abbN3[ ]N3[abb]abb r6

=⇒li2 abbN3[abb]abb r7

=⇒li2 abbaN3[bb]abb r5

=⇒li2 abbabN3[b]abb r6

=⇒li2 abbabbN3[ ]abb r6

=⇒li2 abbabbabb r7

Example 6 (LIG2 for L5). LetGli
5 = 〈VN , Vt, Vs,R

li, S〉, where:

• VN = {S,N2, N3}

• Vt = {a}

• Vs = Vt

• Rli = r1, r2, r3, r4, r5, r6, r7, where

1. r1 = S → N2[a]

2. r2 = N2[..] → N3[..]N2[aa..]

3. r3 = N2[..] → N3[..]

4. r4 = N3[a..] → aN3[..]

5. r5 = N3[ ] → ε

The grammar is based on the observation thatn2 = 1 + 3 + 5 + . . . + (2n− 2). It is easy to see that

L(Gli
5 ) = L5. For example, a derivation of the wordaaaa is

S =⇒li2 N2[a] r1

=⇒li2 N3[a]N2[aaa] r2

=⇒li2 N3[a]N3[aaa] r3

∗
=⇒li2 aN3[ ]aaaN3[ ] r4 × 4

∗
=⇒li2 aaaa r5 × 2
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3.2 One-reentrant Unification Grammars

In this section we define a constrained variant of unificationgrammars, namelyone-reentrant unifi-

cation grammars, that generates exactly the mildly context-sensitive class of languages. The major

constraint on unification grammars is that each rule can include at most one reentrancy, reflecting the

LIG situation where stacks can be copied to exactly one daughter in each rule.

Definition 17 (One-reentrant unification grammar). A unification grammarGu = 〈Ru,As,L〉

over the signatureσ = 〈ATOMS, FEATS, WORDS〉 is one-reentrantiff for every ruleru ∈ Ru, ru

includes at most one reentrancy, between the head of the ruleand some element of the body.

Let UG1r be the set of all one-reentrant unification grammars.

Example 7 (One-reentrant unification grammar). LetGu = 〈Ru,As,L〉 be a one-reentrant unifi-

cation grammar over the signature〈ATOMS, FEATS, WORDS〉, such that

• ATOMS = {s, t, u, v}

• FEATS = {F, G}

• WORDS= {a, b, c, d};

• As =




F : s

G : s




• The lexicon is defined asL(a) = {s}, L(b) = {t}, L(c) = {u} andL(d) = {v}.

• The set of productionsRu is defined as

1.




F : s

G : 1


 → s




F : s

G :




F : s

G : 1







v

2.




F : s

G : 1


 →




F : t

G : 1




3.




F : t

G :




F : s

G : 1






→ t




F : t

G : 1


 u
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4.




F : t

G : s


 → ε

ThenL(Gu) = {anbncndn | n ≥ 0}.

One-reentrant unification grammars induce highly constrained (sentential) forms: in such forms,

there are no reentrancies whatsoever, neither between distinct elements nor within a single element.

Lemma 5. If τ is a sentential form induced by a one-reentrant grammar thenthere are no reentran-

cies between elements ofτ or within an element ofτ .

Proof. By simple induction on the length of a derivation sequence. The proposition follows directly

from the fact that rules in a one-reentrant unification grammar have no reentrancies between elements

of their body.

Since all the feature structures in forms induced by a one-reentrant unification grammar are non-

reentrant, unification is simplified. The following property is phrased in terms of abstract feature

structures (see definition 3):

Lemma 6. Let A andB be unifiable non-reentrant feature structures. ThenC = A t B is defined as

follows:

• ΠC = ΠA ∪ ΠB

• ΘC(π) =






ΘA(π) if ΘA(π) ↓

ΘB(π) if ΘA(π) ↑ andΘB(π) ↓

undefined otherwise

• ≈C= {(π, π) | π ∈ ΠC}

Crucially, C is also anon-reentrantfeature structure whose set of paths is the union ofΠA and

ΠB .

Proof. Immediate from the definition of unification.

To simplify the construction of a mapping from LIG to UG, we first define a simplified variant

of one-reentrant unification grammars, which we presently prove to be equivalent to the original

definition.

27



Definition 18 (Simplified one-reentrant unification grammars). A one-reentrant unification gram-

marGu = 〈Ru,As,L〉 over the signatureσ = 〈ATOMS, FEATS, WORDS〉 is simplified iff the lexical

categories of words are inconsistent with any feature structure (except themselves). Formally, ifτ

is a sentential form induced byGu and τ i is an element ofτ then for each worda ∈ WORDS,

L(a) = {A}, whereA t τ i 6= > iff A = τ i.

Definition 19 (Lexicon simplification procedure). Let lexSmp be a mapping of one-reentrant

UGs to simplified one-reentrant UGs such that ifGu = 〈Ru,As,L〉 over the signature

〈ATOMS, FEATS, WORDS〉 is a one-reentrant UG and lexSmp(Gu) = Ĝu = 〈R̂u,As, L̂〉, thenĜu is

over the signature〈ÂTOMS, FEATS, WORDS〉 where:

• ÂTOMS = ATOMS∪ WORDS

• If a ∈ WORDS then L̂(a) = {a}. Note thata is a word, whereas{a} is a set of feature

structures that includes a single feature structure consisting of the single atoma.

• R̂u = Ru ∪ {A → a | A ∈ L(a)}

Trivially, lexSmp(Gu) is a simplified one-reentrant unification grammar. It is alsoeasy to verify

that L(Gu) = L(lexSmp(Gu)). In the rest of this section we restrict the discussion to simplified

one-reentrant unification grammars.

3.3 Mapping of Linear Indexed Grammars to one-reentrant Unifica-

tion Grammars

In order to simulate a given LIG with a unification grammar, a dedicated signature is defined based

on the parameters of the LIG.

Definition 20. Given a LIGGli = 〈VN , Vt, Vs,R
li, S〉, let τ be〈ATOMS, FEATS, WORDS〉, where

• ATOMS = VN ∪ Vs ∪ {elist};

• FEATS = {HEAD, TAIL };

• WORDS= Vt;
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We useτ throughout this section as the signature over which unification grammars are defined. We

will use feature structures over the signatureτ to represent and simulate LIG symbols. In particular,

feature structures will encode lists in the natural way, hence the featuresHEAD andTAIL . For the sake

of brevity, we use standard list notation when feature structures encode lists. Thus,

1. If A =




HEAD : p1

TAIL :




. . .



HEAD : pn

TAIL : elist










, thenA is depicted as〈p1, . . . , pn〉.

Note that an empty list,〈〉 depicts the feature structure

[
TAIL : elist

]
.

2. If A =




HEAD : p1

TAIL :




. . .



HEAD : pn

TAIL : i [ ]










, thenA is depicted as〈p1, . . . , pn, i 〉.

Note that the list,〈 i 〉 depicts the feature structure

[
TAIL : i [ ]

]
.

With this list representation, LIG symbols are mapped to feature structures as follows.

Definition 21 (Mapping of LIG symbols to feature structures). Let toFs be a mapping of a linear

indexed grammar symbols to feature structures, such that:

1. If t ∈ Vt then toFs(t) = 〈t〉

2. If N ∈ VN andη ∈ V ∗
s , then toFs(N [η]) = 〈N〉 · η

Example 8. Let Gli = 〈VN , Vt, Vs,R
li, S〉 be a LIG such thatVN = {S}, Vt = {t1, t2} and

Vs = {s1, s2}. Then

toFs(S[s1]) = 〈S, s1〉

toFs(t1) = 〈t1〉

toFs(S[s2, s1, s1]) = 〈S, s2, s1, s1〉

When feature structures that are images of LIG symbols are concerned, unification is reduced to

identity, as the following lemma shows.
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Lemma 7. LetX1,X2 ∈ VN [V ∗
s ] ∪ Vt. If toFs(X1) t toFs(X2) 6= > then toFs(X1) = toFs(X2).

Proof. Simple induction on the length ofX1.

When a feature structure which is represented as an unbounded list (a list that is not terminated

by elist) is unifiable with an image of a LIG symbol, the former is a prefix of the latter.

Lemma 8. Let X ∈ VN [V ∗
s ] ∪ Vt and C = 〈p1, . . . , pn, i 〉 be a non-reentrant feature structure,

wherep1, . . . , pn ∈ Vs. ThenC t toFs(X) 6= > iff toFs(X) = 〈p1, . . . , pn〉 · α, whereα ∈ V ∗
s .

Proof. Assume thatC t toFs(X) 6= >. By definition 21,toFs(X) is a feature structure that is rep-

resented as a list, terminated byelist, whose elements are atoms. Hence by definition of unification,

the prefix of lengthn of toFs(X) equals to〈p1, . . . , pn〉. Therefore,toFs(X) = 〈p1, . . . , pn〉 · α,

whereα ∈ V ∗
s .

Assume thatC t toFs(X) = >. By definition of unification for allα ∈ V ∗
s , 〈p1, . . . , pn, i 〉 t

〈p1, . . . , pn〉 · α 6= >. Therefore, we obtain that for allα ∈ V ∗
s , toFs(X) 6= 〈p1, . . . , pn〉 · α.

The mappingtoFsis extended to sequences of symbols in the natural way, by setting toFs(αβ) =

toFs(α)toFs(β), whereα, β ∈ (VN [V ∗
s ]∪ Vt)

∗. Note that the mapping is one to one because the LIG

symbol can be deterministicly restored from its image (the feature structure). If the list contains only

a single element then the LIG symbol is either a terminal symbol or a non-terminal symbol with an

empty stack. When the list representation of a feature structure consists of more than one element,

the first element of the list is a non-terminal symbol and the remainder of the list is the non-terminal

stack content.

To simulate LIG with a unification grammar we represent each LIG symbol in the grammar as a

feature structure, encoding the stack of LIG non-terminalsas lists. Rules that propagate stacks (from

mother to daughter) are simulated by means of value sharing (reentrancy) in the unification grammar.

Definition 22 (Mapping from L IGS to UG1r). Let lig2ug be a mapping ofL IGS to UG1r, such that

if Gli = 〈VN , Vt, Vs,R
li, S〉 andGu = 〈Ru,As,L〉 = lig2ug(Gli) thenGu is over the signatureτ

(definition 20) and:

• As = toFs(S[ ])
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• For all t ∈ Vt, L(t) = {toFs(t)}.

• Ru is defined by:

1. A LIG rule of the typeX0 → α, whereX0 ∈ VN [V ∗
s ] andα ∈ (VN [V ∗

s ]∪Vt)
∗, is mapped

to the unification rule:

toFs(X0) → toFs(α)

2. A LIG rule of the typeNi[p1, . . . , pn..] → α Nj[q1, . . . , qm..] β, whereα, β ∈ (VN [V ∗
s ]∪

Vt)
∗, Ni, Nj ∈ VN andp1, . . . , pn, q1, . . . , qm ∈ Vs, is mapped to the unification rule:

〈Ni, p1, . . . , pn, 1 〉 → toFs(α) 〈Nj , q1, . . . , qm, 1 〉 toFs(β)

Evidently, lig2ug(Gli) ∈ UG1r for any LI grammarGli because each of its rules has at most one

reentrancy.

Example 9 (Mapping from L IGS to UG1r). We map the LIGGli
2 of example 4 above toGu =

lig2ug(Gli) defined above the signatureτ of definition 20, with the start symbol toFs(S[ ]). The

lexicon is defined for the wordsa andb asL(a) = {〈a〉} andL(b) = {〈b〉}. The set of productions

Rli, is defined as follows:

1. ru
1 = 〈S〉 → 〈N2〉, where the LIG rule isr1 = S[ ] → N2[ ]

2. ru
2 = 〈N2, 1 〉 → 〈N2, a, 1 〉〈a〉, where the LIG rule isr2 = N2[..] → N2[a..]a

3. ru
3 = 〈N2, 1 〉 → 〈N2, b, 1 〉〈b〉, where the LIG rule isr3 = N2[..] → N2[b..]b

4. ru
4 = 〈N2, 1 〉 → 〈N3, 1 〉, where the LIG rule isr4 = N2[..] → N3[..]

5. ru
5 = 〈N3, a, 1 〉 → 〈a〉〈N3, 1 〉, where the LIG rule isr5 = N3[a..] → aN3[..]

6. ru
6 = 〈N3, b, 1 〉 → 〈b〉〈N3, 1 〉, where the LIG rule isr6 = N3[b..] → bN3[..]

7. ru
7 = 〈N3〉 → ε, where the LIG rule isr7 = N3[ ] → ε

Lemma 9. The mapping lig2ug of definition 22 is one to one.

Proof. Immediately follows from the fact that the mappingtoFs is one-to-one.
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To show that the unification grammarlig2ug(Gli) correctly simulates the LIG grammarGli we

first prove that every derivation in the latter has a corresponding derivation in the former (theorem 10).

Theorem 11 proves the reverse direction.

Theorem 10. Let Gli = 〈VN , Vt, Vs,R
li, S〉 be a LIG andGu = 〈Ru,As,L〉 be lig2ug(Gli). If

S[ ]
∗

=⇒li α thenAs ∗
=⇒u toFs(α), whereα ∈ (VN [V ∗

s ] ∪ Vt)
∗.

Proof. We prove by induction on the length of the derivation sequence. The induction hypothesis is

that if S[ ]
k

=⇒li α, thenAs k
=⇒u toFs(α). If k = 1, then

1. S[ ]
k=1
=⇒li α;

2. Hence,S[ ] → α ∈ Rli;

3. By definition 22,toFs(S) → toFs(α) ∈ Ru;

4. SinceAs = toFs(S) we obtain thatAs → toFs(α) ∈ Ru;

5. Therefore,As k=1
=⇒u toFs(α)

Assume that the hypothesis holds for everyi, 0 < i < k; let the length of the derivation sequence

bek.

1. Let S[ ]
k−1
=⇒li γ1 N [p1, . . . , pn] γ2

1
=⇒li γ1 α γ2, whereγ1, γ2, α ∈ (VN [V ∗

s ] ∪ Vt)
∗. Let

r ∈ Rli be a LIG rule that is applied toN [p1, . . . , pn] at stepk of the derivation.

2. By the induction hypothesis,As k−1
=⇒u toFs(γ1 Ni[p1, . . . , pn] γ2).

3. By definition 21,

toFs(γ1N [p1, . . . , pn]γ2) = toFs(γ1) toFs(N [p1, . . . , pn]) toFs(γ2)

= toFs(γ1) 〈N, p1, . . . , pn, 〉 toFs(γ2)

4. From (2) and (3),As k−1
=⇒u toFs(γ1) 〈N, p1, . . . , pn〉 toFs(γ2).

5. The ruler can be of either of two forms as follows:

(a) Letr beN [p1, . . . , pn] → α.
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i. By definition 22,Ru includes the ruletoFs(N [p1, . . . , pn]) → toFs(α).

ii. This rule is applicable to the form in (4), providingAs k
=⇒u toFs(γ1) toFs(α) toFs(γ2).

iii. By definition 21, toFs(γ1) toFs(α) toFs(γ2) = toFs(γ1 α γ2). Hence,As k
=⇒u

toFs(γ1 α γ2).

(b) Letr beN [p1, . . . , px..] → α1 M [q1, . . . , qm..] α2, wherex ≤ n, M ∈ VN , q1, . . . , qm ∈

Vs andα1, α2 ∈ (VN [V ∗
s ] ∪ Vt)

∗.

i. By applying the ruler at the last derivation step in (1) we obtain:

S[ ]
k−1
=⇒li γ1 N [p1, . . . , pn] γ2

1
=⇒li γ1 α1 M [q1, . . . , qm, px+1, . . . , pn] α2 γ2

ii. By definition 22,Ru includes the rule

〈N, p1, . . . , px, 1 〉 → toFs(α1) 〈M, q1, . . . , qm, 1 〉 toFs(α2)

iii. By applying this rule to the form in (4) we obtain

As k−1
=⇒u toFs(γ1) 〈N, p1, . . . , pn〉 toFs(γ2)

1
=⇒u toFs(γ1) toFs(α1) 〈M, q1, . . . , qm, px+1, . . . , pn〉 toFs(α2) toFs(γ2)

iv. By definition 21,

toFs(M [q1, . . . , qm, px+1, . . . , pn]) = 〈M, q1, . . . , qm, px+1, . . . , pn〉

Hence

As k
=⇒u toFs(γ1) toFs(α1) toFs(M [q1, . . . , qm, px+1, . . . , pn]) toFs(α2) toFs(γ2)

v. Therefore,As k
=⇒u toFs(γ1 α1 M [q1, . . . , qm, px+1, . . . , pn] α2 γ2).

Theorem 11. Let Gli = 〈VN , Vt, Vs,R
li, S〉 be a LIG andGu = 〈Ru,As,L〉 = lig2ug(Gli) be a

one-reentrant unification grammar. IfAs ∗
=⇒u A1 . . . An thenS[ ]

∗
=⇒li X1 . . . Xn such that for

everyi, 1 ≤ i ≤ n, Ai = toFs(Xi).
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Proof. We prove by induction on the length of the (unification) derivation sequence. The induction

hypothesis is that ifAs k
=⇒u A1 . . . An, thenS[ ]

k
=⇒li X1 . . . Xn such that for everyi, 1 ≤ i ≤ n,

Ai = toFs(Xi). If k = 1, thenAs k=1
=⇒u A1 . . . An. Hence,As → A1 . . . An ∈ Ru. By definition 22,

As = toFs(S[ ]). SincetoFs is a one-to-one mapping we obtain that the unification rule iscreated

from the LIG ruleSli[ ] → X1 . . . Xn ∈ Rli, where for everyi, 1 ≤ i ≤ n, Ai = toFs(Xi).

Therefore,Sli[ ]
k

=⇒li X1 . . . Xn and for everyi, 1 ≤ i ≤ n, Ai = toFs(Xi).

Assume that the hypothesis holds for everyl, 0 < l < k; let the length of the derivation sequence

bek.

1. Assume thatAs k
=⇒u A1 . . . An. ThenAs k−1

=⇒u B1 . . . Bm
1

=⇒u A1 . . . An.

2. The last step of the unification derivation is establishedthrough a ruleru = C0 → C1 . . . Cn−m+1,

ru ∈ Ru, and an indexj, such that:

(〈B1, . . . ,Bm〉, j) t (〈C0, . . . ,Cn−m+1〉, 0) =

(〈B1, . . . ,Bj−1,Q,Bj+1, . . . ,Bm〉, 〈Q,Aj , . . . ,Aj+n−m〉)

3. By lemma 5, the sentential form〈A1, . . . ,An〉 has no reentrancies between its elements, hence

for everyi, 1 ≤ i < j, Ai = Bi and fori, j < i ≤ m, Ai+n−m = Bi.

4. By the induction hypothesis, ifAs k−1
=⇒u B1 . . . Bm thenSli[ ]

k−1
=⇒li Y1 . . . Ym and

〈B1, . . . ,Bm〉 = 〈toFs(Y1), . . . , toFs(Ym)〉

5. Hence,As k−1
=⇒u toFs(Y1) . . . toFs(Ym)

1
=⇒u A1 . . . An and from (3), for everyi, 1 ≤ i < j,

Ai = toFs(Yi) and fori, j < i ≤ m, Ai+n−m = toFs(Yi).

6. By definition 22, the ruleru is created from a LIG ruler. We now show that the ruler can be

applied to the elementYj of the LIG sentential form,〈Y1, . . . , Ym〉, and the resulting sentential

form, 〈X1, . . . ,Xn〉, for everyi, 1 ≤ i ≤ n, satisfies the equationAi = toFs(Xi). Since from

(5), for everyi, 1 ≤ i < j, Ai = toFs(Yi) and fori, j < i ≤ m, Ai+n−m = toFs(Yi), we just

need to show thatAi = toFs(Xi) for everyi, j ≤ i ≤ n − m + j.

7. By definition of LIG the ruler has one of the following forms:
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(a) Letr = Ni[p1, . . . , px] → Z1 . . . Zn−m+1. Hence, by definition 22, the unification rule

ru is

toFs(Ni[p1, . . . , px]) → toFs(Z1) . . . toFs(Zn−m+1)

whereC0 = toFs(Ni[p1, . . . , px]) and for everyi, 1 ≤ i ≤ n − m + 1, Ci = toFs(Zi).

Note that there are no reentrancies between the elements of the unification ruleru and

hence〈Aj , . . . ,An−m+j〉 = 〈C1, . . . ,Cn−m+1〉.

We now show that the ruler can be applied to the elementYj of the LIG sentential form.

SinceC0 t Bj = C0 t toFs(Yj) = toFs(Ni[p1, . . . , px]) t toFs(Yj) 6= > we obtain, by

lemma 7, that

toFs(Yj) = toFs(Ni[p1, . . . , px])

SincetoFs is one-to-one mapping we obtain thatYj = Ni[p1, . . . , px]. Hence the LIG

rule r can be applied toYj.

We now show thatAi = toFs(Xi) for everyi, j ≤ i ≤ n − m + j. We apply the ruler

to Yj as follows:

Y1 . . . Yj . . . Ym
1

=⇒li X1 . . . Xj−1Z1 . . . Zn−m+1Xn−m+j+1 . . . Xn

Hence〈Xj , . . . ,Xn−m+j〉 = 〈Z1, . . . , Zn−m+1〉. Therefore,

〈Aj, . . . ,An−m+j〉 = 〈C1, . . . ,Cn−m+1〉

= 〈toFs(Z1), . . . , toFs(Zn−m+1)〉

= 〈toFs(Xj), . . . , toFs(Xn−m+j)〉

(b) Let r = Ni[p1, . . . , px..] → Z1 . . . Ze−1 Nf [q1, . . . , qy..] Ze+1 . . . Zn−m+1, where1 ≤

e ≤ n − m + 1. Hence, by definition 22, the unification ruleru is defined as

〈Ni, p1, . . . , px, 1 〉 → toFs(Z1 . . . Ze−1) 〈Nf , q1, . . . , qy, 1 〉 toFs(Ze+1 . . . Zn−m+1)

whereC0 = 〈Ni, p1, . . . , px, 1 〉, Ce = 〈Nf , q1, . . . , qy, 1 〉 and for everyi, i 6= e,

Ci = toFs(Zi). Note that there is a reentrancy betweenC0 andCe. We now calculate the

information propagated fromBj to Aj+e−1 during the last step of the unification deriva-

tion (see 2). SinceC0 tBj = C0 t toFs(Yj) 6= > we obtain by lemma 8, thattoFs(Yj) =

〈Ni, p1, . . . , px, γ〉, whereγ ∈ V ∗
s . Therefore,Aj+e−1 = 〈Nf , q1, . . . , qy, γ〉.
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We now show that the LIG ruler can be applied to the elementYj of the LIG sentential

form. SincetoFs is one-to-one andtoFs(Yj) = 〈Ni, p1, . . . , px, γ〉 we obtain thatYj =

Ni[Ni, p1, . . . , px, γ]. Hence the LIG ruler can be applied toYj .

We now show thatAi = toFs(Xi) for everyi, j ≤ i ≤ n − m + j. We apply the ruler

to Yj as follows:

Y1 . . . Yj . . . Ym
1

=⇒li

X1 . . . Xj−1 Z1 . . . Ze−1 Nf [q1, . . . , qy, γ] Ze+1 . . . Zn−m+1 Xn−m+j+1 . . . Xn

Hence〈Xj , . . . ,Xn−m+j〉 = 〈Z1, . . . , Ze−1, Nf [q1, . . . , qy, γ], Ze+1, . . . , Zn−m+1〉. There-

fore,

〈Aj, . . . ,Aj+e−1, . . . ,An−m+j〉

= C1 . . . Ce−1 〈Nf [q1, . . . , qy, γ]〉 Ce+1 . . . Cn−m+1

= toFs(Z1 . . . Ze−1) toFs(Nf [q1, . . . , qy, γ]) toFs(Ze+1 . . . Zn−m+1)

= 〈toFs(Xj), . . . , toFs(Xn−m+j)〉

Corollary 12. If Gli = 〈VN , Vt, Vs,R
li, Sli〉 is a LIG then there exists a unification grammarGu =

lig2ug(Gli) such thatL(Gu) = L(Gli).

Proof. Let Gli = 〈VN , Vt, Vs,R
li, N〉 be a LIG andGu = 〈Ru,As,L〉 = lig2ug(Gli). Then by

theorem 10, ifS[ ]
∗

=⇒li α then As ∗
=⇒u toFs(α), whereα = w1, . . . , wn ∈ V ∗

t . By defi-

nition 22, for everyi, L(wi) = {toFs(wi)}, hencetoFs(α) = toFs(w1), . . . , toFs(wn). Hence

As ∗
=⇒u toFs(w1), . . . , toFs(wn) ∈ L(Gu).

Assume thatAs ∗
=⇒u A1, . . . ,An, where A1, . . . ,An is a pre-terminal sequence and

A1, . . . ,An
∗

=⇒u w1, . . . , wn. By theorem 11, there is the LIG derivation sequence such that

S[ ]
∗

=⇒li X1, . . . ,Xn and for alli, toFs(Xi) = Ai. By definition 22, each entryL(wi) = {Ai} in the

lexicon ofGu is created from a terminal ruleXi → wi inRli. Therefore,S[ ]
∗

=⇒li X1, . . . ,Xn
∗

=⇒li

w1, . . . , wn.
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3.4 Mapping of one-reentrant Unification Grammars to Linear Indexed

Grammars

We are now interested in the reverse direction, namely mapping unification grammars to LIG. Of

course, since unification grammars are more expressive thanLIGs, only a subset of the former can

be correctly simulated by the latter. The differences between the two formalisms can be summarized

along three dimensions:

• The basic elements

– UG manipulates feature structures; rules (and forms) are MRSs, whereas

– LIG manipulates terminals and non-terminals with stacks ofelements; rules (and forms)

are sequences of such symbols.

• Rule application

– In UG a rule is applied byunification in contextof the rule and a sentential form, both of

which are MRSs, whereas

– In LIG, the head of a rule and the selected element of a sentential form must have the

same non-terminal symbol and consistent stacks.

• Propagation of information in rules

– In UG information is shared through reentrancies, whereas

– In LIG, information is propagated by copying the stack from the head of the rule to one

element of its body.

We will show that one-reentrant unification grammars, as defined in definition 17, can all be

mapped correctly to LIG. For the rest of this section we fix a signature〈ATOMS, FEATS, WORDS〉

over which unification grammars are defined.

One-reentrant unification grammars are highly constrained. They induce non-reentrant (senten-

tial) forms, and unification of non-reentrant feature structures is highly simplified (see section 3.2,
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lemma 5 and lemma 6). Still, it is important to note that even with such grammars, feature struc-

tures can grow unboundedly deep, and representing them by means of LIG symbols is the greatest

challenge of our solution.

Definition 23. LetA be a feature structure with no reentrancies. Theheightof A, denoted|A|, is the

length of the longest path inA. This is well-defined since non-reentrant feature structures are acyclic.

Definition 24. Let Gu = 〈Ru,As,L〉 ∈ UG1r be a one-reentrant unification grammar. Themaxi-

mum heightof the grammar, maxHt(Gu), is the height of the highest feature structure in the grammar,

defined as:

maxHt(Gu) = max
ru∈Ru

( max
0≤i≤|ru|

(|ru
i |))

whereru
i is thei-th element ofru. This is well defined since by definition of one-reentrant grammars

all feature structures of the grammar are non-reentrant.

The following lemma indicates an important property of one-reentrant unification grammars. In-

formally, in any feature structure that is an element of a sentential form induced by such grammars,

if two paths are long (specifically, longer than the maximum height of the grammar), then they must

have a long common prefix.

Lemma 13. Let Gu = 〈Ru,As,L〉 ∈ UG1r be a one-reentrant unification grammar. Letλ be a

sentential form derived byGu andA be an element ofλ. If π · 〈Fj〉 · π1, π · 〈Fk〉 · π2 ∈ ΠA, where

Fj , Fk ∈ FEATS, Fj 6= Fk and |π1| ≤ |π2|, then|π1| ≤ maxHt(Gu).

Proof. We prove by induction on the length of the derivation sequence that if As ∗
=⇒u A1 . . . An,

then the lemma conditions hold. Leth = maxHt(Gu).

The induction hypothesis is that ifAs k
=⇒u A1 . . . An, then the lemma conditions hold for anyAl,

where1 ≤ l ≤ n. If k = 0, then by definitionAs 0
=⇒u As. Since|As| ≤ h then for anyj,π andπ1,

such thatπ · 〈Fj〉 · π1 ∈ ΠAs , |π · 〈Fj〉 · π1| ≤ h. Therefore,|π1| < h.

Assume that the hypothesis holds for everyi, 0 ≤ i < k; let the length of the derivation sequence

bek. Let As k−1
=⇒u B1 . . . Bm

1
=⇒u A1 . . . An. Then by definition of UG1r derivation, there are an

indexj and a ruleru = C0 → C1 . . . Cn−m+1, ru ∈ Ru, such that

(〈C0, . . . , Cn−m+1〉, 0) t (〈B1, . . . , Bm〉, j) = (〈Q0, . . . , Qn−m+1〉, 〈B1, . . . , Bj−1, Q0, Bj+1, . . . , Bm〉)
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where

1. 〈A1, . . . ,Aj−1〉 = 〈B1, . . . ,Bj−1〉

2. 〈Aj , . . . ,An−m+j〉 = 〈Q1, . . . ,Qn−m+1〉

3. 〈An−m+j+1, . . . ,An〉 = 〈Bj+1, . . . ,Bm〉

By the induction hypothesis, in cases (1) and (3) the lemma conditions hold forAl, where1 ≤

l < j or n − m + j + 1 ≤ l ≤ n. We now analyze case (2). SinceGu is one-reentrant there are only

two options for the ruleru:

1. ru has no reentrancies;

2. (0, π0)
ru

! (e, πe), where1 ≤ e ≤ n − m + 1;

If ru is non-reentrant,〈C1, . . . ,Cn−m+1〉 = 〈Q1, . . . ,Qn−m+1〉 = 〈Aj, . . . ,An−m+j〉. Hence for

any l, j ≤ l ≤ n − m + j, |Al| ≤ h. Hence, for anyF, π andπ1, such thatπ · 〈Fj〉 · π1 ∈ ΠAi
,

|π · 〈Fj〉 · π1| ≤ h. Therefore,|π1| < h.

If (0, π0)
ru

! (e, πe) then by the definition of unification,Ql = Cl if 1 ≤ l < e or e < l ≤

n − m + 1, hence|Ql| ≤ h. Therefore, the lemma conditions hold for anyQl, wherel 6= e. We

now check whether the lemma conditions hold forQe. The ruleru, when applied toBj, can result in

modifying the body of the rule,C1 . . . Cn−m+1. However, due to the fact thatru is one-reentrant, only

a single elementCe can be modified. Furthermore, the only possible modifications toCe are addition

of paths and further specification of atoms (lemma 6). The latter has no effect on path length, so we

focus on the former. The only way for a pathπe · π to be added is if some pathπ0 · π already exists

in Bj. Hence, letP be a set of paths such that:

P = {πe · π | π0 · π ∈ ΠBj
}

By definition of unificationΠQe
= P ∪ ΠCe

. To check the lemma conditions we only need to check

the pairs of paths where both members are longer thanh, otherwise the conditions trivially hold.

Since for any pathπ, π ∈ ΠCe
, |π| ≤ h, we check only the pairs of paths fromP to evaluate the

lemma conditions. Letπe · π1, πe · π2 ∈ P ⊆ ΠQe
, where|π1| ≤ |π2|, π1 andπ2 differ in the first
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feature. By definition ofP , π0 · π1, π0 · π2 ∈ ΠBj
. Hence, by the induction hypothesis|π1| ≤ h.

Therefore, for any pair of paths inΠQe
the lemma conditions hold.

Lemma 13 provides an important property of one-reentrant unification grammars that facilitates a

view of all the feature structures induced by a such grammar as (unboundedly long) lists of elements

drawn from a finite, predefined set. The set consists of all features in FEATS and all the non-reentrant

feature structures whose height is limited by the maximal height of the unification grammar. Note

that even with one-reentrant unification grammars, featurestructures can be unboundedly deep. What

lemma 13 establishes is the fact that if a feature structure induced by a one-reentrant unification

grammar is deep, then it can be represented as asingle “core” path which is long, and all the sub-

structures which “hang” from this core are depth-bounded. We use this property to encode such

feature structures ascords.

Definition 25 (Cords). Let Ψ : NRFSS× PATHS 7→ (FEATS ∪ NRFSS)∗ be a mapping of pairs

of non-reentrant feature structures and paths to sequencesof features and feature structures such

that if A is a non-reentrant feature structure andπ = 〈F1, . . . , Fn〉 ∈ ΠA, then thecord Ψ(A, π) is

〈A1, F1, . . . ,An, Fn,An+1〉, where for1 ≤ i ≤ n + 1, Ai are non-reentrant feature structures such

that:

• ΠAi
= {ε} ∪ {〈G〉 · π | G ∈ FEATS, π ∈ PATHS, 〈F1, . . . , Fi−1, G〉 · π ∈ ΠA, wheni ≤ n, G 6= Fi}

• If ΘA(〈F1, . . . , Fi−1〉 · π) ↓ thenΘAi
(π) = ΘA(〈F1, . . . , Fi−1〉 · π), otherwiseΘAi

(π) is undefined.

We also define two operators on cordsΨ(A, π) as follows:

• last(Ψ(A, π)) = An+1

• butLast(Ψ(A, π)) = 〈A1, F1, . . . ,An, Fn〉

Theheight of a cord is defined as|Ψ(A, π)| = max1≤i≤n+1(|Ai|). For each cordΨ(A, π) we refer

to A as thebase feature structureand toπ as thebase path. Thelength of a cord is the length of the

base path.

Example 10. LetA be a non-reentrant feature structure andπ = 〈F1, . . . , Fn〉 ∈ ΠA be a path. Then
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A may be represented as follows:

F1 F2 Fn

. . .

A1 A2 An+1

Ψ(A, π) = 〈A1, F1, . . . ,An, Fn,An+1〉, whereA1, . . . ,An+1 are non-reentrant feature structures.

Example 11. Let A be a non-reentrant feature structure over the signatureFEATS = {F1, F2, F3},

ATOMS = {a, b}:

A =




F1 : b

F2 :

[
F1 :

[
F2 :

[
F3 : a

]]]

F3 :




F1 : [ ]

F2 : a

F3 :

[
F1 : [ ]

]







If π = 〈F2, F1〉 then the cord representation ofA on the pathπ is Ψ(A, π) = 〈A1, F2,A2, F1,A3〉,

where

A1 =




F1 : b

F3 :




F1 : [ ]

F2 : a

F3 :

[
F1 : [ ]

]







; A2 = [ ] ; A3 =

[
F2 :

[
F3 : a

]]

And the graph representation is

F2 F1

A1 A2 A3

Note that the functionΨ is one to one. In other words, givenΨ(A, π), bothA andπ are uniquely

determined. The pathπ is determined by the sequence of the features on the cordΨ(A, π), in the

order they occur in the cord. SinceA is non-reentrant, allAi in Ψ(A, π) are non-reentrant feature

structures, i.e., trees. To see thatA is uniquely determined, simply viewπ as a branch of a tree and
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“hang” the subtreesAi on π, in the order determined by the features in the cord, to obtain a unique

feature structure.

Lemma 14. Let Gu be a one-reentrant unification grammar and letA be an element of a sentential

form induced byGu. Then there is a pathπ ∈ ΠA such that the height ofΨ(A, π) is less then

maxHt(Gu).

Proof. An immediate corollary of lemma 13.

Later in this section we manipulate cords: concatenate two cords into one cord and split a cord in

two. Two cords can be concatenated by adding a feature between them. The only requirement is that

the resulting cord be well defined: the added feature must notbe present in the last element of the first

cord. To split a cord into two cords we do the reverse process:remove one of the cord’s features. This

is similar to splitting a tree (a non-reentrant feature structure) by removing one of its arcs (a feature

in the feature structure). The following lemma provides a formal base for these operations.

Lemma 15. LetA andB be two non-reentrant feature structures. LetπA, πB be paths such thatπA ∈

ΠA, πB ∈ ΠB and last(Ψ(A, πA)) 6∈ ATOMS. And letG be a feature such that〈G〉 6∈ Πlast(Ψ(A,πA)).

ThenΨ(A, πA) · 〈G〉 · Ψ(B, πB) is a cord.

Let Ψ(A, πA) = 〈A1, F1, . . . ,Ai, Fi,Ai+1, . . . , Fn,An+1〉. Then for anyi, 1 ≤ i ≤ n, the se-

quences〈A1, F1, . . . ,Ai〉 and〈Ai+1, . . . , Fn,An+1〉 are cords.

Proof. Immediate from the definition of cords.

Example 12. Let A be a feature structure over the signatureATOMS = 〈a, b〉, FEATS = 〈F1, F2〉,

such that

A =




F1 :




F1 : b

F2 :




F1 :

[
F2 : b

]

F2 : a







F2 : a




ThenΨ(A, 〈F1, F2, F1〉) = 〈

[
F2 : a

]
, F1,

[
F1 : b

]
, F2,

[
F2 : a

]
, F1,

[
F2 : b

]
〉. We can split this cord

in two by removing one of the features. For example, removingthe featureF2 creates the following

42



two cords: η = 〈

[
F2 : a

]
, F1,

[
F1 : b

]
〉 and γ = 〈

[
F2 : a

]
, F1,

[
F2 : b

]
〉, where the base feature

structure of the cordη is




F1 :

[
F1 : b

]

F2 : a


.

We can concatenate the cordsγ andη with the featureF1 as follows:

γ · 〈F1〉 · η = 〈

[
F2 : a

]
, F1,

[
F2 : b

]
, F1,

[
F2 : a

]
, F1,

[
F1 : b

]
〉

The base feature structure of the cordγ · 〈F1〉 · η is the feature structureB:

B =




F1 :




F1 :




F1 :

[
F1 : b

]

F2 : a




F2 : b




F2 : a




Thenγ · 〈F1〉 · η = Ψ(B, 〈F1, F1, F1〉).

So far we have shown how to map non-reentrant feature structures to lists whose elements are

drawn from a finite domain. This mapping resolves the first major difference between LIG and UG,

by providing a representation of thebasic elements. We use cords as the stack contents of LIG non-

terminal symbols: cords can be unboundedly long, but so can LIG stacks; the crucial point is that

cords are height limited, implying that they can be represented using afinite number of elements,

which will be LIG stack symbols in our mapping.

We now investigate how to resolve the second major difference between LIG and UG:rule ap-

plication. A unification rule can be applied to a sentential form only ifthe head of the rule,C0, and

some selected element in the form,Dj, are unifiable. In contrast, a linear indexed rule can be applied

to a sentential form only if the head of the rule,X0, and some selected element in the form,Yj,

• have the same non-terminal symbol; and

• either the content of the stack ofX0 andYj are equal (fixedhead of a LIG rule), or

• the stack ofX0 is unbounded and is a prefix ofYj (unboundedhead of a LIG rule).

We now show how to simulate, in LIG, the unification in contextof a rule and a sentential form. The

first step is to have exactly one non-terminal symbol; when all non-terminal symbols are identical,
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only the content of the stack has to be taken into account. Note that in order for a LIG rule to be

applicable to a sentential form, the stack of the rule’s headmust be aprefixof the stack of the selected

element in the form. The only question is whether the two stacks are equal (fixed rule head) or not

(unbounded rule head). Since the contents of stacks are cords, we need a property relating two cords,

on one hand, with unifiability of their base feature structures, on the other. Lemma 16 establishes

such a property. Informally, if the base path of one cord is a prefix of the base path of the other cord

and all feature structures along the common path of both cords are unifiable, then the base feature

structures of both cords are unifiable. The reverse direction also holds.

Lemma 16. Let A,B ∈ NRFSS be non-reentrant feature structures andπ1, π2 ∈ PATHS be paths

such that

• π1 ∈ ΠB ,

• π1 · π2 ∈ ΠA,

• Ψ(A, π1 · π2) = 〈t1, F1, . . . , F|π1|, t|π1|+1, F|π1|+1, . . . , t|π1·π2|+1〉,

• Ψ(B, π1) = 〈s1, F1, . . . , s|π1|+1〉, and

• 〈F|π1|+1〉 6∈ Πs|π1|+1

then for alli, 1 ≤ i ≤ |π1| + 1, si t ti 6= > iff A t B 6= >.

Proof. Assume that for every1 ≤ i ≤ |π1| + 1, si t ti 6= >. Since the prefixes ofΨ(B, π1) and

Ψ(A, π1 · π2) are consistent up toF|π1|+1 and the suffix of the cordΨ(A, π1 · π2) does not occur in

Ψ(B, π1), and hence does not contradict withB, the feature structuresA andB are unifiable.

Assume thatA t B 6= >. Then all subtrees of the feature structures are consistent. Therefore,

si t ti 6= >, for every1 ≤ i ≤ |π1| + 1.

Given some one-reentrant unification grammar, the set of feature structures which are the heads of

all rules in the grammar is a finite set. However, these feature structures are unified during derivation

with elements of sentential forms induced by the grammar, and these can constitute an infinite set.

We take advantage in our construction of the fact that although a potentially infinite set of feature
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structures is involved, these feature structures can all berepresented as cords, with height-bounded

feature structures hung on their base paths.

The length of a cord of an element of a sentential form inducedby the grammar cannot be

bounded, however the length of any cord representation of a rule head is limited by the grammar

height. By lemma 16, unifiability of two feature structures can be reduced to a comparison of two

cords representing them and only the prefix of the longer cord(as long as the shorter cord) affects

the result. Since the cord representation of any grammar rule’s head is limited by the height of the

grammar we always choose it as the shorter cord in the comparison. Hence only a prefix of the cord

in sentential forms, limited by the grammar height, affectsunification and, therefore, rule application.

Since the set of rule heads is finite, so is the set of their cordrepresentations; each element of this set

is a cord of a limited length. In a similar way, it is possible to construct afiniteset of the prefixes of all

the cord representations of all the feature structures which are elements of sentential forms induced

by the grammar. We use the grammar height as the limit of cord length in this set.

Example 13. LetD be a selected element of a sentential form induced by a one-reentrant unification

grammarGu. Let C be the head of a unification rule applied toD. Let Ψ(D, πD) be a cord whose

height is limited by the grammar height, whereπD = 〈F1, · · · , F|πD|〉. LetπC be the maximal prefix

of πD such thatπC ∈ ΠC , πC = 〈F1, · · · , F|πC |〉 and 〈F1, · · · , F|πC |+1〉 6∈ ΠC . Such a prefix always

exists becauseε is a common prefix of all paths inPATHS. Note that the height of the cordΨ(C, πC)

is limited by the grammar height because the height ofC is limited by the grammar height. The cord

Ψ(D, πD) is graphically represented as:

F1 F2 F|πC | F|πC |+1 F|πD|

. . . . . .

D1 D2 D|πC |+1 D|πD|+1

45



WhereasΨ(C, πC) is similarly represented as:

F1 F2 F|πC |

. . .

C1 C2 C|πC |+1

By lemma 16,DtC 6= > iff DitCi 6= > for all i, 1 ≤ i ≤ |πC |+1. Note that the feature structures

Di, wherei > |πC | + 1, do not affect the unifiability ofD andC. In other words, to determine whether

C is unifiable with some feature structureD, whose cord isΨ(D, πD), it is sufficient to check the

unifiability ofC with the feature structureA, whereΨ(A, πC) is:

F1 F2 F|πC |

. . .

D1 D2 D|πC |+1

Example 13 motivates the following corollary:

Corollary 17. Let Ψ(A, πA), Ψ(B, πB), Ψ(C, πA) be cords, whereΘA(πa) ↑. Let G be a feature

such that:

• 〈G〉 6∈ Πlast(Ψ(A,πA)) and

• 〈G〉 6∈ Πlast(Ψ(C,πA))

Consider the cordΨ(A, πA) · 〈G〉 · Ψ(B, πB) (by lemma 15, this is well defined) and write it as

Ψ(D, πA · 〈G〉 · πB). ThenC t A 6= > iff C t D 6= >.

We now define, for a feature structureC (which is a head of a rule) and some pathπ, the set that

includes all feature structures that are both unifiable withC and can be represented as a cord whose

height is limited by the grammar height and whose base path isπ. We call this set thecompatibility

setof C andπ. Latter in this section, we use the compatibility set to define the set of all possible

prefixes of cords whose base feature structures are unifiablewith C (see definition 27). Crucially, the
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compatibility set ofC is finite for any feature structureC since the heights and the lengths of the cords

are limited.

Definition 26 (Compatibility set). Given a non-reentrant feature structureC, a path π =

〈F1, . . . , Fn〉 ∈ ΠC and a natural numberh, thecompatibility set, Γ(C, π, h), is defined as the set of

all feature structuresA such that

• C t A 6= >,

• π ∈ ΠA, and

• |Ψ(A, π)| ≤ h

The compatibility set is defined for a feature structure and agiven path (whenh is taken to be

the grammar height). We now define two similar sets,FIXEDHEAD and UNBOUNDEDHEAD, for a

given feature structure, independently of a path. Later in this section, when we map rules of a one-

reentrant unification grammar to LIG rules (definition 28), the setFIXEDHEAD will be used to define

heads of fixed rules in LIG and the setUNBOUNDEDHEAD to define heads of unbounded rules. Each

unification rule will be mapped to asetof LIG rules, each with a different head. The stack of the

head will be some member of the setsFIXEDHEAD andUNBOUNDEDHEAD. Each such member is a

prefix of the stack of potential elements of sentential formsthat the LIG rule can be applied to.

Definition 27. Let C be a non-reentrant feature structure andh be a natural number. We define the

fixed rule headset,FIXEDHEAD(C, h), and theunbounded rule headset,UNBOUNDEDHEAD(C, h)

as follows:

FIXEDHEAD(C, h) = {Ψ(A, π) | π ∈ ΠC ,A ∈ Γ(C, π, h)}

UNBOUNDEDHEAD(C, h) =

{Ψ(A, π) · 〈F〉 | Ψ(A, π) ∈ FIXEDHEAD(C, h),ΘC(π) ↑, F ∈ FEATS, 〈F〉 6∈ Πlast(Ψ(CtA,π))}
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Informally, letC be a head of a unification rule andπ = 〈F1, . . . , Fn〉 ∈ ΠC be a path such that

Ψ(C, π) = 〈C1, F1, . . . ,Cn+1〉. Graphically, this situation is depicted thus:

F1 F2 Fn

. . .

C1 C2 Cn+1

ThenFIXEDHEAD(C, h) consists of cords like

F1 F2 Fn

. . .

A1 A2 An+1

whereAi t Ci, 1 ≤ i ≤ n + 1. Let A be the base feature structure of the cord〈A1, F1, . . . ,An+1〉.

Then by definition ofFIXEDHEAD(C, h), A t C 6= >. When the LIG symbolN [A1, F1, . . . ,An+1]

occurs as the head of a rule, this rule is applicable only to a sentential form with an identical element.

For each suchA we create a LIG rule whose head isN [A1, F1, . . . ,An+1]. This is possible because

the setFIXEDHEAD(C, h) is finite.

Similarly, UNBOUNDEDHEAD(C, h) consists of cord prefixes like

F1 F2 Fn Fn+1

. . .

A1 A2 An+1

where the value of the path〈Fn+1〉 in An+1 t Cn+1 is undefined. LetA be the base feature structure

of the cord〈A1, F1, . . . ,An+1〉 and letη = 〈An+2, Fn+2, . . . ,Am+1〉 be a cord, wherem > n. Then

by corollary 17, the base feature structureD of the cord〈A1, F1, . . . ,Am+1〉 is unifiable withC for

any cordη. In contrast to the previous case, a rule whose head isN [A1, F1, . . . ,An+1, Fn+1..] is

applicable to any element of the formN [A1, F1, . . . ,Am+1]. Note that the content of the stack of such

a LIG symbol is a cord of the form:

48



F1 F2 Fn Fn+1 Fm

. . . . . .

A1 A2 An+1 Am+1

Example 14. To illustrate the structure of the setsFIXEDHEAD and UNBOUNDEDHEAD we give

here some examples of the elements in these sets for the feature structureC, the head of the ruleru
5 of

example 9. Recall that

C =




HEAD : N3

TAIL :




HEAD : a

TAIL : [ ]







Let Gu
2 be the unification grammar of the example 9. The grammar height of Gu is 2 and the set of

all paths inC is

ΠC = {ε, 〈HEAD〉, 〈TAIL 〉, 〈TAIL , HEAD〉, 〈TAIL , TAIL 〉}

Hence there are five compatibility sets forC, one for each path inΠC as follows: Γ(C, ε, 2),

Γ(C, 〈HEAD〉, 2), Γ(C, 〈TAIL 〉, 2), Γ(C, 〈TAIL , HEAD〉, 2) and Γ(C, 〈TAIL , TAIL 〉, 2). For example,

here are some elements of the compatibility setΓ(C, 〈HEAD〉, 2):




HEAD : N3

TAIL :




HEAD : [ ]

TAIL : N1







and




HEAD : [ ]

TAIL : [ ]




similarly, some examples of elements of the compatibility setΓ(C, 〈TAIL , TAIL 〉, 2) are




HEAD : [ ]

TAIL :




HEAD : a

TAIL :




HEAD :




HEAD : a

TAIL : N1




TAIL :




HEAD : N1

TAIL : [ ]













and




HEAD : [ ]

TAIL :




HEAD : [ ]

TAIL : [ ]






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An example of an element of the setFIXEDHEAD(C, 2) is the sequence contributed by the feature

structure




HEAD : [ ]

TAIL : [ ]


, an element ofΓ(C, 〈HEAD〉, 2):

〈

[
TAIL : [ ]

]
, HEAD, [ ]〉

The same feature structure contributes also another sequence toFIXEDHEAD(C, 2) when it is viewed

as a member of the compatibility setΓ(C, 〈TAIL 〉, 2):

〈

[
HEAD : [ ]

]
, TAIL , [ ]〉

Finally, the setUNBOUNDEDHEAD(C, 2) includes the following sequences that are contributed by

the same feature structure above:

〈

[
TAIL : [ ]

]
, HEAD, [ ] , TAIL 〉, 〈

[
TAIL : [ ]

]
, HEAD, [ ] , HEAD〉

〈

[
HEAD : [ ]

]
, TAIL , [ ] , TAIL 〉, 〈

[
HEAD : [ ]

]
, TAIL , [ ] , HEAD〉

We have shown that the two cases above,FIXEDHEAD and UNBOUNDEDHEAD, cover all the

possible feature structures that are unifiable with a rule headC. This accounts for the second major

difference between LIG and one-reentrant UG, namelyrule application. We now investigate the last

major difference:propagation of information in rules.

In one-reentrant unification grammars information is shared between the rule’s head and a single

element of the rule’s body. We have shown above how the stack of a LIG rule, simulating some

unification rule, is defined. We have also discussed the possible options for the stacks of candidate

elements in potential sentential forms to which the LIG rulecan be applied. We now discuss the body

of the LIG rule, when the head – and in particular its stack – isknown.

Without loss of generality, letru = 〈C0, . . . ,Cn〉 be a unification rule such that(0, µ0)
ru

!

(e, µe), where1 ≤ e ≤ n. This rule is mapped to asetof LIG rules. Letr be a member of this set,

and letX0 andXe be the head and thee-th element ofr, respectively. We now explain how structure

sharing in the unification rule is modeled in the LIG rule. ConsiderX0 first; it was created to reflect

a potential unification betweenC0, the head ofru, and some feature structureDj. The stack ofX0 is

Ψ(A0, π0), whereΨ(A0, π0) is the maximal prefix ofΨ(Dj, πj) such thatA0 ∈ Γ(C0, π0, h) (notice

50



that it follows from corollary 17 that unifiability is dependent on the prefix only, and the remainder

of Dj can be safely ignored). In other words,X0 was defined to reflect the unification ofC0 andA0.

Consider now the effect of this unification, namely

(〈A0〉, 0) t (ru, 0) = (〈P0〉, 〈P0, . . . ,Pe, . . . ,Pn〉)

When the ruleru is applied toA0, information is shared betweenP0 andPe where the shared values

areval(P0, µ0) andval(Pe, µe). X0 can have two forms: either it has a fixed stack or an unbounded

stack. If the stack ofX0 is fixed, the LIG rule can be applied only to an element (of a sentential

form) with an identical stack, i.e., with the same cord. Therefore,Xe should be a LIG representation

of Pe. Hence, the stack value ofXe can be defined as a cord whose base feature structure isPe.

The only caveat is the base path of this cord: we have to be careful to define the cord such that its

height is limited by the grammar height. Observe that the height of the value of the pathµe in Pe can

exceed the grammar height and recall that due to the unification, val(Pe, µe) = val(P0, µ0) (and, in

particular, both are of the same height). What we know for certain, however, is that the stack ofX0

is obtained byΨ(A0, π0). Furthermore,P0 is obtained by unifyingC0 with A0, so thatΨ(P0, π0) is

well defined and, in particular, its height is limited by the grammar height.Ψ(P0, π0) is graphically

depicted in figure 3.1.

Figure 3.1: The cordΨ(P0, π0).

Consider now the pathµ0 and, in particular,val(P0, µ0). If µ0 is nota prefix ofπ0 then the height

of val(P0, µ0) is limited by the height ofΨ(P0, π0) and hence by the grammar height (see figure 3.2
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and figure 3.3). Henceval(Pe, µe) (which is identical toval(P0, µ0)) is also limited by the grammar

height. In this case, we ‘hang’Pe on the base pathµe (see figure 3.4).

Figure 3.2:P0, when the stack ofX0 is fixed andµ0 is not a prefix ofπ0.

Figure 3.3:P0, when the stack ofX0 is unbounded andµ0 is not a prefix ofπ0.

If µ0 is a prefix ofπ0, however, letπ0 = µ0 · ν. Again, consider two sub-cases. In the first

sub-case, the stack ofX0 is fixed. This situation is graphically depicted in figure 3.5. In this case we

can limit the height ofval(P0, µ0) by the height of the cordΨ(P0, π0) and the length of the pathν,

|val(P0, µ0)| ≤ |Ψ(P0, π0)| + |ν| and the same holds forval(Pe, µe). Since the height of the cord

Ψ(P0, π0) is limited by the grammar height,h, we obtain that|val(Pe, µe)| ≤ h + |ν|. In this case
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Figure 3.4:Pe, when the pathµ0 is not a prefix ofπ0.

we use the pathµe · ν as the base path on whichPe is ‘hung’ (see figure 3.6).

Figure 3.5:P0, when the stack ofX0 is fixed andπ0 = µ0 · ν.

However, when the stack ofX0 is unbounded andπ0 = µ0 · ν, the fixed part of the stack contains

not only a cord but also a feature (see definition 27); denote this feature byF. In this case the height of

val(Pe, µe) cannot be bounded because only a subset of the information that is propagated is known

when the mapping is computed (see figure 3.7).
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Figure 3.6:Pe, when the stack ofX0 is fixed andπ0 = µ0 · ν.

Figure 3.7:P0, when the stack ofX0 is unbounded andπ0 = µ0 · ν.
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Let D be an element of a sentential form andru = 〈C0, . . . ,Ce, . . . ,Cn〉 be a one-reentrant rule

applicable toD such that(0, µ0)
ru

! (e, µe). Let 〈Q0, . . . ,Qe, . . . ,Qn〉 be defined as

(〈D〉, 0) t (ru, 0) = (〈Q0〉, 〈Q0, . . . ,Qe, . . . ,Qn〉)

LetΨ(D, πD) be a cord ofD whose height is limited by the grammar height and letπ0 be the maximal

prefix of πD such thatπ0 ∈ ΠC0
(recall that in our caseµ0 is a prefix ofπ0, such thatπ0 = µ0 · ν).

We divide the cordΨ(Q0, πD) into three parts as follows (see figure 3.8):

• The first part of the cord (I) is the prefix of the cord whose length is |µ0|. This part of the cord

is not propagated toQe.

• The second part (II) is a prefix of the propagated cord that is affected by the unification ofC0

with D. By lemma 16, the length of this part of the cord is limited by the length of the cord

Ψ(C0, π0) and hence by the grammar height.

• The third part of the cord (III), the suffix, is propagated toQe unchanged.

Figure 3.8: The three parts of the cordΨ(Q0, πD).
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The only problem is propagating the second part of the cord, since LIG has no provisions for

propagating run-time changeable stacks. However, we know that the length of part II of the cord is

limited by the grammar height. Therefore, we can calculate the unification of this part of the cord

with all possible cords of all rules’ heads of the grammar at “compile” time and use the result to define

the contents of the stack of thee-th element of the LIG rule. LetP0 be a feature structure whose cord

Ψ(P0, π0) is a prefix of the cordΨ(Q0, πD). Let A be a feature structure such that the cordΨ(A, π0)

is a prefix ofΨ(D, πD). HenceP0 = C0 t A (see figure 3.9).

Figure 3.9: The three parts of the cordΨ(D, πD).

The information propagated from part II of the cordΨ(Q0, πD) can be calculated by the unifica-

tion in context ofA with the ruleru. Let the sequence〈P0, . . . ,Pe, . . . ,Pn〉 be defined as

(〈A〉, 0) t (ru, 0) = (〈P0〉, 〈P0, . . . ,Pe, . . . ,Pn〉)
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The ruleru has only one reentrancy,(0, µ0)
ru

! (e, µe), hencePi = Ci for all i 6= 0 andi 6= e. Let F

be a feature such that〈Ψ(A, π0), F〉 is a prefix ofΨ(D, πD). Then in this case we map the ruleru to

N [Ψ(A, π0), F..] → N [Ψ(C1, ε)] . . . N [Ψ(Pe, µe · ν), F..] . . . N [Ψ(Cn, ε)]

whereX0 = N [Ψ(A, π0), F..] andXe = N [Ψ(Pe, µe ·ν), F..]. The resulting cord ofPe, Ψ(Pe, µe ·ν),

is limited by the grammar height for the same reason as in the case ofX0 with a fixed stack (see

figure 3.10).

Figure 3.10:Pe, when the stack ofX0 is unbounded andπ0 = µ0 · ν.

The featureF at the end of the fixed part of the stack of the LIG rule head is added to avoid

generation of ill-defined cords in the stacks of elements of LIG sentential forms (see example 15).

Example 15. Let Pe =

[
F1 :

[
F2 :

[
F3 : a

]]]
, µe = 〈F1〉 and µe · ν = 〈F1, F2〉. Then for some

G ∈ FEATS thee-th element of the LIG rule body isN [Ψ(Pe, µe · ν), G..]. If G = F3 the sequence

〈Ψ(Pe, µe · ν), G〉 is not a valid cord prefix sinceval(last(Ψ(Pe, µe · ν)), 〈F3〉) ↑.

We now combine all the solutions for the three major differences between one-reentrant unifica-

tion grammars and LIG to define the mapping from the former to the latter. In a LIG simulating a

one-reentrant UG, feature structures are represented as stacks of symbols. The set of stack symbols

Vs, therefore, is defined as a set of height bounded non-reentrant feature structures. Also, all the fea-

tures of the UG are stack symbols. The setVs is finite due to the restriction on feature structures (no
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reentrancies and height-boundedness). The set of terminals, Vt, is the set of words of the UG. There

are exactly two non-terminal symbols,N andS, the latter of which is the start symbol.

The set of rules can be divided to four: start rule, terminal rules, non-reentrant rules and one-

reentrant rules. Thestart ruleonly applies once in a derivation. It simulates the situation in unification

grammars of a rule whose head is unifiable with the start symbol. In LIG, the start rule applies to

the start symbolS only; and once applied, it yields a sentential form of length1, consisting of the

non-terminalN with a stack representation of the unification grammar startsymbol.

Since the source unification grammar is simplified (definition 18),terminal rulesare just a straight-

forward implementation of the lexicon in terms of LIG.Non-reentrant rulesare simulated in a similar

way to how rules of a non-reentrant unification grammar are simulated by CFG (see section 2). The

major difference is the head of the rule,X0, which is defined as explained above.One-reentrant rules

are simulated in a similar way to non-reentrant rules. The only difference is in the selected element

of the rule body,Xe, which is defined as explained above.

Definition 28 (Mapping from UG1r to L IGS). Let ug2lig be a mapping ofUG1r to L IGS, such that

if Gu = 〈Ru,As,L〉 ∈ UG1r then ug2lig(Gu) = 〈VN , Vt, Vs,R
li, S〉, where:

• VN = {N,S}, whereN andS are fresh symbols.

• Vt = WORDS

• Vs = FEATS ∪ {A | A ∈ NRFSS, |A| ≤ maxHt(Gu)}

• The set of rules,Rli, is defined as follows:

Let C0 be a non-reentrant feature structure, then therule headset,LIGHEAD(C0), is defined

as:

LIGHEAD(C0) = {N [η] | η ∈ FIXEDHEAD(C0, maxHt(Gu))}

∪ {N [η..] | η ∈ UNBOUNDEDHEAD(C0, maxHt(Gu))}

1. S[ ] → N [Ψ(As, ε)]

2. For everyw ∈ WORDS such thatL(w) = {C0} and for everyπ0 ∈ ΠC0
, the rule

N [Ψ(C0, π0)] → w is in Rli.
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3. Letru = 〈C0, . . . ,Cn〉 ∈ Ru be a non-reentrant rule. Then for everyX0 ∈ LIGHEAD(C0)

the ruleX0 → N [Ψ(C1, ε)] . . . N [Ψ(Cn, ε)] is inRli.

4. Letru = 〈C0, . . . ,Cn〉 ∈ Ru and (0, µ0)
ru

! (e, µe), where1 ≤ e ≤ n. Then for every

X0 ∈ LIGHEAD(C0) the rule

X0 → N [Ψ(C1, ε)] . . . N [Ψ(Ce−1, ε)] Xe N [Ψ(Ce+1, ε)] . . . N [Ψ(Cn, ε)]

is in Rli, whereXe is defined as follows. Letπ0 be the base path ofX0 and A be the

base feature structure ofX0. Applying the ruleru to A, we now examine the possible

modifications toCe by defining(〈A〉, 0) t (ru, 0) = (〈P0〉, 〈P0, . . . ,Pe, . . . ,Pn〉).

(a) If µ0 is not a prefix ofπ0 thenXe = N [Ψ(Pe, µe)].

(b) If π0 = µ0 · ν, ν ∈ PATHS then

i. If X0 = N [Ψ(A, π0)] thenXe = N [Ψ(Pe, µe · ν)].

ii. If X0 = N [Ψ(A, π0), F..] thenXe = N [Ψ(Pe, µe · ν), F..].

In order for the construction to be well defined, all cords must be shown to have heights limited

by the grammar height. This was informally shown in the discussion above.

Example 16. To illustrate the mapping of one-reentrant unification rules to LIG rules we give here

some examples of LIG rules created from the ruleru
5 of the example 9. Recall that the ruleru

5 is

defined as: 


HEAD : N3

TAIL :




HEAD : a

TAIL : 1






→




HEAD : a

TAIL : elist







HEAD : N3

TAIL : 1




In this ruleµ0 = 〈TAIL , TAIL 〉 andµe = µ2 = 〈TAIL 〉.

• Case 4a,µ0 is not a prefix ofπ0. Letπ0 = 〈HEAD〉 andA =




HEAD : [ ]

TAIL :




HEAD : a

TAIL : b







. Then

the LIG rule is

N [


TAIL :




HEAD : a

TAIL : b





 , HEAD, [ ] ] → N [




HEAD : a

TAIL : elist


] N [

[
HEAD : N3

]
, TAIL , b ]
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• Case 4(b)i,µ0 is a prefix ofπ0 and the stack of the head of the LIG rule is fixed. Letπ0 =

〈TAIL , TAIL 〉 andA =




HEAD : [ ]

TAIL :




HEAD : a

TAIL : b







. Then the LIG rule is

N [

[
HEAD : [ ]

]
, TAIL ,

[
HEAD : a

]
, TAIL , b ] →

N [




HEAD : a

TAIL : elist


] N [

[
HEAD : N3

]
, TAIL , b ]

• Case 4(b)ii,µ0 is a prefix ofπ0 and the stack of the head of the LIG rule is unbounded. Let

π0 = 〈TAIL , TAIL 〉 and

A =




HEAD : [ ]

TAIL :




HEAD : a

TAIL :

[
HEAD : b

]







Then the LIG rule is

N [

[
HEAD : [ ]

]
, TAIL ,

[
HEAD : a

]
, TAIL ,

[
HEAD : b

]
, TAIL ..] →

N [




HEAD : a

TAIL : elist


] N [

[
HEAD : N3

]
, TAIL ,

[
HEAD : b

]
, TAIL ..]

Theorem 18. LetGu = 〈Ru,As,L〉 be a one-reentrant unification grammar andAs ∗
=⇒u A1 . . . An

be a derivation sequence. IfGli = 〈VN , Vt, Vs,R
li, S〉 = ug2lig(Gu) then there is a sequence of

paths〈π1, . . . , πn〉, such thatS[ ]
∗

=⇒li N [Ψ(A1, π1)] . . . N [Ψ(An, πn)].

Proof. We prove by induction on the length of the derivation sequence. The induction hypothesis

is that if As k
=⇒u A1 . . . An, then there is a sequence of paths〈π1, . . . , πn〉, such thatS[ ]

k+1
=⇒li

N [Ψ(A1, π1)] . . . N [Ψ(An, πn)]. If k = 0, then

1. By the definition of derivation in UG,As 0
=⇒u As;

2. By definition 28 case (1), the ruleS[ ] → N [Ψ(As, ε)] is in Rli.
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3. Hence,S[ ]
1

=⇒li N [Ψ(As, ε)] andN [Ψ(As, ε)] is well defined sinceΨ(As, ε) = 〈As〉, |As| ≤

maxHt(Gu).

Assume that the hypothesis holds for everyi, 0 ≤ i < k. Assume further thatAs k−1
=⇒u

D1 . . . Dm
1

=⇒u A1 . . . An.

1. By definition of UG derivation, there are an indexj and a ruleru = C0 → C1 . . . Cn−m+1,

ru ∈ Ru, such thatru is applicable toDj :

(〈C0, . . . , Cn−m+1〉, 0) t (〈D1, . . . , Dm〉, j) = (〈Q0, . . . , Qn−m+1〉, 〈D1 . . . Dj−1Q0Dj+1 . . . Dm〉)

where

• 〈A1, . . . ,Aj−1〉 = 〈D1, . . . ,Dj−1〉

• 〈Aj , . . . ,An−m+j〉 = 〈Q1, . . . ,Qn−m+1〉

• 〈An−m+j+1, . . . ,An〉 = 〈Dj+1, . . . ,Dm〉

Note that it is only possible to write the MRS〈A1, . . . ,An〉 in such a way due to the fact that

the grammarGu is one-reentrant: by lemma 5, no reentrancies can occur among two elements

in a sentential form.

2. Hence,As k
=⇒u D1 . . . Dj−1Q1 . . . Qn−m+1Dj+1 . . . Dm

3. By the induction hypothesis there is a sequence of paths〈ν1, . . . , νm〉 such that

S[ ]
k

=⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]

4. We denoteΨ(Dj, νj) as〈B1, F1, . . . ,B|νj|+1〉 (recall thatj is the index of the selected element

in the sentential form).

We now want to show the existence of a ruler ∈ Rli, created fromru by the mappingug2lig,

which can be applied toj-th element of the LIG sentential form,N [Ψ(Dj , νj)]. We define the

feature structureA to be a “bridge” betweenDj andC0 which together with a pathπ0 (a prefix

of the pathνj) defines the head of the ruler.
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5. Letπ0 be a maximal prefix ofνj such thatπ0 ∈ ΠC0
. Recall that〈B1, F1, . . . ,B|π0|+1〉 is a pre-

fix of Ψ(Dj, νj) becauseπ0 is a prefix ofνj. LetA be such thatΨ(A, π0) = 〈B1, F1, . . . ,B|π0|+1〉.

By the induction hypothesis,Bi ≤ maxHt(Gu), 1 ≤ i ≤ |νj| + 1. We will show thatA is unifi-

able with bothDj andC0.

6. We first show thatA ∈ Γ(C0, maxHt(Gu)). SinceDj t C0 6= > andA is a substructure of

Dj we obtain thatA t C0 6= >. Sinceπ0 ∈ ΠA and |Bi‖leqmaxHt(Gu), 1 ≤ i ≤ |νj | + 1,

A ∈ Γ(C0, maxHt(Gu)).

7. We now show that there is a LIG ruler, a mapping ofru, which is applicable toN [Ψ(Dj, νj)].

There are two possibilities for the relation betweenπ0 andνj (recall thatπ0 is a prefix ofνj):

• If νj = π0 then A = Dj andΨ(A, π0) = Ψ(Dj , νj). Hence, every rule of the form

N [Ψ(A, π0)] → α is applicable toΨ(Dj, νj). SinceA ∈ Γ(C0, maxHt(Gu)) we obtain

thatN [Ψ(A, π0)] ∈ LIGHEAD(C0). Hence, the ruleN [Ψ(A, π0)] → α is in Rli, where

α ∈ (VN [V ∗
s ] ∪ Vt)

∗ is determined byru.

• If νj 6= π0 then νj = π0 · 〈F|π0|+1, . . . , F|νj |〉. Recall thatval(B|π0|+1, 〈F|π0|+1〉) ↑

becauseΨ(Dj, νj) = 〈B1, F1, . . . ,B|νj |+1〉 and |π0| + 1 < |νj | + 1. SinceΨ(A, π0) =

〈B1, F1, . . . ,B|π0|+1〉, we obtain that every rule of the formN [Ψ(A, π0), F|π0|+1..] → α

is applicable toN [Ψ(Dj, νj)]. SinceA ∈ Γ(C0, maxHt(Gu)) we obtain that

N [Ψ(A, π0), F|π0|+1..] ∈ LIGHEAD(C0)

Hence, the ruleN [Ψ(A, π0), F|π0|+1..] → α is in Rli, whereα ∈ (VN [V ∗
s ] ∪ Vt)

∗ is

determined byru.

8. The LIG ruler whose existence was established in (7) is applied toN [Ψ(Dj, νj)] as follows:

S[ ]
k

=⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]

1
=⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dj−1, νj−1)] Y1 . . . Yn−m+1 N [Ψ(Dj+1, νj+1)] . . . N [Ψ(Dm, νm)]

9. We now investigate the possible outcomes of applying the rule r to the selected element of the

sentential form. Letr = X0 → α, whereα ∈ (VN [V ∗
s ] ∪ Vt)

∗. To complete the proof we have
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to show that for some sequence of paths〈π1, . . . , πn−m+1〉,

〈Y1, . . . , Yn−m+1〉 = 〈N [Ψ(Q1, π1)], . . . , N [Ψ(Qn−m+1, πn−m+1)]〉

whereQ1, . . . Qn−m+1 are determined by the unification grammar, see (1) above.

• Assume thatru has no reentrancies. Hence,Qi = Ci, 1 ≤ i ≤ n − m + 1. By defini-

tion 28 case ( 3), the LIG rule body is

α = 〈N [Ψ(C1), ε)], . . . , N [Ψ(Cn−m+1], ε)]〉 = 〈N [Ψ(Q1), ε)], . . . , N [Ψ(Qn−m+1], ε)]〉

Since the ruler does not copy the stack,α = 〈Y1, . . . , Yn−m+1〉. Therefore,

〈Y1, . . . , Yn−m+1〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qn−m+1, ε)]〉

• Assume that(0, µ0)
ru

! (e, µe), where1 ≤ e ≤ n. Hence,Qi = Ci and Yi =

N [Ψ(Qi, ε)] is well defined for alli, i 6= e. By definition 28 case ( 4), the LIG rule

body is

α = 〈N [Ψ(C1, ε)], . . . , N [Ψ(Ce−1, ε)],Xe, N [Ψ(Ce+1, ε)], . . . , N [Ψ(Cn−m+1, ε)]〉

= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe−1, ε)],Xe, N [Ψ(Qe+1, ε)], . . . , N [Ψ(Qn−m+1, ε)]〉

This case is similar to the previous case, with the exceptionof Xe, which may be more

complicated due to the propagation of the stack fromX0. We therefore focus onXe (other

elements ofα are as above). Recall that by definition 28,〈P0, . . . ,Pn−m+1〉 is a sequence

of feature structures such that

(〈A〉, 0) t (ru, 0) = (〈P0〉, 〈P0 . . . Pn−m+1〉)

We now analyze all the possible values ofXe, according to definition 28 case ( 4):

(a) Case 4a: ifµ0 is not a prefix ofπ0 then by definition 28,Xe = N [Ψ(Pe, µe)]. Let π

be the maximal prefix ofπ0 andµ0 such thatµ0 = π · µ′
0. We denoteΨ(C0, π0) as
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〈s1, F1, . . . , s|π0|+1〉, and graphically represent it as:

F1 F2 F|π| F|π|+1 F|π0|

. . . . . .

µ0

s1 s2 s|π|+1 s|π0|+1

The cordΨ(Dj, νj) with its prefixΨ(A, π0) are represented as follows:

Ψ(A, π0)

F1 F2 F|π| F|π|+1 F|π0| F|π0|+1 F|νj |

. . . . . . . . .

B1 B2 B|π|+1 B|π0|+1 B|νj|+1

Note that the caseπ0 = νj is just a special case of the figure above. The cord

Ψ(Dj t C0, νj) with its prefixΨ(A t C0, π0) are represented as follows:

Ψ(A t C0, π0)

F1 F2 F|π| F|π|+1 F|π0| F|π0|+1 F|νj |

. . . . . . . . .

µ0

B1 t s1 B2 t s2 B|π|+1 t s|π|+1 B|π0|+1 t s|π0|+1 B|νj|+1

Hence,val(A t C0, µ0) = val(B|π|+1 t s|π|+1, µ
′
0) = val(Dj t C0, µ0). By defi-

nition of unification in contextval(Pe, µe) = val(A t C0, µ0) andval(Qe, µe) =
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val(Dj t C0, µ0). Hence,val(Pe, µe) = val(Qe, µe) andQe = Pe. Therefore,

α = 〈Y1, . . . , Yn−m+1〉

= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe)], . . . , N [Ψ(Qn−m+1, ε)]〉

(b) Case 4b: ifµ0 is a prefix ofπ0, let π0 = µ0 · ν, ν ∈ PATHS. Then by definition 28,

the following holds:

– Case 4(b)i:

If X0 = N [Ψ(A, π0)] thenXe = N [Ψ(Pe, µe · ν)]. SinceN [Ψ(A, π0)] is appli-

cable toN [Ψ(Dj, νj)] we obtain thatπ0 = νj andA = Dj . Hence,Pe = Qe.

Therefore,

α = 〈Y1, . . . , Yn−m+1〉

= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe · ν)], . . . , N [Ψ(Qn−m+1, ε)]〉

– Case 4(b)ii:

If X0 = N [Ψ(A, π0), F|π0|+1..] then Xe = N [Ψ(Pe, µe · ν), F|π0|+1..]. Let

β = 〈B|π0|+2, F|π0|+2, . . . ,B|νj |+1〉. By definition ofA, Ψ(Dj, νj) = Ψ(A, π0) ·

〈F|π0|+1〉 · β. We apply the LIG ruler to N [Ψ(Dj , νj)] and obtain

〈Y1, . . . , Yn−m+1〉

= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Pe, µe · ν), F|π0|+1, β], . . . , N [Ψ(Qn−m+1, ε)]〉

By definition of unification in contextPe differs fromQe only in the value of the

pathµe · ν · 〈F|π0|+1〉. The difference is in the value of the pathµe · ν · 〈F|π0|+1〉,

it is not defined inPe and equalsβ in Qe. Hence,Ψ(Pe, µe · ν) · 〈F|π0|+1〉 · β =

Ψ(Qe, µe · ν). Therefore,

〈Y1, . . . , Yn−m+1〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, νj)], . . . , N [Ψ(Qn−m+1, ε)]〉

Note that in this caseYe is well defined because it was created by applying a LIG

rule to a well defined non-terminal symbol.
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Theorem 19. Let Gu = 〈Ru,As,L〉 be a one-reentrant unification grammar andGli =

〈VN , Vt, Vs,R
li, N〉 = ug2lig(Gu) be LIG. IfS[ ]

∗
=⇒li Y1 . . . Yn, whereYi ∈ VN [V ∗

s ], 1 ≤ i ≤ n,

then there are a sequence of paths〈π1, . . . , πn〉 and a derivation sequenceAs ∗
=⇒u A1 . . . An, such

thatYi = N [Ψ(Ai, πi)].

Proof. We prove by induction on the length of the LIG derivation sequence. The induction hypothesis

is that ifS[ ]
k

=⇒li Y1 . . . Yn, whereYi ∈ VN [V ∗
s ], 1 ≤ i ≤ n, thenAs k−1

=⇒u A1 . . . An, such that for

some sequence of paths〈π1, . . . , πn〉, Yi = N [Ψ(Ai, πi)], 1 ≤ i ≤ n. If k = 1, then

1. By definition 28, the only rule that may be applied to the start symbol S in Gli is the rule

defined by case (1) of the definition:S[ ] → N [Ψ(As, ε)].

2. Hence, fork = 1, the only derivation sequence isS[ ]
1

=⇒li N [Ψ(As, ε)]

3. By the definition of derivation in UG,As 0
=⇒u As.

Assume that the hypothesis holds for everyi, 1 ≤ i ≤ k; let the length of the derivation sequence

bek + 1.

1. Assume thatS[ ]
k+1
=⇒li Y1 . . . Yn. ThenS[ ]

k
=⇒li Y ′

1 . . . Y ′
m

1
=⇒li Y1 . . . Yn.

2. By the induction hypothesis, there exists a sequence of paths〈ν1, . . . , νm〉 and feature structures

D1, . . . ,Dm, such that for1 ≤ i ≤ m, Y ′
i = N [Ψ(Di, νi)], andAs k−1

=⇒u D1 . . . Dm. We

therefore write:

S[ ]
k

=⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]
1

=⇒li Y1 . . . Yn

3. Furthermore, letr = X0 → X1 . . . Xn−m+1 be theGli rule used for the last derivation step,

andj be the index of the element to whichr is applied, such that

N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]
1

=⇒li

N [Ψ(D1, ν1)] . . . N [Ψ(Dj−1, νj−1)]Yj . . . Yn−m+jN [Ψ(Dn−m+j+1, νn−m+j+1)] . . .N [Ψ(Dm, νm)]

4. We denoteΨ(Dj, νj) as〈t1, F1, . . . , t|νj |+1〉
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5. By definition 28, the rules that may be applied toN [Ψ(Dj , νj)] are created by cases (3) and

(4) of the definition, because the rule created by case (1) is headed by the non-terminal symbol

S and the rules created by case (2) do not derive non-terminal symbols. Letru = C0 →

C1 . . . Cn−m+1 be a rule inRu such that the ruler is created fromru. Note that there may be

more than one such rule.

6. We now show thatC0 t Dj 6= >. In both cases (3) and (4) of definition 28 the head of the rule

r, X0, is a member ofLIGHEAD(C0). Sincer is applicable toN [Ψ(Dj, νj)] we obtain thatX0

has one of the following forms:

(a) X0 = N [Ψ(Dj, νj)]. By definition 27,Ψ(Dj, νj) ∈ FIXEDHEAD(C0, maxHt(Gu)).

SinceΨ is a one-to-one mapping, we obtain thatνj ∈ ΠC0
andDj ∈ Γ(C0, νj, maxHt(Gu)).

By definition ofΓ, Dj t C0 6= >.

(b) X0 = N [η..], whereη is a prefix ofΨ(Dj, νj). Hence, we obtain that

η = 〈t1, F1, . . . , t|π0|+1, F|π0|+1〉

whereπ0 is a prefix ofνj. By definition 27,η ∈ UNBOUNDEDHEAD(C0, maxHt(Gu)).

Hence, there are a pathπ0 ∈ ΠC0
and a feature structureA ∈ Γ(C0, π0, maxHt(Gu)) such

thatη = Ψ(A, π0) · 〈F|π0|+1〉. By definition ofΓ, AtC0 6= >. Therefore, by corollary 17,

C0 t Dj 6= >.

7. SinceC0 t Dj 6= >, the ruleru is applicable toDj as follows:

As k−1
=⇒u D1 . . . Dm

1
=⇒u D1 . . . Dj−1Q1 . . . Qn−m+1Dn−m+j+1 . . . Dm

whereQ1, . . . ,Qn−m+1 are feature structures.

8. From (6) above,X0 uniquely definesπ0, A and F|π0|+1. We denoteΨ(C0, π0) as

〈s1, F1, . . . , s|π0|+1〉. Recall that for every1 ≤ i ≤ |π0| + 1, si t ti 6= > becauseA ∈

Γ(C0, π0, maxHt(Gu)). Let 〈P0, . . . ,Pn−m+1〉 be the sequence of feature structures such that

(〈A〉, 0) t (ru, 0) = (〈P0〉, 〈P0, . . . ,Pn−m+1〉)
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9. Now we show that there is a sequence of paths〈π1, . . . , πn−m+1〉 such that

〈Yj , . . . , Yn−m+j〉 = 〈N [Ψ(Q1, π1)], . . . , N [Ψ(Qn−m+1, πn−m+1)]〉

Without loss of generality, ifru is reentrant we assume that its reentrant path is(e, µe), that is,

(0, µ0)
ru

! (e, µe), where1 ≤ e ≤ n. By the definition of LIG there are two options for the

rule r:

(a) The ruler does not copy the stack from the head to the body. Hence,〈X1, . . . ,Xn−m+1〉 =

〈Yj , . . . , Yn−m+j〉. Consider the possible sources of the ruler, according to definition 28:

• Case (3):

The ruleru is non-reentrant. Hence, for1 ≤ i ≤ n − m + 1, Ci = Qi andXi =

N [Ψ(Ci, ε)] = N [Ψ(Qi, ε)]. Therefore,

〈Yj, . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qn−m+1, ε)]〉

• Case (4a):

If µ0 is not a prefix ofπ0 then for all i, i 6= e, Xi = Yi+j−1 = N [Ψ(Ci, ε)] =

N [Ψ(Qi, ε)], andXe = N [Ψ(Pe, µe)]. Let π be the maximal prefix ofπ0 andµ0

such thatµ0 = π · µ′
0. The cordΨ(Dj t C0, νj) is graphically represented as:

Ψ(A t C0, π0)

F1 F2 F|π| F|π|+1 F|π0| F|π0|+1 F|νj|

. . . . . . . . .

µ0

t1 t s1 t2 t s2 t|π|+1 t s|π|+1 t|π0|+1 t s|π0|+1 t|νj |+1

Hence,val(A t C0, µ0) = val(t|π|+1 t s|π|+1, µ
′
0) = val(Dj t C0, µ0). By defi-

nition of unification in contextval(Pe, µe) = val(A t C0, µ0) andval(Qe, µe) =
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val(Dj t C0, µ0). Hence,val(Pe, µe) = val(Qe, µe) and Qe = Pe. Therefore,

Xe = N [Ψ(Qe, µe)] and

〈Yj , . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe)], . . . , N [Ψ(Qn−m+1, ε)]〉

• Case (4(b)i):

If π0 = µ0 · ν, ν ∈ PATHS thenXe = N [Ψ(Pe, µe · ν)]. SinceN [Ψ(A, π0)] is

applicable toN [Ψ(Dj, νj)] we obtain thatπ0 = νj andA = Dj. HencePe = Qe.

Therefore,Xe = N [Ψ(Qe, µe · ν)] and

〈Yj , . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe · ν)], . . . , N [Ψ(Qn−m+1, ε)]〉

(b) The ruler copies the stack fromX0 to Xe. By definition 28,r is created from a reentrant

unification rule,ru, by case (4(b)ii) of the definition 28. Letνj = π0 · ν
′
j andπ0 = µ0 · ν,

ν ′
j , ν ∈ PATHS. By the definition for alli, i 6= e, Xi = Yi+j−1 = N [Ψ(Ci, ε)] =

N [Ψ(Qi, ε)] andXe = N [Ψ(Pe, µe · ν), F|π0|+1..]. Hence we just have to show that for

some pathπe ∈ PATHS, Yj+e−1 = N [Ψ(Qe, πe)]. We will show that this equation holds

for πe = µe · ν · ν ′
j. Sinceπ0, A andF|π0|+1 are uniquely defined byX0 we obtain the

following:

• Ψ(C0, π0) = 〈s1, F1, . . . , s|π0|+1〉

• Ψ(Dj , νj) = 〈t1, F1, . . . , t|νj |+1〉

• Ψ(Dj t C0, νj) = Ψ(Q0, νj) = 〈s1 t t1, F1, . . . , s|π0|+1 t t|π0|+1, F|π0|+1, . . . , t|νj |+1〉

• Ψ(A t C0, π0) = Ψ(P0, π0) = 〈s1 t t1, F1, . . . , s|π0|+1 t t|π0|+1〉

• Ψ(Pe, µe · ν) = butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 t t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 t t|π0|+1〉

• Ψ(Qe, π0 · ν′
j) =

butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 t t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 t t|π0|+1, F|π0|+1, . . . , t|νj |+1〉

The cordΨ(C0, π0) = 〈s1, F1, . . . , s|π0|+1〉 is graphically represented as:

F1 F2 F|µ0| F|µ0|+1 F|π0|

. . . . . .

s1 s2 s|µ0|+1 s|π0|+1
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The cordΨ(Dj, νj) = 〈t1, F1, . . . , t|νj |+1〉 whose prefix is the cordΨ(A, νj) is graphi-

cally represented as:

Ψ(A, π0)

F1 F2 F|µ0| F|µ0|+1 F|π0| F|π0|+1 F|νj |

. . . . . . . . .

t1 t2 t|µ0|+1 t|π0|+1 t|νj |+1

The cordΨ(DjtC0, νj) = Ψ(Q0, νj) = 〈s1 t t1, F1, . . . , s|π0|+1 t t|π0|+1, F|π0|+1, . . . , t|νj |+1〉

whose prefix is the cordΨ(A t C0, π0) = Ψ(P0, π0) = 〈s1 t t1, F1, . . . , s|π0|+1 t t|π0|+1〉 is

graphically represented as:

Ψ(A t C0, π0)

F1 F2 F|µ0| F|µ0|+1 F|π0| F|π0|+1 F|νj |

. . . . . . . . .

s2 t t1 s2 t t2 s|µ0|+1 t t|µ0|+1 s|π0|+1 t t|π0|+1 t|νj |+1

The relation between the cords

Ψ(Pe, µe · ν) = butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 t t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 t t|π0|+1〉

and

Ψ(Qe, π0 · ν′
j) =

butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 t t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 t t|π0|+1, F|π0|+1, . . . , t|νj |+1〉
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is graphically represented as:

Ψ(Pe, µe · ν)

F|µ0|+1 F|π0| F|π0|+1 F|νj|

. . . . . . . . .

butLast(Ψ(Ce, µe)) s|µ0|+1 t t|µ0|+1 s|π0|+1 t t|π0|+1 t|νj |+1

Hence,

Ye =N [Ψ(Pe, µe · ν), F|π0|+1, t|π0|+2, F|π0|+2, . . . , t|νj |+1]]

=N [butLast(Ψ(Ce, µe)), s|µ0|+1 t t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 t t|π0|+1, F|π0|+1, . . . , t|νj |+1]

=N [Ψ(Qe, π0 · ν′
j)]

Therefore,

〈Yj , . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, π0 · ν
′
j)], . . . , N [Ψ(Qn−m+1, ε)]〉

Corollary 20. LetGu ∈ UG1r, thenL(Gu) = L(ug2lig(Gu)).

Proof. LetGu = 〈Ru,As,L〉 be a one-reentrant unification grammar andGli = 〈VN , Vt, Vs,R
li, N〉 =

ug2lig(Gu). Then by theorem 18, there is a sequence of paths〈π1, . . . , πn〉 such that

if As ∗
=⇒u A1 . . . An thenS[ ]

∗
=⇒li N [Ψ(A1, π1)] . . . N [Ψ(An, πn])

Where As ∗
=⇒u A1 . . . An is a pre-terminal sequence. Assume thatAs ∗

=⇒u A1 . . . An
∗

=⇒u

w1, . . . wn, wherewi ∈ WORDS, 1 ≤ i ≤ n. Hence,L(wi) = {Di} andAi t Di 6= >. Since

the grammar is a simplified unification grammar (definition 18), Ai = Di. By definition 28 case (2),

the ruleN [Ψ(Ai, πi)] → wi is in Rli. Therefore,S[ ]
∗

=⇒li N [Ψ(A1, π1)] . . . N [Ψ(An, πn])
∗

=⇒li

w1, . . . wn.

By theorem 19, ifS[ ]
∗

=⇒li Y1 . . . Yn then there are a sequence of paths〈π1, . . . , πn〉, and

a derivation sequenceAs ∗
=⇒u A1 . . . An such that for0 ≤ i ≤ n, Yi = N [Ψ(Ai, πi)]. As-

sume thatS[ ]
∗

=⇒li N [Ψ(A1, π1)] . . . N [Ψ(An, πn])
∗

=⇒li w1, . . . wn, wi ∈ Vt. Then the rules
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N [Ψ(Ai, πi)] → wi in Rli, 1 ≤ i ≤ n. By definition 28, each such rule is created from a lexicon

entryL(wi) = {Ai}. Hence,As ∗
=⇒u A1 . . . An

∗
=⇒u w1, . . . wn.
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Chapter 4

Conclusions

In this work we explore the influence of reentrancies on the generative power of unification grammars.

Our main contribution is the definition of two constraints onunification grammars which dramatically

limit their expressivity. We prove that non-reentrant unification grammars generate exactly the class

of context-free languages; and that one-reentrant unification grammars generate exactly the class of

mildly context-sensitive languages. While these results do not characterize the classes of unification

grammars that license context free languages and mildly context sensitive languages (because the

restrictions are sufficient but not necessary), they provide two linguistically plausible constrained

formalisms whose computational processing is tractable.

This work can be extended in a number of directions. We are well aware of the fact that our

mapping of one-reentrant unification grammars to LIG is highly verbose. In particular, it results

in LIGs with a huge number of rules, many of which will never participate in any derivation. We

believe that it should be possible to optimize the mapping such that much smaller LIGs are generated.

Furthermore, the equivalence proofs of section 3.4 are rather complex, perhaps owing to the choice

of LIG as the target formalism. It would be interesting to experiment with a mapping of one-reentrant

unification grammars to some other mildly context-sensitive formalism, notably TAG.

The two constraints on unification grammars (non-reentrantand one-reentrant) are parallel to the

first two classes of the Weir hierarchy of languages (Weir, 1992). A possible extension of this work

could be a definition of constraints on unification grammars that would generate all the classes of the



hierarchy.

Another direction is an extension of one-reentrant unification grammars, where the reentrancy

inside a grammar rule does not have to be between the head and one element in the body, but can

also be, for example, between two elements of the body or within an element. We believe that a

formalism of one-reentrant unification grammars, where thereentrancy inside a grammar rule can

only be between two elements of the body, generates all and only context free languages. A formal

characterization of the class of languages generated by such grammars is an interesting direction for

future research. Then it is interesting to explore the powerof two-reentrant unification grammars,

possibly with limited kinds of reentrancies.

It may also be possible to extend one-reentrant UGs to multi-reentrant UGs without extending

their generation power. One research direction is to allow some kind of disjoint reentrancies, where

the reentrant paths have no common edges.
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