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Modular Development
of Typed Unification Grammars:

A Mathematical and Computational Infrastructure

for Grammar Engineering

Yael Sygal

Abstract
Development of large-scale grammars for natural languagesis a complicated endeavor:

Grammars are developed collaboratively by teams of linguists, computational linguists

and computer scientists, in a process very similar to the development of large-scale soft-

ware. Grammars are written in grammatical formalisms that resemble very high level

programming languages, and are thus very similar to computer programs. Yet grammar

engineering is still in its infancy: few grammar development environments support sophis-

ticated modularized grammar development, in the form of distribution of the grammar

development effort, combination of sub-grammars, separate compilation and automatic

linkage, information encapsulation, etc.

This work provides the foundations for modular construction of (typed) unification

grammars for natural languages. Much of the information in such formalisms is encoded

by the type signature, and we subsequently address the problem through the distribution

of the signature among the different modules. We definesignature modulesand provide

operators ofmodule combination. Modules may specify only partial information about

the components of the signature and may communicate throughparameters, similarly to

function calls in programming languages. Our definitions are inspired by methods and

techniques of programming language theory and software engineering, and are motivated

V



by the actual needs of grammar developers, obtained througha careful examination of

existing grammars. We show that our definitions meet these needs by conforming to a

detailed set of desiderata. We demonstrate the utility of our definitions by providing a

modular design of the HPSG grammar of Pollard and Sag (1994).We then describe the

MODALE system, a platform that supports modular development of type signatures.

Finally, we show that the methods we propose have an impact onthe development of

large-scale grammars in some other, related, formalisms.
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Chapter 1

Introduction

Development of large-scale grammars for natural languagesis an active area of research

in human language technology. Such grammars are developed not only for purposes of

theoretical linguistic research, but also for natural language applications such as machine

translation, speech generation, etc. Wide-coverage grammars are being developed for

various languages (Abeillé, Candito, and Kinyon, 2000; XTAG Research Group, 2001;

Oepen et al., 2002; Hinrichs, Meurers, and Wintner, 2004; Bender et al., 2005; King et

al., 2005; M̈uller, 2007) in several theoretical frameworks, e.g., TAG (Joshi, Levy, and

Takahashi, 1975), LFG (Dalrymple, 2001), HPSG (Pollard andSag, 1994), and XDG

(Debusmann, Duchier, and Rossberg, 2005).

Grammar development is a complex enterprise: it is not unusual for a single gram-

mar to be developed by a team including several linguists, computational linguists and

computer scientists. The scale of grammars is overwhelming: large-scale grammars can

be made up by tens of thousands of line of code (Oepen et al., 2000) and may includes

thousands of types (Copestake and Flickinger, 2000). Moderngrammars are written in

grammatical formalisms that are often reminiscent of very high level, declarative (mostly

logical) programming languages, and are thus very similar to computer programs. This

raises problems similar to those encountered in large-scale software development (Erbach
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and Uszkoreit, 1990). Yet while software engineering provides adequate solutions for the

programmer, grammar engineering is still in its infancy.

In this work we focus on typed unification grammars (TUG), andtheir implementation

in grammar-development platforms such as LKB (Copestake, 2002), ALE (Carpenter,

1992a), TRALE (Meurers, Penn, and Richter, 2002) or Grammix (Müller, 2007). Such

platforms conceptually view the grammar as a single entity (even when it is distributed

over several files), and provide few provisions for modular grammar development, such as

mechanisms for defining modules that can interact with each other through well-defined

interfaces; combination of sub-grammars; separate compilation and automatic linkage of

grammars; information encapsulation; etc. This is the mainissue that we address in this

work.

We provide a preliminary yet thorough and well-founded solution to the problem of

grammar modularization. We first specify a set of desideratafor a beneficial solution

in section 1.2, and then survey related work in section 1.3, emphasizing the shortcom-

ings of existing approaches with respect to these desiderata. Much of the information in

typed unification grammars is encoded in the signature, and hence the key is facilitating

a modularized development of type signatures. In chapter 2 we definesignature modules

and provide operators ofmodule combination. Modules may specify partial information

about the components of the signature and may communicate through parameters, sim-

ilarly to function composition. We then show how the resulting signature module can

be extended to a stand-alone type signature. We lift our definitions from signatures to

full grammar modules in section 2.5. In chapter 3 we use signature modules and their

combination operators to work out a modular design of the HPSG grammar of Pollard

and Sag (1994), demonstrating the utility of signature modules for the development of

linguistically-motivated grammars. We then outline MODALE, an implementation of

our solutions which supports modular development of type signatures in the context of

both ALE and TRALE (section 4). In chapter 5 we show that the methods we develop
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are instrumental also for development of large-scale grammars in some other, related, for-

malisms. In particular, we use our methods to identify and correct a significant flaw in

an otherwise powerful and flexible formalism, PUG. In chapter 6 we show how our solu-

tion complies with the desiderata of section 1.2, and conclude with directions for future

research.

1.1 Typed Unification Grammars

We assume familiarity with theories of (typed) unification grammar, as formulated by,

e.g., Carpenter (1992b) and Penn (2000). The definitions in this section set the notation

and recall basic notions. For a partial functionF , ‘F (x)↓’ (‘ F (x)↑’) means thatF is

defined (undefined) for the valuex; ‘F (x) = F (y)’ means that eitherF is defined both

for x andy and assign them equal values or it is undefined for both.

Definition 1. Given a partially ordered set〈P,≤〉, the set ofupper boundsof a subset

S ⊆ P is the setSu = {y ∈ P | ∀x ∈ S x ≤ y}.

For a given partially ordered set〈P,≤〉, if S ⊆ P has a least element then it is unique,

and hence it is denotedmin(S).

Definition 2. A partially ordered set〈P,≤〉 is a bounded complete partial order

(BCPO) if for everyS ⊆ P such thatSu 6= ∅, Su has a least element, called aleast

upper bound (lub) and denoted
⊔

S.

Definition 3. A type hierarchy is a non-empty, finite, bounded complete partial order

〈TYPE,⊑〉.

Every type hierarchy〈TYPE,⊑〉 always has a least type (written⊥), since the subset

S = ∅ of TYPE has the non-empty set of upper bounds,Su = TYPE, which must have a

least element due to bounded completeness.
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Definition 4. Let 〈TYPE,⊑〉 be a type hierarchy and letx, y ∈ TYPE. If x ⊑ y, thenx

is a supertypeof y andy is a subtypeof x. If x ⊑ y, x 6= y and there is noz such that

x ⊑ z ⊑ y andz 6= x, y thenx is an immediate supertypeof y andy is an immediate

subtypeof x.

We follow the definitions of Carpenter (1992b) and Penn (2000)in viewing subtypes

as greater than their supertypes (hence the least element⊥ and the notion of lub), rather

than the other way round (inducing a glb interpretation), which is sometimes common in

the literature (Copestake, 2002).

Definition 5. Given a type hierarchy〈TYPE,⊑〉 and a finite set of featuresFEAT, an

appropriateness specificationis a partial function,Approp : TYPE × FEAT → TYPE

such that for everyF ∈ FEAT:

1. (Feature Introduction) there is a typeIntro(F ) ∈ TYPE such that:

• Approp(Intro(F ), F )↓, and

• for everyt ∈ TYPE, if Approp(t, F )↓, thenIntro(F ) ⊑ t, and

2. (Upward Closure / Right Monotonocy) ifApprop(s, F ) ↓ and s ⊑ t, then

Approp(t, F )↓ andApprop(s, F ) ⊑ Approp(t, F ).

Definition 6. A type signature is a structure〈TYPE,⊑, FEAT, Approp〉, where〈TYPE,

⊑〉 is a type hierarchy,FEAT is a finite set of features,FEAT and TYPE are disjoint and

Approp is an appropriateness specification.

In this work we restrict ourselves to standard type signatures (as defined by Carpenter

(1992b) and Penn (2000)), ignoring type constraints which are becoming common in

practical systems. We defer an extension of our results to type constraints to future work.

For the following discussion we assume that a type signature〈TYPE,⊑, FEAT, Approp〉

has been specified.
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Definition 7. A path is a finite sequence of features, and the setPATHS = FEAT∗ is the

collection of paths.ǫ is the empty path.

Definition 8. A typed pre-feature structure (pre-TFS) is a triple 〈Π, Θ, ⊲⊳〉 where

• Π ⊆ PATHS is a non-empty set of Paths.

• Θ : Π → TYPE is a total function, assigning a type for all paths.

• ⊲⊳⊆ Π × Π is a relation specifying reentrancy.

A typed feature structure (TFS) is a pre-TFS A = 〈Π, Θ, ⊲⊳〉 for which the following

requirements hold:

• Π is prefix-closed: ifπα ∈ Π thenπ ∈ Π (whereπ, α ∈ PATHS)

• A is fusion-closed: ifπα ∈ Π andπ ⊲⊳ π′ thenπ′α ∈ Π andπα ⊲⊳ π′α

• ⊲⊳ is an equivalence relation with a finite index (with[⊲⊳] the set of its equivalence

classes) including at least the pair(ǫ, ǫ)

• Θ respects the equivalence: ifπ1 ⊲⊳ π2 thenΘ(π1) = Θ(π2)

Below, the meta-variablet ranges over types,F – over features andπ, α (with or

without subscripts) range over paths.A,B (with or without subscripts) range over typed

feature structures andΠ, Θ, ⊲⊳ (with the same subscripts) over their constituents. Let

TFSS be the set of all typed feature structures.

Definition 9. A TFSA = 〈Π, Θ, ⊲⊳〉 is well-typed if wheneverπ ∈ Π andF ∈ FEAT are

such thatπF ∈ Π, thenApprop(Θ(π), F )↓, andApprop(Θ(π), F ) ⊑ Θ(πF ).

To be able to represent complex linguistic information, such as phrase structure, the

notion of feature structures is extended into multi-rootedfeature structures.

Definition 10. A typed pre-multi-rooted structure (pre-TMRS) is a quadrupleσ =

〈Ind, Π, Θ, ⊲⊳〉, where:

5



• Ind ∈ N is the number ofindicesof σ

• Π ⊆ {1, 2, . . . , Ind} × PATHS is a set ofindexed paths, such that for eachi,

1 ≤ i ≤ Ind, there exists someπ ∈ PATHS with (i, π) ∈ Π

• Θ : Π → TYPE is a total function, assigning a type for all paths.

• ⊲⊳ ⊆ Π × Π is a relation specifying reentrancy

A typed multi-rooted structure (TMRS) is a pre-TMRSσ for which the following re-

quirements, naturally extending those ofTFSS, hold:

• Π is prefix-closed: if〈i, πα〉 ∈ Π then〈i, π〉 ∈ Π

• σ is fusion-closed: if〈i, πα〉 ∈ Π and 〈i, π〉 ⊲⊳ 〈i′, π′〉 then 〈i′, π′α〉 ∈ Π and

〈i, πα〉 ⊲⊳ 〈i′, π′α〉

• ⊲⊳ is an equivalence relation with a finite index (with[⊲⊳] the set of its equivalence

classes) including at least the pairs(〈i, ǫ〉, 〈i, ǫ〉) for all 1 ≤ i ≤ Indσ

• Θ respects the equivalence: if〈i1, π1〉 ⊲⊳ 〈i2, π2〉 thenΘ(〈i1, π1〉) = Θ(〈i2, π2〉)

Thelength of a TMRS σ, denoted|σ|, is Indσ.

Meta-variablesσ, ρ, ξ range over TMRSS, andInd, Π, Θ, ⊲⊳ over their constituents.

Let TMRSS be the set of all typed feature structures.

Definition 11. A TMRSσ is well-typed, if for all i, 1 ≤ i ≤ Indσ, σi is well-typed.

Rules and grammars are defined over an additional parameter, afixed, finite set WORDS

of words (in addition to the parameters FEAT and TYPE).

Definition 12. Let S be a type signature. Arule overS is a well-typedTMRSof length

greater than or equal to 1 with a designated (first) element, the head of the rule. The

rest of the elements form the rule’sbody (which may be empty, in which case the rule is

6



viewed as aTFS). A lexicon is a total function fromWORDSto finite, possibly empty sets

of well-typedTFSS. A grammar G = 〈R,L,A〉 is a finite set of rulesR, a lexiconL

and a finite set of well-typedTFSS, A, which is the set ofstart symbols.

1.2 Motivation

The motivation for modular grammar development is straightforward. Like software

development, large-scale grammar development is much simpler when the task can be

cleanly distributed among different developers, providedthat well-defined interfaces gov-

ern the interaction among modules. From a theoretical pointof view, modularity facili-

tates the definition of cleaner semantics for the underlyingformalism and the construction

of correctness proofs. The engineering benefits of modularity in programming languages

are summarized by Mitchell (2003, p. 235), and are equally valid for grammar construc-

tion:

In an effective design, each module can be designed and tested independently.

Two important goals in modularity are to allow one module to be written with

little knowledge of the code in another module and to allow a module to be

redesigned and re-implemented without modifying other parts of the system.

A suitable notion of modularity should support “reuse of software, abstraction mecha-

nisms for information hiding, and import/export relationships” (Brogi et al., 1994). Sim-

ilarly, Bugliesi, Lamma, and Mello (1994) state that:

A modular language should allow rich forms of abstraction, parametrization,

and information hiding; it should ease the development and maintenance of

large programs as well as provide adequate support or reusability and separate

and efficient compilation; it should finally encompass a non-trivial notion of

program equivalence to make it possible to justify the replacement of equiv-

alent components.
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In the linguistic literature, however, modularity has a different flavor which has to do

with the way linguistic knowledge is organized, either cognitively (Fodor, 1983) or the-

oretically (Jackendoff, 2002, pp. 218-230). While we do not directly subscribe to this

notion of modularity in this work, it may be the case that an engineering-inspired defi-

nition of modules will facilitate a better understanding ofthe linguistic notion. Further-

more, while there is no general agreement among linguists onthe exact form of grammar

modularity, a good solution for grammar development must not reflect the correctness of

linguistic theories but rather provide the computational framework for their implementa-

tion.

To consolidate the two notions of modularity, and to devise asolution that is on one

hand inspired by developments in programming languages andon the other useful for

linguists, a clear understanding of the actual needs of grammar developers is crucial. A

first step in this direction was done by Erbach and Uszkoreit (1990). In a similar vein,

we carefully explored two existing grammars: the LINGO grammar matrix (Bender and

Oepen, 2002),1 which is a framework for rapid development of cross-linguistically con-

sistent grammars; and a grammar of a fragment of Modern Hebrew, focusing on inverted

constructions (Melnik, 2006). These grammars were chosen since they are comprehen-

sive enough to reflect the kind of data large-scale grammars encode, but are not too large

to encumber this process.

Inspired by established criteria for modularity in programming languages, and mo-

tivated by our observation of actual grammars, we define the following desiderata for a

beneficial solution for (typed unification) grammar modularization:

Signature focus: Much of the information in typed formalisms is encoded by thesig-

nature. This includes the type hierarchy, the appropriateness specification and the

1The LINGO grammar matrix is not a grammar per se, but rather a framework for grammar development

for several languages. We focused on its core grammar and several of the resulting, language-specific

grammars.
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type constraints. Hence, modularization must be carried out mainly through the

distribution of the signature between the different modules.2

Partiality: Modules should provide means for specifyingpartial information about the

components of a grammar: both the grammar itself and the signature over which it

is defined.

Extensibility: While modules can specify partial information, it must be possible to de-

terministically extend a module (which can be the result of the combination of sev-

eral modules) into a full grammar.

Consistency: Contradicting information in different modules must be detected when

modules are combined.

Flexibility: The grammar designer should be provided with as much flexibility as possi-

ble. Modules should not be unnecessarily constrained.

(Remote) Reference:A good solution should enable one module to refer to entitiesde-

fined in another. Specifically, it should enable the designerof moduleMi to use an

entity (e.g., a type or a feature structure) defined inMj without specifying the entity

explicitly.

Parsimony: When two modules are combined, the resulting module must include all the

information encoded in each of the modules and the information resulting from the

combination operation. Additional information must only be added if it is essential

to render the module well-defined.

Associativity: Module combination must be associative and commutative: the order in

which modules are combined must not affect the result. However, this desideratum

is not absolute: it is restricted to cases where the combination formulates a simple

2Again, note that type constraints are not addressed in this work.
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union of data. In other cases, associativity and commutativity should be considered

with respect to the benefit the system may enjoy if they are abandoned.

Privacy: Modules should be able to hide (encapsulate) information and render it unavail-

able to other modules.

The solution we advocate here satisfies all these requirements.3 It facilitates collabora-

tive development of grammars, where several applications of modularity are conceivable:

• A single large-scale grammar developed by a team.

• Development of parallel grammars for multiple languages under a single theory,

as in Bender et al. (2005), King et al. (2005) or Müller (2007). Here, acore

module is common to all grammars, and language-specific fragments are developed

as separate modules.

• A sequence of grammars modeling language development, e.g., language acqui-

sition or (historical) language change (Wintner, Lavie, and MacWhinney, 2009).

Here, a “new” grammar is obtained from a “previous” grammar;formal modeling

of such operations through module composition can shed new light on the linguistic

processes that take place as language develops.

1.3 Related Work

1.3.1 Modularity in programming languages

Vast literature addresses modularity in programming languages, and a comprehensive

survey is beyond the scope of this work. As unification grammars are in many ways

very similar to logic programming languages, our desiderata and solutions are inspired by

works in this paradigm.

3The examples are inspired by actual grammars but are obviously much simplified.
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Modular interfaces of logic programs were first suggested byO’keefe (1985) and

by Gaifman and Shapiro (1989). Combination operators that were proved suitable for

Prolog include the algebraic operators⊕ and⊗ of Mancarella and Pedreschi (1988); the

union and intersection operators of Brogi et al. (1990); the closure operator of Brogi,

Lamma, and Mello (1993); and the set of four operators (encapsulation, union, inter-

section and import) defined by Brogi and Turini (1995). For a comprehensive survey,

see Bugliesi, Lamma, and Mello (1994).

The ‘merge’ operator that we present in section 2.3.2 is closely related to union

operations proposed for logic programming languages. We define no counterpart of

intersection-type operations, although such operations are indeed conceivable. Our ‘at-

tachment’ operation is more in line with Gaifman and Shapiro(1989).

1.3.2 Initial approaches: modularized parsing

Early attempts to address modularity in linguistic formalisms share a significant disad-

vantage: The modularization is of the parsing process rather than the grammar.

Kasper and Krieger (1996) describe a technique for dividinga unification-based gram-

mar into two components, roughly along the syntax/semantics axis. Their motivation is

efficiency: observing that syntax usually imposes constraints on permissible structures,

and semantics usually mostly adds structure, they propose to parse with the syntactic con-

straints first, and apply the semantics later. This is achieved by recursively deleting the

syntactic and semantic information (under their corresponding attributes in the rules and

the lexicon) for the semantic and syntactic parsers, respectively. This proposal requires

that a single grammar be given, from which the two componentscan be derived. A more

significant disadvantage of this method is that coreferences between syntax and semantics

are lost during this division (because reentrancies that represent the connection between

the syntax and the semantics are removed). Kasper and Krieger (1996) observe that the

intersection of the languages generated by the two grammarsdoes not yield the language
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of the original grammar.

Zajac and Amtrup (2000) present an implementation of a pipeline-like composition

operator that enables the grammar designer to break a grammar into sub-grammars that

are applied in a sequential manner at run-time. Such an organization is especially useful

for dividing the development process into stages that correspond to morphological pro-

cessing, syntax, semantics, and so on. The notion of composition here is such that sub-

grammarGi+1 operates on the output of sub-grammarGi; such an organization might

not be suitable for all grammar development frameworks. A similar idea is proposed by

Basili, Pazienza, and Zanzotto (2000): it is an approach to parsing that divides the task

into sub-tasks, whereby a module componentPi takes an input sentence at a given state of

analysisSi and augments this information inSi+1 using a knowledge baseKi. Here, too,

it is the processing system, rather than the grammar, which is modularized in a pipeline

fashion.

1.3.3 Modularity in typed unification grammars

Keselj (2001) presents a modular HPSG, where each module is an ordinary HPSG gram-

mar, including an ordinary type signature, but each of the sets FEAT, TYPE and RULES

is divided into two disjoint sets of private and public elements. The public sets consist of

those elements which can communicate with elements from corresponding sets in other

modules, and private elements are those that are internal tothe module. Merging two

modules is then defined by set union; in particular, the type hierarchies are merged by

unioning the two sets of types and taking the transitive closure of the union of the two

BCPOs (see definition 2). The success of the merge of two modulesrequires that the

union of the two BCPOs be a BCPO.

While this work is the first one which concretely defines signature modules, it provides

a highly insufficient mechanism for supporting modular grammar development: The re-

quirement that each module include a complete type hierarchy imposes strong limitations
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on the kind of information that modules can specify. It is virtually impossible to spec-

ify partial information that is consistent with the complete type hierarchy requirement.

Furthermore, module composition becomes order dependent as we show in example 8

(section 2.3.2). Finally, the only channel of interaction between modules is the names of

the types. Our work is similar in spirit to Keselj (2001), butit overcomes these shortcom-

ings and complies with the desiderata of section 1.2.

Kaplan, King, and Maxwell (2002) introduce a system designed for building a gram-

mar by both extending and restricting another grammar. An LFG grammar is presented

to the system in a priority-ordered sequence of files containing phrase-structure rules,

lexical entries, abbreviatory macros and templates, feature declarations, and finite-state

transducers for tokenization and morphological analysis.The grammar can include only

one definition of an item of a given type with a particular name(e.g., there can be only

one NP rule, potentially with many alternative expansions), and items in a file with higher

priority override lower priority items of the same type withthe same name. The override

convention makes it possible to add, delete or modify rules.However, when a rule is

modified, the entire rule has to be rewritten, even if the modifications are minor. More-

over, there is no real concept of modularization in this approach since the only interaction

among files is overriding of information.

King et al. (2005) augment LFG with a makeshift signature to allow modular devel-

opment ofuntypedunification grammars. In addition, they suggest that any development

team should agree in advance on the feature space. This work emphasizes the observation

that the modularization of the signature is the key for modular development of grammars.

However, the proposed solution is ad-hoc and cannot be takenseriously as a concept of

modularization. In particular, the suggestion for an agreement on the feature space under-

mines the essence of modular design.

To support rapid prototyping of deep grammars, Bender and Flickinger (2005) pro-

pose a framework in which the grammar developer can select pre-written grammar frag-
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ments, accounting for common linguistic phenomena that vary across languages (e.g.,

word order, yes-no questions and sentential negation). Thedeveloper can specify how

these phenomena are realized in a given language, and a grammar for that language is

automatically generated, implementing that particular realization of the phenomenon, in-

tegrated with a language-independent grammar core. This framework addresses modu-

larity in the sense that the entire grammar is distributed between several fragments that

can be combined in different ways, according to the user’s choice. However, the notion

of modularity is rather different here, as modules are pre-written pieces of code which

the grammar designer does not develop and whose interactionhe or she has little control

over.

1.3.4 Modularity in related formalisms

The above works emphasize the fact that existing approachesto modular grammar devel-

opment in the area of unification grammars are still insufficient. The same problem has

been addressed also in some other, related, formalisms; we now survey such works and

discuss the applicability of the proposed solutions to the problem of modularity in typed

unification grammars.

Wintner (2002) defines the concept of modules for CFGs: the setof nonterminals is

partitioned into three disjoint classes ofinternal, exportedand importedelements. The

imported elements are those that are supplied to the module by other modules, the ex-

ported elements are those it provides to the outside world, and the internal ones are local

to it. Two modules can be combined only if the set of internal elements of each module is

disjoint from the exported and imported sets of the other module as well as if the exported

sets are disjoint. Then the combination of two modules is done by simple measures of

set union. This is the infrastructure underlying the definition of modular HPSG discussed

above (Keselj, 2001).

Provisions for modularity have also been discussed in the context of tree-adjoining
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grammars (TAG, Joshi, Levy, and Takahashi (1975)). A wide-coverage TAG may con-

tain hundreds or even thousands of elementary trees, and syntactic structure can be re-

dundantly repeated in many trees (XTAG Research Group, 2001;Abeillé, Candito, and

Kinyon, 2000). Consequently, maintenance and extension of such grammars is a com-

plex task. To address these issues, several high-level formalisms were developed (Vijay-

Shanker, 1992; Candito, 1996; Duchier and Gardent, 1999; Kallmeyer, 2001). These

formalisms take themetagrammar approach, where the basic units are treedescriptions

(i.e., formulas denoting sets of trees) rather than trees. Tree descriptions are constructed

by a tree logic and combined through conjunction or inheritance (depending on the for-

malism). The set of minimal trees that satisfy the resultingdescriptions are the TAG

elementary trees. In this way modular construction of grammars is supported, where a

module is merely a tree description and modules are combinedby means of the control

tree logic.

When trees are semantic objects, the denotation of tree descriptions, there can be

various ways to refer to nodes in the trees in order to controlthe possible combination

of grammar modules. In the meta-grammar paradigm, where grammar fragments are tree

descriptions, Candito (1996) associates with each node in a description a name, such that

nodes with the same name must denote the same entity and therefore must be identified.

The names of nodes are thus the only channel of interaction between two descriptions.

Furthermore, these names can only be used to identify two nodes, but not to set nodes

apart. Crabb́e and Duchier (2004) propose to replace node naming by acoloringscheme,

where nodes are colored black, white or red. When two trees arecombined, a black node

may be unified with zero, one or more white nodes and produce a black node; a white

node must be unified with a black one producing a black node; and a red node cannot

be unified with any other node. Then, a satisfying model must be saturated, i.e., one in

which all the nodes are either black or red. In this way some combinations can be forced

and others prevented.
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This mechanism is extended inInteraction Grammars(Perrier, 2000), where each

node is decorated by a set ofpolarity features. A polarity feature consists of a feature,

arbitrarily determined by the grammar writer, and a polarity, which can be either positive,

negative or neutral. A positive value represents an available resource and a negative value

represents an expected resource. Two feature-polarity pairs can combine only if their

feature is identical and their polarities are opposite (i.e., one is negative and the other

is positive); the result is a feature-polarity pair consisting of the same feature and the

neutral polarity. Two nodes can be identified only if their polarity features can combine.

A solution is a tree whose features are all neutralized.

The concept of polarities is further elaborated inPolarized Unification Grammars

(PUG, Kahane (2006)). A PUG is defined over asystem of polarities(P, ·) whereP is

a set (of polarities) and ‘·’ is an associative and commutative product overP . A PUG

generates a set of finite structures over objects which are determined for each grammar

separately. The objects are associated with polarities, and structures are combined by

identifying some of their objects. The combination is sanctioned by polarities: objects

can only be identified if their polarities are unifiable; the resulting object has the unified

polarity. A non-empty, strict subset of the set of polarities, called the set ofneutral po-

larities, determines which of the resulting structures arevalid: A polarized structure is

saturatedif all its polarities are neutral. The structures that are generated by the grammar

are the saturated structures that result from combining different structures.

PUGs are more general than the mechanisms of polarity features and coloring, since

they allow the grammar designer to decide on the system of polarities, whereas other

systems pre-define it.

The solution that we propose here embraces the idea of movingfrom concrete objects

(e.g., a concrete type signature) to descriptions thereof;but we take special care to do so

in a way that maintains the associativity of the main grammarcombination operator as we

show that some earlier approaches do not adhere to this desideratum (see section 5.3).
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Debusmann, Duchier, and Rossberg (2005) introduce Extensible Dependency Gram-

mar (XDG) which is a general framework for dependency grammars that supports modu-

lar grammar design. An XDG grammar consists ofdimensions, principles, and a lexicon;

it characterizes a set of well-formed analyses. Each dimension is an attributed labeled

graph, and when a grammar consists of multiple dimensions (e.g., multigraphs), they

share the same set of nodes. A lexicon for a dimension is a set of total assignments of

nodes and labels. The main mechanism XDG uses to control analyses are principles, that

can be eitherlocal (imposing a constraint on the possible analysis of a specificdimension)

or multi-dimensional(constraining the analysis of several dimensions with respect to each

other). In XDG, principles are formulated using a type-system that includes several kinds

of elementary types (e.g., nodes, edges, graphs and even multigraphs) and complex types

that are constructed incrementally over the elementary types. Then, parameters range

over types to formulate parametric principles. A feasible XDG analysis amounts to a la-

beled graph in which each dimension is a subgraph, such that all (parametric) principles

are maintained (this may require nodes in different subgraphs to be identified). XDG sup-

ports modular grammar design where each dimension graph is agrammar module, and

module interaction is governed through multi-dimensionalparametric principles.

This work emphasizes the importance of types as a mechanism for modularity. Our

work shares with XDG the use of graphs as the basic componentsand the use of pa-

rameters to enforce interaction among modules. In both works, each module introduces

constraints on the type system and interaction among modules through parameters is used

to construct a multigraph in which some of the nodes are identified. In our approach,

however, the type system is part of the grammar specification, and modules are combined

via explicit combination operations. In contrast, in XDG the type mechanism is used ex-

ternally, to describe objects, and a general description logic is used to impose constraints.

Another major difference has to do with expressive power: whereas unification grammars

are Turing-equivalent, XDG is probably mildly context-sensitive (Debusmann, 2006).
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The ‘grammar formalism’ (GF, Ranta (2007)) is a typed functional programming lan-

guage designed for multilingual grammars. Ranta (2007) introduces a module system

for GF where a module can be either one of three kinds:abstract, concreteor aresource

module. Each of them reflects the kind of data this module may include. A module of type

abstractincludes abstract syntax trees which represent grammatical information, e.g., se-

mantic or syntactic data. A module of typeconcreteincludes relations between trees in

the abstract module and relations between strings in the target language. Communica-

tion between modules of these two types is carried out through inheritance hierarchies

similarly to object-oriented programs. Resource modules are a means for code-sharing,

independently of the hierarchies. The system of modules supports development of multi-

lingual grammars through replacement of certain modules with others. A given grammar

can also be extended by adding new modules. Additionally, toavoid repetition of code

with minor variations, GF allows the grammar writer to defineoperations which produce

new elements.

GF is purposely designed for multilingual grammars which share a core representa-

tion, and individual extensions to different languages aredeveloped independently. As

such, the theoretical framework it provides is tailored forsuch needs, but is lacking where

general purpose modular applications are considered (see section 1.2 for examples of such

conceivable applications). Mainly, GF forces the developer to pre-decide on the relations

betweenall modules (through the concrete module and inheritance hierarchies), whereas

in an ideal solution the interaction between all modules should be left to the development

process. Each module should be able to independently declare its own interface with other

modules; then, when modules combine they may do so in any way that is consistent with

the interfaces of other modules. Furthermore, reference tomutual elements in GF is car-

ried out only through naming, again resulting in a weak interface for module interaction.

Finally, the operations that the grammar writer can define inGF are macros, rather than

functions, as they are expanded by textual replacement.
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1.4 Contributions of the Thesis

The main objective of this work was to provide the foundations for modular construction

of (typed) unification grammars for natural languages. To this end we first had to care-

fully explore existing grammars and investigate proposalsfor grammar modularization in

unification grammars and in other, related formalisms. The main contributions of these

endeavors are:

• Introduction of a set of desiderata for a beneficial solutionfor grammar modular-

ization (section 1.2).

• Introduction of a thorough, well-founded solution to the problem of modular con-

struction of typed unification grammars for natural languages (chapter 2).

• Development of apowerset-liftmethod to maintain associativity in non-associative

formalisms (chapter 2).

• Presentation of a modular design of the traditional HPSG grammar of Pollard and

Sag (1994) (chapter 3).

• Formalization of the main combination operation of PUG and identification and

correction of a significant flaw in this formalism (chapter 5).

• Development of an extension of ALE (Carpenter, 1992a) and TRALE (Meurers,

Penn, and Richter, 2002) that provides a description language with which signa-

ture modules can be specified, and the two combination operations can be applied.

Expressions of the language are compiled into full TRALE signatures.

The set of desiderata (section 1.2), a definition of non-parametric signature modules

(sections 2.2 and 2.3.1), a first combination operator (merge, section 2.3.2) and the resolu-

tion stage (section 2.4) were presented in Cohen-Sygal and Wintner (2006). An extended

set of desiderata (section 1.2), parametric signature modules (sections 2.2) and a second
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combination operator (attachment, section 2.3.3) were presented in Sygal and Wintner

(2008). A more detailed and complete presentation that includes also an extension to

grammar modules and the modular design of the traditional HPSG grammar (covering

chapters 2 and 3) is under review for a major journal.

The formalization of the PUG combination operation (section 5.2) as well as the iden-

tification of a flaw in this formalism (section 5.3) were presented in Cohen-Sygal and

Wintner (2007). The above material along with the correction of the flaw in this formal-

ism through the powerset-lift method, and implications of these results to XMG, were

presented in Sygal and Wintner (2009) (covering the material of chapter 5).
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Chapter 2

Modularization of the Signature

2.1 Overview

We definesignature modules(also referred to asmodulesbelow), which are structures

that provide a framework for modular development of type signatures. These structures

follow two guidelines:

1. Signature modules contain partial information about a signature: part of the subtyp-

ing relation1 and part of the appropriateness specification. The key here is a move

from concrete type signatures to descriptions thereof; rather than specify types, a

description is a graph whose nodes denote types and whose arcs denote elements of

the subtyping and appropriateness relations of signatures.

2. Modules may choose which information to expose to other modules and how other

modules may use the information they encode. The denotationof nodes is ex-

tended by viewing them asparameters: Similarly to parameters in programming

languages, these are entities through which information can be imported to or ex-

ported from other modules. This is done similarly to the way parametric principles

are used by Debusmann, Duchier, and Rossberg (2005).

1Subtyping is sometimes referred to in the literature astype subsumption.
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We begin by defining the basic structure of signature modulesin section 2.2. We then

introduce (section 2.3) two combination operators for signature modules which facilitate

interaction and (remote) reference among modules. We end this section by showing how

to extend a signature module into a bona fide type signature (section 2.4).

2.2 Signature Modules

The definition of a signature module is conceptually dividedinto two levels of informa-

tion. The first includes all the genuine information that maybe encoded by a signature,

e.g., subtyping and appropriateness relations, types etc.The second level includes the

parametric casting of nodes. This casting is not part of the core of a signature, but rather

a device that enables advanced module communication. Consequently, we definesigna-

ture modulesin two steps. First, we definepartially specified signatures (PSSs), which

are finite directed graphs that encode partial information about the signature. Then, we

extend PSSs tosignature moduleswhich are structures, based on PSSs, that provide also

a complete mechanism for module interaction and (remote) reference.

We assume enumerable, disjoint sets TYPE of types, FEAT of features and NODESof

nodes, over which signatures are defined.

Definition 13. A partially labeled graph(PLG)overTYPE andFEAT is a finite, directed

labeled graphP = 〈Q, T,�, Ap〉, where:

1. Q ⊂ NODES is a finite, nonempty set of nodes.

2. T : Q → TYPE is a partial function, marking some of the nodes with types.

3. �⊆ Q × Q is a relation specifying (immediate) subtyping.

4. Ap ⊆ Q × FEAT × Q is a relation specifying appropriateness.

A partially specified signature (PSS)over TYPE and FEAT is a partially labeled graph

P = 〈Q, T,�, Ap〉, where:
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5. T is one to one.

6. ‘�’ is antireflexive; its reflexive-transitive closure, denoted ‘
∗

�’, is antisymmetric.

7. (Relaxed Upward Closure) for allq1, q
′
1, q2 ∈ Q andF ∈ FEAT, if (q1, F, q2) ∈ Ap

andq1

∗

� q′1, then there existsq′2 ∈ Q such thatq2

∗

� q′2 and(q′1, F, q′2) ∈ Ap

A PSS is a finite, directed graph whose nodes denote types and whose edges denote

the subtyping and appropriateness relations. Nodes can bemarkedby types through the

functionT , but can also beanonymous(unmarked). Anonymous nodes facilitate refer-

ence, in one module, to types that are defined in another module. T is one-to-one (item 5)

since we require that two marked nodes denote different types.

The ‘�’ relation (item 3) specifies an immediate subtyping order over the nodes, with

the intention that this order hold later for the types denoted by nodes. This is why ‘
∗

�’ is

required to be a partial order (item 6). The type hierarchy ofan ordinary type signature is

required to be a BCPO, but current approaches (Copestake, 2002)relax this requirement to

allow more flexibility in grammar design. Similarly, the type hierarchy of PSSs is partially

ordered but this order is not necessarily a bounded completeone. Only after all modules

are combined is the resulting subtyping relation extended to a BCPO (see section 2.4);

any intermediate result can be a general partial order. Relaxing the BCPO requirement

also helps guaranteeing the associativity of module combination (see example 8).

Consider now the appropriateness relation. In contrast to type signatures,Ap is not

required to be a function. Rather, it is a relation which may specify severalappropriate

nodes for the values of a featureF at a nodeq (item 4). AnAp-arc(q, F, q′) in a module

is interpreted as if that module is saying “the appropriate value of q andF should be

at leastq′” and the intention is that the eventual value ofApprop(T (q), F ) be thelub

of the types of all those nodesq′ such thatAp(q, F, q′). This interpretation of multiple

Ap-arcs will be further motivated when module combination is discussed (section 2.3.2).

This relaxation reflects our initial motivation of supporting partiality in modular grammar
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development, since different modules may specify different appropriate values according

to their needs and available information. After all modulesare combined, all the specified

values are replaced by a single appropriate value, theirlub (see section 2.4). In this way,

each module may specify its own appropriate values without needing to know the value

specification of other modules. We do restrict theAp relation, however, by a relaxed

version of upward closure (item 7). Finally, the feature introduction condition of type

signatures (definition 5, item 1) is not enforced by signature modules. This, again, results

in more flexibility for the grammar designer; the condition is restored after all modules

combine, see section 2.4.

Example 1. A simple PSSP1 is depicted in Figure 2.1, where solid arrows represent

the ‘�’ (subtyping) relation and dashed arrows, labeled by features, theAp relation.

P1 stipulates two subtypes ofcat, n and v, with a common subtype,gerund. The fea-

ture AGR is appropriate for all three categories, with distinct (but anonymous) values

for Approp(n, AGR) andApprop(v, AGR). Approp(gerund, AGR) will eventually be the

lub ofApprop(n, AGR) andApprop(v, AGR), hence the multiple outgoingAGR arcs from

gerund.

Observe that inP1, ‘�’ is not a BCPO,Ap is not a function and the feature introduc-

tion condition does not hold.

gerund

n v

cat agr

AGR

AGR

AGR

AGR

Figure 2.1: A partially specified signature,P1

Definition 14. A pre-signature moduleover TYPE and FEAT is a structureS =
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〈P, Int, Imp,Exp〉 whereP = 〈Q, T,�, Ap〉 is a PLG and:

1. Int ⊆ Q is a set ofinternal types

2. Imp ⊆ Q is an ordered set ofimported parameters

3. Exp ⊆ Q is an ordered set ofexportedparameters

4. Int ∩ Imp = Int ∩ Exp = ∅

5. for all q ∈ Q such thatq ∈ Int, T (q)↓

We refer to elements of (the sequences)Imp and Exp using indices, with the notation

Imp[i], Exp[j], respectively.

A signature moduleover TYPE and FEAT is a pre-signature moduleS = 〈P, Int,

Imp,Exp〉 in whichP is a PSS.

Signature modules extend the denotation of nodes by viewingthem as parameters:

Similarly to parameters in programming languages, parameters are entities through which

information can be imported from or exported to other modules. The nodes of a signature

module are distributed among three sets ofinternal, importedand exportednodes. If

a node is internal it cannot be imported or exported; but a node can be simultaneously

imported and exported. A node which does not belong to any of the sets is calledexternal.

All nodes denote types, but they differ in the way they communicate with nodes in other

modules. As their name implies, internal nodes are internalto one module and cannot

interact with nodes in other modules. Such nodes provide a mechanism similar to local

variables in programming languages.

Non-internal nodes may interact with the nodes in other modules: Imported nodes

expect toreceiveinformation from other modules, while exported nodesprovide infor-

mation to other modules. External nodes differ from imported and exported nodes in the

way they may interact with other modules, and provide a mechanism similar to global

variables in programming languages. Since anonymous nodesfacilitate reference, in one
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module, to information encoded in another module, such nodes cannot be internal. The

imported and exported nodes are ordered in order to control the assignment of param-

eters when two modules are combined, as will be shown below.2 In the examples, the

classification of nodes is encoded graphically as follows:

Internal Imported Exported External

Example 2. Figure 2.2 depicts a moduleS1, based on the PSS of Figure 2.1.S1 =

〈P1, Int1, Imp1, Exp1〉, whereP1 is the PSS of Figure 2.1,Int1 = ∅, Imp1 = {q4, q5}

andExp1 = ∅.

gerund

q1

n

q2

v

q3 q4 q5

cat

q6

agr

q7

AGR

AGR

AGR

AGR

Figure 2.2: A signature module,S1

Below, the meta-variableq (with or without subscripts) ranges over nodes,S (with or

without subscripts) – over (pre-)signature modules,P (with or without subscripts) over

PLGs and PSSs andQ, T,�, Ap (with the same subscripts) over their constituents.

2In fact, Imp andExp can be general sets, rather than lists, as long as the combination operations can

deterministically map nodes fromExp to nodes ofImp. For simplicity, we limit the discussion to the

familiar case of lists, where matching elements fromExp to Imp is done by the location of the element on

the list, see definitions 19 and 20 .
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2.3 Combination Operators for Signature Modules

We introduce two operators for combining signature modules. The first operator,merge,

is a symmetric operation which simply combines the information encoded in the two

modules. The second operator,attachment, is a non-symmetric operation which uses the

concept of parameters and is inspired by function composition. A signature module is

viewed as a function whose input is a graph with a list of designated imported nodes

and whose output is a graph with a list of designated exportednodes. When two signa-

ture modules are attached, similarly to function composition, the exported nodes of the

second module instantiate the imported parameters of the first module. Additionally, the

information encoded by the second graph is added to the information encoded by the first

one.

The parametric view of modules facilitates interaction between modules in two chan-

nels: by naming or by reference. Through interaction by naming, nodes marked by the

same type are coalesced. Interaction by reference is achieved when the imported parame-

ters of the calling module are coalesced with the exported nodes of the called module, re-

spectively. Themergeoperation allows modules to interact only through naming, whereas

attachmentfacilitates both ways of interaction.

For both of the operators, we assume that the two signature modules areconsistent:

one module does not include types which are internal to the other module and the two

signature modules have no common nodes. If this is not the case, nodes, and in particular

internal nodes, can be renamed without affecting the operation.

Definition 15. Let S1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉, S2 = 〈〈Q2, T2,�2

, Ap2〉, Int2, Imp2, Exp2〉 be two pre-signature modules .S1 and S2 are consistentiff

all the following conditions hold:

1. {T1(q) | q ∈ Int1} ∩ {T2(q) | q ∈ Q2 andT2(q)↓} = ∅

2. {T2(q) | q ∈ Int2} ∩ {T1(q) | q ∈ Q1 andT1(q)↓} = ∅
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3. Q1 ∩ Q2 = ∅

We begin by introducing thecompactnessalgorithm which is used when two modules

are combined as a mechanism to coalesce corresponding nodesin the two modules.

2.3.1 Compactness

When two modules are combined, a crucial step in the combination is the identification

of corresponding nodes in the two modules that should be coalesced. Such pairs of nodes

can be either of two kinds:

1. Two typed nodes which are labeled by the same type should becoalesced (along

with their attributes).

2. Two anonymous nodes which areindistinguishable, i.e., haveisomorphicenviron-

ments, should be coalesced. The environment of a nodeq is the subgraph that in-

cludes all the reachable nodes via any kind of arc (fromq or toq) up to and including

a typed node. The intuition is that if two anonymous nodes have isomorphic envi-

ronments, then they cannot be distinguished and therefore should coincide. Two

nodes, only one of which is anonymous, can still be otherwiseindistinguishable.

Such nodes will, eventually, be coalesced, but only after all modules are combined

(to ensure the associativity of module combination).

Additionally, during the combination of modules, some arcsmay become redundant

(such arcs are not prohibited by the definition of a module). Redundant arcs can be of two

kinds:

1. A subtyping arc(q1, q2) is redundant if it is a member of the transitive closure of�,

where� excludes(q1, q2).

2. An appropriateness arc(q1, F, q2) is redundant if there existsq3 ∈ Q such that

q2

∗

� q3 and (q1, F, q3) ∈ Ap. (q1, F, q2) is redundant due to the ‘lub’ intention
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of appropriateness arcs: The eventual value ofApprop(T (q1), F ) will be an upper

bound of (at least) bothq2 andq3. Sinceq2

∗

� q3, (q1, F, q2) is redundant.

Redundant arcs encode information that can be inferred from other arcs and therefore may

be removed without affecting the data encoded by the signature module.

While our main interest is in signature modules, the compactness algorithm is defined

over the more general case of pre-signature modules. This more general notion will be

helpful in the definition of module combination. Informally, when a pre-signature module

is compacted, redundant arcs are removed, nodes marked by the same type are coalesced

and anonymous indistinguishable nodes are identified. Additionally, the parameters and

arities are induced from those of the input pre-signature module. All parameters may be

coalesced with each other, as long as they are otherwise indistinguishable. If (at least) one

of the coalesced nodes is an internal node, then the result isan internal node. Otherwise,

if one of the nodes is imported then the resulting parameter is imported as well. Similarly,

if one of the nodes is exported then the resulting parameter is exported. Notice that in the

case of signature modules, sinceT is one to one, an internal node may be coalesced only

with other internal nodes.

The actual definitions of indistinguishability and the compactness algorithm are mostly

technical and are therefore deferred to Appendix A. We do provide two simple examples

to illustrate the general idea.

Example 3. Consider the signature module of Figure 2.3.(q1, q4) is a redundant subtyp-

ing arc because even without this arc, there is a subtyping path fromq1 to q4. (q1, F, q3)

is a redundant appropriateness arc: eventually the appropriate value ofq1 andF should

be the lub ofq3 andq5, but sinceq5 is a subtype ofq3, it is sufficient to require that it be at

leastq5.

Example 4. ConsiderS2, the pre-signature module depicted in Figure 2.4. Note thatS2

is not a signature module (since it includes two nodes labeledbya) and that compactness
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q4 q5

q2 q3

q1

F

F

Figure 2.3: A signature module with redundant arcs

is defined over pre-signature modules rather then signaturemodules as this is the case

for which it will be used during combination. Incompact(S2), q1 and q2 are coalesced

because they are both marked by the typea. Additionally,q3 and q6 are coalesced with

q4 and q7, respectively, since these are two pairs of anonymous nodes with isomorphic

environments.q5 is not coalesced withq3 andq4 sinceq5 is typed andq3 andq4 are not,

even though they are otherwise indistinguishable.q8 is not coalesced withq6 andq7 since

they are distinguishable:q8 has a supertype marked bya whileq6 andq7 have anonymous

supertypes.

2.3.2 Merge

The merge operation combines the information encoded by twosignature modules: Nodes

that are marked by the same type are coalesced along with their attributes. Nodes that are

marked by different types cannot be coalesced and must denote different types. The main

complication arises when twoanonymousnodes are considered: such nodes are coalesced

only if they are indistinguishable.

The merge of two modules is defined in several stages: First, the two graphs are

unioned (this is a simple pointwise union of the coordinatesof the graph, see defini-
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Figure 2.4: Compactness

tion 16). Then, the resulting graph is compacted, coalescing nodes marked by the same

type as well as indistinguishable anonymous nodes. However, the resulting graph does not

necessarily maintain the relaxed upward closure condition, and therefore some modifica-

tions are needed. This is done byAp-Closure, see definition 17. Finally, the addition of

appropriateness arcs may turn two anonymous distinguishable nodes into indistinguish-

able ones and may also add redundant arcs, therefore anothercompactness step is needed

(definition 18).

Definition 16. Let S1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉, S2 = 〈〈Q2, T2,�2

, Ap2〉, Int2, Imp2, Exp2〉 be two consistent pre-signature modules. Theunion of S1 and

S2, denotedS1 ∪ S2, is the pre-signature moduleS = 〈〈Q1 ∪ Q2, T1 ∪ T2,�1 ∪ �2

, Ap1 ∪Ap2〉, Int1 ∪ Int2, Imp1 · Imp2, Exp1 ·Exp2〉 (‘ ·’ is the concatenation operator).

Definition 17. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature mod-

ule. TheAp-Closure of S, denotedApCl(S), is the pre-signature module〈〈Q, T,�

, Ap′〉, Int, Imp,Exp〉 where:

Ap′ = {(q1, F, q2) | q1, q2 ∈ Q and there existsq′1 ∈ Q such thatq′1
∗

� q1 and
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(q′1, F, q2) ∈ Ap}

Ap-Closureadds to a pre-signature module the required arcs for it to maintain the

relaxed upward closure condition: Arcs are added to create the relations between elements

separated between the two modules and related by mutual elements. Notice thatAp ⊆ Ap′

by choosingq′1 = q1.

Two signature modules can be merged only if the resulting subtyping relation is in-

deed a partial order, where the only obstacle can be the antisymmetry of the resulting

relation. The combination of the appropriateness relations, in contrast, cannot cause the

merge operation to fail because any violation of the appropriateness conditions in signa-

ture modules can be deterministically resolved.

Definition 18. Let S1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉, S2 = 〈〈Q2, T2,�2

, Ap2〉, Int2, Imp2, Exp2〉 be two consistent signature modules.S1, S2 are mergeable

if there are noq1, q2 ∈ Q1 andq3, q4 ∈ Q2 such that the following hold:

1. q1 6= q2 andq3 6= q4

2. T1(q1)↓, T1(q2)↓, T2(q3)↓ andT2(q4)↓

3. T1(q1) = T2(q4) andT1(q2) = T2(q3)

4. q1

∗

�1 q2 andq3

∗

�2 q4

If S1 andS2 are mergeable, then theirmerge, denotedS1 ⋒ S2, is:

compact(ApCl(compact(S1 ∪ S2)))

In the merged module, pairs of nodes marked by the same type and pairs of indis-

tinguishable anonymous nodes are coalesced. An anonymous node cannot be coalesced

with a typed node, even if they are otherwise indistinguishable, since that would result in
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a non-associative combination operation. Anonymous nodesare assigned types only after

all modules combine, see section 2.4.

Consider the merge of modules with respect toAp-arcs: when two modules are

merged,Ap-arcs from the two different modules are gathered; If a node has multiple out-

goingAp-arcs labeled with the same feature, these arcs are not replaced by a single arc,

even if thelub of the target nodes exists in the resulting signature module. Again, this is

done to guarantee the associativity of the merge operation (see example 9). Given two Ap-

arcs,(q, F, q1) and(q, F, q2), the intention is that the eventual value ofApprop(T (q), F )

be the lub of the types of all those nodesq′ such thatAp(q, F, q′). A different approach

for multiple Ap-arcs would be to take thedisjunctionof the two, thus requiring that at

least one of the statements hold. However, taking the disjunction would imply that the

combined module may ignore a requirement made by one of its arguments, which seems

unreasonable.

Example 5. Let S3 and S4 be the signature modules depicted in Figure 2.5.S3 ⋒ S4

and the intermediate pre-signature modules are also shown inthis figure. First,S3 and

S4 are unioned. Then, incompact(S3 ∪ S4) the two nodes typed bya are coalesced,

as are the nodes typed byc. Notice that this pre-signature module is not a signature

module because it does not maintain the relaxed upward closure condition. To enforce

this condition appropriateness arcs are added to yieldApCl(compact(S3 ∪ S4)), but

this signature module includes indistinguishable anonymous nodes and therefore another

compactness operation is required to yield the final result.

Example 6. Figure 2.6 depicts a näıve agreement module,S5. Combined withS1 of

Figure 2.1,S1 ⋒ S5 = S5 ⋒ S1 = S6. All dashed arrows are labeledAGR, but these labels

are suppressed for readability.

In what follows, by standard convention,Ap arcs that can be inferred by upward

closure are not depicted.
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c c

a a

compact(ApCl(compact(S3 ∪ S4)))

= S3 ⋒ S4

c
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F

F F

F

F

F

F F

Figure 2.5: Merge: intermediate steps

Example 7. Let S7 andS8 be the signature modules depicted in Figure 2.7.S7 includes

general agreement information whileS8 specifies detailed values for several specific prop-

erties. Then,S7 ⋒ S8 = S8 ⋒ S7 = S9. In this way, the high level organization of the

agreement module is encoded byS7, whileS8 provides low level details pertaining to each

agreement feature individually.

The following example motivates our decision to relax the BCPOcondition and defer

the conversion of signature modules to BCPOs to a separate resolution stage (section 2.4).
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S5

n nagr gerund vagr v

agr

S6 = S1 ⋒ S5

gerund

n v vagr nagr

cat agr

Figure 2.6: Merge

Example 8. LetS10, S11, S12 be the signature modules depicted in Figure 2.8. The merge

of S10 with S11 results in a non-BCPO. However, the additional information supplied by

S12 resolves the problem, andS10 ⋒ S11 ⋒ S12 is bounded complete.

Example 9. Let S13, S14, S15 be the signature modules depicted in Figure 2.9. InS13

the appropriate value fora andF is b while in S14 it is c. HenceS13 ⋒ S14 states that

the appropriate value fora andF should be lub(b, c). While in this module there is no

such element, inS15 lub(b, c) is determined to bed. In S13 ⋒ S14 ⋒ S15 the two outgoing

arcs from the node marked bya are not replaced by a single arc whose target is the node

marked byd, since other signature modules may specify that the lub ofb andc is some type

other thand. These multiple outgoing arcs are preserved to maintain theassociativity of

the merge operation.
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An agreement module,S7 S8
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Figure 2.7: Merge

Theorem 1. Given two mergeable signature modulesS1, S2, S1 ⋒ S2 is a signature mod-

ule.

Proof. Let S1, S2 be two mergeable signature modules. Evidently,S1 ∪ S2 is a pre-

signature module and therefore so isS1 ⋒ S2. Compactness guarantees that the node-

marking function ofS1 ⋒ S2 is one to one and that the subtyping relation maintains con-

dition 6 of the definition of a PSS. The relaxed upward closurecondition is guaranteed by
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Figure 2.8: BCPO relaxation
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FF FF

Figure 2.9: Merge of signature modules
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theApCl operation. Evidently,S1 ⋒ S2 is a signature module.

Theorem 2. Merge is commutative: for any two signature modules,S1, S2, Let S =

S1 ⋒ S2 and S ′ = S2 ⋒ S1 whereP, P ′ are their underlying PSSs, respectively. Then

P = P ′. In particular, either both are defined or both are undefined.

The proof follows immediately from the fact that the merge operation is defined by

set union and equivalence relations which are commutative operations.

Theorem 3. Merge is associative up to isomorphism:3 for all S1, S2, S3, LetS = (S1 ⋒

S2) ⋒ S3 andS ′ = S1 ⋒ (S2 ⋒ S3) whereP, P ′ are their underlying PSSs, respectively.

ThenP ∼ P ′.

The proof of associativity is similar in spirit to the proof of the associativity of (polar-

ized) forest combination (section 5.5) and is therefore suppressed.

2.3.3 Attachment

Consider againS1 andS9, the signature modules of Figures 2.1 and 2.7, respectively. S1

stipulates two distinct (but anonymous) values forApprop(n, AGR) andApprop(v, AGR).

S9 stipulates two nodes, typednagr and vagr, with the intention that these nodes be

coalesced with the two anonymous nodes ofS1. However, the ‘merge’ operation defined

in the previous section cannot achieve this goal, since the two anonymous nodes inS1

have different attributes from their corresponding typed nodes inS9. In order to support

such a unification of nodes we need to allow a mechanism that specifically identifies two

designated nodes, regardless of their attributes. The parametric view of nodes facilitates

exactly such a mechanism.

The attachment operation is an asymmetric operation, like function composition, where

a signature module,S1, receives as input another signature module,S2. The information

3For the definition of isomorphism see definition 53, AppendixA.
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encoded inS2 is added toS1 (as in the merge operation), but additionally, the exported

parameters ofS2 are assigned to the imported parameters ofS1: Each of the exported

parameters ofS2 is forced to coalesce with its corresponding imported parameter ofS1,

regardless of the attributes of these two parameters (i.e.,whether they are indistinguish-

able or not).

Definition 19. Let S1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉 and S2 = 〈〈Q2, T2,�2

, Ap2, 〉, Int2, Imp2, Exp2〉 be two consistent signature modules.S2 can beattached to

S1 if the following conditions hold:

1. |Imp1| = |Exp2|

2. for all i, 1 ≤ i ≤ |Imp1|, if T1(Imp1[i])↓ andT2(Exp2[i])↓, thenT1(Imp1[i]) =

T2(Exp2[i])

3. S1 andS2 are mergeable

4. for all i, j, 1 ≤ i ≤ |Imp1| and 1 ≤ j ≤ |Imp1|, if Imp1[i]
∗

�1 Imp1[j], then

Exp2[j] 6
∗

�2 Exp2[i].

The first condition requires that the number of formal parameters of the calling module

be equal to the number of actual parameters in the called module. The second condition

states that if two typed parameters are attached to each other, they are marked by the same

type. If they are marked by two different types they cannot becoalesced.4 Finally, the

last two conditions guarantee the antisymmetry of the subtyping relation in the resulting

signature module: The third condition requires the two signature modules to be merge-

able. The last condition requires that no subtyping cycles be created by the attachment

of parameters: Ifq1 is a supertype ofq′1 in S1 andq2 is a supertype ofq′2 in S2, thenq′2

4A variant of attachment can be defined in which if two typed parameters which are attached to each

other, are marked by two different types, then the type of theexported node overrides the type of the

imported node.
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and q2 cannot be both attached toq1 and q′1, respectively. Notice that as in the merge

operation, two signature modules can be attached only if theresulting subtyping relation

is indeed a partial order, where the only obstacle can be the antisymmetry of the resulting

relation. The combination of the appropriateness relations, in contrast, cannot cause the

attachment operation to fail because any violation of the appropriateness conditions in

signature modules can be deterministically resolved.5

Definition 20. Let S1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉 and S2 = 〈〈Q2, T2,�2

, Ap2, 〉, Int2, Imp2, Exp2〉 be two consistent signature modules. IfS2 can be attached to

S1, then theattachmentof S2 to S1, denotedS1(S2), is:

S1(S2) = compact(ApCl(compact(S)))

whereS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 is defined as follows:

Let ≡ be an equivalence relation overQ1 ∪ Q2 defined by the reflexive and symmetric

closure of{(Imp1[i], Exp2[i]) | 1 ≤ i ≤ |Imp1|}. Then:

• Q = {[q]≡ | q ∈ Q1 ∪ Q2}

• T ([q]≡) =











T1 ∪ T2(q
′) there existsq′ ∈ [q]≡ such thatT1 ∪ T2(q

′)↓

↑ otherwise

• �= {([q1]≡, [q2]≡) | (q1, q2) ∈�1 ∪ �2}

• Ap = {([q1]≡, F, [q2]≡) | (q1, F, q2) ∈ Ap1 ∪ Ap2}

• Int = {[q]≡ | q ∈ Int1 ∪ Int2}

• Imp = {[q]≡ | q ∈ Imp1}

• Exp = {[q]≡ | q ∈ Exp1}

5Relaxed variants of these conditions are conceivable; for example, one can require|Imp1| ≤ |Exp2|

rather than|Imp1| = |Exp2|; or thatT1(Imp1[i]) andT2(Exp2[i]) be consistent rather than equal.
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• the order ofImp andExp is induced by the order ofImp1 andExp1, respectively

When a moduleS2 is attached to a moduleS1, all the exported nodes ofS2 are first

attached to the imported nodes ofS1, respectively, through the equivalence relation, ‘≡’.

In this way, for each imported node ofS1, all the information encoded by the correspond-

ing exported node ofS2 is added. Notice that each equivalence class of ‘≡’ contains

either one or two nodes. In the former case, these nodes are either non-imported nodes

of S1 or non-exported nodes ofS2. In the latter, these are pairs of an imported node of

S1 and its corresponding exported node fromS2. Hence ‘≡’ is trivially transitive. Then,

similarly to the merge operation, pairs of nodes marked by the same type and pairs of

indistinguishable anonymous nodes are coalesced. In contrast to the merge operation, in

the attachment operation two distinguishable anonymous nodes, as well as an anonymous

node and a typed node, can be coalesced. This is achieved by the parametric view of

nodes and the view of one module as an input to another module.

The imported and exported nodes of the resulting module are the equivalence classes

of the imported and exported nodes of the first module,S1, respectively. The nodes of

S2 which are neither internal nor exported are classified as external nodes in the resulting

module. This asymmetric view of nodes stems from the view ofS1 receivingS2 as input:

In this way,S1 may import further information from other modules.

Notice that in the attachment operation internal nodes facilitate no interaction between

modules, external nodes facilitate interaction only through naming and imported and ex-

ported nodes facilitate interaction both through naming and by reference.

Example 10. Consider againS1 andS9, the signature modules of Figures 2.1 and 2.7,

respectively. LetS1a and S9a be the signature modules of Figure 2.10 (these signature

modules have the same underlying graphs as those ofS1 andS9, respectively, with differ-

ent classification of nodes). Notice that all nodes in bothS1a andS9a are non-internal.

Let Imp1a = 〈q4, q5〉 and letExp9a = 〈p9, p10〉. S1a(S9a) is depicted in Figure 2.11. No-

tice howq4, q5 are coalesced withp9, p10, respectively, even thoughq4, q5 are anonymous
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andp9, p10 are typed and each pair of nodes has different attributes. Such unification of

nodes cannot be achieved with the merge operation.

S1a :

gerund

q1

n

q2

v

q3 q4 q5

cat

q6

agr

q7

AGR

AGR

AGR
AGR
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Figure 2.10: Attachment – input

Theorem 4. Given two signature modules,S1, S2 such thatS2 can be attached toS1,

S1(S2) is a signature module.

Proof. Similar to the proof of theorem 1.
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Figure 2.11: Attachment result,S1a(S9a)

2.3.4 Example: parametric lists

Lists and parametric lists are extensively used in typed unification based formalisms,

e.g., HPSG. The mathematical foundations for parametric lists were established by Penn

(2000). As an example of the utility of signature modules andthe attachment operation,

we show how they can be used to construct parametric lists in astraightforward way.

Consider Figure 2.12. The signature moduleList depicts a parametric list module. It

receives as input, through the imported nodeq3, a node which determines the type of the

list members. The entire list can then be used through the exported nodeq4. Notice thatq2

is an external anonymous node. Although its intended denotation is the typene list, it is

anonymous in order to be unique for each copy of the list, as will be shown below. Now,

if Phrase is a simple module consisting of one exported node, of typephrase, then the

signature module obtained byList(Phrase) is obtained by coalescingq3, the imported

node ofList with the single exported node ofPhrase .

Other modules can now use lists of phrases; for example, the moduleStruct uses

an imported node as the appropriate value for the featureCOMP-DTRS. Via attachment,
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this node can be instantiated byList(Phrase) as inStruct(List(Phrase)). The single

node ofPhrase instantiates the imported node ofList, thus determining a list of phrases.

The entire list is then attached to the signature moduleStruct, where the root of the list

instantiates the imported node typed byphrase list in Struct.

elist

q1 q2 q3

q4

FIRSTR
E

S
T

List

phrase
phrase list hd struct

COMP-DTRS

Phrase Struct

elist

q1 q2

phrase

q3

q4

FIRSTR
E

S
T

elist phrase

phrase list hd struct

COMP-DTRS

FIRST

R
EST

List(Phrase) Struct(List(Phrase))

Figure 2.12: Implementing parametric lists with signaturemodules

More copies of the list with other list members can be createdby different calls to the

moduleList. Each such call creates a unique copy of the list, potentially with different
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types of list elements. Uniqueness is guaranteed by the anonymity of the nodeq2 of List:

q2 can be coalesced only with anonymous nodes with the exact same attributes, e.g., only

with nodes whose appropriate value for the featureFIRST is a node typed byphrase. If

q2 would have been typed byne list it could be coalesced with any other node marked

by the same type, e.g., other such nodes from different copies of the list, resulting in a

list whose members have various types. Observe that the uniqueness of each copy of the

list could be achieved also by declaringq2 an internal node, but this solution prevents

other modules from referring to this node, as is reasonably desired.q1 (of List) is typed

by elist. Since only one copy of this node is required for all the list copies, there is no

problem with typing this node.

Compared with the parametric type signatures of Penn (2000),our implementation

of parametric lists is simple and general: it falls out directly as one application of sig-

nature modules, whereas the construction of Penn (2000) requires dedicated machinery

(parametric subtyping, parametric appropriateness, coherence, etc.) We conjecture that

signature modules can be used to simulate parametric type signatures in the general case,

although we do not have a proof of such a result.

2.3.5 Example: the ‘addendum’ operator in LKB

The ‘addendum’ operator6 was added to the type definition language of LKB (Copestake,

2002) in 2005, to allow the grammar developer to add attributes to an already defined

type without the need to repeat previously defined attributes of that type. The need for

such an operation arose as a consequence of the development of frameworks that generate

grammars from pre-written fragments (e.g., the LINGO grammar matrix (Bender and

Oepen, 2002)), since editing of framework-source files may lead to errors.

Signature modules trivially support this operator, eitherby the merge operation (in

which case different attributes of a typed node are gatheredfrom different modules) or by

6See http://depts.washington.edu/uwcl/twiki/bin/view.cgi/Main/TypeAddendum
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attachment, where attributes can be assigned to a specific node, even without specifying

its type.

2.4 Extending Signature Modules to Type Signatures

Signature modules encode only partial information, and aretherefore not required to con-

form with all the constraints imposed on ordinary signatures. After modules are com-

bined, however, the resulting signature module must be extended into a bona fide signa-

ture. For that purpose we use four algorithms, each of which deals with one property:

1. Name resolution: this algorithm assigns types to anonymous nodes (section 2.4).

2. Appropriateness consolidation: this algorithm determinizesAp, converts it from a

relation to a function and enforces upward closure (section2.4).

3. Feature introduction completion: this algorithm enforces the feature introduction

condition. This is done using the algorithm of Penn (2000).

4. BCPO completion: this algorithm extends ‘�’ to a BCPO. Again, we use the algo-

rithm of Penn (2000).

The input to the resolution algorithm is a signature module and its output is a bona

fide type signature.

Algorithm 1. Resolve (S)

1. S := NameResolution(S)

2. S := BCPO-Completion(S)

3. S := ApCl(S)

4. S := ApConsolidate(S)
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5. S := FeatureIntroductionCompletion(S)

6. S := BCPO-Completion(S)

7. S := ApCl(S)

8. S := ApConsolidate(S)

9. returnS

The order in which the four algorithms are executed is crucial for guaranteeing that

the result is indeed a bona fide signature. First, the resolution algorithm assigns types

to anonymous nodes via the name resolution algorithm (stage1). The BCPO completion

algorithm (stage 2) of Penn (2000) adds types as least upper bounds for sets of types which

have upper bounds but do not have a minimal upper bound. However, the algorithm does

not determine the appropriateness specification of these types. A natural solution to this

problem is to use Ap-Closure (stage 3) but this may lead to a situation in which the newly

added nodes have multiple outgoing Ap-arcs with the same label. To solve the problem,

we execute the BCPO completion algorithm before the Ap-consolidation algorithm (stage

4), which also preserves bounded completeness. Now, the feature introduction completion

algorithm (stage 5) of Penn (2000) assumes that the subtyping relation is a BCPO and that

the appropriateness specification is indeed a function and hence, it is executed after the

BCPO completion and Ap-consolidation algorithms. However, as Penn (2000) observes,

this algorithm may disrupt bounded completeness and therefore the result must undergo

another BCPO completion and therefore another Ap-consolidation (stages 6-8).

A signature module is extended to a type signature after all the information from the

different modules have been gathered. Therefore, there is no need to preserve the classi-

fication of nodes and only the underlying PSS is of interest. However, since the resolu-

tion procedure uses the compactness algorithm which is defined over signature modules,

we define the following algorithms over signature modules aswell. In cases where the
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node classification needs to be adjusted, we simply take the trivial classification (i.e.,

Int = Imp = Exp = ∅).

Name resolution

During module combination only pairs of indistinguishableanonymous nodes are coa-

lesced. Two nodes, only one of which is anonymous, can still be otherwise indistinguish-

able but they are not coalesced during combination to ensurethe associativity of module

combination. The goal of thename resolutionprocedure is to assign a type to every

anonymous node, by coalescing it with a typed node with an identical environment, if one

exists. If no such node exists, or if there is more than one such node, the anonymous node

is given an arbitrary type.

The name resolution algorithm iterates as long as there are nodes to coalesce. In each

iteration, for each anonymous node the set of its typed equivalent nodes is computed

(stage 1). Then, using the computation of stage 1, anonymousnodes are coalesced with

their corresponding typed node, if such a node uniquely exists (stage 2.1). Coalescing all

such pairs may result in a signature module that may include indistinguishable anonymous

nodes and therefore the signature module is compacted (stage 2.2). Compactness can

trigger more pairs that need to be coalesced, and therefore the above procedure is repeated

(stage 2.3). When no pairs that need to be coalesced are left, the remaining anonymous

nodes are assigned arbitrary names and the algorithm halts.

We first defineNodeCoalesce(S, q, q′): this is a signature moduleS ′ that is obtained

from S by coalescingq with q′.

Definition 21. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module and

let q, q′ ∈ Q. DefineNodeCoalesce(S, q, q′) = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉

where:

• Q1 = Q\{q}
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• T1 = T |Q1

• �1= {(q1, q2) | q1 � q2 andq1, q2 6= q} ∪ {(p, q′) | p � q} ∪ {(q′, p) | q � p}

• Ap1 = {(q1, F, q2) | (q1, F, q2) ∈ Ap andq1, q2 6= q} ∪ {(p, F, q′) | (p, F, q) ∈ Ap}

∪ {(q′, F, p) | (q, F, p) ∈ Ap}

• Int = Imp = Exp = ∅

The input to the name resolution algorithm is a signature module and its output is a sig-

nature module whose typing function,T , is total. LetS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉

be a signature module, and let NAMES ⊂ TYPE be an enumerable set of fresh types from

which arbitrary names can be taken to mark nodes inQ. The following algorithm marks

all the anonymous nodes inS:

Algorithm 2. NameResolution (S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉)

1. for all q ∈ Q such thatT (q)↑, computeQq = {q′ ∈ Q | T (q′)↓ andq′ is equivalent

to q}.

2. letQ = {q ∈ Q | T (q)↑ and|Qq| = 1}. If Q 6= ∅ then:

2.1. for all q ∈ Q, S := NodeCoalesce(S, q, q′), whereQq = {q′}

2.2. S := compact(S)

2.3. go to (1)

3. Mark remaining anonymous nodes inQ with arbitrary unique types fromNAMES

and halt.

For a given anonymous node, the calculation of its typed equivalent nodes is mostly

technical and is therefore deferred to Appendix B.
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Example 11. Consider the signature moduleS6 depicted in Figure 2.6. Executing the

name resolution algorithm on this module results in the signature module of Figure 2.13

(AGR-labels are suppressed for readability.) The two anonymous nodes inS6 are coa-

lesced with the nodes markednagr andvagr, as per their attributes. Cf. Figure 2.1, in

particular how two anonymous nodes inS1 are assigned types fromS5 (Figure 2.6).

gerund

n v vagr nagr

cat agr

Figure 2.13: Name resolution result forS6

A more detailed account of the name resolution algorithm is given in Appendix B

(along with the technicality of the calculation of the equivalent typed node for a given

anonymous node).

Appropriateness consolidation

For each nodeq, the set of outgoing appropriateness arcs with the same label F , {(q, F, q′)},

is replaced by the single arc(q, F, ql), whereql is marked by thelub of the types of allq′.

If no lub exists, a new node is added and is marked by thelub. The result is an appro-

priateness relation which is a function, and in which upwardclosure is preserved; feature

introduction is dealt with separately.

The input to the following procedure is a signature module whose typing function,

T , is total and whose subtyping relation is a BCPO; its output is asignature module

whose typing function is total, whose subtyping relation isa BCPO, and whose ap-
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propriateness relation is a function that maintains upwardclosure. LetS = 〈〈Q, T,�

, Ap〉, Int, Imp,Exp〉 be a signature module. For eachq ∈ Q andF ∈ FEAT, let

• target(q, F ) = {q′ | (q, F, q′) ∈ Ap}

• sup(q) = {q′ ∈ Q | q′ � q}

• sub(q) = {q′ ∈ Q | q � q′}

Algorithm 3. ApConsolidate (S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉)

1. SetInt := Imp := Exp := ∅

2. Find a nodeq and a featureF for which |target(q, F )| > 1 and for all q′ ∈ Q

such thatq′
∗

� q, |target(q′, F )| ≤ 1 (i.e., q is a minimal node with respect to a

topological ordering ofQ). If no such pair exists, halt.

3. If target(q, F ) has a lub,p, then:

(a) for all q′ ∈ target(q, F ), remove the arc(q, F, q′) fromAp

(b) add the arc(q, F, p) to Ap

(c) for all q′ ∈ target(q, F ) and for all q′′ ∈ sub(q′), if p 6= q′′ then add the arc

(p, q′′) to �

4. Otherwise, iftarget(q, F ) has no lub, then:

(a) Add a new node,p, to Q with:

• sup(p) = target(q, F )

• sub(p) =
⋃

q′∈target(q,F ) sub(q′)

(b) Markp with a fresh type fromNAMES

(c) For all q′ ∈ target(q, F ), remove the arc(q, F, q′) fromAp

(d) Add(q, F, p) to Ap
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5. S := ApCl(S)

6. S := compact(S)

7. go to (2).

The order in which nodes are selected in step 2 of the algorithm is from supertypes

to subtypes. This is done to preserve upward closure. When a set of outgoing appropri-

ateness arcs with the same labelF , {(q, F, q′)}, is replaced by a single arc(q, F, ql), all

the subtypes of allq′ are added as subtypes ofql (stage 3c). This is done to maintain the

upwardly closedintention of appropriateness arcs (see example 13 below). Additionally,

ql is added as an appropriate value forF and all the subtypes ofq. This is achieved by the

Ap-Closure operation (stage 5). Again, this is done to preserve upward closure. If a new

node is added (stage 3), then its subtypes are inherited fromits immediate supertypes. Its

appropriate features and values are also inherited from itsimmediate supertypes through

the Ap-Closure operation (stage 5). In both stages 3 and 4, a final step is compaction of

the signature module in order to remove redundant arcs.

Example 12. Consider the signature module depicted in Figure 2.13. Executing the ap-

propriateness consolidation algorithm on this module results in the module depicted in

Figure 2.14.

gerund new

n v vagr nagr

cat agr

AGR

AGR

AGR

Figure 2.14: Appropriateness consolidation: result
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Example 13. Consider the signature modules depicted in figure 2.15. Executing the ap-

propriateness consolidation algorithm onS16, the two outgoing arcs froma labeled with

F are first replaced by a single outgoing arc to a newly added node, new1, which is the

lub of b andc. During this first iteration,new1 is also added as a supertype ofe andf .

The result of these operations isS17. Notice that inS16, the arc(a, F, b) is interpreted as

“the appropriate value ofa andF is at leastb”. In particular, this value may bee. S17

maintains this interpretation by means of the subtyping arcthat is added fromnew1 to e.

Then, the two outgoing arcs fromd labeled withF (to e andf ) are replaced by a single

outgoing arc to a newly added node,new2, which is the lub ofe andf . The result of these

operations isS18, which is also the final result.

S16 S17 S18

d e f

a b c

F

F

F

F

d e f

new1

a b c

F

F

F

new2

d e f

new1

a b c

F

F

Figure 2.15: Appropriateness consolidation

A naive solution for determinizing Ap would be to simply add anew lub node to all

non-empty subsets of Q (evidently there is a finite number of them). The Ap-Consolidation

algorithm we present adds lubs only when they are needed. Thetermination of the algo-

rithm clearly stems from this fact. Furthermore, since the algorithm is executed after

BCPO-completion, it adds new elements only as lubs of subsets which have no common

upper bound.
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Corollary 5. The appropriateness consolidation algorithm terminates.

Theorem 6. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module where

T is total and
∗

� is a BCPO. LetS1 = ApConsolidate(S) = 〈〈Q1, T1,�1

, Ap1〉, Int1, Imp1, Exp1〉. ThenS1 is a signature module whereT1 is total,
∗

�1 is a

BCPO andAp1 is a function that maintains upward closure.

Proof. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module whose typing

function,T , is total and
∗

� is a BCPO. Each iteration of the appropriateness consolidation

algorithm does not change the type assignment of typed nodes. If a new node is added

(stage 4), it is assigned a fresh type. Hence, ifT is total, so isT1.

Now, defineQdone = {q ∈ Q | for every featureF , |target(q, F )| ≤ 1 and for

all q′ ∈ Q such thatq′
∗

� q, |target(q′, F )| ≤ 1}. SinceS is a signature module, it

maintains the relaxed upward condition. Observe that at stage 2 of each iteration,S|Qdone

(the restriction ofS to Qdone, see definition 61, page 120) is a signature module whose

appropriateness relation is a function that maintains upward closure (the technical proof is

suppressed). From theorem 5 it follows that the appropriateness consolidation algorithm

terminates and it terminates whenQdone = Q. WhenQdone = Q, S|Qdone
= S|Q = S

and thereforeS1 is a signature module whose appropriateness relation is a function that

maintains upward closure.

The Ap-consolidation algorithm affects the subtyping relation only in stages 3 and 4:

Ap-closure does not affect the subtyping relation and sincethe typing function is total and

the input is a signature module, the only affect of compactness (stage 6) is removement

of redundant Ap-arcs. The addition of a new type (stage 4) andaddition of subtyping arcs

(stages 3 and 4) are done in exactly the same way as in the BCPO completion algorithm of

Penn (2000). The proof that these additions maintain bounded completeness is the same

as the proof of the correctness of the BCPO completion in Penn (2000).

Theorem 7. If S is a signature module whose appropriateness relation is a function, then

the underlying PSSs ofS andApConsolidate(S) are equal.
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Proof. Follows immediately from the fact that ifS is a signature module whose appropri-

ateness relation is a function then the appropriateness consolidation algorithm terminates

at stage 2 of the first iteration.

To maintain the associativity of signature modules combination we used a method of

powerset-lift: In contrast to type signatures, theAp relation of signature modules is not

required to be a function. Rather, it is a relation which may specify severalappropriate

nodes for the values of a featureF at a nodeq. In this way, each module may specify

its own appropriate values without needing to know the valuespecification of other mod-

ules. When two modules are combined (in either one of the two combination operations),

multiple outgoingAp-arcs are preserved and are not replaced by a single arc in order

to maintain the associativity of the combination (see example 9). Only in the resolution

stage isAp determinized, converted from a relation to a function. The method we use

here is apowerset-liftof the domain and the corresponding operation. In this way, all

the possibilities are ‘remembered’ and a resolution stage is added to produce the desired

result. This method is a general method which is also applicable to some other, related,

formalisms; we show in chapter 5 that it can be used to guarantee the associativity of

module combination in PUG.

2.5 Grammar Modules

A grammar (definition 12) is defined over a concrete type signature and is a structure

including a set of rules (each a TMRS), a lexicon mapping words to sets of TFSS and a

start symbol which is a TFS. Agrammar moduleis a structureM = 〈S,G〉, whereS is a

signature module andG is a grammar. The grammar is defined over the signature module

analogously to the way ordinary grammars are defined over type signatures, albeit with

two differences:

1. TFSS are defined over type signatures, and therefore each path in the TFS is as-
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sociated with a type. When TFSS are defined over signature modules this is not

the case, since signature modules may include anonymous nodes. Therefore, the

standard definition of TFSS is modified such that every path in a TFS is assigned a

node in the signature module over which it is defined, rather than a type.

2. Enforcing all TFSS in the grammar to be well-typed is problematic for three rea-

sons:

(a) Well-typedness requires thatΘ(πF ) be an upper bound of all the (target)

nodes which are appropriate forΘ(π) andF . However, each module may

specify only a subset of these nodes. The whole set of target nodes is known

only after all modules combine.

(b) A module may specify several appropriate values forΘ(π) andF , but it may

not specify any upper bound for them.

(c) Well-typedness is not preserved under module combination. The natural way

to preserve well-typedenss under module combination requires addition of

nodes and arcs, which would lead to a non-associative combination.

To solve these problems, we enforce only a relaxed version ofwell typedness. The

relaxation is similar to the way upward closure is relaxed : WheneverΘ(π) = q,

Θ(πF ) is required to be a subtype ofoneof the valuesq′ such that(q, F, q′) ∈ Ap.

This relaxation supports the partiality and associativityrequirements of modular

grammar development (section 1.2). After all modules are combined, the resulting

grammar is extended to maintain well-typedness.

The two combination operators,mergeandattachment, are lifted from signature mod-

ules to grammar modules. In both cases, the components of thegrammars are combined

using simple set union. This reflects our initial observation (section 1.2) that most of the

information in typed formalisms is encoded by the signature, and therefore modulariza-

tion is carried out mainly through the distribution of the signature between the different
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modules; the lifting of the signature combination operation to operations on full grammar

modules is therefore natural and conservative.

Finally, grammar modules are extended to bona fide typed unification grammars by

extending the underlying signature module into an ordinarytype signature and adjusting

the grammar accordingly.7

Since these definitions naturally extend the basic grammar definition (definition 12)

and the definitions and algorithms presented in this chapter, we suppress them here and

they are given in appendix C.

7In practice, an extra adjustment is required in order to restore well-typedness, see appendix C.
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Chapter 3

Modular Construction of the Basic

HPSG Signature

To demonstrate the utility of signature modules for practical grammar engineering we

use signature modules and their combination operators in this section to work out a mod-

ular design of the HPSG grammar of Pollard and Sag (1994). This is a grammar of

English whose signature, covering several aspects of syntax and semantics, is developed

throughout the book. The signature is given (Pollard and Sag(1994), AppendixA1) as

one unit, making it very hard to conceptualize and, therefore, to implement and main-

tain. We reverse-engineered this signature, breaking it upinto smaller-scale modules that

emphasize fragments of the theory that are more local, and the interactions among such

fragments through ‘merge’ and ‘attachment’.1 Some of the fragments make use of the

signature moduleList of Figure 2.12.

We begin with a module definingobjects(Figure 3.1), where the typeobject is the

most general type. This module defines the main fragments of the signature.

Figure 3.2 defines the moduleSign. It consists of the typesign, and its two subtypes

1Of course, other ways to break up the given signature to modules are conceivable. In particular, the

Synsem module of Figure 3.5 may better be broken into two modules.
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sign mod synsem head category con struc local non local

object

Object

Figure 3.1: The main fragments of the signature

word phrase con struct

sign synsem

quantifier list phonestring list

DTRS

RETRIE
VED

SYNSEM

PHON

Sign

Imp = 〈phonstring list, quantifier list〉

Exp = 〈phrase〉

Figure 3.2: A signature module,Sign

wordandphrase. The latter is exported and will be used by other modules, as we presently

show. In addition, two of the appropriate features ofsignare lists; note that the values of

PHON andRETRIEVED are imported.

Next, we consider constituent structure, and in particularheaded structures, in Fig-

ure 3.3. Note in particular that the featureCOMP-DTRS, defined atheadstruc, takes as

values a list of phrases; this is an imported type, which is obtained as a result of several
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attachment operations (Figure 2.12).

word phrase elist

head comp struc

head mark struc head adj struc head filter struc

coord struc head struc phrase list sign
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FILLER-DTR
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P-

D
TR

S

ConStruc

Imp = 〈phrase list〉

Figure 3.3: Phrase structure

Figure 3.4 describes the fragment of the signature rooted byhead. This is basically

a specification of the inventory of syntactic categories defined by the theory. Note how

simple it is to add, remove or revise a category by accessing this fragment only.

Figure 3.5 provides straight-forward definitions ofcategory andsynsem, respectively.

As another example, Figure 3.6 depicts the type hierarchy ofnominal objects, which is

completely local (in the sense that it does not interact withother modules, except at the
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case pform boolean vform

noun prep verb reltvzr adj marker det

mod synsem substantive functional synsem

head

MOD

SPEC

P
F

O
R

M

V
FO

R
M

A
U

X

IN
V

C
A

S
E

Head

Figure 3.4: A signature module,Head

root). Finally, Figure 3.7 abstracts over the internal structure ofPhonstringandQuan-

tifier; these are only representatives of the actual signature modules which define these

fragments.

synsem list head marking

category

SUBCAT

H
E

A
D

M
ARKIN

G

local nonlocal

none synsem

mod synsem

L
O

C
A

L

NONLOCAL

Cat Synsem

Figure 3.5: Signature modules
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refl recp

ppro ana

npro pron

nom obj indexINDEX

NomObj

Figure 3.6: A classification of nominal objects

phonstring quantifier

Phonstring Quantifier

Figure 3.7: Parametric signature modules

The full HPSG signature consists of several more fragments that we do not depict

here. With this in mind, the HPSG signature can now be constructed in a modular way

from the fragments defined above. The construction is given in Figure 3.8.

First, we produce two lists ofphonestringandquantifier, which are merged into one

module through the operation

List(Phonestring) ⋒ List(Quantifier)

Then, this module instantiates the two imported nodesphonestringlist andquantifier list

in the moduleSign through the operation

Sign(List(Phonestring) ⋒ List(Quantifier))

Notice how the order of the parameters ensures the correct instantiation. Now, in the
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Sign(List(Phonestring) ⋒ List(Quantifier))

⋒

ConStruc(List(Sign))

⋒

Cat(List(Synsem))

⋒

Object

⋒

Head

⋒

NomObj

Figure 3.8: HPSG signature construction

second element,List(Sign) both creates a list ofphrase(sincephraseis an exported

node in the moduleSign) and unifies the information in the two modules. Similarly,

ConStruc(List(Sign)) unifies the information in the three modules and instantiates the

nodephraselist in the moduleConStruc. In the same way,List(Synsem) both creates

a list of synsem(sincesynsemis an exported node in the moduleSynsem) and unifies

the information in the two modules. Then,Cat(List(Synsem)) unifies the information

in the three modules and instantiates the nodesynsemlist in the moduleCat. Finally,

all the information from the different modules is unified through the merge operation.

Other modules can be added, either by merge or by attachment.Additionally, the internal

structure of each module can be locally modified. Such changes become much easier

given the smaller size and theoretical focus of each of the modules.

This modular approach has significant advantages over the monolithic approach of

Pollard and Sag (1994): The signature of Pollard and Sag (1994) is hard to conceptualize
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since all the information is presented in a single hierarchy. In contrast, looking at each

small fragment (module) separately, it is easier to understand the information encoded in

the module. Contemporary type signatures are in fact much larger; working with small

fragments in such grammars is instrumental for avoiding or tracking errors. Moreover,

grammar maintenance is significantly simplified, since changes can be done locally, at

the level of specific modules. Of course, when a new grammar isdeveloped from scratch,

modularization can be utilized in such a way as to reflect independent fragments of the

linguistic theory in separate modules.

While the grammar of Pollard and Sag (1994) is not really large-scale, it is large

enough to reflect the kind of knowledge organization exhibited by linguistically-motiv-

ated grammars, but is at the same time modest enough so that its redesign in a modular

way can be easily comprehended. It is therefore useful as a practical example of how

type signatures can be constructed from smaller, simpler signature modules. Real-world

grammars are not only much larger, they also tend to be more complex, and in partic-

ular express interactions in domains other than the type signature (specifically, as type

constraints and as phrase-structure rules). Extending oursolution to such interactions is

feasible, but is beyond the scope of this work.
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Chapter 4

MODALE: A Platform for Modular

Development of Signature Modules

In this work we focus on typed unification grammars (TUG), andtheir implementation

in grammar-development platforms. Two leading implementation platforms are available

for the development of typed unification grammars: The Linguistic Knowledge Building

system (LKB) (Copestake, 2002) and TRALE (Meurers, Penn, and Richter, 2002), an

extension of the Attribute Logic Engine (ALE) (Carpenter, 1992a). MODALE (MODular

ALE) is a system that supports modular development of type signatures in both ALE and

TRALE. The main features of the system are:

• The system provides a description language with which signature modules can be

specified. The description language is intuitive and is built upon the description

language of ALE. For example, the description ofS1, the signature module of fig-

ure 2.2, is shown in figure 4.1.

• Signature modules may be combined using either one of the twocombination op-

erators, merge and attachment, or by a complex combination involving several op-

erators.
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• Signature modules can be resolved to yield a bona fide type signatures.

• The system compiles resolved modules into output files usingeither ALE or TRALE

syntax; these files can be directly manipulated by one of the two systems.

• Signature modules can be printed using the syntax of the description language.

This feature allows inspection of a signature module that was created as a result of

several combination operators.

module(S1)

{

cat sub [n,v].

n sub [gerund].

n approp [agr:{anon(q5)}].

gerund sub [].

gerund approp [agr:{anon(q4),anon(q5)}].

v sub [gerund].

v approp [agr:{anon(q4)}].

agr sub [anon(q4),anon(q5)].

}

{

int=<>.

imp=<anon(q4),anon(q5)>.

exp=<>.

}

Figure 4.1: MODALE description ofS1

Consider again the modular design of the basic HPSG grammar (Pollard and Sag,

1994) which was presented in Chapter 3. In appendix D, sections D.1 and D.2 use the
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description language to depict both the modular design and the resolved HPSG gram-

mar, respectively. Clearly, the modular description is clearer, easier to conceptualize, and

changes can be done locally and easily.

ALE and TRALE share the same underlying core, and are based on data structures

and algorithms that take advantage of type signature properties such as bounded com-

pleteness, upward closure, feature introduction and the functionality of appropriateness

specification (i.e., no multipleAp-arcs), none of which can be assumed when working

with signature module. As a result, our implementation is not a direct adaption of the

existing ALE/TRALE code, but a new system that was developed from scratch. Extend-

ing the algorithms of Penn (2000) from type signatures into signature modules is left as a

direction for future research.

The MODALE system provided us with an opportunity to experimentally evaluate

the time efficiency of module combination. Indeed, the combination and resolution al-

gorithms are computationally inefficient as they require repeated calculations of graph

isomorphism, a problem which is neither known to be solvablein polynomial time nor

NP-complete.1 However, in the signatures we have experimented with so far,we en-

countered no time issues. Furthermore, it is important to note that these calculations are

executed only once, in compile time, and have no impact on therun time of ALE/TRALE

which is the crucial stage in which efficiency is concerned.

1Garey and Johnson (1979) provide a list of 12 major problems whose complexity status was open at

the time of writing. Recognition of graph isomorphism is oneof those, and one of the only two whose

complexity remains unresolved today.
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Chapter 5

Implications on Other Formalisms

5.1 Overview

While our main focus in this work is facilitating the necessary infrastructure for modular

construction of typed unification grammars, the methods we use have an impact also

on the development of large-scale grammars in some other, related, formalisms, e.g.,

Polarized unification grammar (PUG) (Kahane, 2006) and XMG (Duchier, Le Roux, and

Parmentier, 2004; Crabbé, 2005). In this chapter we focus on PUG. We show that the

grammar combination operator proposed by Kahane (2006) is not associative, and we

correct it by adapting thepowerset-liftmethhod used in chapter 2.

PUG is a linguistic formalism which usespolaritiesto better control the way grammar

fragments interact. A PUG is defined over asystem of polarities(P, ·) whereP is a set (of

polarities) and ‘·’ is an associative and commutative product overP . A PUG generates

a set of finite structures (e.g., trees) over objects (e.g., nodes) which are determined for

each grammar separately. The objects are associated with polarities, and structures are

combined by identifying some of their objects. The combination is sanctioned by polar-

ities: objects can only be identified if their polarities areunifiable; the resulting object

has the unified polarity. A non-empty, strict subset of the set of polarities, called the set
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of neutralpolarities, determines which of the resulting structures are valid: A polarized

structure issaturatedif all its polarities are neutral, and the language generated by the

grammar includes the saturated structures that result fromall the possible combinations

of elementary structures. PUG is a powerful and flexible formalism which was shown to

be capable of simulating many grammar formalisms, including TAG, LFG, HPSG, etc.

However, unlike other tree-based formalisms and unlike ourapproach, PUG does not

take the metagrammar approach: the basic units are grammatical objects (e.g., trees or

graphs) rather than grammatical descriptions (e.g., formulas describing grammatical ob-

jects).

The grammar combination operation of PUG was conjectured tobe associative (Ka-

hane and Lareau, 2005; Kahane, 2006). We show that it is not; even attaching polarities

to objects does not render grammar combination order-independent. In section 5.2 we

formalize the tree combination operation of PUG and set a common notation. We limit

the discussion to the case of trees, rather than the arbitrary objects of PUG, for the sake of

simplicity; all our results can easily be extended to arbitrary structures and objects (e.g.,

graphs and their nodes and edges). In section 5.3 we show thatexisting polarity systems

do not guarantee associativity. This is not accidental: we prove that no non-trivial polarity

system can guarantee the associativity of grammar combination. We analyze the reasons

for this in section 5.4 and introduce new definitions, based on a move from trees to forests,

which induce an associative grammar combination operator.The immediate contribution

of this chapter is thus the identification—and correction—of a significant flaw in this oth-

erwise powerful and flexible formalism. Moreover, the method we propose is general, and

therefore applicable to a variety of formalisms. In section5.6 we show that our results can

be used to define an alternative semantics for XMG (Duchier, Le Roux, and Parmentier,

2004; Crabb́e, 2005).
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5.2 Tree Combination in PUG

To the best of our knowledge, no formal definition of PUG was published and the formal-

ism is only discussed informally (Kahane and Lareau, 2005; Kahane, 2006). We therefore

begin by defining the formalism and its combination operation, both with and without po-

larities, to establish a common notation.

Definition 22. A tree〈V,E, r〉 is a connected, undirected, acyclic graph with verticesV ,

edgesE and a unique rootr ∈ V .

Every pair of nodes in a tree is connected by a unique path, andthe edges have a

natural orientation, toward or away from the root. Let〈V,E, r〉 be a tree and letv ∈ V .

Any vertexu which is located on the single path fromr to v is anancestorof v, andv

is adescendantof u. If the last arc on the path fromr to v is (u, v) thenu is theparent

of v andv is thechild of u. The meta-variableT ranges over trees andV,E, r over their

components. The meta-variableT ranges over sets of trees.

Definition 23. Two treesT1, T2 are disjoint if V1 ∩ V2 = ∅. Two sets of treesT1, T2 are

disjoint if for all T1 ∈ T1, T2 ∈ T2, V1 ∩ V2 = ∅.

Definition 24. Two treesT1 = 〈V1, E1, r1〉, T2 = 〈V2, E2, r2〉 are isomorphic, denoted

T1∼T2, if there exists a total one to one and onto functioni : V1 → V2 such thati(r1) = r2

and for all u, v ∈ V1, (u, v) ∈ E1 iff (i(u), i(v)) ∈ E2. Two sets of treesT1, T2 are

isomorphic, denotedT1
∼=T2, if there exist total functionsi1 : T1 → T2 and i2 : T2 → T1

such that for allT ∈ T1, T∼ i1(T ) and for allT ∈ T2, T∼ i2(T ).

Next, we define how two trees are combined. An equivalence relation over the nodes

of the two trees states which nodes should be identified. In the result of the combination,

nodes are equivalence classes of that relation and arcs connect nodes that are connected

in their members. The equivalence relation is sanctioned ina way that guarantees that the

resulting graph is indeed a tree.
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Definition 25. Let T1 = 〈V1, E1, r1〉, T2 = 〈V2, E2, r2〉 be two disjoint trees. An equiva-

lence relation ‘
t
≈’ over V1 ∪ V2 is legal if all the following hold:1

1. for all v1, v2 ∈ V1 ∪ V2, if v1
t
≈v2 andv1 6= v2 then eitherv1 ∈ V1 andv2 ∈ V2 or

v1 ∈ V2 andv2 ∈ V1

2. for all u1, v1, u2, v2 ∈ V1 ∪ V2, if v1

t
≈v2, u1 is the parent ofv1 andu2 is the parent

of v2, thenu1
t
≈u2

3. there existsv ∈ V1 ∪ V2 such that|[v] t
≈
| > 1

Eqt(T1, T2) is the set of legal equivalence relations overV1 ∪ V2.

The first condition of definition 25 states that when two nodesare identified, they

must belong to different trees. The second condition requires that when two nodes are

identified, all their ancestors must identify as well. Finally, the last condition requires

that at least two nodes (each from a different tree) be identified. The first two conditions

guarantee that the resulting graph is acyclic and the third guarantees that it is connected.2

Definition 26. Let T1 = 〈V1, E1, r1〉, T2 = 〈V2, E2, r2〉 be two disjoint trees and let ‘
t
≈’

be a legal equivalence relation overV1∪V2. Thetree combinationof T1, T2 with respect

to ‘
t
≈’ , denotedT1 + t

≈
T2, is a treeT = 〈V,E, r〉, where:

• V = {[v] t
≈

| v ∈ V1 ∪ V2}

• E = {([u] t
≈

, [v] t
≈

) | (u, v) ∈ E1 ∪ E2}

• r =











[r1] t
≈

if [r1] t
≈

= {r1} or [r1] t
≈

= {r1, r2}

[r2] t
≈

otherwise

1If ‘ ≡’ is an equivalence relation then[v]≡ is the equivalence class ofv with respect to ‘≡’.
2The second condition is not an original requirement of PUG; it is added for the case in which the basic

structures are trees to guarantee that the resulting graph is indeed a tree.
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When two trees are combined, nodes belonging to the same equivalence class are

identified. Since the equivalence relation is legal, the resulting graph is indeed a tree.

Observe that since the equivalence relation is legal, either the two roots are identified;

or one of them is identified with a non-root node and the other remains alone. In the

former case, the root of the new tree is the node created from the identification of the two

roots; in the latter case, the new root is the root whose equivalence class is a singleton.

In definition 26, a systematic replacement ofr1 andr2 in the definition ofr would have

yielded the same result.

Example 14.Figure 5.1 depicts three trees,T1, T2, T3. T andT ′ are tree combinations of

T1 andT2. T is obtained by identifyingq1 with q3 andq2 with q4. Notice that sinceq2 is

identified withq4, q1 must be identified withq3 to maintain a tree structure (condition 2 of

definition 25).T ′ is obtained by identifyingq2 with q3. T ′′ is not a tree combination ofT2

andT3 since it identifiesq6 with q7, which belong to the same tree,T3, in contradiction to

condition 1 of definition 25.

T1 T2 T3

bq1 bq3 bq5

bq2 bq4 bq6 bq7

T T ′ T ′′

bq1, q3 bq1 bq3, q5

bq2, q4 bq2, q3 bq4, q6, q7

bq4

Figure 5.1: Tree combination

Definition 27. Let T1, T2 be two disjoint sets of trees. Thetree combination of T1, T2,
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denotedT1

t

+T2, is the set of trees

T =
⋃

T1 ∈ T1, T2 ∈ T2

t
≈ ∈ Eqt(T1, T2)

T1 + t
≈

T2

The tree combination operation takes as input two sets of trees and yields a set of trees

which includesall the tree combinations of any possible pair of trees belonging to the two

different sets with respect toany possible legal equivalence relations. Notice that the

definitions allows multiple isomorphic trees in the same setof trees, which may result in

inefficient processing. It is assumed that the grammar designer is responsible for avoiding

such inefficiency.

Example 15. The sets of trees defined by{T1}
t

+{T2} and{T2}
t

+{T3} (Figure 5.1) are

depicted in Figures 5.2 and 5.3, respectively.

bq1, q3 bq1 bq3 bq1, q3

bq2, q4 bq2, q3 bq1, q4 bq2 bq4

bq4 bq2

Figure 5.2:{T1}
t

+{T2}

This combination operation is extended by attaching polarities to nodes (Crabbé and

Duchier, 2004; Perrier, 2000; Kahane, 2006). In a polarizedframework, an extra con-

dition for the identification of two nodes is that their polarities combine; in this case a

new node (obtained by identifying two nodes) has a polarity which is the product of the

polarities of the two identified nodes.

Definition 28. A system of polarities is a pair(P, ·), whereP is a non-empty set and ‘·’

is a commutative and associative product overP × P .
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bq3, q5 bq3, q5 bq3, q5

bq4 bq6 bq7 bq4, q6 bq7 bq6 bq4, q7

bq5 bq5 bq3

bq3, q6 bq7 bq6 bq3, q7 bq4, q5

bq4 bq4 bq6 bq7

Figure 5.3:{T2}
t

+{T3}

In the sequel, if(P, ·) is a system of polarities anda, b ∈ P , ab ↓ means that the

combination ofa andb is defined andab↑ means thata andb cannot combine. For the

following discussion we assume that a system of polarities(P, ·) has been specified.

Definition 29. A polarized tree 〈V,E, r, p〉 is a tree in which each node is assigned a

polarity through a total functionp : V → P . If 〈V,E, r, p〉 is a polarized tree then

〈V,E, r〉 is its underlying tree. Two polarized trees aredisjoint if their underlying trees

are disjoint.

Definition 30. Two polarized treesT1 = 〈V1, E1, r1, p1〉, T2 = 〈V2, E2, r2, p2〉 are iso-

morphic, denotedT1∼T2, if their underlying trees are isomorphic and, additionally, for

all v ∈ V1, p1(v) = p2(i(v)). The definition of isomorphism of sets of trees is trivially

extended to sets of polarized trees.

Definition 31. Let T1 = 〈V1, E1, r1, p1〉, T2 = 〈V2, E2, r2, p2〉 be two disjoint polarized

trees. An equivalence relation ‘
t
≈’ over V1 ∪ V2 is legal if it is legal over the underlying

trees ofT1 andT2 and, additionally, for allv1 ∈ V1 andv2 ∈ V2, if v1

t
≈v2, thenp1(v1) ·

p2(v2)↓. Eqt(T1, T2) is the set of legal equivalence relations overV1 ∪ V2.

Definition 32. Let T1 = 〈V1, E1, r1, p1〉, T2 = 〈V2, E2, r2, p2〉 be two disjoint polarized
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trees and let ‘
t
≈’ be a legal equivalence relation overV1 ∪V2. Thepolarized tree combi-

nation of T1, T2 with respect to ‘
t
≈’ , denotedT1 + t

≈
T2, is a treeT = 〈V,E, r, p〉 where

V,E andr are as in definition 26, and for all[v] t
≈

∈ V ,

p([v] t
≈

) =











(p1 ∪ p2)(v) if [v] t
≈

= {v}

(p1 ∪ p2)(v) · (p1 ∪ p2)(u) if [v] t
≈

= {v, u} andu 6= v

Notice that since ‘
t
≈’ is legal,p is well defined. The definition of tree combination of

sets of trees, denoted ‘
t

+’, is trivially extended to sets of polarized trees.

The language of a PUG consists of the neutral structures obtained by combining the

initial structure and a finite number of elementary structures. In the derivation process,

elementary structures combine successively, each new elementary structure combining

with at least one object of the previous result.

Definition 33. A Polarized Unification Grammar (PUG) is a structure G =

〈T0, T , (P, ·)〉 whereT is a set of polarized trees,T0 ∈ T is the initial tree and(P, ·)

is the system of polarities over which the polarized tree combination is defined.

Let Ai be a sequence of tree sets whereA0 = {T0}
t

+T and for all i, i ≥ 1, Ai =

Ai−1

t

+T . Thelanguagegenerated byG, denotedL(G), is L(G) =
⋃

i∈N

Ai.

PUG is a powerful grammatical formalism that was shown to be capable of simulating

various linguistic theories (Kahane, 2006). It can be instrumental for grammar engineer-

ing, and in particular for modular development of large-scale grammars, where grammar

fragments are developed separately and are combined using the basic combination opera-

tion defined above. A pre-requisite for such an application is obviously that the grammar

combination operation be associative: one would naturallyexpect that, if ‘◦’ is a grammar

combination operator, thenG1 ◦ (G2 ◦G3) =(G1 ◦G2) ◦G3 for any three grammars (and,

therefore,L(G1 ◦ (G2 ◦ G3)) = L((G1 ◦ G2) ◦ G3)).

The grammar combination operation of PUG was indeed conjectured to be associative

(Kahane and Lareau, 2005; Kahane, 2006). The present paper makes two main contri-
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butions: In the next section we show that the combination operation defined above isnot

associative. In section 5.4 we introduce an alternative combination operation which we

prove to be associative. We thus remedy the shortcoming of the original definition, and

render PUG a more suitable formalism for modular grammar development.

5.3 Tree Combination is not Associative

In this section we show that tree combination as defined above, with or without polarities,

is not associative. In the examples below, the relation which determines how polarities

combineis indeed associative; it is the tree combination operation which uses polarities

that is shown to be non-associative.

5.3.1 Non-Polarized Tree Combination

Theorem 8. (Non-polarized) tree combination is a non-associative operation: there exist

sets of treesT1, T2, T3 such thatT1

t

+(T2

t

+T3)6∼=(T1

t

+T2)
t

+T3.

Proof. Consider againT1, T2, T3 of Figure 5.1 and the sets of trees defined by{T1}
t

+{T2}

and{T2}
t

+{T3}, depicted in Figures 5.2 and 5.3, respectively.T4 of Figure 5.4 is a mem-

ber of{T2}
t

+{T3}, obtained by identifyingq3 of T2 andq6 of T3. Similarly, T5 of Fig-

ure 5.4 is a member of{T1}
t

+{T4}. HenceT5 ∈ {T1}
t

+({T2}
t

+{T3}). However,T5 (or

any tree isomorphic to it) is not a member of({T1}
t

+{T2})
t

+{T3}.

5.3.2 Colors

Crabb́e and Duchier (2004) usecolors to sanction tree node identification. Their color

combination table is presented in Figure 5.5.W , B andR denote white, black and red,

respectively, and⊥ represents the impossibility to combine.
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bq5 bq5

T4 : bq3, q6 bq7 T5 : bq3, q6 bq1, q7

bq4 bq4 bq2

Figure 5.4: Non-polarized tree combination

· W B R

W W B ⊥

B B ⊥ ⊥

R ⊥ ⊥ ⊥

Figure 5.5: Color combination table

Theorem 9. The color scheme of Figure 5.5 does not guarantee associativity: Let

(P, ·) be the system of Figure 5.5. Then there exist sets of treesT1, T2, T3 such that

T1

t

+(T2

t

+T3)6∼=(T1

t

+T2)
t

+T3.

Proof. Consider Figure 5.6. The results of combining{T6}, {T7}, {T8} in different orders

demonstrate that({T6}
t

+{T7})
t

+{T8}6∼={T6}
t

+({T7}
t

+{T8}).

Notice that in Figure 5.6 all the intermediate and final solutions are saturated. There-

fore, the saturation rule does not guarantee associativity.

5.3.3 Polarities

Kahane and Lareau (2005) and Kahane (2006) use two systems ofpolarities which are

depicted in Figure 5.7. The first system includes three polarities, gray, white and black,

where the neutral polarities are black and gray. A black nodemay be unified with 0, 1
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T6 : B T7 : B T8 : W

W B R

{T6}
t

+{T7} ({T6}
t

+{T7})
t

+{T8} {T7}
t

+{T8} {T6}
t

+({T7}
t

+{T8})

B B B B B B B B

B B R B B B R B B B

B B B R B R B R B

R R

Figure 5.6: Tree combination with colors

or more gray or white nodes and produce a black node; a white node may absorb 0, 1 or

more gray or white nodes but eventually must be unified with a black one producing a

black node; and a gray node may be absorbed into a white or a black node. The second

system extends the first by adding two more non-neutral polarities, plus and minus, which

may absorb 0, 1 or more white or gray nodes but eventually a plus node must be unified

with a minus node to produce a black node.

Theorem 10. PUG combination with either of the polarity systems of Figure5.7 is not

associative.

Proof. Consider Figure 5.8. Clearly,{T9}
t

+({T10}
t

+{T11})6∼=({T9}
t

+{T10})
t

+{T11}.
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·

⊥

· − +

− +

− +

− − − ⊥ ⊥

+ + + ⊥ ⊥

⊥ ⊥ ⊥

Figure 5.7: PUG polarity systems

T9 : T10 : T11 :

{T9}
t

+{T10} ({T9}
t

+{T10})
t

+{T11} {T10}
t

+{T11} {T9}
t

+({T10}
t

+{T11})

Figure 5.8: Tree combination with polarities

5.3.4 General Polarity Systems

We showed above that some existing polarity systems yield non-associative grammar

combination operators. This is not accidental; in what follows we show that the only

polarity scheme that induces associative tree combinationis trivial: the one in which no

pair of polarities are unifiable. This scheme is useless for sanctioning tree combination

since it disallows any combination.
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Definition 34. A system of polarities(P, ·) is trivial if for all a, b ∈ P , ab ↑.

Theorem 11. Let (P, ·) be a system of polarities. If there existsa ∈ P such thataa↓ then

the polarized tree combination based on(P, ·) is not associative.

Proof. Let (P, ·) be a system of polarities and leta ∈ P be such thataa ↓. Assume

toward a contradiction that the polarized tree combinationbased on(P, ·) is associative.

ConsiderT1, T2, T3 of Figure 5.1 andT5 of Figure 5.4. LetT ′
1, T

′
2, T

′
3, T

′
5 be polarized

trees obtained by attaching the polarity ‘a’ to all tree nodes ofT1, T2, T3, T5, respec-

tively. T ′
5 ∈ {T ′

1}
t

+({T ′
2}

t

+{T ′
3}), but T ′

5 (or any tree isomorphic to it) is not a member

of ({T ′
1}

t

+{T ′
2})

t

+{T ′
3} (see the proof of theorem 8 for the complete details). Clearly

{T ′
1}

t

+({T ′
2}

t

+{T ′
3})6

∼=({T ′
1}

t

+{T ′
2})

t

+{T ′
3}, a contradiction.

Theorem 12. Let (P, ·) be a non-trivial system of polarities. Then the polarized tree

combination based on(P, ·) is not associative.

Proof. Let (P, ·) be a non-trivial system of polarities. If|P | = 1 then letP = {a}. Since

P is non-trivial,aa = a. Then, by theorem 11,(P, ·) is not associative. Now assume that

|P | > 1. Assume toward a contradiction that the polarized tree combination based on

(P, ·) is associative. There are two possible cases:

1. There existsa ∈ P such thataa↓: Then from theorem 11 it follows that the resulting

tree combination operation is not associative, a contradiction.

2. For alla ∈ P , aa↑: Then since(P, ·) is non-trivial and since|P | > 1, there exist

b, c ∈ P such thatb 6= c, bb↑, cc↑ and bc↓. ConsiderT1, T2, T3 of Figure 5.9.

Of all the trees in({T1}
t

+{T2})
t

+{T3} and {T1}
t

+({T2}
t

+{T3}), focus on paths

of length 3. All possible instantiations of these trees are depicted in Figure 5.9

(we suppress the intermediate results). Notice that these trees are only candidate

solutions; they are actually accepted only if the polarity combinations occurring in

them are defined. Sincebb↑, cc↑ andbc↓, ({T1}
t

+{T2})
t

+{T3} has no solutions and

{T1}
t

+({T2}
t

+{T3}) has one accepted solution (the rightmost tree), a contradiction.
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T1 T2 T3 ({T1}
t

+{T2})
t

+{T3} {T1}
t

+({T2}
t

+{T3})

b c c c b c c b b c c

c b c cb cc bb cc cc cc cc cb

cc cb cc bb cb cc bb cb

b c c c c b c c

Figure 5.9: Candidate solutions for PUG tree combination

For the sake of completion, we also mention the reverse direction.

Theorem 13. Let (P, ·) be a trivial system of polarities. Then the polarized tree combi-

nation based on(P, ·) is associative.

Proof. If (P, ·) is a trivial system of polarities then any combination of twosets of polar-

ized trees results in the empty set (no solutions). Evidently, polarized tree combination

based on(P, ·) is associative.

Corollary 14. Let(P, ·) be a system of polarities. Then polarized tree combination based

on (P, ·) is associative if and only if(P, ·) is trivial.

5.3.5 Practical Consequences

Evidently, (polarized) tree combination induces a non-associative grammar combination

for PUG. In some cases the result of the non-associativity isplain overgeneration: For ex-

ample, in Figure 5.6,({T6}
t

+{T7})
t

+{T8} strictly includes (and, consequently, overgen-

erates with respect to){T6}
t

+({T7}
t

+{T8}). In general, however, non-associativity results

in two non-equal sets: For example, consider Figure 5.9 and its candidate solutions for
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length-3 paths and assume thatcb = bc = bb = cc = b. The length-3 solutions of this

case are depicted in Figure 5.10. Clearly the resulting sets are not equal but none of them

overgenerates with respect to the other. The non-associativity of the combination clearly

compromises its usability for (modular) development of large-scale grammars: When the

grammar designer wrongly assumes that the combination operation is associative, he or

she can take advantage of this misconception to achieve a more efficient computation of

the combination. This may lead to an incorrect result (whichmay sometimes over- or

undergenerate with respect to the correct result). Such problems may be difficult to locate

due to the size of the grammar.

T1 T2 T3 ({T1}
t

+{T2})
t

+{T3} {T1}
t

+({T2}
t

+{T3})

b c c c b c b b c

c b c b b b b b b

b b b b b b

b c c c b c

Figure 5.10: Length-3 paths solutions

When a combinationis associative, the grammar designer is free to conceptualize

about the combination of grammar fragments in any order; we trust that this makes the

formalism more “friendly” to the grammar engineer, and hence easier to work with. In the

next section we analyze the reasons for the non-associativity and introduce new definitions

which induce an associative grammar combination operator.
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5.4 From Trees to Forests

Let us now analyze the reasons for the non-associativity of tree combination. Consider

againT1, T2, T3 of Figure 5.1 andT5 of Figure 5.4.T5 is a member of{T1}
t

+({T2}
t

+{T3})

but not of ({T1}
t

+{T2})
t

+{T3}. The reason is that inT5, T1 andT2 are substructures

separated byT3. WhenT2 andT3 are combined first,T2 connects to one of the nodes

of T3; then, whenT1 is added, it is connected to another node ofT3. However, when

T1 andT2 combine first, they must be connected through a common node and cannot be

separated as they are inT5.

Similarly, considering againT9, T10, T11 of Figure 5.8 and their combinations, clearly

{T9}
t

+({T10}
t

+{T11})6∼=({T9}
t

+{T10})
t

+{T11}

WhenT10 andT11 are combined, their two single nodes must identify in order to yield

a tree. However, whenT9 and T10 combine first, the single node ofT10 can identify

with either of the two nodes ofT9. Then, when the resulting tree is combined withT11,

the single node ofT11 can be identified with the other node ofT9 (the one that was not

identified with the node ofT10). This is why({T9}
t

+{T10})
t

+{T11} overgenerates with

respect to{T9}
t

+({T10}
t

+{T11}).

The above cases exemplify the causes for the non-associativity of tree combination:

When two trees are combined, at least two nodes (each from a different tree) must identify.

Hence, the two trees must be connected in the resulting tree.However, other combination

orders that allow two trees to be separated (by other trees) can yield results which cannot

be obtained when the two trees are first combined together.

The solution we propose is based on a move to the powerset domain in order to ensure

associativity of grammar combination. Working in the powerset domain, rather than the

original entities, enables the operator to ‘remember’all the possibilities; then, after the

combination, an extra stage is added (corresponding to the resolution stage in TUG) in

which the original entities are restored.

83



In the case of tree combination, the basic units should be forests rather than trees; and

forest combinationmust be defined over sets of forests rather than sets of trees.Forest

combination is defined in much the same way as above: two forests are combined by

identifying some of their nodes. Again, if two nodes are identified then all their ancestors

must be identified as well. We allow two forests to combine even if none of their nodes

are identified. Furthermore, similarly to tree combination, two different nodes in the same

forest represent different entities. Therefore, when two forests are combined, two nodes

can be identified only if they belong to the two different forests.

Definition 35. A forest 〈V,E,R〉 is a finite set of node-disjoint trees with verticesV ,

edgesE and rootsR. If 〈V,E, r〉 is a tree, then〈V,E, {r}〉 is its corresponding forest.

The meta-variableF ranges over forests andV,E,R over their components. The

meta-variableF ranges over sets of forests. The definition of disjointness is trivially

extended to forests and set of forests.

Definition 36. Two forestsF1 = 〈V1, E1, R1〉, F2 = 〈V2, E2, R2〉 are isomorphic, de-

notedF1∼F2, if there exists a total one to one and onto functioni : V1 → V2 such that for

all u, v ∈ V1, (u, v) ∈ E1 iff (i(u), i(v)) ∈ E2; and for all u ∈ V1, u ∈ R1 iff i(u) ∈ R2.

The definition of isomorphism of sets of trees is extended to sets of forests (using the

above definition of forests isomorphism).

Definition 37. Let F1 = 〈V1, E1, R1〉, F2 = 〈V2, E2, R2〉 be two disjoint forests. An

equivalence relation ‘
f
≈’ over V1 ∪ V2 is legal if both:

1. for all v1, v2 ∈ V1 ∪ V2, if v1

f
≈v2 andv1 6= v2 then eitherv1 ∈ V1 andv2 ∈ V2 or

v1 ∈ V2 andv2 ∈ V1; and

2. for all u1, v1, u2, v2 ∈ V1 ∪ V2, if v1

f
≈v2, u1 is the parent ofv1 andu2 is the parent

of v2, thenu1

f
≈u2.

Eqf (F1, F2) is the set of legal equivalence relations overV1 ∪ V2.
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Notice that in contrast to definition 25, a legal equivalencerelation over forests permits

a combination in which no nodes unify. Such a grammar combination amounts to a set

union of the two forests.

Definition 38. Let F1 = 〈V1, E1, R1〉, F2 = 〈V2, E2, R2〉 be two disjoint forests and let

‘
f
≈’ be a legal equivalence relation overV1 ∪ V2. Theforest combinationof F1, F2 with

respect to ‘
f
≈’ , denotedF1 + f

≈
F2, is a forestF = 〈V,E,R〉, whereV andE are as in

definition 26, andR = {[r] f
≈

| for all u ∈ [r] f
≈

, u ∈ R1 ∪ R2}.

When two forests are combined, nodes in the same equivalence class are identified.

Since the equivalence relation is legal, the resulting structure is indeed a forest.

Definition 39. Let F1,F2 be two disjoint sets of forests. Theforest combination of

F1,F2, denotedF1

f

+F2, is the set of forests

F =
⋃

F1 ∈ F1, F2 ∈ F2

f
≈ ∈ Eqf (F1, F2)

F1 + f
≈

F2

Example 16. ConsiderF1, F2 of Figure 5.11. Three members of{F1}
f

+{F2}, namelyF3,

F4, F5, are depicted in Figure 5.12.F3 is obtained by identifyingq5 andq6, F4 is obtained

by not identifying any of the nodes andF5 is the result of identifyingq5 with q6 and q1

with q7. Notice that inF5, the two separated trees ofF1 are connected through the single

tree ofF2. F6 of Figure 5.12 is not a member of{F1}
f

+{F2} because it identifiesq1 and

q5 which belong to the same forest.

Example 17. Consider againT1, T2, T3 of Figure 5.1 andT5 of Figure 5.4. LetF1, F2,

F3, F5 be their corresponding forests, respectively.F of Figure 5.13 is a member of

{F1}
f

+{F2}which is obtained by not identifying any of the two forests nodes.F5 is a mem-

ber of{F}
f

+{F3} which is obtained by identifying the two roots ofF with the two leaves

of F3. Hence,F5 is a member of both{F1}
f

+({F2}
f

+{F3}) and({F1}
f

+{F2})
f

+{F3}.
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F1 F2

bq1 bq4

bq2 bq3 bq5

bq6

bq7

Figure 5.11: Two forests to be combined

F3 F4 F5

bq1 bq4

bq2 bq3 bq5, q6

bq7

bq1 bq4 bq6

bq2 bq3 bq5 bq7

bq4

bq5, q6

bq1, q7

bq2 bq3

F6

bq4, q6

bq1, q5, q7

bq2 bq3

Figure 5.12: Legal and illegal combinations ofF1, F2

The forest combination operation can be easily extended to the polarized case. This is

done in the same way tree combination is extended to polarized tree combination: Polari-

ties are attached to nodes and an extra condition for the identification of two nodes is that

F

bq1 bq3

bq2 bq4

Figure 5.13: A forest combination ofF1 andF2
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their polarities combine; in that case the new node has the polarity which is the product

of the two nodes polarities.

We extend the forest combination operation to the polarizedcase. This is done in

the same way tree combination is extended to polarized tree combination: Polarities are

attached to nodes and an extra condition for the identification of two nodes is that their

polarities combine; in that case the new node has the polarity which is the product of the

two nodes polarities. For the following discussion we assume that a system of polarities

(P, ·) is given.

Definition 40. A polarized forest〈V,E,R, p〉 is a forest in which each node is associated

with a polarity through a total functionp : V → P . If 〈V,E,R, p〉 is a polarized forest

then〈V,E,R〉 is its underlying forest.

Definition 41. Two polarized forests aredisjoint if their underlying forests are disjoint.

Definition 42. Two polarized forestF1 = 〈V1, E1, R1, p1〉, F2 = 〈V2, E2, R2, p2〉 are

isomorphic, denotedF1∼F2, if their underlying forests are isomorphic and, additionally,

for all v ∈ V1, p1(v) = p2(i(v)).

The definition of isomorphism of sets of forests is triviallyextended to sets of polar-

ized forests.

Definition 43. LetF1 = 〈V1, E1, R1, p1〉, F2 = 〈V2, E2, R2, p2〉 be two disjoint polarized

forests. An equivalence relation ‘
f
≈’ over V1 ∪ V2 is legal if it is legal over the underlying

forests ofF1 and F2 and, additionally, for allv1 ∈ V1 and v2 ∈ V2, if v1
t
≈v2, then

p1(v1) · p2(v2)↓.

Eqf (F1, F2) is the set of legal equivalence relations overV1 ∪ V2.

Definition 44. LetF1 = 〈V1, E1, R1, p1〉, F2 = 〈V2, E2, R2, p2〉 be two disjoint polarized

forests and let ‘
f
≈’ be a legal equivalence relation overV1 ∪ V2. Thepolarized forest

combination ofF1, F2 with respect to ‘
f
≈’ , denotedF1+ f

≈
F2 is a forestF = 〈V,E,R, p〉

where:
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• V,E andR are as in definition 38

• for all [v] f
≈

∈ V , p([v] f
≈

) =



























(p1 ∪ p2)(v) if [v] f
≈

= {v}

(p1 ∪ p2)(v) · (p1 ∪ p2)(u) if [v] f
≈

= {v, u} and

u 6= v

The definition of forest combination of sets of forests is trivially extended to sets of

polarized forests.

Example 18. Consider again the systems of polarities depicted in Figure 5.7 and

T9, T10, T11 of Figure 5.8. LetF9, F10, F11 be their corresponding forests, respectively.

The forest combination of{F9}, {F10}, {F11} is depicted in Figures 5.14 (intermediate

results) and 5.15. Here,

({F9}
f

+{F10})
f

+{F11}∼={F9}
f

+({F10}
f

+{F11})

{F9}
f

+{F10} {F10}
f

+{F11}

Figure 5.14: Intermediate results

In order to guarantee the associativity of tree combinationwe moved from trees to

the powerset domain, i.e., to forests. However, our interest is in the trees rather than

the forests. Therefore, after all the forests are combined,a resolution stage is required

in which only desired solutions are retained. In our case, this is done by eliminating all

forests which are not singletons. For example, executing the resolution stage over the

forests of Figure 5.15, retains only the four forests of the upper row.

88



Figure 5.15: Forest combination ofF9, F10 andF11: ({F9}
f

+{F10})
f

+{F11} ∼=

{F9}
f

+({F10}
f

+{F11})

Theorem 15. Forest combination is an associative operation: ifF1,F2,F3 are disjoint

sets of forests then((F1

f

+F2)
f

+F3)∼=(F1

f

+(F2

f

+F3)). This holds both for non-polarized

and for polarized combination, as long as(P, ·) is commutative.

The proof is given in the following section.

Summing up, we showed how to redefine tree combination in PUG in order to guar-

antee the associativity of the operation. In this way, the combination operator can be

implemented more flexibly, independently of the order of thearguments, which results

in more efficient computation. In particular, we showed corresponding (but associative!)

computations of all the (non-associative) examples of the previous sections.

5.5 (Polarized) Forest Combination is Associative

We now show that forest combination (both with and without polarities) is an associative

operation. We begin by proving the associativity of the non-polarized case. To do so, we

need to show that ifF ∈ ((F1

f

+F2)
f

+F3) then(F1

f

+(F2

f

+F3)) includes an isomorphic

forest ofF . The isomorphism is required in order to ignore the irrelevant names of nodes.

To be able to refer to any isomorphic tree of the combination result, we definemutual
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combination: If F3 is a forest combination ofF1 andF2 with respect to some legal equiv-

alence relation then bothF1 andF2 are substructures ofF3, and furthermore,F3 contains

no redundant information: Every arc and node inF3 belongs to either of the substructures

that are induced byF1 andF2. This property is common for all the isomorphic trees ofF3.

Moreover,F1 andF2 induce in all these isomorphic trees the exact same substructures.

F3 and all its isomorphic trees are mutual combinations ofF1 andF2.

Definition 45. Let F1, F2, F3 be disjoint forests.F3 is a mutual combination of F1 and

F2, denotedF1⊕F2 7→ F3, if there exists a total functionf : V1∪V2 → V3 (a combination

function) such that all the following hold:

• f is onto

• for all u, v ∈ V1 ∪ V2, if u is the parent ofv (in eitherF1 or F2) thenf(u) is the

parent off(v) in F3

• for all u, v ∈ V3, if u is the parent ofv in F3 then there existu′, v′ ∈ V1 ∪ V2 such

thatu′ is the parent ofv′ (in eitherF1 or F2), f(u′) = u andf(v′) = v

• for all u, v ∈ V1 ∪ V2, if f(u) = f(v) andu 6= v then eitheru ∈ V1 andv ∈ V2 or

u ∈ V2 andv ∈ V1

The second condition guarantees thatF1 andF2 are substructures ofF3. The first and

third conditions guarantee thatF3 contains no redundant information. The last condition

guarantees that two different nodes in the same forest (representing different entities)

correspond to different nodes inF3. Lemma 16 and theorem 17 show that indeed mutual

combination corresponds to forest combination.

Lemma 16. If F1, F2, F3, F4 are disjoint forests such thatF1⊕F2 7→ F3 andF3∼F4, then

F1 ⊕ F2 7→ F4.

Proof. Let F1, F2, F3, F4 be disjoint forests such thatF1 ⊕ F2 7→ F3 andF3∼F4. Then

there exist a combination functionf : V1 ∪ V2 → V3 and an isomorphismi : V3 → V4.
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Defineh : V1 ∪ V2 → V4 where for allv ∈ V1 ∪ V2, h(v) = i(f(v)). h is a combination

function (the actual proof is suppressed) and hence,F1 ⊕ F2 7→ F4.

Theorem 17. LetF1, F2, F3 be disjoint forests. The following two conditions are equiva-

lent:

• F1 ⊕ F2 7→ F3

• there exist a forestF4 and a legal equivalence relation
f
≈ ∈ Eqf (F1, F2) such that

F4 = F1 + f
≈

F2 andF3∼F4

Proof. Let F1, F2, F3 be disjoint forests and assume that there exist a forestF4 and a legal

equivalence relation
f
≈ ∈ Eqf (F1, F2) such thatF4 = F1 + f

≈
F2 andF3∼F4. Observe

that V4 = {[v] f
≈
|v ∈ v1 ∪ V2} andE4 = {([u] f

≈
, [v] f

≈
)|(u, v) ∈ E1 ∪ E2}. Define

h : V1 ∪ V2 → V4 where for allv ∈ V1 ∪ V2, h(v) = [v] f
≈

. h is a combination function

and hence,F1 ⊕ F2 7→ F4. SinceF4∼F3 and by lemma 16,F1 ⊕ F2 7→ F3.

Let F1, F2, F3 be disjoint forests and assume thatF1 ⊕ F2 7→ F3. Therefore, there

exists a combination functionf : V1 ∪V2 → V3. Define a relation ‘≈’ over V1 ∪V2 where

for all u, v ∈ V1 ∪ V2, u ≈ v iff f(u) = f(v). Clearly, ‘≈’ is an equivalence relation.

Furthermore, ‘≈’ is legal. Now, defineF4 = F1 +≈ F2 and definei : V4 → V3 where for

all [v]≈ ∈ V4, i([v]≈) = f(v). Notice thati is well defined because for allu, v such that

u ≈ v, f(u) = f(v). i is an isomorphism ofF3 andF4.

Notice that since forest isomorphism is reflexive and by theorem 17, ifF1+ f
≈

F2 = F3

thenF1 ⊕ F2 7→ F3.

Theorem 18. Forest combination is an associative operation: ifF1,F2,F3 are disjoint

sets of forests then((F1

f

+F2)
f

+F3)∼=(F1

f

+(F2

f

+F3))

Proof. Let F1,F2,F3 be disjoint sets of forests and assume thatF = 〈V,E,R〉 ∈

(F1

f

+F2)
f

+F3. Then there existF ′ ∈ F1

f

+F2, F3 ∈ F3 and≈1∈ Eqf (F
′, F3) such

thatF ′ +≈1
F3 = F . Therefore by theorem 17,F ′ ⊕ F3 7→ F , and hence, there exists a
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combination functionf1 : V ′ ∪ V3 → V . F ′ ∈ F1

f

+F2 and therefore there existF1 ∈ F1,

F2 ∈ F2 and≈2∈ Eqf (F1, F2) such thatF1 +≈2
F2 = F ′. Therefore by theorem 17,

F1 ⊕ F2 7→ F ′ and hence, there exists a combination functionf2 : V1 ∪ V2 → V ′. Define

f : V1 ∪ V2 ∪ V3 → V where:

f(v) =











f1(v) v ∈ V3

f1(f2(v)) v ∈ V1 ∪ V2

Let F4 be a graph defined by the restriction off to V2 ∪ V3, where:

• V4 = {f(v) | v ∈ V2 ∪ V3}

• E4 = {(f(u), f(v)) | (u, v) ∈ E2 ∪ E3}

• R4 = {f(r) | r ∈ R2 ∪ R3 and for all v ∈ V2 ∪ V3 such thatf(v) = f(r),

v ∈ R2 ∪ R3}

F4 is a forest andf|V2∪V3
(the restriction off to V2 ∪ V3) is a combination function of

F2 andF3 to F4 (the actual proof is suppressed). Hence,F2 ⊕ F3 7→ F4 and therefore

by theorem 17, there exist a forestF5 and a legal equivalence relation≈3∈ Eqf (F2, F3)

such thatF5 = F2 +≈3
F3 andF5∼F4. Hence,F5 ∈ F2

f

+F3. Let i : V5 → V4 be an

isomorphism ofF5 andF4. Defineh : V5 ∪ V1 → V where:

h(v) =











f(v) v ∈ V1

i(v) v ∈ V5

h is a combination function ofF1 andF5 to F . Hence,F1 ⊕ F5 7→ F , and therefore by

theorem 17, there exists a forestF ′′ and a legal equivalence relation≈4∈ Eqf (F1, F5)

such thatF ′′ = F1 +≈4
F5 andF ′′∼F ′. Hence,F ′′ ∈ F1

f

+(F2

f

+F3) andF ′′∼F ′.

The proof that ifF ∈ F1

f

+(F2

f

+F3) then there existsF ′ ∈ (F1

f

+F2)
f

+F3 such that

F∼F ′ is symmetric.

We now prove the associativity of polarized forest combination. The proof idea is

similar to the proof of the non-polarized case. For the following discussion, assume that

a system of polarities(P, ·) has been specified.
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Definition 46. Let F1, F2, F3 be disjoint polarized forests.F3 is a mutual combination

of F1 and F2, denotedF1 ⊕ F2 7→ F3, if there exists a total functionf : V1 ∪ V2 →

V3 (a combination function) such thatf is a combination function of the underlying

forests, and, additionally, for allv1, v2 ∈ V1 ∪ V2, if f(v1) = f(v2) and v1 6= v2 then

(p1 ∪ p2)(v1) · (p1 ∪ p2)(v2)↓ and(p1 ∪ p2)(v1) · (p1 ∪ p2)(v2) = p3(f(v1)).

Lemma 19. If F1, F2, F3, F4 are disjoint polarized forests such thatF1 ⊕ F2 7→ F3 and

F3∼F4, thenF1 ⊕ F2 7→ F4.

Proof. Similar to the proof of lemma 16.

Theorem 20. Let F1, F2, F3 be disjoint polarized forests. The following two conditions

are equivalent:

• there exist a forestF4 and a legal equivalence relation
f
≈ ∈ Eqf (F1, F2) such that

F4 = F1 + f
≈

F2 andF3∼F4

• F1 ⊕ F2 7→ F3

Proof. Similar to the proof of theorem 17.

Theorem 21. Let (P, ·) be a system of polarities. Then polarized forest combination

based on(P, ·) is an associative operation: ifF1,F2,F3 are disjoint sets of forests then

((F1

f

+F2)
f

+F3)∼=(F1

f

+(F2

f

+F3))

Proof. Similar to the proof of theorem 18.

5.6 Forest Combination and XMG

The results of the previous section bear relevance to the metagrammar paradigm and

specifically to XMG (Duchier, Le Roux, and Parmentier, 2004; Crabb́e, 2005). In partic-

ular, the forest-based grammar combination operation can be instrumental for defining an

alternative semantics for XMG, which we sketch in this section.
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XMG provides the grammar writer with a tree-description logic, whose semantics

is based on trees. A given formula denotes an infinite set of trees, each satisfying the

conditions of the formula. This denotation is restricted byconsidering only the finite

set ofminimal trees satisfying the description (Duchier and Gardent, 1999; Duchier and

Gardent, 2001). Conceptually, computation of the minimal tree models of a given formula

consists of two stages: The first computes the (infinite set of) tree models of a formula and

the second extracts from these models only the minimal ones.The following definitions

are based on Duchier and Gardent (1999) and Duchier and Gardent (2001).

Definition 47. A formula φ is an arbitrary conjunction of dominance and labeling con-

strains

φ ::= φ ∧ φ′ | x ⊳ y | x = y | x⊥y

wherex, y are taken from a set of variables.3

The semantics is given by interpretation over finite tree structures.

Definition 48. LetVφ be the set of variables occurring in a formulaφ. A tree solutionof

φ is a pair (T, I) whereT = 〈V,E, r〉 is a finite tree (atree model) andI : Vφ 7→ V is

a function (aninterpretation ) that maps each variable inφ to a node inT . x ⊳ y means

that, in the solution treeT , I(x) must dominateI(y); x = y means thatI(x) = I(y);

andx⊥y means thatI(x) 6= I(y). Thedenotation of a formulaφ, denotedSxmg(φ) is

the set of its tree solutions{(T, I) | (T, I) is a tree solution ofφ}.

If T is a tree model ofφ, then every treeT ′ which containsT as a subtree is also a tree

model ofφ. Therefore, there are infinitely many tree models of any formulaφ. To restrict

the infinite set to desired trees,minimal (finite) models are considered. Any formulaφ

has only finitely many minimal tree models (up to isomorphism).

3Duchier and Gardent (1999) and Duchier and Gardent (2001) define several more operators (e.g., prece-

dence and labeling). For the sake of simplicity we restrict ourselves to the list of operators presented in this

definition, but all the results can be extended to the full list of operators.
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Definition 49. A tree modelT is a minimal tree model4 of φ if all nodes inT interpret

at least one variable inφ. Thenextract(Sxmg(φ)) = {T | (T, I) ∈ Sxmg(φ) andT is a

minimal tree model ofφ}.

We propose an alternative semantics, denotedSfc, for tree descriptions, based on the

forest combination operation of section 5.4. InSfc a formula denotes the set of minimal

forests satisfying it. Forest combination operates directly on minimal forests in a way that

corresponds to formula conjunction in the syntactic level:The denotation of a conjunction

of formulas is the combination of the denotations of the conjuncts. Here, also, a resolution

stage is required, to retain only forests which are singletons (i.e., trees).

Definition 50. LetVφ be the set of variables occurring in a formulaφ. A forest solution

of φ is a pair (F, I) whereF = 〈V,E,R〉 is a finite minimal forest (aforest model) and

I : Vφ 7→ V is an onto function (aninterpretation ) that maps each variable inφ to a

node inF such that all nodes inF interpret at least one variable inφ. x ⊳ y means that,

in the solution forestF , I(x) must dominateI(y); x = y means thatI(x) = I(y); and

x⊥y means thatI(x) 6= I(y). Thedenotation of a formulaφ, denotedSfc(φ), is the set

of its forest solutions{(F, I) | (F, I) is a forest solution ofφ}. Defineresolve(Sfc(φ)) =

{F | (F, I) ∈ Sfc(φ) andF is a singleton}.

Observe that in this semantics a formula can denote only finitely many forests (up to

isomorphism). The two semantics,Sxmg andSfc, coincide.

Theorem 22. extract(Sxmg(φ)) = resolve(Sfc(φ))

Proof. AssumeT ∈ extract(Sxmg(φ)). Then, there exists an interpretationI from the

variables ofφ to the nodes ofT such that(T, I) is a tree solution ofφ andT is a minimal

4In Duchier and Gardent (1999) and Duchier and Gardent (2001), the definition of minimal tree models

is based on the notion of D-trees (Rambow, Vijay-Shanker, and Weir, 1995). For the sake of simplicity we

do not use this notion, but all the results can be easily extended to D-trees.
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tree model. Any tree is also a forest (a singleton) and therefore,T is also a forest model

of φ. Hence,(T, I) ∈ Sfc(φ). SinceT is a tree, it follows that(T, I) ∈ resolve(Sfc(φ)).

Now assume thatF ∈ resolve(Sfc(φ)). Then, there exists an interpretationI from

the variables ofφ to the nodes ofF such that(F, I) is a forest solution ofφ andF is a

tree. SinceF is a tree,(F, I) ∈ Sxmg(φ). (F, I) is a forest solution ofφ and thereforeF

is a minimal model. Hence,(F, I) ∈ extract(Sxmg(φ)).

Since the two semantics coincide, either one of them can be used in an implementation

of XMG. Specifically, in the existing implementation of XMG the grammar designer is

presented with finite trees only, and the infinite tree modelsare never explicit.Sfc offers

the opportunity to use finite trees as the bona fide denotationof tree descriptions. This,

however, comes with a cost: the number of tree fragments can grow very fast, and a

sophisticated cashing mechanism will be necessary in any practical implementation.

Both approaches require a resolution stage; the resolution stage in the forest combina-

tion approach seems to be simpler, requiring only the extraction of singletons from a set.

However, it could also be less efficient, due to the growth in the number of trees and the

fact that resolution is deferred to the end of the computation.

To sum up, the forest combination semantics provides the grammar writer with a

formally defined operation executed directly on the minimalmodels amounting to the

conjunction operation in the syntactic level of tree descriptions. Whether or not it can be

practically beneficial remains to be seen.

5.7 Conclusion

We have shown how the tree combination operation in PUG can beredefined to guarantee

associativity, thus facilitating the use of this powerful and flexible formalism for grammar

engineering and modular grammar development. The key to thesolution is apowerset-lift

of the domain and the corresponding operation: Rather than working with trees, manip-
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ulating forests provides means to ‘remember’all the possible combinations of grammar

fragments. Then, after all fragments are combined, aresolutionstage is added to produce

the desired results. The same powerset-lift has been used tomaintain the associativity of

signature modules combination with respect to theAp-relation (section 2.2). We believe

that this method is sufficiently general to be applicable to avariety of formalisms. In par-

ticular, it is applicable to the general case of PUG where arbitrary objects and structures

are manipulated. In this case also, the move to the powerset domain by manipulating sets

of objects, rather than the objects themselves, enforces associativity.
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Chapter 6

Discussion and conclusions

We presented the foundations of typed unification grammar modules and their interaction.

Unlike existing approaches, our solution is formally defined, mathematically proven, can

be easily and efficiently implemented, and conforms to each of the desiderata listed in

section 1.2 as we show below.

Signature focus: Our solution focuses on the modularization of the signature(chapter 2)

and the extension to grammar modules (section 2.5) is natural and conservative.

We do restrict ourselves in this work to standard type signatures without type con-

straints. We defer the extension of type signatures to include also type constraints

to future work.

Partiality: Our solution provides the grammar developer with means to specify any piece

of information about the signature. A signature module may specify partial infor-

mation about the subtyping and appropriateness relations.Unlike ordinary signa-

tures, the appropriateness relation is not a function and the developer may specify

several appropriate nodes for the values of a featureF at a nodeq. The anonymity

of nodes and relaxed upward closure also provide means for partiality. Another re-

laxation that supports partiality is not enforcing featureintroduction and the BCPO

conditions. Finally, the possibility to distribute the grammar between several mod-
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ules and the relaxation of well-typedness also support thisdesideratum.

Extensibility: In section 2.4 we show how a signature module can be deterministically

extended into a bona fide signature.

Consistency: When modules are combined, either by merge or by attachment, the signa-

ture modules are required to be mergeable or attachable, respectively. In this way,

contradicting information in different modules is detected prior to the combination.

Notice that two signature modules can be combined only if theresulting subtyping

relation is indeed a partial order.

Flexibility: The only restrictions we impose on modules are meant to prevent subtyping

cycles.

(Remote) Reference:This requirement is achieved by the parametric view of nodes.

Anonymity of nodes also supports this desideratum.

Parsimony: When two modules are combined, they are first unioned; thus theresulting

module includes all the information encoded in each of the modules. Additional

information is added in a conservative way by compaction andAp-closure in order

to guarantee that the resulting module is indeed well-defined.

Associativity: We provide two combination operations,mergeandattachment. The at-

tachment operation is an asymmetric operation, like function application, and there-

fore associativity is not germane. The merge operation, which is symmetric, is both

commutative and associative and therefore conforms with this desideratum.

Privacy: Privacy is achieved through internal nodes which encode information that other

modules cannot view or refer to.

Modular construction of grammars, and of type signatures inparticular, is an essen-

tial requirement for the maintainability and sustainability of large-scale grammars. We
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believe that our definition of signature modules, along withthe operations ofmergeand

attachment, provide grammar developers with powerful and flexible tools for collabora-

tive development of natural language grammars, as demonstrated in section 3.

Modules provideabstraction; for example, the moduleList of Figure 2.12 defines

the structure of a list, abstracting over the type of its elements. In a real-life setting, the

grammar designer must determine how to abstract away certain aspects of the developed

theory, thereby identifying the interaction points between the defined module and the rest

of the grammar. A first step in this direction was done by Benderand Flickinger (2005);

we believe that we provide a more general, flexible and powerful framework to achieve

the full goal of grammar modularization.

This work can be extended in various ways. First, this work focuses on the modularity

of the signature. This is not accidental, and reflects the centrality of the type signature

in typed unification grammars. An extension of signature modules to include also type

constraints is called for and will provide a better, fuller solution to the problem of grammar

modularization. In a different track, we also believe that extra modularization capabilities

can still be provided by means of the grammar itself. This direction is left for future

research.

While the present work is mainly theoretical, it has important practical implications.

An environment that supports modular construction of large-scale grammars will greatly

contribute to grammar development and will have a significant impact on practical imple-

mentations of grammatical formalisms. The theoretical basis we presented in this work

was implemented as a system, MODALE, that supports modular development of type

signatures (chapter 4). Once the theoretical basis is extended to include also type con-

straints, and they as well as grammar modules are fully integrated in a grammar devel-

opment system, immediate applications of modularity are conceivable (see section 1.2).

Furthermore, while there is no general agreement among linguists on the exact form of

modularity in grammar, a good modular interface will provide the necessary infrastructure
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for the implementation of different linguistic theories and will support their comparison

in a common platform.

Finally, our proposed mechanisms clearly only fill very few lacunae of existing gram-

mar development environments, and various other provisions will be needed in order for

grammar engineering to be as well-understood a task as software engineering now is. We

believe that we make a significant step in this crucial journey.
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Appendix A

Compactness

Definition 51. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module.

(q1, q2) ∈� is a redundant subtyping arc if there existp1, . . . , pn ∈ Q, n ≥ 1, such

that q1 � p1 � p2 � . . . � pn � q2.

Definition 52. Let P = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module.

(q1, F, q2) ∈ Ap is a redundant appropriateness arcif there existsq′2 ∈ Q such that

q2

∗

� q′2, q2 6= q′2 and(q1, F, q′2) ∈ Ap.

For an example of the above two definitions see example 3.

The following definitions set the basis for determining whether two nodes are indis-

tinguishable or not. Since signature modules are just a special case of directed, labeled

graphs, we can adapt the well-defined notion of graph isomorphism to pre-signature mod-

ules. Informally, two pre-signature modules are isomorphic when their underlying PSSs

have the same structure; the identities of their nodes may differ without affecting the

structure. In our case, we require also that an anonymous node be mapped only to an

anonymous node and that two typed nodes, mapped to each other, be marked by the same

type. However, the classification of nodes as internal, imported and/or exported has no

effect on the isomorphism since it is not part of the core of the information encoded by

the signature module.
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Definition 53. Two pre-signature modulesS1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉,

S2 = 〈〈Q2, T2,�2, Ap2〉, Int2, Imp2, Exp2〉 are isomorphic, denotedS1∼S2, if there

exists a total, one-to-one and onto functioni (isomorphism) mapping the nodes ofS1 to

the nodes ofS2, such that all the following hold:

1. for all q ∈ Q1, T1(q) = T2(i(q)).

2. for all q, q′ ∈ Q1, q �1 q′ iff i(q) �2 i(q′)

3. for all q, q′ ∈ Q1 andF ∈ FEAT, (q, F, q′) ∈ Ap1 iff (i(q), F, i(q′)) ∈ Ap2.

Theenvironmentof a nodeq is the set of nodes accessible fromq via any sequence of

arcs (subtyping or appropriateness, in any direction), up to and including the first typed

node. The environment of a typed node includes itself only.

Definition 54. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module. For

all q ∈ Q let theenvironment of q, denotedenv(q), be the smallest set such that:

• q ∈ env(q);

• If q′′ ∈ env(q) andT (q′′)↑ and for someq′ ∈ Q andF ∈ FEAT, eitherq′ � q′′ or

q′′ � q′ or (q′, F, q′′) ∈ Ap or (q′′, F, q′) ∈ Ap, thenq′ ∈ env(q).

Definition 55. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module

and let Q′ ⊆ Q. The strict restriction of S to Q′, denotedS|strict
Q′ , is 〈〈Q′, T2,�2

, Ap2〉, Int2, Imp2, Exp2〉, where:

• T2 = T|Q′

• q1 �2 q2 iff q1 � q2, q1, q2 ∈ Q′ and eitherT (q1)↑ or T (q2)↑ (or both)

• (q1, F, q2) ∈ Ap2 iff (q1, F, q2) ∈ Ap, q1, q2 ∈ Q′ and eitherT (q1)↑ or T (q2)↑ (or

both)

• Int2 = Int|Q′
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• Imp2 = Imp|Q′

• Exp2 = Exp|Q′

The strict restriction of a pre-signature module,S, to a set of nodesQ′, is the subgraph

induced by the nodes ofQ′ without any labeled or unlabeled arcs connecting two typed

nodes inQ′.

Definition 56. LetS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module. Two

nodesq1, q2 ∈ Q are indistinguishable, denotedq1 ≈ q2, if S |strict
env(q1)∼ S |strict

env(q2) via an

isomorphismi such thati(q1) = q2.

Example 19. Let S1 be the signature module of Figure A.1.env(q4) = env(q7) =

{q1, q4, q7}, env(q2) = env(q6) = {q1, q2, q6}, env(q5) = {q1, q5, q8} and env(q1) =

{q1}. The strict restrictions ofS1 to these environments are depicted in Figure A.2.q2 ≈

q4 andq6 ≈ q7, where in both cases the isomorphism isi = {q1 7→ q1, q2 7→ q4, q6 7→ q7}.

However,q5 is distinguishable fromq2 andq4 becauseT (q8) 6= T (q6) andT (q8) 6= T (q7).

Notice also thatq3 is distinguishable fromq2, q4 andq5 because it has no outgoing appro-

priateness arcs.

q6 q7

b

q8

q2 q3 q4 q5

q1

a

F F F

Figure A.1: A signature module with indistinguishable nodes,S1
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S1 |
strict
env(q2)= S1 |

strict
env(q6) S1 |

strict
env(q4)= S1 |

strict
env(q7) S1 |

strict
env(q5) S1 |

strict
env(q1)

q6 q7

b

q8

a

q1

q2 q4 q5

q1

a

q1

a

q1

a

F F F

Figure A.2: Strict restriction subgraphs

Theorem 23. LetS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module. Then

‘≈’ is an equivalence relation overQ.

Proof. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module.

Reflexivity: For all q ∈ Q S |strict
env(q)∼ S |strict

env(q) by the identity functioni : env(q) →

env(q) that maps each node inenv(q) to itself. Evidently,i is an isomorphism and

henceq ≈ q.

Symmetry: Let q1, q2 ∈ Q be such thatq1 ≈ q2. ThereforeS |strict
env(q1)∼ S |strict

env(q2) via an

isomorphismi : env(q1) → env(q2). S |strict
env(q2)∼ S |strict

env(q1) via the isomorphism

i−1 : env(q2) → env(q1) (the detailed proof thati−1 is indeed such an isomorphism

is suppressed). Hence,q2 ≈ q1.

Transitivity: Let q1, q2, q3 ∈ Q be such thatq1 ≈ q2 andq2 ≈ q3. Hence,S |strict
env(q1)∼

S |strict
env(q2) via an isomorphismi1 : env(q1) → env(q2) andS |strict

env(q2)∼ S |strict
env(q3) via

an isomorphismi2 : env(q1) → env(q2). Therefore,S |strict
env(q1)∼ S |strict

env(q3) via the

isomorphismi1 ◦ i2 : env(q1) → env(q3) defined byi1 ◦ i2 : (q) = i2(i1(q)) for all

q ∈ env(q1) (again, the detailed proof thati1 ◦ i2 is indeed such an isomorphism is
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suppressed).

Definition 57. A pre-signature moduleS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 is non-

redundant if it includes no redundant subtyping and appropriateness arcs and for all

q1, q2 ∈ Q, q1 ≈ q2 impliesq1 = q2.

Definition 58. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature mod-

ule. The coalesced pre-signature module, denotedcoalesce(S), is 〈〈Q1, T1,�1

, Ap1〉, Int1, Imp1, Exp1〉 where:

• Q1 = {[q]≈ | q ∈ Q} (Q1 is the set of equivalence classes with respect to≈)

• T1([q]≈) = T (q′) for someq′ ∈ [q]≈

• �1= {([q1]≈, [q2]≈) | (q1, q2) ∈�}

• Ap1 = {([q1]≈, F, [q2]≈) | (q1, F, q2) ∈ Ap}

• Int1 = {[q]≈ | q ∈ Int}

• Imp1 = {[q]≈ | q ∈ Imp and [q]≈ /∈ Int}

• Exp1 = {[q]≈ | q ∈ Exp and [q]≈ /∈ Int}

• the order ofImp1 andExp1 is induced by the order ofImp andExp, respectively,

with recurring elements removed

When a pre-signature module is coalesced, indistinguishable nodes are identified. Ad-

ditionally, the parameters and arities are induced from those of the input pre-signature

module. All parameters may be coalesced with each other, as long as they are otherwise

indistinguishable. If (at least) one of the coalesced nodesis an internal node, then the

result is an internal node. Otherwise, if one of the nodes is imported then the resulting
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parameter is imported as well. Similarly, if one of the nodesis exported then the resulting

parameter is exported.

The input to the compactness algorithm is a pre-signature module and its output is a

non-redundant signature module which encodes the same information.

Algorithm 4. compact (S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉)

1. LetS1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉 be such that:

• Q1 = Q

• T1 = T

• �1= {(q1, q2) ∈�| (q1, q2) is a non-redundant subtyping arc inS}

• Ap1 = {(q1, F, q2) ∈ Ap | (q1, F, q2) is a non-redundant appropriateness arc

in S}

• Int1 = Int

• Imp1 = Imp

• Exp1 = Exp

2. S ′ = coalesce(S1)

3. If S ′ is non-redundant, returnS ′, otherwise returncompact(S ′).

The compactness algorithm iterates as long as the resultingpre-signature module in-

cludes redundant arcs or nodes. In each iteration, all the redundant arcs are first removed

and then all indistinguishable nodes are coalesced. However, the identification of nodes

can result in redundant arcs or can trigger more nodes to be coalesced. Therefore, the

process is repeated until a non-redundant signature moduleis obtained. Notice that the

compactness algorithm coalesces pairs of nodes marked by the same type regardless of

their incoming and outgoing arcs. Such pairs of nodes may exist in a pre-signature module

(but not in a signature module).
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Example 20. Consider againS1, the signature module of Figure A.1. The compacted

signature module ofS1 is depicted in Figure A.3. Notice thatS1 has no redundant arcs to

be removed and thatq2 andq6 were coalesced withq4 andq7, respectively. All nodes in

compact(S1) are pairwise distinguishable and no arc is redundant.

q6, q7

b

q8

q3
q2, q4 q5

q1

a

F F

Figure A.3: The compacted signature module ofS1

Example 21. ConsiderS2, S3, S4, S5, the signature modules depicted in Figure A.4. Ex-

ecuting the compactness algorithm onS2, first the redundant subtyping arc fromq1 to q6

is removed, resulting inS3 which has no redundant arcs. Then,q2 andq3 are coalesced,

resulting inS4. In S4, {q2, q3} ≈ {q4} and{q5} ≈ {q6}, and after coalescing these two

pairs, the result isS5 which is non-redundant.

Theorem 24. The compactness algorithm terminates.

Proof Idea. Stage 1 of the algorithm removes redundant arcs, if such exist. In stage 2, the

signature module is coalesced. If it is non-redundant then the coalesce algorithm returns a

signature module in which each new node is an equivalence class containing the previous

node and then the algorithm terminates in stage 3. If the signature module includes nodes

that should be identified, then the coalesce algorithm reduces the number of nodes at least
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S2 S3 S4 S5

q5 q6 q5 q6 q5 q6

q2 q3 q4 q2 q3 q4
q2, q3 q4

q1 q1 q1

Figure A.4: A compactness example

in one node. To sum up, each iteration of stages 1 and 2 reducesthe number of arcs

and nodes in the signature module. Since the number of arcs and nodes in a signature

module is finite, there could be only a finite number of such iterations and the algorithm

terminates.

Theorem 25.The compactness algorithm is deterministic, i.e., always produces the same

result.

Proof. Follows immediately from the fact that there is no element ofchoice in any of the

algorithm stages.

Theorem 26. If S is a signature module thencompact(S) is a non-redundant signature

module.

Proof. Follows immediately from the fact that the algorithm terminates only when a non-

redundant module is obtained (stage 3). The termination of the algorithm is guaranteed

by theorem 24.

Theorem 27. If S is a non-redundant signature module thencompact(S) ∼ S.
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Proof. Let S be a non-redundant signature module. In that case, stage 1 ofthe algorithm

has no effect onS. In stage 2,S is coalesced intocoalesce(S). Define a functioni : Q →

Q1 by i(q) = [q]≈. i is an isomorphism betweenS andcoalesce(S) (the detailed proof is

suppressed). Evidently,coalesce(S) is non-redundant and hence the algorithm terminates

in stage 3, returningcoalesce(S) ascompact(S). Hence,S ∼ compact(S).
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Appendix B

Name Resolution

During module combination only pairs of indistinguishableanonymous nodes are coa-

lesced. Two nodes, only one of which is anonymous, can still be otherwise indistinguish-

able but they are not coalesced during combination to ensurethe associativity of module

combination. The goal of thename resolutionprocedure is to assign a type to every

anonymous node, by coalescing it with a typed node with an identical environment, if

one exists. If no such node exists, or if there is more than onesuch node, the anonymous

node is given an arbitrary type. We show how for a given anonymous node the set of its

typedequivalent nodes is calculated. The calculation is reminiscent of the calculation of

isomorphic nodes (see Appendix A) but some modifications arerequired to deal with the

comparison of typed nodes versus anonymous nodes as will be shown below.

Definition 59. Two pre-signature modulesS1 = 〈〈Q1, T1,�1, Ap1〉, Int1, Imp1, Exp1〉,

S2 = 〈〈Q2, T2,�2, Ap2〉, Int2, Imp2, Exp2〉 are quasi-isomorphic, denotedS1
q
∼ S2,

if there exists a total, one-to-one and onto functioni (quasi-isomorphism) mapping the

nodes ofS1 to the nodes ofS2, such that all the following hold:

1. for all q ∈ Q1, if T1(q)↓ andT2(i(q))↓ thenT1(q) = T2(i(q))

2. for all q, q′ ∈ Q1, q �1 q′ iff i(q) �2 i(q′)
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3. for all q, q′ ∈ Q1 andF ∈ FEAT, (q, F, q′) ∈ Ap1 iff (i(q), F, i(q′)) ∈ Ap2.

Quasi-isomorphism is a relaxed version of isomorphism (definition 53) since it allows

an anonymous node to be mapped onto a typed node and vise versa, but two typed nodes,

mapped to each other, still must be marked by the same type.

Definition 60. Theextended environmentof q, denotedextenv(q), is the smallest set

such that:

• q ∈ extenv(q);

• If q′′ ∈ extenv(q) and for someq′ ∈ Q andF ∈ FEAT, eitherq′ � q′′ or q′′ � q′ or

(q′, F, q′′) ∈ Ap or (q′′, F, q′) ∈ Ap, thenq′ ∈ extenv(q) .

Theextended environmentof a nodeq extends its environment (definition 54) by in-

cluding all the nodes accessible fromq via any sequence of arcs, regardless of whether

these nodes are typed or not. Clearly, the environment of a node is a subset of its extended

environment.

Definition 61. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature mod-

ule and let Q′ ⊆ Q. The restriction of S to Q′, denotedS|Q′ , is 〈〈Q′, T1,�1

, Ap1〉, Int1, Imp1, Exp1〉, where:

• T1 = T|Q′

• q1 �1 q2 iff q1 � q2 andq1, q2 ∈ Q′

• (q1, F, q2) ∈ Ap1 iff (q1, F, q2) ∈ Ap andq1, q2 ∈ Q′

• Int1 = Int|Q′

• Imp1 = Imp|Q′

• Exp1 = Exp|Q′
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The strict restriction (definition 55) of a pre-signature module,S, to a set of nodes,

Q′, is a subgraph of the restriction ofS to Q′ as it does not include any labeled or unla-

beled arcs connecting two typed nodes. In particular, notice that the graph that is strictly-

induced byenv(q) is a subgraph of the graph induced byextenv(q).

Definition 62. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module.

Two nodesq1, q2 ∈ Q are quasi-indistinguishable, denotedq1

q
≈ q2, if S |extenv(q1)

q
∼

S |extenv(q2) via a quasi-isomorphismi such thati(q1) = q2.

Compare the two notions of node similarity defined in definition 56 and definition 62.

To determine if two nodes are indistinguishable, smaller sets of nodes are inspected than

in determining quasi-indistinguishability. However in the latter the mapping between

these two sets is more liberal, allowing a typed node to be mapped onto an anonymous

one and vise versa.

In a signature module any two indistinguishable nodes are also quasi-indistinguishable,

but two quasi-indistinguishable nodes can still be distinguishable as the following exam-

ple shows:

Example 22. Consider the signature module depicted in Figure B.1.extenv(q1) =

extenv(q2) = extenv(q3) = {q1, q2, q3} andextenv(q4) = extenv(q5) = extenv(q6) =

{q4, q5, q6}. q1

q
≈ q4, q2

q
≈ q5 and q3

q
≈ q6 where in all cases the quasi-isomorphism is

{q1 7→ q4, q2 7→ q5, q3 7→ q6}. Observe thatq1 6≈ q4, q2 6≈ q5 andq3 6≈ q6.

Theorem 28. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module. For all

q1, q2 ∈ Q, if q1 ≈ q2 thenq1

q
≈ q2.

Proof. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module and letq1, q2 ∈ Q

be such thatq1 ≈ q2. By the definition of the relation‘ ≈′ it follows that S |strict
env(q1)∼

S |strict
env(q2) via an isomorphismi such thati(q1) = q2. Evidently,env(q1) ⊆ extenv(q1)
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a

q3 q6

q2 q5

b

q1 q4

Figure B.1: Quasi-indistinguishability versus indistinguishability

andenv(q2) ⊆ extenv(q2). Let i1 : extenv(q1) → extenv(q2) be a function defined by:

i1(q) =











i(q) q ∈ env(q1)

q otherwise

Clearly, i1(q1) = q2. S |extenv(q1)∼ S |extenv(q2) via the isomorphismi1. The detailed

proof thati1 is indeed such an isomorphism is suppressed. However, notice that sinceS

is a signature module, each typed node is unique with respectto its type and therefore all

the nodes that belong to the extended environment and not to the environment are mapped

to themselves. Hence,q1

q
≈ q2.

Notice that theorem 28 does not hold when general pre-signature modules are con-

cerned since they may contain multiple nodes marked by the same type.

As theorem 23 shows, indistinguishability is an equivalence relation over the nodes of

a pre-signature module. However, this is not the case with the quasi-indistinguishability

relation.

Theorem 29. LetS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module. Then:

1. ‘
q
≈’ is a reflexive and symmetric relation overQ.
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2. ‘
q
≈’ is not necessarily a transitive relation overQ.

Proof. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a pre-signature module.

1. The proof of reflexivity and symmetry of ‘
q
≈’ is the same as in theorem 23.

2. Let S be the signature module depicted in Figure B.2.q1

q
≈ q2 andq2

q
≈ q3 but

q1 6
q
≈ q3 sinceT (q1) = a 6= b = T (q3).

a

q1 q2

b

q3

Figure B.2: A signature module with a non transitive ‘
q
≈’ relation

The input to the name resolution algorithm is a non-redundant signature module and

its output is a non-redundant signature module whose typingfunction, T , is total. Let

S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module, and let NAMES ⊂ TYPE be

an enumerable set of fresh types from which arbitrary names can be taken to mark nodes

in Q. The following algorithm marks all the anonymous nodes inS:

Algorithm 5. NameResolution (S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉)

1. for all q ∈ Q such thatT (q)↑, computeQq = {q′ ∈ Q | T (q′)↓ andq
q
≈ q′}.

2. letQ = {q ∈ Q | T (q)↑ and|Qq| = 1}. If Q 6= ∅ then:

2.1. for all q ∈ Q, S := NodeCoalesce(S, q, q′) whereQq = {q′} (for the

definition of NodeCoalesce, see definition 21)

2.2. S := compact(S)

2.3. go to (1)
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3. Mark remaining anonymous nodes inQ with arbitrary unique types fromNAMES

and halt.

The name resolution algorithm is reminiscent of the compactness algorithm, but some

changes are required to deal with comparison of typed nodes versus anonymous nodes.

Most significantly, the quasi-indistinguishability relation (‘
q
≈’, stage 1) is used to com-

pare nodes instead of indistinguishability (definition 56). Further more, the subroutine

NodeCoalesce is used to directly coalesce two nodes instead of coalescingequivalent

classes as in the compactness algorithm. The reasons for these changes are exemplified

in the following example:

Example 23.Consider the signature modules depicted in Figure B.3. InS6, Qq2
= Qq5

=

{q8}, Qq7
= {q1, q4} andQq3

= Qq6
= Qq9

= ∅. The result of executing stage 2.1 of the

name resolution algorithm onS6 is S7. In S7, q3, q6 andq9 are all indistinguishable from

each other, and therefore stage 2.2 results inS8. Then, returning to stage 1, there is no

anonymous node,q, for whichQq is a singleton, and hence stage 3 is applied, resulting

in S9 which is the final result.

The result after executing stage 2.1 isS7 which is obtained by coalescingq2 and q5

with q8. Notice that the environment (definition 54) ofq8 includes onlyq8 and the envi-

ronment ofq5 includesq4, q5 and q6. If we want to compareq8 with q5 we must add to

the environment ofq8 also q7 and q9. More generally, the environment of a node must

include also the nodes which are connected to typed nodes and addition of nodes to the

environment cannot be stopped when a typed node is encountered. This is why the name

resolution algorithm, through the ‘
q
≈’ relation, compares extended environments instead

of environments . Furthermore, when the extended environments of q8 and q5 are com-

pared, evidently they are not isomorphic and in particular there is no isomorphism that

mapsq5 to q8 (since the former is anonymous and the later is typed). Quasi-isomorphism

relaxes isomorphism by allowing a typed node to be mapped to ananonymous node and

vise versa, thus the extended environment ofq5 is quasi-isomorphic to the extended envi-
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ronment ofq8 via a quasi-isomorphism that mapsq5 to q8. This is why the name resolution

algorithm uses quasi-isomorphism and not isomorphism. Again, this is done through the

‘
q
≈’ relation (stage 1). Finally, observe thatq1

q
≈ q7 and q7

q
≈ q4 but q1 6

q
≈ q4 sinceq1

and q4 are marked by different types. Evidently, ‘
q
≈’ is not transitive and hence not an

equivalence relation. This is why we use the subroutine NodeCoalesce and do not use

coalescion of equivalent classes as in the compactness algorithm (see definition 58).

S6 S7 S8 S9

q3 q6 q9

q2 q5 q8

c

q1

a

q4

b

q7

q3 q6 q9

q8

c

q1

a

q4

b

q7

c

a b

new1

c

a b new2

Figure B.3: Name resolution

Example 24.Consider the signature modulesS10, S11, S12 depicted in Figure B.4. InS10,

Qq3
= {q2} andQq4

= Qq6
= ∅. The result of executing stage 2.1 of the name resolution

algorithm overS10 is S11. S11 is non-redundant and therefore stage 2.2 has no effect.

However, inS11, Qq4
= {q2} andQq6

= {q5} and therefore another iteration of stages

1-2 is required (stage 2.3). This second iteration results in S12 which is also the final

result.

Theorem 30. The name resolution algorithm terminates.

Proof Idea. Stage 1 of the algorithm computes for each anonymous node theset of its

typed equivalent nodes. In stage 2, first, pairs of an anonymous node and its unique

typed equivalent node (if such exist) are coalesced. If no such pair exists, the algorithm
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S10 S11 S12

b

q5 q6

b

q5 q6

b

c

q2 q3 q4

c
q2 q4

c

q1

a

q1

a a

Figure B.4: Name resolution

advances to stage 3 and terminates. If such pairs exist, theyare coalesced, reducing the

number of anonymous nodes by at least one node. Then, the module is compacted, and by

theorem 24 (Appendix A), the compactness algorithm terminates (notice that compaction

cannot turn a typed node into an anonymous node and therefore, cannot increase the

number of anonymous nodes). To sum up, each iteration of stages 1 and 2 terminates and

reduces the number of anonymous nodes in the signature module. Since the number of

nodes in a signature module is finite and therefore so is the number of anonymous nodes,

there could be only a finite number of such iterations and thenthe algorithm advances to

stage 3 where it terminates.

Theorem 31. If S is a signature module thenNameResolution(S) is a signature module

whose typing function is total.

Proof. If S is a signature module andq
q
≈ q′, thenNodeCoaelesce(S, q, q′) is also a

signature module (the technical proof is suppressed). Fromtheorem 26 it follows that

the compactness of stage 2.2 also returns a signature module. Hence, ifS is a signature

module, each iteration of stages 1 and 2 of the algorithm produces a signature module.

From theorem 30 it follows that the number of iterations of stages 1 and 2 is finite. Then,
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the algorithm advances to stage 3 where all remaining anonymous nodes are assigned

types and the algorithm terminates. Hence,NameResolution(S) is a signature module

whose typing function is total.

Theorem 32. If S is a signature module whose typing function is total, then

NameResolution(S) = S.

Proof. If S is a signature module whose typing function is total,Q = ∅ at stage 2 of the

first iteration. Therefore, the algorithm moves to stage 3, which has no effect sinceT is

total. Hence,NameResolution(S) = S.

127



Appendix C

Grammar modules

C.1 Defining Grammar Modules

TFSS are defined over type signatures, and therefore each path in the TFS is associated

with a type. When TFSS are defined over signature modules this is not the case, since

signature modules may include anonymous nodes. Therefore,we modify the standard

definition of TFSS such that every path in a TFS is assigned a node in the signature

module over which it is defined, rather than a type.

Definition 63. LetS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module. Atyped

feature structure (TFS) over S is a pre-TFSA = 〈Π, Θ, ⊲⊳〉 for which the following

requirements hold:

• Π is prefix-closed,A is fusion-closed and⊲⊳ is an equivalence relation with a finite

index (as in definition 8)

• Θ : Π → Q is a total function, assigning a node to each path that respects the

equivalence: ifπ1 ⊲⊳ π2 thenΘ(π1) ≈ Θ(π2)

Notice that forΘ to respect the equivalence, it is required to assign to equivalent

paths indistinguishable nodes and not necessarily the exact same node. By the definition
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of signature modules, indistinguishable nodes will eventually be coalesced and therefore

denote the same type.

Definition 64. LetS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module. Atyped

multi-rooted structure (TMRS) overS is a pre-TMRS σ = 〈Ind, Π, Θ, ⊲⊳〉, where:

• Π is prefix-closed,σ is fusion-closed and⊲⊳ is an equivalence relation with a finite

index (as in definition 10 )

• Θ : Π → Q is a total function, assigning a node for all paths that respects the

equivalence: if〈i1, π1〉 ⊲⊳ 〈i2, π2〉 thenΘ(〈i1, π1〉) ≈ Θ(〈i2, π2〉)

While the above definitions assign each path in a TFS a node rather than a type,

in cases where all nodes in the signature module are typed, wedepict TFSS using the

standard convention where paths are assigned types.

Well-typedness is extended in the natural way: The first condition requires thatF be

an appropriate value forΘ(π); the second requires thatΘ(πF ) be an upper bound of all

those nodes which are appropriate forΘ(π) andF (recall that in signature modules, the

appropriateness relation may specify several appropriatenodes for the values of a feature

F at a node q; only after all modules combine is a unique appropriate value determined).

Definition 65. LetS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module. ATFSA =

〈Π, Θ, ⊲⊳〉 is well-typed if wheneverπ ∈ Π andF ∈ FEAT are such thatπF ∈ Π, then

all the following hold:

• there existsq ∈ Q such that(Θ(π), F, q) ∈ Ap

• for all q ∈ Q such that(Θ(π), F, q) ∈ Ap, q
∗

� Θ(πF )

Enforcing all TFSS in the grammar to be well-typed is problematic for three reasons:

1. Well-typedness requires thatΘ(πF ) be an upper bound of all the (target) nodes

which are appropriate forΘ(π) andF . However, each module may specify only a

129



subset of these nodes. The whole set of target nodes is known only after all modules

combine.

2. A module may specify several appropriate values forΘ(π) andF , but it may not

specify any upper bound for them.

3. Well-typedness is not preserved under module combination. The natural way to

preserve well-typedenss under module combination requires addition of nodes and

arcs, which would lead to a non-associative combination.

To solve these problems, we enforce only a relaxed version ofwell typedness. The relax-

ation is similar to the way upward closure is relaxed : Whenever Θ(π) = q, Θ(πF ) is

required to be a subtype ofoneof the valuesq′ such that(q, F, q′) ∈ Ap. This relaxation

supports the partiality and associativity requirements ofmodular grammar development

(section 1.2). After all modules are combined, the resulting grammar is extended to main-

tain well-typedness, see section C.3.

Definition 66. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module and let

A = 〈Π, Θ, ⊲⊳〉 be a TFS over S. A is weakly well-typed if wheneverπ ∈ Π and

F ∈ FEAT are such thatπF ∈ Π, there existsq ∈ Q such that(Θ(π), F, q) ∈ Ap and

q
∗

� Θ(πF ).

Definition 67. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module and let

σ = 〈Ind, Π, Θ, ⊲⊳ 〉 be aTMRS overS. σ is weakly well-typed if whenever〈i, π〉 ∈ Π

andF ∈ FEAT are such that〈i, πF 〉 ∈ Π, there existsq ∈ Q such that(Θ(〈i, π〉), F, q) ∈

Ap andq
∗

� Θ(〈i, πF 〉).

Definition 68. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module. Arule

overS is a weakly well-typedTMRS of length greater than or equal to 1 with a desig-

nated (first) element, theheadof the rule. The rest of the elements form the rule’sbody

(which may be empty, in which case the rule is depicted as aTFS). A lexicon is a to-

tal function fromWORDS to finite, possibly empty sets of weakly well-typedTFSS. A
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grammar G = 〈R,L,A〉 is a finite set of rulesR, a lexiconL and a finite set of weakly

well-typedTFSS, A, which is the set ofstart symbols.

Finally, we define grammar modules:

Definition 69. A grammar module is a structure〈S,G〉 whereS is a signature module

andG is a grammar overS.

C.2 Grammar Module Combination

We extend the combination operators defined for signature modules (section 2.3) to gram-

mar modules. In both cases, the grammars are combined using asimple set union and the

only adjustment is of theΘ function according to the combination of the signature mod-

ule. We begin, however, by extending thecompactnessalgorithm (which is used as a

mechanism to coalesce corresponding nodes in the two modules) to grammar modules.

C.2.1 Compactness

Definition 70. A grammar module〈S,G〉 is non-redundant if S is non-redundant.

In Appendix A we showed how a signature module can be compacted into a non-

redundant signature module that encodes the same information. We extend this process

to grammar modules. The only effect of signature module compaction on the grammar is

that theΘ function must be adjusted to assign to each path,π, a new node which is the

equivalence class ofΘ(π).

Definition 71. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module and let

A = 〈Π, Θ, ⊲⊳〉 be a TFS over S. coalesce(A) = 〈Π, Θ′, ⊲⊳〉, where for allπ ∈ Π,

Θ′(π) = [Θ(π)]≈ (‘≈’ is the indistinguishability equivalence relation over signature mod-

ule nodes).
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Definition 72. Let S = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉 be a signature module and let

σ = 〈Ind, Π, Θ, ⊲⊳ 〉 be aTMRS overS. coalesce(σ) = 〈Ind, Π, Θ′, ⊲⊳〉, where for all

〈i, π〉 ∈ Π, Θ′(〈i, π〉) = [Θ(〈i, π〉)]≈.

Definition 73. Let M = 〈S,G〉 be a grammar module whereG = 〈R,L,A〉. The

coalesced module, denotedcoalesce(M), is 〈S1, G1〉 where:

• S1 = coalesce(P ) (see definition 58)

• R1 = {coalesce(σ) | σ ∈ R}

• for all w ∈ WORDS, L(w) = {coalesce(A) | A ∈ L(w)}

• A1 = {coalesce(A) | A ∈ A}

Notice that the coalesce algorithm has three versions, for signature modules, for TFSS

and TMRSS and for grammar modules. The version is decided according tothe input.

The input to the compactness algorithm is a grammar module and its output is a non-

redundant grammar module which encodes the same information.

Algorithm 6. compact (M = 〈S,G〉) whereS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉

1. LetS1 = 〈Q1, T1,�1, Ap1〉 be such that:

• Q1 = Q

• T1 = T

• �1= {(q1, q2) ∈�| (q1, q2) is a non-redundant subtyping arc inS}

• Ap1 = {(q1, F, q2) ∈ Ap | (q1, F, q2) is a non-redundant appropriateness arc

in S}

• Int1 = Int

• Imp1 = Imp

• Exp1 = Exp
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2. M ′ = coalesce(〈S1, G〉)

3. If M ′ is non-redundant, returnM ′, otherwise returncompact(M ′).

C.2.2 Merge and Attachment

Definition 74. Let M = 〈S,G〉 be a grammar module. TheAp-Closure of M , denoted

ApCl(M), is 〈ApCl(S), G〉.

Definition 75. Let M1 = 〈S1, G1〉, M2 = 〈S2, G2〉 be two grammar modules such that

S1 andS2 are consistent and disjoint.M1,M2 are mergeableif S1, S2 are mergeable, in

which case, theirmerge, denotedM1 ⋒ M2 is:

M1 ⋒ M2 = compact(ApCl(compact(〈S,G〉)))

where:

• S = S1 ∪ S2

• G = 〈R,L,A〉 where:

– R = R1 ∪R2

– for all w ∈ WORDS, L(w) = L1(w) ∪ L2(w)

– A = A1 ∪ A2

When two modules are merged, their components are first combined using simple set

union. This results in〈S,G〉. Then, using compactness and Ap-closure, anonymous nodes

and nodes marked by the same type in the signature are coalesced. Compactness and Ap-

closure adjust theΘ function accordingly. This process is similar to the merge operation

defined on signatures (definition 18). The only difference isthat here the grammar has to

be slightly addapted.

The attachment operation is similar to signature attachment (definion 20), with the

natural adjustment of the grammar components. The components of the grammar are
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unioned by set union, and theΘ function is adjusted according to the changes in the

signature.

Definition 76. LetM1 = 〈S1, G1〉, M2 = 〈S2, G2〉 be two grammar modules such thatS1

andS2 are consistent and disjoint.M2 can be attached toM1 if S2 can be attached toS1,

in that case, theattachmentof M2 to M1, denotedM1(M2), is:

M1(M2) = compact(ApCl(compact(〈S,G〉)))

where:

• S is defined as in definition 20

• G = 〈R,L,A〉 where:

– R = {〈Ind, Π, Θ′, ⊲⊳〉|〈Ind, Π, Θ, ⊲⊳〉 ∈ R1 ∪ R2 and for all 〈i, π〉 ∈ Π,

Θ′(〈i, π〉) = [Θ(〈i, π〉)]≡} (≡ is the equivalence relation of definition 20)

– for all w ∈ WORDS, L(w) = {〈Π, Θ′, ⊲⊳〉|〈Π, Θ, ⊲⊳〉 ∈ L1(w) ∪ L2(w) and

for all π ∈ Π, Θ′(π) = [Θ(π)]≡}

– A = {〈Π, Θ′, ⊲⊳〉|〈Π, Θ, ⊲⊳〉 ∈ A1 ∪ A2 and for allπ ∈ Π, Θ′(π) = [Θ(π)]≡}

C.3 Extending Grammar Modules to Full Type Unifica-

tion Grammars

We now show how to extend a grammar module into a bona fide typedunification gram-

mar. Such extension must deal with two aspects: Extending the underlying signature

module into a full type signature and enforcing well-typedness.

In section 2.4 we showed how to extend a signature module intoa full type signa-

ture. We use the same process to extend the grammar module into a full type unification

grammar, but some modifications are required to deal with thegrammar as well. For that
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purpose we use the four algorithms of section 2.4, in the sameorder as in the resolution

algorithm (algorithm 1):

1. Name resolution: assigning types to anonymous nodes.

2. Appropriateness consolidation: determinizingAp, converting it from a relation to a

function and enforcing upward closure and well-typedness.

3. Feature introduction completion: enforcing the feature introduction condition.

4. BCPO completion.

The name resolution procedure (section 2.4) assigns a type to every anonymous node

whether by coalescing it with a typed node with a similar environment, if one uniquely

exists, or by giving it an arbitrary type. The only effect this process has on a grammar

module is that when two nodes are coalesced, theΘ function must be adjusted as well: if

a nodeq is coalesced with a nodeq′, then every path in the grammar that was assigned

q needs to be assignedq′. Appropriateness consolidation both converts theAp relation

into a function and enforces upward closure and well-typedness. Here, a more careful

modification is required as will be shown below. Finally, feature introduction completion

and BCPO completion have no affect on the grammar. Notice that the classification of

nodes is ignored during the extension, since resolution is executed after all the information

from the different modules have been gathered, and hence this classification is no longer

needed.

The input to the resolution algorithm is a grammar module andits output is a bona

fide typed unification grammar.

Algorithm 7. Resolve(M = 〈S,G〉)

1. M := NameResolution(M)

2. S := BCPO-Completion(S)
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3. S := ApCl(S)

4. M := ApConsolidate(M)

5. S := FeatureIntroductionCompletion(S)

6. S := BCPO-Completion(S)

7. S := ApCl(S)

8. M := ApConsolidate(M)

9. returnM

C.3.1 Appropriateness Consolidation

In section 2.4 we showed how to convert theAp relation into a function and enforce

upward closure. We extend the algorithm from signature modules to grammar modules.

Here, theΘ function of the TFSS of the grammar must be adjusted as well: Consider

a nodeq and its set of outgoing appropriateness arcs with the same label F , Out =

{(q, F, q′) | (q, F, q′) ∈ Ap}. The appropriateness consolidation algorithm replaces all

these arcs by a single arc(q, F, ql), whereql is thelub of the types of allq′ (ql may exist

in the signature or may be added as a fresh new node by the algorithm). Then, for each

pathπF in any of the TFSS in the grammar whereΘ(π) = q, if Θ(πF ) is a nodeq1 such

that(Θ(π), F, q1) is a member of the setOut, thenΘ is adjusted to assignπF the nodeql.

However, if the nodeq1 is not a member ofOut, then it is a subtype of a node inOut and

hence it is also a subtype ofql (by the definition of the algorithm), and there is no need to

adjust the value ofΘ(πF ).

The input to the following procedure is a grammar module whose signature module

typing function,T , is total and whose signature module subtyping relation is aBCPO; its

output is a grammar module whose signature module typing function, T , is total, whose

signature module subtyping relation is a BCPO, and its signature module appropriateness
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relation is a function that maintains upward closure and allTFSS and TMRSS of the

grammar are well-typed. LetM = 〈S,G〉 whereS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉

andG = 〈R,L,A〉 be a grammar module. For eachq ∈ Q andF ∈ FEAT, let

• target(q, F ) = {q′ | (q, F, q′) ∈ Ap}

• sup(q) = {q′ ∈ Q | q′ � q}

• sub(q) = {q′ ∈ Q | q � q′}

Algorithm 8. ApConsolidate (M = 〈S,G〉), whereS = 〈〈Q, T,�, Ap〉, Int, Imp,Exp〉

andG = 〈R,L,A〉:

1. SetInt := Imp := Exp := ∅

2. Find a nodeq ∈ Q and a featureF for which|target(q, F )| > 1 and for allq′ ∈ Q

such thatq′
∗

� q, |target(q′, F )| ≤ 1. If no such pair exists, halt.

3. If target(q, F ) has a lub,p, then:

(a) for all q′ ∈ target(q, F ), remove the arc(q, F, q′) fromAp

(b) add the arc(q, F, p) to Ap

(c) for all q′ ∈ target(q, F ) and for all q′′ ∈ sub(q′), if p 6= q′′ then add the arc

(p, q′′) to �

(d) for all A ∈ A ∪
⋃

w∈WORDSL(w) whereA = 〈Π, Θ, ⊲⊳〉, if there exists

πF ∈ Π such thatΘ(π) = q andΘ(πF ) ∈ target(q, F ), then setΘ(πF ) = p

(e) for all σ ∈ R whereσ = 〈Ind, Π, Θ, ⊲⊳ 〉, if there exists〈i, πF 〉 ∈ Π such

thatΘ(〈i, π〉) = q andΘ(〈i, πF 〉) ∈ target(q, F ), then setΘ(〈i, πF 〉) = p

4. Otherwise, iftarget(q, F ) has no lub, then:

(a) Add a new node,p, to Q with:
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• sup(p) = target(q, F )

• sub(p) =
⋃

q′∈target(q,F ) sub(q′)

(b) Markp with a fresh type fromNAMES

(c) For all q′ ∈ target(q, F ), remove the arc(q, F, q′) fromAp

(d) Add(q, F, p) to Ap

(e) for all A ∈ A ∪
⋃

w∈WORDSL(w) whereA = 〈Π, Θ, ⊲⊳〉, if there exists

πF ∈ Π such thatΘ(π) = q andΘ(πF ) ∈ target(q, F ), then setΘ(πF ) = p

(f) for all σ ∈ R whereσ = 〈Ind, Π, Θ, ⊲⊳ 〉, if there exists〈i, πF 〉 ∈ Π such

thatΘ(〈i, π〉) = q andΘ(〈i, πF 〉) ∈ target(q, F ), then setΘ(〈i, πF 〉) = p

5. M := ApCl(M)

6. M := compact(M)

7. go to (2).

Example 25. Let M1 = 〈S1, G1〉 be a grammar module whose signature mod-

ule is depicted in Figure C.1 andG1 = 〈A1,R1,L1〉, where A1 = ∅, R1 =

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d

]


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





and for allw ∈ WORDS, L1(w) = ∅. In the first iteration of

the algorithm, in stage 1,q1, the node typeda, is selected sincetarget(q1, F ) = {q2, q3}.

Since these nodes have no lub, a fresh new node,q5, is added to the signature (stages 3a–

3d), resulting inS2. Stage 3e has no effect but stage 3f effects only the left sideTFSSof

the single rule of the grammar. In the left sideTFS, the node typedc, q3, is replaced

by the node typednew, q5, sinceq3 ∈ target(q1, F ). However the node typedd, q4, is

not a member oftarget(q1, F ) but a subtype ofq2 which is a member oftarget(q1, F ).

Therefore it is not changed in order to maintain the desired interpretation of thisTFS.

The first iteration of the algorithm results inM2 = 〈S2, G2〉 whose signature module is

138



S2 and G2 = 〈A2,R2,L2〉 whereA2 = ∅, R2 =


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


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and

and for allw ∈ WORDSL2(w) = ∅. This is also the final result of the algorithm. Notice

that the appropriateness relation ofS2 is a function that maintains upward closure and

all TFSS andTMRSS in G2 are well-typed.
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Figure C.1: Grammar appropriateness consolidation
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Appendix D

MODALE Description of the Basic

HPSG Grammar of Chapter 3

D.1 Modular Design

% General guidelines:

% 1. The character ‘%’ is used to insert comment.

% Everything from ‘%’ till ‘\n’ is ignored.

% 2. Extra spaces and tabs are ignored but can be used for clarity

% 3. The general description of a module is:

% module(moduleName)

% {

% description of subsumpion and appropriateness relations

% }

% {

% node classification

% }

% 4. nodes are specifyied by their types unless they are anonymous

% in which case they are reffered to as anon(nodeName).
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% 5. As in ALE\TRALE, types and features may consist of the letters

% a-z, digits and the character ‘_’ but must start with a letter

module(List)

{

anon(q4) sub [elist,anon(q2)].

anon(q2) approp [first:{anon(q3)},

rest:{anon(q4)}].

elist sub [].

}

{

int=<>.

imp=<anon(q3)>.

exp=<anon(q4)>.

}

module(Object)

{

object sub [sign,mod_synsem,head,category,con_struc,

local,non_local].

}

{

int=<>.

imp=<>.

exp=<>.

}

module(Sign)

{
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sign sub [word,phrase].

sign approp [retrieved:{quantifier_list},

phon:{phonestring_list},

synsem:{synsem}].

phrase approp [dtrs:{con_struc}].

}

{

int=<>.

imp=<phonestring_list,quantifier_list>.

exp=<phrase>.

}

module(ConStruc)

{

con_struc sub [coord_struc,head_struc].

head_struc sub [head_comp_struc,head_mark_struc,

head_adj_struc,head_filter_struc].

head_struc approp [comp_dtrs:{phrase_list},

head_dtr:{sign}].

head_mark_struc approp [marker_dtr:{word},

head_dtr:{phrase},

comp_dtrs:{elist}].

head_adj_struc approp [adjunct_dtr:{phrase},

head_dtr:{phrase},

comp_dtrs:{elist}].

head_filter_struc approp [filter_dtr:{phrase},

head_dtr:{phrase},

comp_dtrs:{elist}].

}
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{

int=<>.

imp=<phrase_list>.

exp=<>.

}

module(Head)

{

head sub [substantive,functional].

substantive sub [noun,prep,verb,reltvzr,adj].

substantive approp [prd:{boolean},

mod:{mod_synsem}].

noun approp [case:{case}].

prep approp [pform:{pform}].

verb approp [aux:{boolean},

iav:{boolean},

vform:{vform}].

functional sub [marker,det].

functional approp [spec:{synsem}].

}

{

int=<>.

imp=<>.

exp=<>.

}

module(Cat)

{

category approp [subcat:{synsem_list},
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head:{head},

marking:{marking}].

}

{

int=<>.

imp=<synsem_list>.

exp=<>.

}

module(Synsem)

{

mod_synsem sub [none,synsem].

synsem approp [local:{local},

nonlocal:{non_local}].

}

{

int=<>.

imp=<>.

exp=<synsem>.

}

module(NomObj)

{

nom_obj sub [npro,pron].

nom_obj approp [index:{index}].

pron sub [ppro,ana].

ana sub [refl,recp].

}

{
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int=<>.

imp=<>.

exp=<>.

}

module(Phonestring)

{

phonestring sub [].

}

{

int=<>.

imp=<>.

exp=<phonestring>.

}

module(Quantifier)

{

quantifier sub [].

}

{

int=<>.

imp=<>.

exp=<quantifier>.

}
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D.2 The Resolved HPSG Signature

module(hpsg_res)

{

bot sub [quantifier_list, phonestring_list, phonestring,

quantifier, phrase_list, synsem_list, marking,

object, boolean, case, pform, vform, nom_obj,

index, new_node_5].

quantifier_list sub [elist, new_node_2].

elist sub [].

new_node_2 sub [].

new_node_2 approp [rest:{quantifier_list},

first:{quantifier}].

phonestring_list sub [elist, new_node_1].

new_node_1 sub [].

new_node_1 approp [rest:{phonestring_list},

first:{phonestring}].

phonestring sub [].

quantifier sub [].

phrase_list sub [elist, new_node_3].

new_node_3 sub [].

new_node_3 approp [first:{phrase},

rest:{phrase_list}].

synsem_list sub [elist, new_node_4].

new_node_4 sub [].

new_node_4 approp [rest:{synsem_list},

first:{synsem}].

marking sub [].

object sub [sign, con_struc, category, head, mod_synsem,
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local, non_local].

sign sub [word, phrase].

sign approp [synsem:{synsem},

phon:{phonestring_list},

retrieved:{quantifier_list}].

word sub [].

word approp [retrieved:{quantifier_list},

phon:{phonestring_list},

synsem:{synsem}].

phrase sub [].

phrase approp [retrieved:{quantifier_list},

phon:{phonestring_list},

synsem:{synsem},

dtrs:{con_struc}].

con_struc sub [coord_struc, head_struc].

coord_struc sub [].

head_struc sub [head_comp_struc, head_mark_struc,

head_adj_struc, head_filter_struc].

head_struc approp [comp_dtrs:{phrase_list},

head_dtr:{sign}].

head_comp_struc sub [].

head_comp_struc approp [head_dtr:{sign},

comp_dtrs:{phrase_list}].

head_mark_struc sub [].

head_mark_struc approp [marker_dtr:{word},

head_dtr:{phrase},

comp_dtrs:{elist}].

head_adj_struc sub [].

head_adj_struc approp [adjunct_dtr:{phrase},
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head_dtr:{phrase},

comp_dtrs:{elist}].

head_filter_struc sub [].

head_filter_struc approp [filter_dtr:{phrase},

head_dtr:{phrase},

comp_dtrs:{elist}].

category sub [].

category approp [marking:{marking},

head:{head},

subcat:{synsem_list}].

head sub [substantive, functional].

substantive sub [noun, prep, verb, reltvzr, adj].

substantive approp [mod:{mod_synsem},

prd:{boolean}].

noun sub [].

noun approp [prd:{boolean},

mod:{mod_synsem},

case:{case}].

prep sub [].

prep approp [prd:{boolean},

mod:{mod_synsem},

pform:{pform}].

verb sub [].

verb approp [prd:{boolean},

mod:{mod_synsem},

vform:{vform},

iav:{boolean},

aux:{boolean}].

reltvzr sub [].
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reltvzr approp [prd:{boolean},

mod:{mod_synsem}].

adj sub [].

adj approp [prd:{boolean},

mod:{mod_synsem}].

functional sub [marker, det].

functional approp [spec:{synsem}].

marker sub [].

marker approp [spec:{synsem}].

det sub [].

det approp [spec:{synsem}].

mod_synsem sub [synsem, none].

synsem sub [].

synsem approp [nonlocal:{non_local},

local:{local}].

none sub [].

local sub [].

non_local sub [].

boolean sub [].

case sub [].

pform sub [].

vform sub [].

nom_obj sub [npro, pron].

nom_obj approp [index:{index}].

npro sub [].

npro approp [index:{index}].

pron sub [ppro, ana].

pron approp [index:{index}].

ppro sub [].

149



ppro approp [index:{index}].

ana sub [refl, recp].

ana approp [index:{index}].

refl sub [].

refl approp [index:{index}].

recp sub [].

recp approp [index:{index}].

index sub [].

new_node_5 sub [new_node_6].

new_node_5 approp [first:{bot}].

new_node_6 sub [new_node_1, new_node_2,

new_node_3, new_node_4].

new_node_6 approp [first:{bot},

rest:{bot}].

}

{

int=<>.

imp=<>.

exp=<>.

}
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