
From “hand-written” to computationally implemented HPSG theories

Nurit Melnik ∗

Caesarea Rothschild Institute
for Interdisciplinary Applications of Computer Science

Haifa University
Haifa, Israel 31905

nurit@eyron.com

1 Overview

HPSG has logical and mathematical foundations
which make it amenable to computational imple-
mentation. Yet it is seldom the case that this po-
tential is in fact fulfilled, although there exist a num-
ber of platforms for implementing HPSG grammars.
Thus, most descriptions and analyses of linguistic
phenomena in the literature are not substantiated by
a working computational grammar.

Two leading implementation platforms are avail-
able for implementing HPSG grammars. The Lin-
guistic Knowledge Building (LKB) system (Copes-
take, 2002) is the primary engineering environment
of the LinGo English Resource Grammar (ERG) at
Stanford. LKB is developed not particularly for im-
plementing HPSG grammars, but rather, as a frame-
work independent environment for typed feature
structures grammar. TRALE, an extension of the
Attribute Logic Engine (ALE) system, is a grammar
implementation platform that was developed as part
of the MiLCA project (Meurers et al., 2002), specif-
ically for the implementation of theoretical HPSG
grammars that were not explicitly written for lan-
guage processing.1 The two platforms are based
on different approaches, distinct in their underlying
logics and implementation details.

This paper adopts the perspective of a computa-
tional linguist whose goal is to implement an HPSG

∗This research was supported by the Israel Science Founda-
tion (grant no. 136/01) and by The Caesarea Edmond Benjamin
de Rothschild Foundation Institute for Interdisciplinary Appli-
cations of Computer Science.

1See http://milca.sfs.nphil.uni-tuebingen.de/A4/HomePage/
English/beschr.html

theory. It is based on the implementation of a “hand-
written” grammar proposed by Melnik (2002) to ac-
count for verb initial constructions in Modern He-
brew. A representative subset of the grammar, in-
cluding word order, agreement, and valence alterna-
tion phenomena, serves as a test case.

The paper focuses on different dimensions, rele-
vant to HPSG grammar implementation: type defi-
nition, grammar principles, lexical rules, exhaustive
typing, definite relations, non-binary grammar rules,
semantic representation, grammar evaluation, and
user-interface. It examines, compares, and evaluates
the different means which the two approaches pro-
vide for implementation, by referring to examples
from a “hand-written” grammar fragment that was
implemented in the two systems. The paper con-
cludes that the approaches occupy diametrically op-
posed positions on two axes:FAITHFULNESS to the
“hand-written’ theory andCOMPUTATIONAL AC-
CESSIBILITY. The findings of this paper are valu-
able to linguists who are interested in implementing
their grammar, as well as to those who develop im-
plementation platforms.

2 Type Definition

Types in a typed feature-structure framework are de-
fined by determining (i) the type’s hierarchical rela-
tion to other types, (ii) appropriateness conditions,
(iii) constraints on the values of embedded features,
and (iv) path equations.

TRALE separates theSIGNATURE, where the first
two properties are defined, from theTHEORY, in
which the latter are stated. In the signature file, types
are entered in a list format, where subtypes appear

indented under their respective supertype(s). Fea-
tures and values are introduced following the type.
Constraints on embedded features and path equa-
tions are entered separately from the signature in the
theory file as implicational constraints in which the
type is the antecedent.

LKB, on the other hand, takes a centralized
bottom-up approach, where all the information re-
lated to a type is defined in one location, in the
TYPES file. The definition of each type, then, in-
cludes a list of its immediate supertype(s) and intro-
duced features, as well as all other type-related con-
straints. This approach facilitates the task of defin-
ing the type inventory and accessing this information
while developing the grammar.

Although the hierarchies are defined differently
in the two systems, they are both subject to the
glb condition, which requires that the hierarchy be
a bounded complete partial order (BCPO). Thus,
when a non-BCPO hierarchy is defined, TRALE en-
forces the condition by producing an error message
during compilation. LKB, on the other hand, auto-
matically creates a glb type in each case of violation
and restructures the hierarchy accordingly.

On the one hand, by automatically fixing the vi-
olation, LKB enables the grammar writer to main-
tain ignorance regarding a potentially confusing is-
sue. This ignorance, however, turns into confusion
once the grammar writer views the type hierarchy
diagram. The automatic restructuring of the hier-
archy, including the addition of generically named
types, may be incomprehensible to the naive gram-
mar writer. Moreover, the resulting hierarchy is
reflected only in the display and not in the actual
definitions, rendering the automatically created glb
types, along with their generic names, inaccessible.
A possible solution is to modify the hierarchy defini-
tion to reflect the corrected hierarchy, thus allowing
the grammar writer to give the glb types more mean-
ingful labels.

Multi-dimensional type hierarchies are
widely used in the HPSG literature, yet multi-
dimensionality is not a part of the formal type
system itself (Penn and Hoetmer, 2003). Neither
LKB nor TRALE provide the grammar writer
with a way to define partitions (or dimensions)
in the hierarchy. Consequently, if partition labels
are implemented as types in the hierarchy, they

are not distinguished formally from other types,
nor do LKB and TRALE prevent the grammar
writer from defining types that inherit from two
subtypes under one pseudo-partition. Moreover, a
multi-dimensional inheritance hierarchy in which
partitions are defined as types does not respect
the glb condition, and is therefore subjected to
the systems’ distinct treatments, described above.
Although this omission does not prevent grammar
writers from implementing their grammars, the
result clearly does not reflect the source and the
intention of the grammar writer.

3 Principles

Principles in HPSG are often defined as implica-
tional constraints. Thus, for example, the Head Fea-
ture Principle (HFP), which states that the value of
the HEAD feature of the headed-phrase is structure-
shared with that of its head-daughter, is defined as a
type constraint on thehd-phtype.

hd-ph→
[

HEAD 1

HD-DTR
[

HEAD 1
]
]

In LKB principles are necessarily linked to types
and are stated as part of the type definition. Thus, the
HFP is implemented as part of the definition of the
typehd-ph. In TRALE, on the other hand, principles
such as the HFP are stated as part of the theory, in
the form of implicational constraints where the type
is the antecedent, similarly to the definition above.
TRALE, however, extends implicational constraints
to express principles which do not target a partic-
ular type. More specifically, the antecedent of im-
plicational constraints can be arbitrary function-free,
inequation-free feature structures .

Consider, for example, the following
complex-antecedent principle (Meurers, 2001).




word

SYNSEM| LOC |CAT




HEAD

[
verb

VFORM finite

]

VAL |SUBJ
〈

LOC |CAT |HEAD noun
〉







→[
SYNSEM| LOC | ... |SUBJ

〈[
LOC |CAT |HEAD |CASEnominative

]〉]

The principle expresses the generalization that NP
subjects of finite verbs are assigned nominative

case. The complex antecedent singles out the
relevant class of verbs without requiring there to be
a corresponding type.

The ability to use implicational constraints with
complex antecedents provides the grammar writer
with additional means to express generalizations.
When the given dimensions in the type hierarchy
do not group together a particular set of objects to
which a certain generalization applies, the grammar
writer can choose not to expand the hierarchy, but
rather to use a complex feature structure as an an-
tecedent to an implicational constraint expressing
the generalization. This solution can cut down on
the size of the type hierarchy and its complexity.

4 Lexical Rules

The main issue that is pertinent to the implementa-
tion of lexical rules (LRs) is the “carrying over” of
information from the input to the output of the rule.
The descriptions of the input and output of lexical
rules generally include only the features and values
that are relevant for the particular rule; either those
which constrain the types of objects on which to
apply the rule or those which provide “information
handles” (Meurers, 1994). All information which
is not changed by the lexical rule is assumed to be
copied over from the input to the output. An im-
plementation platform thus has to implement the ex-
plicit as well as implicit copying of values.

LKB views lexical rules as unary grammar rules
which relate a mother structure (the output) to its
daughter (the input). Similarly to grammar rules, the
description of the daughter is included in theARGS

feature of the mother. This provides a partial solu-
tion to the “carrying over” problem — the descrip-
tions of both the mother and daughter are a part of a
single feature structure. Nevertheless, the grammar
writer is required to explicitly specify by structure-
sharing the information that is copied over. Aside
from deviating from HPSG conventions, this solu-
tion may result in a loss of generality.

TRALE provides two mechanisms for imple-
menting lexical rules: the traditional ALE mecha-
nism and a mechanism referred to as ‘description-
level lexical rules’ (DLRs) which encodes the treat-
ment proposed in Meurers & Minnen (1997). Unlike
the format of the rules in LKB, the TRALE syntax

for both types of LRs is similar to the familiar ‘X⇒
Y’ notation. More importantly, from the perspective
of the grammar writer, the main distinction between
the two approaches is in the “carrying over” mech-
anism. ALE LRs, similarly to the LKB mechanism,
require explicit specification of “carried over” infor-
mation. The DLR version provides an automatic
“carrying over” mechanism which implements the
intuitions behind the “hand-written” version of lex-
ical rules. This is a clear advantage in terms of ap-
proximating written theories and maintaining gener-
ality.

5 Exhaustive Typing and Subtype
Covering

‘Exhaustive typing’ refers to a particular interpre-
tation of the signature according to which subtypes
exhaustively cover their supertypes. Consequently,
if an object is of a certain non-maximal typet then it
is also of some more specific subtype subsumed by
t.2

A simple example is the HPSG analysis of
subject-auxiliary inversion in English. In order to
restrict the licensing of inversion to auxiliary verbs,
verbs are defined as having two features:INV and
AUX . Furthermore, the general typeverbis assumed
to have two subtypes:main-verbandaux-verb.

[
verb
AUX bool
INV bool

]

[
main-verb
AUX −
INV −

] [
aux-verb
AUX +

INV bool

]

Under an exhaustive typing interpretation, objects
of type verb which are not compatible with either
main-verbor aux-verb (e.g., verbs specified with[
AUX −]

and
[
INV +

]
) are rejected. This is the in-

terpretation which TRALE employs. In LKB such
feature structures are accepted.

In addition, TRALE employs a subtype covering
strategy whereby if the system recognizes that the
values of a feature structure of a non-maximal type

2This interpretation is also referred to in the literature as
‘closed world’. However, as one reviewer pointed out, the terms
‘closed/open world’ have a different meaning in the study of
programming languages and should therefore be avoided.

are consistent with the values of only one of its sub-
types, it will promote those values to the values of
the compatible subtype. This is justified only under
an exhaustive typing interpretation, and is therefore
not a part of the LKB system.

One advantage to TRALE’s approach is that
it implements an implicit assumption in “stan-
dard” HPSG (e.g., (Pollard and Sag, 1994)) and is
thus appropriate if the goal is to narrow the gap
between “hand-written” theories and their imple-
mented counterparts. Second, Meurers (1994) notes
that “while both interpretations allow the inference
that appropriateness information present on a type
gets inherited to its subtypes, we can now addi-
tionally infer the appropriateness specifications on a
type from the information present on its subtypes”.
Moreover, in addition to increasing the expressive
power, such a system facilitates syntactic detec-
tion of errors and increased efficiency in processing
(Meurers, 1994).

The main reasons that are given for adopting
the alternative approach, often referred to as ‘open-
world reasoning’, are not theoretical, but rather, mo-
tivated by engineering considerations. This type
of reasoning allows the grammar writer to be non-
committal regarding the complete inventory of types
needed to account for the language. This is partic-
ularly helpful during incremental grammar/lexicon
development.

6 Definite Relations

“Hand-written” HPSG makes use of various rela-
tions which are external to the description language,
many of which apply to lists and sets. One such re-
lation isAPPEND. LKB and TRALE differ greatly in
the solutions that they offer for implementing “hand-
written” analyses which make use of definite rela-
tions. LKB takes a conservative stance and adheres
to the description language, while TRALE augments
the description language with a programming lan-
guage for implementing definite relations and incor-
porating them into type constraints and rules.

Programming definite relations in the TRALE en-
vironment is very similar to programming in Prolog,
with the exception that first-order terms in Prolog
are replaced with descriptions of feature structures.
Thus, a list in this case is not a list of terms, but

rather a list of descriptions of feature structures.
A thorough discussion of the benefits of adding

recursive relations to the description language of
implementation platforms for HPSG grammars is
found in Meurerset al. (2003), which compares
the treatment of unbounded dependencies and op-
tional arguments in the ERG, implemented in LKB,
with that of TRALE. They conclude that the ability
to express relational goals increases the grammar’s
modularity and its ability to express generalizations,
and reduces the gap between “hand-written” theo-
ries and their implemented counterparts. This con-
clusion is echoed in the following section.

7 Non-binary Grammar Rules

Grammar rules in the HPSG literature are not re-
stricted to binary rules. A prime example is the
head-complement phrase, one of the most basic
phrase structures in the grammar. In addition to be-
ing non-binary, the head-complement phrase rule is
designed to account for phrases with a varying num-
ber of daughters. Implementing a rule for such a
phrase type poses a number of challenges for a com-
putational system, challenges which are handled dif-
ferently by the two systems.

The assumption in LKB is that the number of
daughters associated with each rule is fixed. Thus,
for grammars which are not restricted to binary
branching trees the grammar writer needs to de-
fine phrase types and grammar rules for each arity.
TRALE provides a specialcats> operator to ex-
press rules with daughters lists of unspecified length.
This, combined with the ability to incorporate def-
inite recursive relations into the grammar provides
the grammar writer with a way to implement non-
binary grammar rules, such as the head-complement
rule, in a concise and elegant manner, which closely
approximates “hand-written” grammars. This, how-
ever, does require from the grammar writer the pro-
gramming skills needed to be able to code using the
definite logic programming language.

8 Semantic Representation

LKB contains a module for processing Minimal
Recursive Semantics (MRS) representations. The
module is independent from the rest of the LKB
and provides tools for manipulating MRS structures

in feature structure representations (Copestake and
Flickinger, 2000). TRALE provides an alternative
module which is an implementation of Lexical Re-
source Semantics (Penn and Richter, 2004). A com-
parison and evaluation of the two systems will be
given in the full paper.

9 Evaluating Competence and
Performance

Implemented grammars can be evaluated according
to two dimensions: competence and performance.
The competence of a grammar refers to its coverage
and accuracy, that is the ability to account for all
and nothing but sentences which are assumed to be
grammatical. Performance relates to the resources
— mainly processor time and memory space — that
are used during processing.

Both LKB and TRALE provide a way for defin-
ing a test suite which can be used as a benchmark-
ing facility. A batch parse returns for each sentence
in the test suite the number of parses and passive
edges. In terms of performance, TRALE indicates
for each sentence the CPU time in seconds that it
took to process the sentence. In LKB only a total
figure for all sentences is given. More sophisticated
tools for evaluating competence and performance of
grammars are available in both systems through the
[incr tsdb()] package (Oepen, 2001).

10 User-Interface Issues and Features

Aside from major design differences between the
two systems, LKB and TRALE are distinguished by
other more superficial user-interface type of differ-
ences.
• LKB provides an interactive display of the gram-
mar’s type hierarchy. The user can click on types
and examine their immediate and expanded defini-
tions. TRALE produces static images of the hierar-
chy.
• Both systems provide ways for displaying and
inspecting feature structures and syntactic trees.
TRALE’s Grisu graphical interface displays fea-
ture structures in AVMs that are identical to those
of “hand-written” HPSG. The LKB display is less
compact and more difficult to navigate.
• Parametric macros in TRALE are used as a
shorthand for descriptions that are used frequently.

Macros are especially useful for defining the lexicon
when it is structured to minimize lexeme-specific in-
formation.
• LKB is a graphic-user-interface system where
commands are invoked through drop-down menus.
In TRALE the user interacts with the program by
using commands entered at the Prolog prompt.
• LKB uses the same syntax to define types, lexical
rules, grammar rules, and words in the lexicon. In
TRALE distinct formats, similar to “hand-written”
HPSG, are used for each of the grammar compo-
nents.
• LKB comes with the Matrix (Bender et al., 2002),
an open-source starter-kit for rapid prototyping of
precision broad-coverage grammars. TRALE gram-
mars need to be implemented from scratch, or based
on existing grammars.

11 Conclusion

Generally speaking, the characterization of HPSG
as an implementable grammatical theory is justified,
due to the computational effort that was put into
designing and developing the two implementation
platforms discussed in this paper. The major gap
that was identified between “hand-written” HPSG
and its implemented counterpart was in the multi-
dimensional inheritance mechanism, which is not in-
corporated into neither implementation platforms.

LKB and TRALE can be compared and evaluated
along two different axes:FAITHFULNESS and AC-
CESSIBILITY. Faithfulness is the extent to which
the implemented grammar resembles the original
“hand-written” one. Accessibility, on the other
hand, is the degree of computational skills that is re-
quired from a linguist in order to implement a gram-
mar.

In some way, LKB can be viewed as a simpli-
fied TRALE. Thus, when implicational constraints
with complex antecedents, DLR lexical rules, the
cats> operator, definite clauses, and macros are
eliminated, one can implement an LKB-like gram-
mar in TRALE. Of course, one LKB feature that
cannot be assimilated is the automatic correction of
glb condition violations.

The gap between the LKB-like TRALE gram-
mar and a grammar implemented using the entire
collection of tools provided by TRALE character-

izes the differences between the systems. The ‘true’
TRALE grammar is positioned much higher on the
faithfulness axis than the LKB-like TRALE gram-
mar. The TRALE tools needed in order to elevate the
LKB-like grammar on this axis require from the lin-
guist more computational skills. This is especially
true when writing (and debugging) Prolog definite
clauses to express relational constraints.

In terms of accessibility, the menu-driven user in-
terface of LKB is more user-friendly than TRALE’s
command-line interface, making LKB more attrac-
tive to the less computationally savvy linguist. How-
ever, tipping the balance a little on the accessibility
scale towards TRALE is its AVM display, which is
much easier to process than LKB’s. Consequently,
a computational linguist interested in implementing
an HPSG theory must consider these dimensions
when choosing an implementation platform.

References

Emily M. Bender, Daniel P. Flickinger, and Stephan
Oepen. 2002. The grammar matrix: An open-
source starter-kit for the rapid development of
cross-linguistically consistent broad-coverage preci-
sion grammars. In John Carroll, Nelleke Oostdijk, and
Richard Sutcliffe, editors,Proceedings of the Work-
shop on Grammar Engineering and Evaluation at the
19th International Conference on Computational Lin-
guistics, pages 8–14, Taipei, Taiwan.

Ann Copestake and Dan Flickinger. 2000. An open
source grammar development environment and broad-
coverage English grammar using HPSG. InProceed-
ings of the 2nd International Conference on Language
Resources and Evaluation, Athens, Greece.

Ann Copestake. 2002. Implementing Typed Feature
Structure Grammars. CSLI publications, Stanford,
CA.

Nurit Melnik. 2002. Verb-Initial Constructions in Mod-
ern Hebrew. Ph.D. thesis, University of California at
Berkeley.

Detmar Meurers and Guido Minnen. 1997. A compu-
tational treatment of lexical rules in HPSG as covari-
ation in lexical entries. Computational Linguistics,
23(4):543–568.

W. Detmar Meurers, Gerald Penn, and Frank Richter.
2002. A web-based instructional platform for
constraint-based grammar formalisms and parsing. In
Dragomir Radev and Chris Brew, editors,Effective
Tools and Methodologies for Teaching NLP and CL,

pages 18 – 25, New Brunswick, NJ. The Association
for Computational Linguistics.

Detmar Meurers, Kordula De Kuthy, and Vanessa Met-
calf. 2003. Modularity of grammatical constraints in
HPSG-based grammar implementations. InProceed-
ings of the ESSLLI ’03 workshop “Ideas and Strate-
gies for Multilingual Grammar Development”, Vi-
enna, Austria.

Detmar Meurers. 1994. On implementing an HPSG
theory – Aspects of the logical architecture, the for-
malization, and the implementation of head-driven
phrase structure grammars. In Erhard W. Hinrichs,
Detmar Meurers, and Tsuneko Nakazawa, editors,
Partial-VP and Split-NP Topicalization in German –
An HPSG Analysis and its Implementation, pages 47–
155. Eberhard-Karls-Universität Tübingen, T̈ubingen,
Germany.

Detmar Meurers. 2001. On expressing lexical gener-
alizations in HPSG. Nordic Journal of Linguistics,
24(2):161–217. Special issue on ‘The Lexicon in Lin-
guistic Theory’.

Stephan Oepen. 2001.[incr tsdb()] — competence and
performance laboratory. User manual. Technical re-
port, Computational Linguistics, Saarland University,
Saarbr̈ucken, Germany. in preparation.

Gerald Penn and Kenneth Hoetmer. 2003. In search of
epistemic primitives in the English Resource Gram-
mar. In Proceedings of the 10th International Con-
ference on Head-Driven Phrase Structure Grammar,
East Lansing, Michigan.

Gerald Penn and Frank Richter. 2004. Lexical re-
source semantics: From theory to implementation.
In Stefan M̈uller, editor, Proceedings of the HPSG-
2004 Conference, Center for Computational Linguis-
tics, Katholieke Universiteit Leuven, pages 423–443.
CSLI Publications, Stanford.

Carl Pollard and Ivan A. Sag. 1994.Head-Driven Phrase
Structure Grammar. CSLI Publications and Univer-
sity of Chicago Press.

