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Modular Development
of Typed Unification Grammars:

A Mathematical and Computational Infrastructure
for Grammar Engineering

Yael Syqgal

Abstract

Development of large-scale grammars for natural languagascomplicated endeavor:
Grammars are developed collaboratively by teams of lingusomputational linguists

and computer scientists, in a process very similar to theldpment of large-scale soft-
ware. Grammars are written in grammatical formalisms teaemble very high level

programming languages, and are thus very similar to computggrams. Yet grammar
engineering is still in its infancy: few grammar developrmemvironments support sophis-
ticated modularized grammar development, in the form dfribigtion of the grammar

development effort, combination of sub-grammars, separainpilation and automatic
linkage, information encapsulation, etc.

This work provides the foundations for modular construttod (typed) unification
grammars for natural languages. Much of the informatioruchdormalisms is encoded
by the type signature, and we subsequently address theeprahlough the distribution
of the signature among the different modules. We dedigaature moduleand provide
operators oimodule combinatianModules may specify only partial information about
the components of the signature and may communicate throaigimeters, similarly to
function calls in programming languages. Our definitiors iaspired by methods and

techniques of programming language theory and softwarmeegng, and are motivated



by the actual needs of grammar developers, obtained thraugreful examination of
existing grammars. We show that our definitions meet thesdsby conforming to a
detailed set of desiderata. We demonstrate the utility ofd&dinitions by providing a
modular design of the HPSG grammar of Pollard and Sag (198@)then describe the
MODALE system, a platform that supports modular developnudrtype signatures.
Finally, we show that the methods we propose have an impathewevelopment of

large-scale grammars in some other, related, formalisms.
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Chapter 1

Introduction

Development of large-scale grammars for natural languesgas active area of research
in human language technology. Such grammars are develagezhly for purposes of
theoretical linguistic research, but also for natural lzage applications such as machine
translation, speech generation, etc. Wide-coverage geamare being developed for
various languages (Abedl] Candito, and Kinyon, 2000; XTAG Research Group, 2001;
Oepen et al., 2002; Hinrichs, Meurers, and Wintner, 2004;dBeet al., 2005; King et
al., 2005; Miller, 2007) in several theoretical frameworks, e.g., TAGshi, Levy, and
Takahashi, 1975), LFG (Dalrymple, 2001), HPSG (Pollard Sad, 1994), and XDG
(Debusmann, Duchier, and Rossberg, 2005).

Grammar development is a complex enterprise: it is not ususw a single gram-
mar to be developed by a team including several linguists)pegational linguists and
computer scientists. The scale of grammars is overwhetmarge-scale grammars can
be made up by tens of thousands of line of code (Oepen et &l0) 20hd may includes
thousands of types (Copestake and Flickinger, 2000). Mogexmmars are written in
grammatical formalisms that are often reminiscent of vegp evel, declarative (mostly
logical) programming languages, and are thus very similaomputer programs. This

raises problems similar to those encountered in largee stdtware development (Erbach



and Uszkoreit, 1990). Yet while software engineering pategsiadequate solutions for the
programmer, grammar engineering is still in its infancy.

In this work we focus on typed unification grammars (TUG), Hrer implementation
in grammar-development platforms such as LKB (Copestak2QRALE (Carpenter,
1992a), TRALE (Meurers, Penn, and Richter, 2002) or Grammiilig, 2007). Such
platforms conceptually view the grammar as a single enéteii when it is distributed
over several files), and provide few provisions for modufangmar development, such as
mechanisms for defining modules that can interact with eseér ahrough well-defined
interfaces; combination of sub-grammars; separate catgoil and automatic linkage of
grammars; information encapsulation; etc. This is the nssne that we address in this
work.

We provide a preliminary yet thorough and well-founded 8ofuto the problem of
grammar modularization. We first specify a set of desidei@ta beneficial solution
in section 1.2, and then survey related work in section Inihasizing the shortcom-
ings of existing approaches with respect to these desalekéich of the information in
typed unification grammars is encoded in the signature, andénthe key is facilitating
a modularized development of type signatures. In chaptez definesignature modules
and provide operators ohodule combinationModules may specify partial information
about the components of the signature and may communicategin parameters, sim-
ilarly to function composition. We then show how the resugtisignature module can
be extended to a stand-alone type signature. We lift our itlefis from signatures to
full grammar modules in section 2.5. In chapter 3 we use sigaanodules and their
combination operators to work out a modular design of the GIB&mmar of Pollard
and Sag (1994), demonstrating the utility of signature nhesléor the development of
linguistically-motivated grammars. We then outline MODELan implementation of
our solutions which supports modular development of tygeatures in the context of

both ALE and TRALE (section 4). In chapter 5 we show that thehoé$ we develop



are instrumental also for development of large-scale grarain some other, related, for-
malisms. In particular, we use our methods to identify andem a significant flaw in
an otherwise powerful and flexible formalism, PUG. In chapte/e show how our solu-
tion complies with the desiderata of section 1.2, and catelvith directions for future

research.

1.1 Typed Unification Grammars

We assume familiarity with theories of (typed) unificatioragnmar, as formulated by,
e.g., Carpenter (1992b) and Penn (2000). The definitiongsrs#ttion set the notation
and recall basic notions. For a partial functiéh ‘F'(z) |’ (* F'(x)1’) means thatF’ is
defined (undefined) for the value ‘ F(z) = F(y)' means that eitheF" is defined both

for  andy and assign them equal values or it is undefined for both.

Definition 1. Given a partially ordered setP, <), the set olupper bounds of a subset

SCPisthesetS*={ye P|Vzx e S = <y}

For a given partially ordered sépb, <), if S C P has a least element then it is unique,

and hence it is denotedin(S).

Definition 2. A partially ordered set(P, <) is a bounded complete partial order
(BCPO) if for everyS C P such thatS* # (), S* has a least element, calledleast

upper bound (lub) and denotedl | S.

Definition 3. A type hierarchy is a non-empty, finite, bounded complete partial order

(TYPE, ).

Every type hierarchyTYPE, C) always has a least type (writteln), since the subset
S = () of TYPE has the non-empty set of upper bounél$,= TYPE, which must have a

least element due to bounded completeness.



Definition 4. Let (TYPE, C) be a type hierarchy and let,y € TYPE. If x C y, thenx
is asupertypeof y andy is asubtypeof z. If x C y, x # y and there is na: such that
x C 2z C yandz # x,y thenx is animmediate supertypeof y andy is animmediate

subtypeof z.

We follow the definitions of Carpenter (1992b) and Penn (200@)ewing subtypes
as greater than their supertypes (hence the least elemantl the notion of lub), rather
than the other way round (inducing a glb interpretation)iclvhis sometimes common in

the literature (Copestake, 2002).

Definition 5. Given a type hierarchyTYPE,C) and a finite set of featureBEAT, an
appropriateness specifications a partial function,Approp : TYPE x FEAT — TYPE

such that for every” € FEAT:
1. (Feature Introduction) there is a tygeitro(F') € TYPE such that:

o Approp(Intro(F), F)], and

e for everyt € TYPE, if Approp(t, F')|, thenIntro(F) C t, and

2. (Upward Closure / Right Monotonocy) Wpprop(s,F) | and s T ¢, then

Approp(t, F)| and Approp(s, ') E Approp(t, F').

Definition 6. A type signatureis a structure(TYPE, C, FEAT, Approp), where(TYPE,
C) is a type hierarchyFEAT is a finite set of feature$;EAT and TYPE are disjoint and

Approp is an appropriateness specification.

In this work we restrict ourselves to standard type sigrestas defined by Carpenter
(1992b) and Penn (2000)), ignoring type constraints whighkeecoming common in
practical systems. We defer an extension of our resultga® ¢tpnstraints to future work.

For the following discussion we assume that a type signdiwvee, C, FEAT, Approp)

has been specified.



Definition 7. A path is a finite sequence of features, and theRatHs = FEAT" is the

collection of pathse is the empty path.

Definition 8. Atyped pre-feature structure (pre-TFS) is a triple (II, ©, <) where
e II C PATHS is a non-empty set of Paths.
e O :II — TYPEIs a total function, assigning a type for all paths.
e 1C II x IT is a relation specifying reentrancy.

A typed feature structure (TFS) is a preTFS A = (II, ©, ) for which the following

requirements hold:
e Il is prefix-closed: ifrae € 11 thenw € 11 (wherer, o € PATHS)
e Ais fusion-closed: ifra € IT andn i 7’ thenn’a € Il and o < 7' «v

e <1 is an equivalence relation with a finite index (with| the set of its equivalence

classes) including at least the pdit, ¢)
e O respects the equivalence:rif > m, then©(m;) = ©(m2)

Below, the meta-variablé ranges over typest’ — over features and, o (with or
without subscripts) range over path$, B (with or without subscripts) range over typed
feature structures an, ©, < (with the same subscripts) over their constituents. Let

TFSs be the set of all typed feature structures.

Definition 9. ATFS A = (I1, ©,x) is well-typed if wheneverr € Il and F' € FEAT are
such thatr ' € 11, then Approp(©(n), F)|, and Approp(©(r), F) C O(nF).

To be able to represent complex linguistic information,hsas phrase structure, the

notion of feature structures is extended into multi-rodesture structures.

Definition 10. A typed pre-multi-rooted structure (pre-TMRS) is a quadruplesc =
(Ind, 11, ©, ), where:



Ind € N is the number oindicesof o

IT C {1,2,...,Ind} x PATHS is a set ofindexed paths such that for each,

1 < i < Ind, there exists some € PATHS with (i, 7) € TI

O : IT — TypPEis a total function, assigning a type for all paths.
e 1 C II x [T is a relation specifying reentrancy

A typed multi-rooted structure (TMRYS) is a pre-TMRSo for which the following re-

quirements, naturally extending thoseld¥ Ss, hold:
o Il is prefix-closed: if(i, 7ar) € Il then(i, 7) € 11

e o is fusion-closed: if(i,ma) € II and (i, 7) > (¢, 7') then (', 7'a) € II and

(i, mar) > (i, ')

e <1 is an equivalence relation with a finite index (with| the set of its equivalence

classes) including at least the paif§, ¢), (i,¢)) forall 1 <i < Ind,
e O respects the equivalence:(if;, 1) > (iz, m2) then©({(i;, m1)) = O((ia, m2))
Thelength of a TMRS o, denotedo|, is Ind,,.

Meta-variablesr, p, ¢ range over TMRS, andnd, I1, ©, < over their constituents.

Let TMRSs be the set of all typed feature structures.
Definition 11. A TMRSo is well-typed, if for all 4, 1 < i < Ind,, o' is well-typed.

Rules and grammars are defined over an additional paramésed afinite set WORDS

of words (in addition to the parameters & and TYPE).

Definition 12. Let S be a type signature. Aule over S is a well-typedT MR Sof length
greater than or equal to 1 with a designated (first) elemerg,hthad of the rule. The

rest of the elements form the ruldésdy (which may be empty, in which case the rule is



viewed as & FS). Alexiconis a total function froMWWORDSto finite, possibly empty sets
of well-typedTFSs. Agrammar G = (R, L, A) is a finite set of rulek, a lexiconL

and a finite set of well-typet@FSs, A, which is the set aftart symbols

1.2 Motivation

The motivation for modular grammar development is strdgghtard. Like software

development, large-scale grammar development is muchlaimgen the task can be
cleanly distributed among different developers, provitted well-defined interfaces gov-
ern the interaction among modules. From a theoretical pdintew, modularity facili-

tates the definition of cleaner semantics for the underljongalism and the construction
of correctness proofs. The engineering benefits of modylarprogramming languages
are summarized by Mitchell (2003, p. 235), and are equalig ¥ar grammar construc-

tion:

In an effective design, each module can be designed and iesiependently.
Two important goals in modularity are to allow one module¢onritten with
little knowledge of the code in another module and to allowaduoie to be

redesigned and re-implemented without modifying othetspairthe system.

A suitable notion of modularity should support “reuse oftaaire, abstraction mecha-
nisms for information hiding, and import/export relatibnss” (Brogi et al., 1994). Sim-

ilarly, Bugliesi, Lamma, and Mello (1994) state that:

A modular language should allow rich forms of abstracticargmetrization,
and information hiding; it should ease the development aathtenance of
large programs as well as provide adequate support or riéitysabd separate
and efficient compilation; it should finally encompass a tronal notion of

program equivalence to make it possible to justify the regraent of equiv-

alent components.



In the linguistic literature, however, modularity has deliént flavor which has to do
with the way linguistic knowledge is organized, either ctigaly (Fodor, 1983) or the-
oretically (Jackendoff, 2002, pp. 218-230). While we do nio¢cily subscribe to this
notion of modularity in this work, it may be the case that agieeering-inspired defi-
nition of modules will facilitate a better understandingtloé linguistic notion. Further-
more, while there is no general agreement among linguistseaxact form of grammar
modularity, a good solution for grammar development musteitect the correctness of
linguistic theories but rather provide the computatiomahfework for their implementa-
tion.

To consolidate the two notions of modularity, and to deviselation that is on one
hand inspired by developments in programming languagesoarttie other useful for
linguists, a clear understanding of the actual needs of grandevelopers is crucial. A
first step in this direction was done by Erbach and Uszkol€9Q). In a similar vein,
we carefully explored two existing grammars: the LINGO gnaan matrix (Bender and
Oepen, 2002),which is a framework for rapid development of cross-lingjaaly con-
sistent grammars; and a grammar of a fragment of Modern Melweusing on inverted
constructions (Melnik, 2006). These grammars were chosee $shey are comprehen-
sive enough to reflect the kind of data large-scale grammransde, but are not too large
to encumber this process.

Inspired by established criteria for modularity in programg languages, and mo-
tivated by our observation of actual grammars, we define aheviing desiderata for a

beneficial solution for (typed unification) grammar modization:

Signature focus: Much of the information in typed formalisms is encoded by i

nature. This includes the type hierarchy, the appropregespecification and the

1The LINGO grammar matrix is not a grammar per se, but rathearadwork for grammar development
for several languages. We focused on its core grammar aretatesf the resulting, language-specific

grammars.



type constraints. Hence, modularization must be carrigdrainly through the

distribution of the signature between the different mosdzle

Partiality: Modules should provide means for specifyipartial information about the
components of a grammar: both the grammar itself and thegigsover which it

is defined.

Extensibility: While modules can specify partial information, it must begible to de-
terministically extend a module (which can be the resulhef¢combination of sev-

eral modules) into a full grammar.

Consistency: Contradicting information in different modules must be de&td when

modules are combined.

Flexibility: The grammar designer should be provided with as much fléyili$ possi-

ble. Modules should not be unnecessarily constrained.

(Remote) Reference:A good solution should enable one module to refer to entitees
fined in another. Specifically, it should enable the desigmenoduleM/; to use an
entity (e.g., a type or a feature structure) definedl/inwithout specifying the entity

explicitly.

Parsimony: When two modules are combined, the resulting module musidechll the
information encoded in each of the modules and the infoonatsulting from the
combination operation. Additional information must onky &dded if it is essential

to render the module well-defined.

Associativity: Module combination must be associative and commutative:otider in
which modules are combined must not affect the result. Hewdkis desideratum

Is not absolute: it is restricted to cases where the combm#&brmulates a simple

2Again, note that type constraints are not addressed in tik.w



union of data. In other cases, associativity and commuiasthould be considered

with respect to the benefit the system may enjoy if they areddrzed.

Privacy: Modules should be able to hide (encapsulate) informatiarrander it unavail-

able to other modules.

The solution we advocate here satisfies all these requirsmhérfacilitates collabora-

tive development of grammars, where several applicatibnsoolularity are conceivable:
e A single large-scale grammar developed by a team.

e Development of parallel grammars for multiple languagedeura single theory,
as in Bender et al. (2005), King et al. (2005) oilMr (2007). Here, aore
module is common to all grammars, and language-specifiofeads are developed

as separate modules.

e A sequence of grammars modeling language development,l@guage acqui-
sition or (historical) language change (Wintner, Lavied &macWhinney, 2009).
Here, a “new” grammar is obtained from a “previous” gramniarmal modeling
of such operations through module composition can shedigéidn the linguistic

processes that take place as language develops.

1.3 Related Work

1.3.1 Modularity in programming languages

Vast literature addresses modularity in programming laggs, and a comprehensive
survey is beyond the scope of this work. As unification gramsnae in many ways
very similar to logic programming languages, our desideaaid solutions are inspired by

works in this paradigm.

3The examples are inspired by actual grammars but are obyioush simplified.

10



Modular interfaces of logic programs were first suggestedotikeefe (1985) and
by Gaifman and Shapiro (1989). Combination operators thaé weoved suitable for
Prolog include the algebraic operatepsand® of Mancarella and Pedreschi (1988); the
union and intersection operators of Brogi et al. (1990); tlesuwre operator of Brogi,
Lamma, and Mello (1993); and the set of four operators (eswagion, union, inter-
section and import) defined by Brogi and Turini (1995). For empcehensive survey,
see Bugliesi, Lamma, and Mello (1994).

The ‘merge’ operator that we present in section 2.3.2 isetjoselated to union
operations proposed for logic programming languages. Wmeal@&o counterpart of
intersection-type operations, although such operatioasnaleed conceivable. Our ‘at-

tachment’ operation is more in line with Gaifman and Shafili@89).

1.3.2 Initial approaches: modularized parsing

Early attempts to address modularity in linguistic forraais share a significant disad-
vantage: The modularization is of the parsing process r#tlae the grammar.

Kasper and Krieger (1996) describe a technique for dividingification-based gram-
mar into two components, roughly along the syntax/semsuatkts. Their motivation is
efficiency: observing that syntax usually imposes constsabn permissible structures,
and semantics usually mostly adds structure, they propgsarse with the syntactic con-
straints first, and apply the semantics later. This is aeuidw recursively deleting the
syntactic and semantic information (under their corregpanattributes in the rules and
the lexicon) for the semantic and syntactic parsers, réispc This proposal requires
that a single grammar be given, from which the two componeatsbe derived. A more
significant disadvantage of this method is that coreferebetwveen syntax and semantics
are lost during this division (because reentrancies thaesent the connection between
the syntax and the semantics are removed). Kasper and K(iE@@6) observe that the

intersection of the languages generated by the two gramsho@snot yield the language

11



of the original grammar.

Zajac and Amtrup (2000) present an implementation of a pipdike composition
operator that enables the grammar designer to break a gnamtmaub-grammars that
are applied in a sequential manner at run-time. Such an izag#@m is especially useful
for dividing the development process into stages that spoed to morphological pro-
cessing, syntax, semantics, and so on. The notion of cotigosiere is such that sub-
grammarG,,; operates on the output of sub-gramndgf such an organization might
not be suitable for all grammar development frameworks. milar idea is proposed by
Basili, Pazienza, and Zanzotto (2000): it is an approach tsimg that divides the task
into sub-tasks, whereby a module compon@rtakes an input sentence at a given state of
analysisS; and augments this information §) ,; using a knowledge bad¢;. Here, too,
it is the processing system, rather than the grammar, wkiamodularized in a pipeline

fashion.

1.3.3 Modularity in typed unification grammars

Keselj (2001) presents a modular HPSG, where each moduteasdanary HPSG gram-
mar, including an ordinary type signature, but each of the BeaT, TYPE and RILES
is divided into two disjoint sets of private and public elert®e The public sets consist of
those elements which can communicate with elements fromegponding sets in other
modules, and private elements are those that are internthetanodule. Merging two
modules is then defined by set union; in particular, the tyipeahchies are merged by
unioning the two sets of types and taking the transitiveuwle®f the union of the two
BCPOs (see definition 2). The success of the merge of two modedgsres that the
union of the two BCPOs be a BCPO.

While this work is the first one which concretely defines signamodules, it provides
a highly insufficient mechanism for supporting modular gnaan development: The re-

quirement that each module include a complete type hieyancposes strong limitations
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on the kind of information that modules can specify. It igwally impossible to spec-
ify partial information that is consistent with the com@eéype hierarchy requirement.
Furthermore, module composition becomes order dependeweahow in example 8
(section 2.3.2). Finally, the only channel of interactia@iieeen modules is the names of
the types. Our work is similar in spirit to Keselj (2001), utvercomes these shortcom-
ings and complies with the desiderata of section 1.2.

Kaplan, King, and Maxwell (2002) introduce a system desigfioe building a gram-
mar by both extending and restricting another grammar. AG Igfammar is presented
to the system in a priority-ordered sequence of files comgiphrase-structure rules,
lexical entries, abbreviatory macros and templates, fealaclarations, and finite-state
transducers for tokenization and morphological analyBie grammar can include only
one definition of an item of a given type with a particular naf@g., there can be only
one NP rule, potentially with many alternative expansipasyl items in a file with higher
priority override lower priority items of the same type witie same name. The override
convention makes it possible to add, delete or modify ruldswever, when a rule is
modified, the entire rule has to be rewritten, even if the riications are minor. More-
over, there is no real concept of modularization in this apph since the only interaction
among files is overriding of information.

King et al. (2005) augment LFG with a makeshift signaturelmaamodular devel-
opment ofuntypedunification grammars. In addition, they suggest that anglb@ment
team should agree in advance on the feature space. This wpikaesizes the observation
that the modularization of the signature is the key for maddevelopment of grammars.
However, the proposed solution is ad-hoc and cannot be tsdwously as a concept of
modularization. In particular, the suggestion for an agrext on the feature space under-
mines the essence of modular design.

To support rapid prototyping of deep grammars, Bender arckiRljer (2005) pro-

pose a framework in which the grammar developer can seleetvpgtten grammar frag-
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ments, accounting for common linguistic phenomena that aaross languages (e.g.,
word order, yes-no questions and sentential negation). dEleloper can specify how
these phenomena are realized in a given language, and a graomthat language is
automatically generated, implementing that particulatization of the phenomenon, in-
tegrated with a language-independent grammar core. Témsefwvork addresses modu-
larity in the sense that the entire grammar is distributevéen several fragments that
can be combined in different ways, according to the usersceh However, the notion
of modularity is rather different here, as modules are pri¢tam pieces of code which
the grammar designer does not develop and whose interdation she has little control

over.

1.3.4 Modularity in related formalisms

The above works emphasize the fact that existing approaochmeedular grammar devel-
opment in the area of unification grammars are still inswgfiti The same problem has
been addressed also in some other, related, formalismspwesuarvey such works and
discuss the applicability of the proposed solutions to ttubdlem of modularity in typed
unification grammars.

Wintner (2002) defines the concept of modules for CFGs: thefsebnterminals is
partitioned into three disjoint classesiafernal, exportedandimportedelements. The
imported elements are those that are supplied to the mogutgher modules, the ex-
ported elements are those it provides to the outside wanlditlze internal ones are local
to it. Two modules can be combined only if the set of intermahents of each module is
disjoint from the exported and imported sets of the otherutwds well as if the exported
sets are disjoint. Then the combination of two modules issdoy simple measures of
set union. This is the infrastructure underlying the dabnibf modular HPSG discussed
above (Keselj, 2001).

Provisions for modularity have also been discussed in timezo of tree-adjoining

14



grammars (TAG, Joshi, Levy, and Takahashi (1975)). A wideecage TAG may con-
tain hundreds or even thousands of elementary trees, amacsigrstructure can be re-
dundantly repeated in many trees (XTAG Research Group, 28064ille, Candito, and
Kinyon, 2000). Consequently, maintenance and extensionaf grammars is a com-
plex task. To address these issues, several high-levehimmms were developed (Vijay-
Shanker, 1992; Candito, 1996; Duchier and Gardent, 1999mi€gkr, 2001). These
formalisms take thenetagrammar approagtwhere the basic units are trdescriptions
(i.e., formulas denoting sets of trees) rather than treese dlescriptions are constructed
by a tree logic and combined through conjunction or inhedéa(depending on the for-
malism). The set of minimal trees that satisfy the resultiegcriptions are the TAG
elementary trees. In this way modular construction of gramsnis supported, where a
module is merely a tree description and modules are comhogiedeans of the control
tree logic.

When trees are semantic objects, the denotation of treeipiéscs, there can be
various ways to refer to nodes in the trees in order to comii@lpossible combination
of grammar modules. In the meta-grammar paradigm, wherargea fragments are tree
descriptions Candito (1996) associates with each node in a descripti@ameensuch that
nodes with the same name must denote the same entity antbtiearaust be identified.
The names of nodes are thus the only channel of interactitwmele@ two descriptions.
Furthermore, these names can only be used to identify twes)duzlt not to set nodes
apart. Crabb and Duchier (2004) propose to replace node namingdmojaaing scheme,
where nodes are colored black, white or red. When two treescandined, a black node
may be unified with zero, one or more white nodes and produdack Imode; a white
node must be unified with a black one producing a black nodé;aared node cannot
be unified with any other node. Then, a satisfying model masaturated i.e., one in
which all the nodes are either black or red. In this way sonmlatoations can be forced

and others prevented.
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This mechanism is extended Interaction GrammargPerrier, 2000), where each
node is decorated by a set pblarity features A polarity feature consists of a feature,
arbitrarily determined by the grammar writer, and a poyarithich can be either positive,
negative or neutral. A positive value represents an avail@source and a negative value
represents an expected resource. Two feature-polaritg pan combine only if their
feature is identical and their polarities are opposite,(o@e is negative and the other
is positive); the result is a feature-polarity pair corsigtof the same feature and the
neutral polarity. Two nodes can be identified only if theitgsty features can combine.
A solution is a tree whose features are all neutralized.

The concept of polarities is further elaboratedFolarized Unification Grammars
(PUG, Kahane (2006)). A PUG is defined ovesystem of polaritie$P, -) whereP is
a set (of polarities) and’“is an associative and commutative product ofer A PUG
generates a set of finite structures over objects which @ezrdmed for each grammar
separately. The objects are associated with polaritied,sénuctures are combined by
identifying some of their objects. The combination is samed by polarities: objects
can only be identified if their polarities are unifiable; tlesulting object has the unified
polarity. A non-empty, strict subset of the set of polastiealled the set afieutral po-
larities, determines which of the resulting structures\aiéd: A polarized structure is
saturatedf all its polarities are neutral. The structures that aneegated by the grammar
are the saturated structures that result from combinirigreéifit structures.

PUGs are more general than the mechanisms of polarity &ssaturd coloring, since
they allow the grammar designer to decide on the system @iriieks, whereas other
systems pre-define it.

The solution that we propose here embraces the idea of mbwngconcrete objects
(e.g., a concrete type signature) to descriptions theleafiyve take special care to do so
in a way that maintains the associativity of the main gramooanbination operator as we

show that some earlier approaches do not adhere to thisedatich (see section 5.3).
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Debusmann, Duchier, and Rossberg (2005) introduce Exteri3dpendency Gram-
mar (XDG) which is a general framework for dependency gramtrtfat supports modu-
lar grammar design. An XDG grammar consistslmhensionsprinciples and a lexicon;
it characterizes a set of well-formed analyses. Each dimoeris an attributed labeled
graph, and when a grammar consists of multiple dimensioms, (sultigraphs), they
share the same set of nodes. A lexicon for a dimension is af $etab assignments of
nodes and labels. The main mechanism XDG uses to controlsssdre principles, that
can be eithelocal (imposing a constraint on the possible analysis of a spetifiension)
or multi-dimensiona(constraining the analysis of several dimensions withees each
other). In XDG, principles are formulated using a type-egsthat includes several kinds
of elementary types (e.g., nodes, edges, graphs and evégnagis) and complex types
that are constructed incrementally over the elementargstyplhen, parameters range
over types to formulate parametric principles. A feasib@G(analysis amounts to a la-
beled graph in which each dimension is a subgraph, such lt{@aaametric) principles
are maintained (this may require nodes in different suldggap be identified). XDG sup-
ports modular grammar design where each dimension graplgriganamar module, and
module interaction is governed through multi-dimensigreglametric principles.

This work emphasizes the importance of types as a mechaonismddularity. Our
work shares with XDG the use of graphs as the basic compom&wctshe use of pa-
rameters to enforce interaction among modules. In both sya&ch module introduces
constraints on the type system and interaction among methuleugh parameters is used
to construct a multigraph in which some of the nodes are fifiett In our approach,
however, the type system is part of the grammar specificatioth modules are combined
via explicit combination operations. In contrast, in XD tlype mechanism is used ex-
ternally, to describe objects, and a general descriptigit is used to impose constraints.
Another major difference has to do with expressive powerenghs unification grammars

are Turing-equivalent, XDG is probably mildly context-s&ive (Debusmann, 2006).
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The ‘grammar formalis(GF, Ranta (2007)) is a typed functional programming lan-
guage designed for multilingual grammars. Ranta (2007pdhices a module system
for GF where a module can be either one of three kirdbstract concreteor aresource
module. Each of them reflects the kind of data this module melyde. A module of type
abstractincludes abstract syntax trees which represent gramnrhatfoamation, e.g., se-
mantic or syntactic data. A module of tygencreteincludes relations between trees in
the abstract module and relations between strings in tigettiéanguage. Communica-
tion between modules of these two types is carried out thronlgeritance hierarchies
similarly to object-oriented programs. Resource modulesaameans for code-sharing,
independently of the hierarchies. The system of modulep@tpdevelopment of multi-
lingual grammars through replacement of certain moduldés @thers. A given grammar
can also be extended by adding new modules. Additionallgvtad repetition of code
with minor variations, GF allows the grammar writer to defoperations which produce
new elements.

GF is purposely designed for multilingual grammars whicharsha core representa-
tion, and individual extensions to different languagesdaeeloped independently. As
such, the theoretical framework it provides is tailoreddoch needs, but is lacking where
general purpose modular applications are consideredéséiers 1.2 for examples of such
conceivable applications). Mainly, GF forces the devetdpgre-decide on the relations
betweerall modules (through the concrete module and inheritancert@es), whereas
in an ideal solution the interaction between all modulesuihbe left to the development
process. Each module should be able to independently detdawn interface with other
modules; then, when modules combine they may do so in any hedyst consistent with
the interfaces of other modules. Furthermore, referenceutoial elements in GF is car-
ried out only through naming, again resulting in a weak fiaige for module interaction.
Finally, the operations that the grammar writer can defin@khare macros, rather than

functions, as they are expanded by textual replacement.
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1.4 Contributions of the Thesis

The main objective of this work was to provide the foundadiéer modular construction
of (typed) unification grammars for natural languages. Te éimd we first had to care-
fully explore existing grammars and investigate propokalgrammar modularization in
unification grammars and in other, related formalisms. Tlannsontributions of these

endeavors are;:

¢ Introduction of a set of desiderata for a beneficial solufmmgrammar modular-

ization (section 1.2).

¢ Introduction of a thorough, well-founded solution to thelpiem of modular con-

struction of typed unification grammars for natural langsfchapter 2).

e Development of powerset-liftmethod to maintain associativity in non-associative

formalisms (chapter 2).

e Presentation of a modular design of the traditional HPS@grar of Pollard and

Sag (1994) (chapter 3).

e Formalization of the main combination operation of PUG ashehtification and

correction of a significant flaw in this formalism (chapter 5)

e Development of an extension of ALE (Carpenter, 1992a) and TRAWeurers,
Penn, and Richter, 2002) that provides a description largwath which signa-
ture modules can be specified, and the two combination apesatan be applied.

Expressions of the language are compiled into full TRALE atgres.

The set of desiderata (section 1.2), a definition of non+patéc signature modules
(sections 2.2 and 2.3.1), a first combination operatwrfje section 2.3.2) and the resolu-
tion stage (section 2.4) were presented in Cohen-Sygal anthéyi(2006). An extended

set of desiderata (section 1.2), parametric signature tesdsections 2.2) and a second
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combination operatoraftachmentsection 2.3.3) were presented in Sygal and Wintner
(2008). A more detailed and complete presentation thatided also an extension to
grammar modules and the modular design of the traditioné&®&Brammar (covering
chapters 2 and 3) is under review for a major journal.

The formalization of the PUG combination operation (set8®) as well as the iden-
tification of a flaw in this formalism (section 5.3) were pretasl in Cohen-Sygal and
Wintner (2007). The above material along with the correcbbthe flaw in this formal-
ism through the powerset-lift method, and implicationsleéde results to XMG, were

presented in Sygal and Wintner (2009) (covering the mdtefiehapter 5).
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Chapter 2

Modularization of the Signature

2.1 Overview

We definesignature modulegalso referred to amodulesbelow), which are structures
that provide a framework for modular development of typenatgres. These structures

follow two guidelines:

1. Signature modules contain partial information abougaature: part of the subtyp-
ing relatiort and part of the appropriateness specification. The key Bexariove
from concrete type signatures to descriptions thereoffierathan specify types, a
description is a graph whose nodes denote types and whasdarote elements of

the subtyping and appropriateness relations of signatures

2. Modules may choose which information to expose to othedutes and how other
modules may use the information they encode. The denotafioodes is ex-
tended by viewing them gsarameters Similarly to parameters in programming
languages, these are entities through which informationbeaimported to or ex-
ported from other modules. This is done similarly to the waygmetric principles

are used by Debusmann, Duchier, and Rossberg (2005).

1Subtyping is sometimes referred to in the literaturéyas subsumption
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We begin by defining the basic structure of signature modulssction 2.2. We then
introduce (section 2.3) two combination operators for aigre modules which facilitate
interaction and (remote) reference among modules. We emddbtion by showing how

to extend a signature module into a bona fide type signatacti¢s 2.4).

2.2 Signature Modules

The definition of a signature module is conceptually divid®d two levels of informa-
tion. The first includes all the genuine information that nb@yencoded by a signature,
e.g., subtyping and appropriateness relations, typesTie. second level includes the
parametric casting of nodes. This casting is not part of tre of a signature, but rather
a device that enables advanced module communication. Comisiy] we definesigna-
ture modulesn two steps. First, we defingartially specified signatures (PSS#g)hich
are finite directed graphs that encode partial informatiooua the signature. Then, we
extend PSSs teignature modulewhich are structures, based on PSSs, that provide also
a complete mechanism for module interaction and (remofejarce.

We assume enumerable, disjoint set®*E of types, FEAT of features and NDES of

nodes, over which signatures are defined.

Definition 13. A partially labeled graph(PLG)ver TYPE and FEAT is a finite, directed
labeled graphP = (Q, T, <, Ap), where:

1. Q@ C NoDEsis a finite, nonempty set of nodes.

2. T : (Q — TyPEis a patrtial function, marking some of the nodes with types.
3. =C @ x Q is arelation specifying (immediate) subtyping.

4. Ap C @ x FEAT x @ is a relation specifying appropriateness.

A partially specified signature (PSS)ver TYPE and FEAT is a partially labeled graph

P=(Q,T, =<, Ap), where:
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5. T'is one to one.
6. ‘<’ is antireflexive; its reflexive-transitive closure, deedt=’, is antisymmetric.

7. (Relaxed Upward Closure) for ajl, ¢}, 2 € @ and F' € FeAT, if (1, F, q2) € Ap

andq; 2 q1, then there existg, € () such thatg, 2 g, and(qy, F, ¢,) € Ap

A PSS is a finite, directed graph whose nodes denote types hosevedges denote
the subtyping and appropriateness relations. Nodes camabieedby types through the
functionT', but can also banonymougunmarked). Anonymous nodes facilitate refer-
ence, in one module, to types that are defined in another rdfi$ one-to-one (item 5)
since we require that two marked nodes denote differenstype

The ‘<’ relation (item 3) specifies an immediate subtyping ordeardlie nodes, with
the intention that this order hold later for the types deddtg nodes. This is Why% IS
required to be a partial order (item 6). The type hierarchgrobrdinary type signature is
required to be a BCPO, but current approaches (Copestake, 20@2)his requirement to
allow more flexibility in grammar design. Similarly, the gpierarchy of PSSs is partially
ordered but this order is not necessarily a bounded compiete Only after all modules
are combined is the resulting subtyping relation extendeal BCPO (see section 2.4);
any intermediate result can be a general partial order. Regjake BCPO requirement
also helps guaranteeing the associativity of module coatioin (see example 8).

Consider now the appropriateness relation. In contrastde sygnaturesAp is not
required to be a function. Rather, it is a relation which magcdy severalappropriate
nodes for the values of a featuFeat a nodey (item 4). An Ap-arc(q, F,¢') in a module
is interpreted as if that module is saying “the appropriakie of ¢ and F' should be
at least¢’” and the intention is that the eventual value Aprop(T'(q), F') be thelub
of the types of all those nodes such thatAp(q, F,¢’). This interpretation of multiple
Ap-arcs will be further motivated when module combinationigcdssed (section 2.3.2).

This relaxation reflects our initial motivation of suppagipartiality in modular grammar
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development, since different modules may specify diffeegapropriate values according
to their needs and available information. After all modwescombined, all the specified
values are replaced by a single appropriate value, hieifsee section 2.4). In this way,
each module may specify its own appropriate values witheetiing to know the value

specification of other modules. We do restrict the relation, however, by a relaxed
version of upward closure (item 7). Finally, the featurgadtction condition of type

signatures (definition 5, item 1) is not enforced by sigmatapodules. This, again, results
in more flexibility for the grammar designer; the conditienréestored after all modules

combine, see section 2.4.

Example 1. A simple PSSP, is depicted in Figure 2.1, where solid arrows represent
the ‘<X’ (subtyping) relation and dashed arrows, labeled by feadurhe Ap relation.
P, stipulates two subtypes ofit, n and v, with a common subtypegerund. The fea-
ture AGR is appropriate for all three categories, with distinct (but@ymous) values
for Approp(n, AGR) and Approp(v, AGR). Approp(gerund, AGR) will eventually be the
lub of Approp(n, AGR) and Approp(v, AGR), hence the multiple outgoingsRr arcs from
gerund.

Observe that inP;, ‘<" is not a BCPO,Ap is not a function and the feature introduc-

tion condition does not hold.

P -

Figure 2.1: A partially specified signaturg,

Definition 14. A pre-signature moduleover TYPE and FEAT is a structureS =
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(P, Int, Imp, Exp) whereP = (Q,T, <, Ap) is a PLG and:

1. Int C () is a set ofinternal types

N

. Imp C @ is an ordered set dmported parameters

w

. Exp C @ is an ordered set afxported parameters

IN

.IntNImp=1IntN Exp=10

o

. forall ¢ € @Q such thaty € Int, T(q)|

We refer to elements of (the sequences) and Exzp using indices, with the notation
I'mpli], Exp|j], respectively.
A signature moduleover TYPE and FEAT is a pre-signature modul& = (P, Int,

Imp, Exp) in which P is a PSS.

Signature modules extend the denotation of nodes by viethiam as parameters:
Similarly to parameters in programming languages, pararseire entities through which
information can be imported from or exported to other moslulehe nodes of a signature
module are distributed among three setsmérnal, imported and exportednodes. If
a node is internal it cannot be imported or exported; but sergah be simultaneously
imported and exported. A node which does not belong to artyeo$éts is calledxternal
All nodes denote types, but they differ in the way they comivate with nodes in other
modules. As their name implies, internal nodes are inteimaine module and cannot
interact with nodes in other modules. Such nodes provide cghamsm similar to local
variables in programming languages.

Non-internal nodes may interact with the nodes in other resdulmported nodes
expect toreceiveinformation from other modules, while exported nogesvide infor-
mation to other modules. External nodes differ from impbied exported nodes in the
way they may interact with other modules, and provide a maisha similar to global

variables in programming languages. Since anonymous riadéitate reference, in one
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module, to information encoded in another module, such sicdanot be internal. The
imported and exported nodes are ordered in order to corteohssignment of param-
eters when two modules are combined, as will be shown beltwthe examples, the

classification of nodes is encoded graphically as follows:

O A & ©

Internal Imported Exported External

Example 2. Figure 2.2 depicts a modul§;, based on the PSS of Figure 2.5, =
(Py, Inty, Impy, Exp,), whereP; is the PSS of Figure 2.Unt, = 0, Imp1 = {q4,q5}

and Exp, = 0.

\/ \/

Figure 2.2: A signature modulé;

Below, the meta-variable (with or without subscripts) ranges over nod&gwith or
without subscripts) — over (pre-)signature modulegwith or without subscripts) over

PLGs and PSSs and, T', <, Ap (with the same subscripts) over their constituents.

2In fact, Imp and Exp can be general sets, rather than lists, as long as the catiobimgerations can
deterministically map nodes froxp to nodes ofimp. For simplicity, we limit the discussion to the
familiar case of lists, where matching elements frBigp to I'mp is done by the location of the element on

the list, see definitions 19 and 20 .
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2.3 Combination Operators for Signature Modules

We introduce two operators for combining signature modulde first operatommerge

is a symmetric operation which simply combines the infororaencoded in the two
modules. The second operatattachmentis a non-symmetric operation which uses the
concept of parameters and is inspired by function commositiA signature module is
viewed as a function whose input is a graph with a list of desigd imported nodes
and whose output is a graph with a list of designated expartels. When two signa-
ture modules are attached, similarly to function compositthe exported nodes of the
second module instantiate the imported parameters of starimdule. Additionally, the
information encoded by the second graph is added to thennatoon encoded by the first
one.

The parametric view of modules facilitates interactionimen modules in two chan-
nels: by naming or by reference. Through interaction by mgmnodes marked by the
same type are coalesced. Interaction by reference is achvelren the imported parame-
ters of the calling module are coalesced with the exportegsof the called module, re-
spectively. Thenergeoperation allows modules to interact only through namingereas
attachmenftacilitates both ways of interaction.

For both of the operators, we assume that the two signatudelle® areconsistent
one module does not include types which are internal to theranodule and the two
signature modules have no common nodes. If this is not thes casles, and in particular

internal nodes, can be renamed without affecting the ojperat

Definition 15. Let S, = ((Q1,T1, =1, Apy), Inty, Impy, Expy), So = ((Q2,Ts, =9
, Apo), Ints, Imps, Exps) be two pre-signature modulesS; and S, are consistentiff

all the following conditions hold:
1. {Ti(q) | g € Int:} N{T2(q) | ¢ € Q2 andTx(g)|} = 0

2. {Tx(q) | g € Into} N{T1(q) | g € Q1 andTi(q)|} = 0
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3.Q1NQ=10

We begin by introducing theompactnesalgorithm which is used when two modules

are combined as a mechanism to coalesce correspondinginddedwo modules.

2.3.1 Compactness

When two modules are combined, a crucial step in the combimagithe identification
of corresponding nodes in the two modules that should beesoad. Such pairs of nodes

can be either of two kinds:

1. Two typed nodes which are labeled by the same type shoutddlesced (along

with their attributes).

2. Two anonymous nodes which anglistinguishablei.e., havasomorphicenviron-
ments, should be coalesced. The environment of a paslehe subgraph that in-
cludes all the reachable nodes via any kind of arc (fganto ¢) up to and including
a typed node. The intuition is that if two anonymous nodeshswmorphic envi-
ronments, then they cannot be distinguished and therefmeld coincide. Two
nodes, only one of which is anonymous, can still be othenwidestinguishable.
Such nodes will, eventually, be coalesced, but only aftenatiules are combined

(to ensure the associativity of module combination).

Additionally, during the combination of modules, some arey become redundant
(such arcs are not prohibited by the definition of a moduleflURdant arcs can be of two

kinds:

1. Asubtyping ardq;, ¢2) is redundant if it is a member of the transitive closure<of

where= excludeqq, ¢2).

2. An appropriateness afgi, F, ¢») is redundant if there existg € @ such that

¢ = gz and(q, F,q3) € Ap. (q1, F,q2) is redundant due to the ‘lub’ intention
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of appropriateness arcs: The eventual valudgbrop(T(q,), F') will be an upper

bound of (at least) botl, andgs. Sinceg, 2 g3, (q1, F, q2) is redundant.

Redundant arcs encode information that can be inferred ftbar arcs and therefore may
be removed without affecting the data encoded by the sigaatodule.

While our main interest is in signature modules, the compsstalgorithm is defined
over the more general case of pre-signature modules. This gemeral notion will be
helpful in the definition of module combination. Informallyhen a pre-signature module
is compacted, redundant arcs are removed, nodes markee bgitie type are coalesced
and anonymous indistinguishable nodes are identified. thahdilly, the parameters and
arities are induced from those of the input pre-signaturdute All parameters may be
coalesced with each other, as long as they are otherwisstimgliishable. If (at least) one
of the coalesced nodes is an internal node, then the resuitirgernal node. Otherwise,
if one of the nodes is imported then the resulting paramstienported as well. Similarly,
if one of the nodes is exported then the resulting parameexported. Notice that in the
case of signature modules, siriEes one to one, an internal node may be coalesced only
with other internal nodes.

The actual definitions of indistinguishability and the caomess algorithm are mostly
technical and are therefore deferred to Appendix A. We deigeotwo simple examples

to illustrate the general idea.

Example 3. Consider the signature module of Figure 2(3,, ¢4) is a redundant subtyp-
ing arc because even without this arc, there is a subtyping fram ¢, to q4. (¢1, F, q3)
Is a redundant appropriateness arc: eventually the appedprvalue ofy; and £’ should
be the lub ofj; andgs, but sinceys is a subtype ofjs, it is sufficient to require that it be at

leastqs.

Example 4. ConsidersSs, the pre-signature module depicted in Figure 2.4. Note fiat

is not a signature module (since it includes two nodes labieyed and that compactness
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Figure 2.3: A signature module with redundant arcs

is defined over pre-signature modules rather then signatupoelules as this is the case
for which it will be used during combination. Wwmpact(Ss2), ¢; and ¢, are coalesced
because they are both marked by the typeAdditionally, g3 and ¢ are coalesced with
qs4 and g, respectively, since these are two pairs of anonymous nodbsseimorphic
environmentsgs is not coalesced withs and ¢, sincegs is typed and;; and ¢4 are not,
even though they are otherwise indistinguishablas not coalesced with andg; since
they are distinguishablejs has a supertype marked hywhile g andg; have anonymous

supertypes.

2.3.2 Merge

The merge operation combines the information encoded bgigv@ature modules: Nodes
that are marked by the same type are coalesced along withattrgiutes. Nodes that are
marked by different types cannot be coalesced and mustadiffarent types. The main
complication arises when twanonymousiodes are considered: such nodes are coalesced
only if they are indistinguishable.

The merge of two modules is defined in several stages: Fhstfwo graphs are

unioned (this is a simple pointwise union of the coordinaieshe graph, see defini-
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Figure 2.4. Compactness

tion 16). Then, the resulting graph is compacted, coalgstodes marked by the same
type as well as indistinguishable anonymous nodes. Howheeresulting graph does not
necessarily maintain the relaxed upward closure conditiod therefore some modifica-
tions are needed. This is done Bp-Closure see definition 17. Finally, the addition of
appropriateness arcs may turn two anonymous distinguisimatoles into indistinguish-
able ones and may also add redundant arcs, therefore anothpactness step is needed

(definition 18).

Definition 16. Let S1 = ((Q1,T1, =1, Ap1), Inty, Impy, Expr), So = ((Q2,Ts, =2
, Apa), Inty, Imps, Expy) be two consistent pre-signature modules. Thsn of S; and
Ss, denotedS; U Ss, is the pre-signature modulé = ((Q1 U Q2,71 U Ty, <1 U =5

, Apyr U Apo), Inty U Inty, Impy - Imps, Exp, - Exps) (*-'is the concatenation operator).

Definition 17. Let S = {((Q,T, =<, Ap), Int,Imp, Exp) be a pre-signature mod-
ule. TheAp-Closure of S, denotedApCI(S), is the pre-signature modulg@, T, <
,Ap'y, Int, Imp, Exp) where:

Ap = {(¢1,F,¢2) | 1,2 € @ and there existg; € @ such thatg] % g1 and

31



(qllvFa (]2) € Ap}

Ap-Closureadds to a pre-signature module the required arcs for it totaiai the
relaxed upward closure condition: Arcs are added to crbatestations between elements
separated between the two modules and related by mutuateteniNotice thatlp C Ap/
by choosingy; = ¢;.

Two signature modules can be merged only if the resultingyputy relation is in-
deed a patrtial order, where the only obstacle can be theyamtietry of the resulting
relation. The combination of the appropriateness relationcontrast, cannot cause the
merge operation to fail because any violation of the appatgmess conditions in signa-

ture modules can be deterministically resolved.

Definition 18. Let Sl = <<Q1,T1, jl,Ap1>, [ntl,fmpl, Exp1>, SQ = <<Q2,T2, jg
, Apo), Ints, Impy, Expy) be two consistent signature modulesS;, S, are mergeable

if there are noy,, g2 € Q1 andgs, g4 € Q- such that the following hold:
1. ¢ # g andgs # q
2. To(q)l, Ti(g) !, To(gs)] andTa(ga)l
3. Tv(q1) = To(qs) andTi(gz) = To(qs)
4. q 5*1 g2 andgs 5*2 44

If S; and S, are mergeable, then theinerge denotedS; U S, is:

compact( ApCl(compact (S, U Ss)))

In the merged module, pairs of nodes marked by the same typ@airs of indis-
tinguishable anonymous nodes are coalesced. An anonynooleéscannot be coalesced

with a typed node, even if they are otherwise indistinguiasince that would result in
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a non-associative combination operation. Anonymous naceassigned types only after
all modules combine, see section 2.4.

Consider the merge of modules with respect4p-arcs: when two modules are
merged,Ap-arcs from the two different modules are gathered; If a naferhultiple out-
going Ap-arcs labeled with the same feature, these arcs are notegplgy a single arc,
even if thelub of the target nodes exists in the resulting signature moddgin, this is
done to guarantee the associativity of the merge operaemdxample 9). Given two Ap-
arcs,(q, F',q1) and(q, F, q2), the intention is that the eventual valueApprop(T(q), F)
be the lub of the types of all those nodgsuch thatdp(q, F,¢’). A different approach
for multiple Ap-arcs would be to take théisjunctionof the two, thus requiring that at
least one of the statements hold. However, taking the dijpm would imply that the
combined module may ignore a requirement made by one ofgtsvants, which seems

unreasonable.

Example 5. Let S3 and S; be the signature modules depicted in Figure 2%.U S,
and the intermediate pre-signature modules are also showhisnfigure. First,S; and

S, are unioned. Then, imompact(S; U S,) the two nodes typed hy are coalesced,
as are the nodes typed lay Notice that this pre-signature module is not a signature
module because it does not maintain the relaxed upward aosoindition. To enforce
this condition appropriateness arcs are added to yidlad"'l(compact(Ss U Sy)), but
this signature module includes indistinguishable anonysnwodes and therefore another

compactness operation is required to yield the final result.

Example 6. Figure 2.6 depicts a rige agreement moduleys. Combined withS; of
Figure 2.1,5; U S5 = S5 W .S, = Sg. All dashed arrows are labeleslGRr, but these labels

are suppressed for readability.

In what follows, by standard conventionp arcs that can be inferred by upward

closure are not depicted.
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Figure 2.5: Merge: intermediate steps

Example 7. Let .S; and Sg be the signature modules depicted in Figure 257 includes
general agreement information whitg specifies detailed values for several specific prop-
erties. ThenS; U Sy = Sy W .S; = Sy. In this way, the high level organization of the
agreement module is encodedd$yy while Sg provides low level details pertaining to each

agreement feature individually.

The following example motivates our decision to relax the B@®@dition and defer

the conversion of signature modules to BCPOs to a separatatienstage (section 2.4).
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Figure 2.6: Merge

Example 8. Let Sy, S11, S12 be the signature modules depicted in Figure 2.8. The merge

of Sy with Sy; results in a non-BCPO. However, the additional informatiopied by

S1o resolves the problem, antl, U S;; U Sy, is bounded complete.

Example 9. Let Si3, S14, S15 be the signature modules depicted in Figure 2.9.5ln

the appropriate value forn and F' is b while in Sy, it is c¢. HenceS;3 U S;4 states that

the appropriate value for and F' should be lulb, ¢). While in this module there is no

such element, i¥;5 lub(b, ¢) is determined to bé. In S;3 U S, U S5 the two outgoing

arcs from the node marked layare not replaced by a single arc whose target is the node

marked by, since other signature modules may specify that the lalantic is some type

other thand. These multiple outgoing arcs are preserved to maintairagsociativity of

the merge operation.
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Figure 2.7: Merge

Theorem 1. Given two mergeable signature modulgs S,, S; U .S, is a signature mod-

ule.

Proof. Let S;, S, be two mergeable signature modules. Eviden$ly,U S, is a pre-

signature module and therefore soSisU S,. Compactness guarantees that the node-

marking function ofS; U S is one to one and that the subtyping relation maintains con-

dition 6 of the definition of a PSS. The relaxed upward closwrdition is guaranteed by
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the ApC' operation. EvidentlyS; U S5 is a signature module. O

Theorem 2. Merge is commutative: for any two signature modulés,S;, Let S =
S; U Sy and S’ = S, U S, where P, P’ are their underlying PSSs, respectively. Then

P = P'. In particular, either both are defined or both are undefined.

The proof follows immediately from the fact that the merge@tion is defined by

set union and equivalence relations which are commutapeeations.

Theorem 3. Merge is associative up to isomorphisnfor all S, S», S5, LetS = (S1u
So) U Sgand S" = S U (S, U S3) where P, P’ are their underlying PSSs, respectively.
ThenP ~ P’.

The proof of associativity is similar in spirit to the prodftbe associativity of (polar-

ized) forest combination (section 5.5) and is thereforgsegsed.

2.3.3 Attachment

Consider agairb; and.Sy, the signature modules of Figures 2.1 and 2.7, respectigely
stipulates two distinct (but anonymous) valuesAgprop(n, AGR) and Approp(v, AGR).
Sy stipulates two nodes, typedigr andvagr, with the intention that these nodes be
coalesced with the two anonymous nodes$ofHowever, the ‘merge’ operation defined
in the previous section cannot achieve this goal, sinceweeanonymous nodes ifi;
have different attributes from their corresponding typedes inSy. In order to support
such a unification of nodes we need to allow a mechanism tleaifgglly identifies two
designated nodes, regardless of their attributes. Thengdria view of nodes facilitates
exactly such a mechanism.

The attachment operation is an asymmetric operation,liketion composition, where

a signature modules;, receives as input another signature modgle, The information

3For the definition of isomorphism see definition 53, Appendlix
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encoded inS; is added toS; (as in the merge operation), but additionally, the exported
parameters of, are assigned to the imported parametersof Each of the exported
parameters ob, is forced to coalesce with its corresponding imported patanofS;,
regardless of the attributes of these two parameters\{iteether they are indistinguish-

able or not).

Definition 19. Let Sl = <<Q1, Tl, =1, Ap1>, Intl, Impl, El’p1> and SQ = <<Q2, TQ, =5
, Apa, ), Inty, Impy, Expe) be two consistent signature modules. can beattachedto

S, if the following conditions hold:
1. [Imp:| = |Ezp,|

2. foralli, 1 <i < |[Impy|, it Ty(Imp[i])] andTy(Ezps[i]) |, thenT)(Imp;[i]) =

Ty(Exp,li])
3. Sy and .S, are mergeable

4. foralli,j, 1 < i < |Imp|andl < j < |Impy|, if Imp]i] j*l Impy[j], then

The first condition requires that the number of formal paranssof the calling module
be equal to the number of actual parameters in the called imodthe second condition
states that if two typed parameters are attached to each titbg are marked by the same
type. If they are marked by two different types they cannotbalesced. Finally, the
last two conditions guarantee the antisymmetry of the qibtyrelation in the resulting
signature module: The third condition requires the two aigre modules to be merge-
able. The last condition requires that no subtyping cyckesreated by the attachment

of parameters: If; is a supertype of; in S; andg, is a supertype of), in S,, thendg,

4A variant of attachment can be defined in which if two typedapaeters which are attached to each
other, are marked by two different types, then the type ofetkgorted node overrides the type of the

imported node.
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and ¢, cannot be both attached te and ¢}, respectively. Notice that as in the merge
operation, two signature modules can be attached only ifabelting subtyping relation
is indeed a partial order, where the only obstacle can bertti®yanmetry of the resulting
relation. The combination of the appropriateness relationcontrast, cannot cause the
attachment operation to fail because any violation of ther@gmriateness conditions in

signature modules can be deterministically resofved.

Definition 20. Let S1 = <<Q1, T17 =, Ap1>, Intl, Impl, El’p1> and Sy = <<Q2, TQ, =5
, Apa, ), Intoy, Impy, Exps) be two consistent signature modulesSifcan be attached to

S1, then theattachment of S, to S, denotedS; (.S,), is:
S1(S2) = compact(ApCl(compact(S)))

whereS = ((Q, T, <, Ap), Int, Imp, Exp) is defined as follows:
Let = be an equivalence relation ové}; U (), defined by the reflexive and symmetric

closure of{(Imp:[i], Exps[i]) | 1 < i < [Imp|}. Then:

e Q={lgl=]q€@1UQa}

Ty UTy(q") there existg’ € [g]= such thatl} U T5(¢')]
o T'([q]=) =
1 otherwise

o 2= {([ai]=[@2)=) | (@1, q2) €21 U =0}

Ap ={(lal=, F\ la2]=) | (a1, F', g2) € Ap1 U Apa}

Int ={[q]= | ¢ € Int; U Inty}

Imp = {[q]=| q € Imp:}

o Exp={ld=1qe€ Exp}

SRelaxed variants of these conditions are conceivable;famgle, one can requitémp;| < |Exps|

rather thariImp,| = |Exps|; or thatTy (I'mp [i]) andT>(Exps[i]) be consistent rather than equal.
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e the order oflmp and Ezp is induced by the order dimp; and Exp,, respectively

When a modules; is attached to a modulg;, all the exported nodes df, are first
attached to the imported nodesyf, respectively, through the equivalence relatias), *

In this way, for each imported node 6f, all the information encoded by the correspond-
ing exported node ob, is added. Notice that each equivalence class=ofcontains
either one or two nodes. In the former case, these nodestaer abn-imported nodes
of S; or non-exported nodes ¢f,. In the latter, these are pairs of an imported node of
Sp and its corresponding exported node frém Hence =’ is trivially transitive. Then,
similarly to the merge operation, pairs of nodes marked leystaime type and pairs of
indistinguishable anonymous nodes are coalesced. Inasintr the merge operation, in
the attachment operation two distinguishable anonymodsesias well as an anonymous
node and a typed node, can be coalesced. This is achievec pathmetric view of
nodes and the view of one module as an input to another module.

The imported and exported nodes of the resulting modulengrequivalence classes
of the imported and exported nodes of the first modSle,respectively. The nodes of
S, which are neither internal nor exported are classified areat nodes in the resulting
module. This asymmetric view of nodes stems from the view,akeceivingsS; as input:

In this way,S; may import further information from other modules.

Notice that in the attachment operation internal nodeditiaie no interaction between

modules, external nodes facilitate interaction only tigfonaming and imported and ex-

ported nodes facilitate interaction both through naming) layreference.

Example 10. Consider againS; and Sy, the signature modules of Figures 2.1 and 2.7,
respectively. Let;, and Sy, be the signature modules of Figure 2.10 (these signature
modules have the same underlying graphs as thosg and .Sy, respectively, with differ-
ent classification of nodes). Notice that all nodes in b&thand Sy, are non-internal.

Let Imp1, = (q4,g5) and letExpy, = (pg, p10). S1a(S9a) i depicted in Figure 2.11. No-

tice howg,, g5 are coalesced withy, p1o, respectively, even though, g5 are anonymous
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andpg, p1o are typed and each pair of nodes has different attributeshSmification of

nodes cannot be achieved with the merge operation.

Sla .
AGR
\\
77 gerund N
f (@)= N
'\ \\\ \\\\Q \
\ 40 \\ \\\ \\
\ @ \ ~ \
\TL v \ o v
@ ORI/
\cat/ \agr/
Sga .

Figure 2.10: Attachment — input

Theorem 4. Given two signature modules;, S, such thatS; can be attached t&],

S1(S2) is a signature module.

Proof. Similar to the proof of theorem 1. ]
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Figure 2.11: Attachment result;, (Sy,)

2.3.4 Example: parametric lists

Lists and parametric lists are extensively used in typediaation based formalisms,
e.g., HPSG. The mathematical foundations for paramests Were established by Penn
(2000). As an example of the utility of signature modules traattachment operation,
we show how they can be used to construct parametric listsiraghtforward way.
Consider Figure 2.12. The signature modQiet depicts a parametric list module. It
receives as input, through the imported ngglea node which determines the type of the
list members. The entire list can then be used through theresghnodey,. Notice thaty,
is an external anonymous node. Although its intended déoaots the typene list, itis
anonymous in order to be unique for each copy of the list, #d@ishown below. Now,
if Phrase is a simple module consisting of one exported node, of p/pese, then the
signature module obtained Wyist(Phrase) is obtained by coalescing, the imported
node ofList with the single exported node éthrase .
Other modules can now use lists of phrases; for example, tdulaStruct uses

an imported node as the appropriate value for the featon@P-DTRS. Via attachment,
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this node can be instantiated tyst(Phrase) as inStruct(List(Phrase)). The single
node of Phrase instantiates the imported node bfst, thus determining a list of phrases.
The entire list is then attached to the signature modite:.ct, where the root of the list

instantiates the imported node typedBy-ase_list in Struct.

List
phrase phrase list i struct
o A GaroTRS
Phrase Struct
elist phrase elist phrase

O A s O —————— - O
2 /—“__") Qg’%/ FIRST
© FIRST ’/
<&
C
‘@ ____________ o
phrase_list hd_struct

List(Phrase) Struct(List(Phrase))

Figure 2.12: Implementing parametric lists with signaton@dules

More copies of the list with other list members can be crebiedifferent calls to the

module List. Each such call creates a unique copy of the list, potentveth different
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types of list elements. Uniqueness is guaranteed by theyamtynof the nodey, of List:

g2 can be coalesced only with anonymous nodes with the exa& atinbutes, e.g., only
with nodes whose appropriate value for the fea®irsST is a node typed byhrase. If

g2 would have been typed hye_list it could be coalesced with any other node marked
by the same type, e.g., other such nodes from different sagi¢he list, resulting in a
list whose members have various types. Observe that theiemigs of each copy of the
list could be achieved also by declarigg an internal node, but this solution prevents
other modules from referring to this node, as is reasonadsyreld.q, (of List) is typed

by elist. Since only one copy of this node is required for all the ligpies, there is no
problem with typing this node.

Compared with the parametric type signatures of Penn (2@Q0)implementation
of parametric lists is simple and general: it falls out dike@as one application of sig-
nature modules, whereas the construction of Penn (2000)resgdedicated machinery
(parametric subtyping, parametric appropriateness,reole, etc.) We conjecture that
signature modules can be used to simulate parametric tgpatsires in the general case,

although we do not have a proof of such a result.

2.3.5 Example: the ‘addendum’ operator in LKB

The ‘addendum’ operatbwas added to the type definition language of LKB (Copestake,
2002) in 2005, to allow the grammar developer to add attebud an already defined
type without the need to repeat previously defined attrbofethat type. The need for
such an operation arose as a consequence of the develogrframi@vorks that generate
grammars from pre-written fragments (e.g., the LINGO grammatrix (Bender and
Oepen, 2002)), since editing of framework-source files neag lto errors.

Signature modules trivially support this operator, eithgrthe merge operation (in

which case different attributes of a typed node are gathieoed different modules) or by

6See http://depts.washington.edu/uwcl/twiki/bin/viegilMain/TypeAddendum
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attachment, where attributes can be assigned to a speaife; Been without specifying

its type.

2.4 Extending Signhature Modules to Type Signatures

Signature modules encode only partial information, andteeeefore not required to con-
form with all the constraints imposed on ordinary signasuréfter modules are com-
bined, however, the resulting signature module must bendetdinto a bona fide signa-

ture. For that purpose we use four algorithms, each of wheetisdwith one property:
1. Name resolutionthis algorithm assigns types to anonymous nodes (sec#hn 2

2. Appropriateness consolidatiothis algorithm determinizedp, converts it from a

relation to a function and enforces upward closure (se@idh

3. Feature introduction completionthis algorithm enforces the feature introduction

condition. This is done using the algorithm of Penn (2000).

4. BCPO completionthis algorithm extends<’ to a BCPO. Again, we use the algo-
rithm of Penn (2000).

The input to the resolution algorithm is a signature modulé i#s output is a bona

fide type signature.

Algorithm 1. Resolve (S)
1. S := NameResolution(S)
2. S := BCPO-Completion(S)
3. §:=ApCI(S)

4. S := ApConsolidate(S)
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5. S := FeaturelntroductionCompletion(S)
6. S := BCPO-Completion(S)

7.5 :=ApCI(S)

8. S := ApConsolidate(S5)

9. returnsS

The order in which the four algorithms are executed is ctdolaguaranteeing that
the result is indeed a bona fide signature. First, the rasalagorithm assigns types
to anonymous nodes via the name resolution algorithm (stagéhe BCPO completion
algorithm (stage 2) of Penn (2000) adds types as least uppeds for sets of types which
have upper bounds but do not have a minimal upper bound. Howéne algorithm does
not determine the appropriateness specification of thgmstyA natural solution to this
problem is to use Ap-Closure (stage 3) but this may lead tawatsin in which the newly
added nodes have multiple outgoing Ap-arcs with the saned.|dlo solve the problem,
we execute the BCPO completion algorithm before the Ap-cafestddn algorithm (stage
4), which also preserves bounded completeness. Now, thedaatroduction completion
algorithm (stage 5) of Penn (2000) assumes that the sulgtyplation is a BCPO and that
the appropriateness specification is indeed a function andd it is executed after the
BCPO completion and Ap-consolidation algorithms. HoweveiR?ann (2000) observes,
this algorithm may disrupt bounded completeness and thier¢fie result must undergo
another BCPO completion and therefore another Ap-consaitéstages 6-8).

A signature module is extended to a type signature aftehallrtformation from the
different modules have been gathered. Therefore, there iead to preserve the classi-
fication of nodes and only the underlying PSS is of interesiwéler, since the resolu-
tion procedure uses the compactness algorithm which isetktuer signature modules,

we define the following algorithms over signature modulesval. In cases where the
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node classification needs to be adjusted, we simply takerithal tclassification (i.e.,

Int = Imp = Exp = ().

Name resolution

During module combination only pairs of indistinguishabl@onymous nodes are coa-
lesced. Two nodes, only one of which is anonymous, can gtiitherwise indistinguish-
able but they are not coalesced during combination to erlarassociativity of module
combination. The goal of theame resolutiomprocedure is to assign a type to every
anonymous node, by coalescing it with a typed node with amtici® environment, if one
exists. If no such node exists, or if there is more than onk sode, the anonymous node
is given an arbitrary type.

The name resolution algorithm iterates as long as thereagtesto coalesce. In each
iteration, for each anonymous node the set of its typed atpnt nodes is computed
(stage 1). Then, using the computation of stage 1, anonymadss are coalesced with
their corresponding typed node, if such a node uniquelytiexstage 2.1). Coalescing all
such pairs may result in a signature module that may includistinguishable anonymous
nodes and therefore the signature module is compacted: (8@ Compactness can
trigger more pairs that need to be coalesced, and therdfersdiove procedure is repeated
(stage 2.3). When no pairs that need to be coalesced arenkefteinaining anonymous
nodes are assigned arbitrary names and the algorithm halts.

We first defineNodeCoalesce(S, q, ¢'): this is a signature modul€ that is obtained

from S by coalescing; with ¢'.

Definition 21. Let S = ((Q,T, =, Ap), Int,Imp, Exp) be a signature module and
let ¢, ¢’ € Q. DefineNodeCoalesce(S,q,q") = {((Q1,T1, =1, Ap1), Inty, Imp,, Exp;)

where:

o Q1 =0Q\{q}
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[ ] Tl — T |Q1
o <i={(g1,0) | s 2 andq, e #q}U{p,¢)|p2qtU{(d,p) | ¢ = p}

L Apl = {(Ql>F7 qQ) ’ (Q17Fa C]2) € Ap andq17q2 7é Q} U {(p7 Fv C],) | (p7 F7 q) S Ap}
U{(d, F\p) | (¢, F,p) € Ap}

o Int=1Imp=FExp=10

The input to the name resolution algorithm is a signatureuteodnd its output is a sig-
nature module whose typing functidh, is total. LetS = ((Q, T, <, Ap), Int, Imp, Exp)
be a signature module, and leAMES C TYPE be an enumerable set of fresh types from
which arbitrary names can be taken to mark node&3.i he following algorithm marks

all the anonymous nodes 1
Algorithm 2. NameResolution (S = ((Q, T, <X, Ap), Int, Imp, Exp))

1. forall ¢ € @ such thatl'(¢)T, computel), = {¢' € Q | T'(¢')| and¢’ is equivalent

toq}.
2. 1etQ ={q€Q|T(¢)T and|Q,| = 1}. If Q # 0 then:

2.1. forallg € Q, S := NodeCoalesce(S, q,q'), whereQ, = {¢'}
2.2. S := compact(S)

2.3. goto (1)

3. Mark remaining anonymous nodes@nwith arbitrary unique types frolNAMES

and halt.

For a given anonymous node, the calculation of its typedvadgmt nodes is mostly

technical and is therefore deferred to Appendix B.
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Example 11. Consider the signature module; depicted in Figure 2.6. Executing the
name resolution algorithm on this module results in the aigre module of Figure 2.13
(AGR-labels are suppressed for readability.) The two anonymages inSg are coa-

lesced with the nodes markedgr and vagr, as per their attributes. Cf. Figure 2.1, in

particular how two anonymous nodesS$n are assigned types froly (Figure 2.6).

.7 gerund S~
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I S =TT —-—-_ - \

\ - ~-——_ \

\ o T

O/ \O_____)O 3

n\ /v vag\ /agr
O O
cat agr

Figure 2.13: Name resolution result {6

A more detailed account of the name resolution algorithmivergin Appendix B
(along with the technicality of the calculation of the eculent typed node for a given

anonymous node).

Appropriateness consolidation

For each node, the set of outgoing appropriateness arcs with the samefgiéq, I, ¢') },
is replaced by the single afg, F, ¢;), whereg, is marked by théub of the types of ally'.
If no lub exists, a new node is added and is marked bylibe The result is an appro-
priateness relation which is a function, and in which upwaodure is preserved; feature
introduction is dealt with separately.

The input to the following procedure is a signature modul@sehtyping function,
T, is total and whose subtyping relation is a BCPO; its output ssgaature module

whose typing function is total, whose subtyping relatiorai8CPO, and whose ap-
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propriateness relation is a function that maintains upvedodure. LetS = ((Q, T, <

,Ap), Int, Imp, Exp) be a signature module. For eagk Q andF' € FEAT, let
o target(q, F) = {q | (¢, F,q') € Ap}
o sup(q) ={d' €Q|q =g}
o sub(q) ={qd' €Qlq=4q}
Algorithm 3. ApConsolidate (S = ((Q,T, =<, Ap), Int, Imp, Exp))
1. Setint := Imp := Exp := )

2. Find a nodeg and a featuref” for which |target(q, F)] > 1 and for all ¢ € @
such thaty’ % q, |target(q’, F)| < 1 (i.e., ¢ is a minimal node with respect to a

topological ordering ofY). If no such pair exists, halt.
3. Iftarget(q, F') has a lub,p, then:

(a) forall ¢ € target(q, F), remove the ar¢q, F, ¢') from Ap

(b) add the ardq, F,p) to Ap

(c) forall ¢ € target(q, F) and for all ¢" € sub(¢'), if p # ¢” then add the arc
(p,q") t0 =

4. Otherwise, itarget(q, F') has no lub, then:

(a) Add a new node, to Q with:

o sup(p) = target(q, I)
hd SUb<p> = Uq’etarget(q,F) SUb(q/)

(b) Mark p with a fresh type fronNAMES
(c) Forall ¢’ € target(q, F'), remove the ar¢q, F,q') from Ap

(d) Add(q, F,p) to Ap
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5. 5:= ApCI(S)
6. S := compact(S)
7. goto (2).

The order in which nodes are selected in step 2 of the algorishfrom supertypes
to subtypes. This is done to preserve upward closure. Whendad eatgoing appropri-
ateness arcs with the same latel{(q, F,¢')}, is replaced by a single afq, F, ¢,), all
the subtypes of al}f are added as subtypesg@f(stage 3c). This is done to maintain the
upwardly closedntention of appropriateness arcs (see example 13 belodditianally,

q: 1s added as an appropriate value foand all the subtypes @t This is achieved by the
Ap-Closure operation (stage 5). Again, this is done to pxesepward closure. If a new
node is added (stage 3), then its subtypes are inheritedifsammediate supertypes. Its
appropriate features and values are also inherited fromnitgediate supertypes through
the Ap-Closure operation (stage 5). In both stages 3 and 4abstep is compaction of

the signature module in order to remove redundant arcs.

Example 12. Consider the signature module depicted in Figure 2.13. Etveguhe ap-

propriateness consolidation algorithm on this module Hssin the module depicted in

Figure 2.14.
AGR
/// gerund AGR new >N,
\ o---———————=-—-—-- -0 J
N\ id
S n/ \v AGR Uag/ \Qagr -7
~0 0-----0 0~
\al/ \Lg?/
@) @)

Figure 2.14: Appropriateness consolidation: result
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Example 13. Consider the signature modules depicted in figure 2.15. Biegrthe ap-
propriateness consolidation algorithm ¢fig, the two outgoing arcs froma labeled with
F are first replaced by a single outgoing arc to a newly added nede1, which is the
lub of b and c. During this first iteration,newl is also added as a supertype«énd f.
The result of these operationsds;. Notice that inS;, the arc(a, F, b) is interpreted as
“the appropriate value of; and F' is at leasth”. In particular, this value may be. S;;
maintains this interpretation by means of the subtypingthat is added fromew]1 to e.
Then, the two outgoing arcs frodhlabeled withF" (to e and f) are replaced by a single
outgoing arc to a newly added node;w2, which is the lub ot and f. The result of these

operations isS;g, which is also the final result.

Sie Str S18
new2
F
F d -7 TS \\\ f /\
- = , e N d
d .~ € \\f /____) A
oo o | 97550 o| o
F \ew \Q
a p\b c ,O
O=---0 e} /
S———— - - a b ) c a b/
F o, 0.~ ol o _ o
N —_ - ? -

Figure 2.15: Appropriateness consolidation

A naive solution for determinizing Ap would be to simply addew lub node to all
non-empty subsets of Q (evidently there is a finite numbédrertt). The Ap-Consolidation
algorithm we present adds lubs only when they are neededtefimnation of the algo-
rithm clearly stems from this fact. Furthermore, since tlgodthm is executed after
BCPO-completion, it adds new elements only as lubs of subdathwave no common

upper bound.
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Corollary 5. The appropriateness consolidation algorithm terminates.

Theorem 6. Let S = ((Q,T, =<, Ap), Int,Imp, Exp) be a signature module where
T is total and 2 is a BCPO. LetS; = ApConsolidate(S) = ((Q1,T1,=1
,Apr), Inty, Impy, Exp,). ThenS; is a signature module wheré; is total, j*l is a

BCPO andAp, is a function that maintains upward closure.

Proof. Let S = ((Q,T, =<, Ap), Int,Imp, Exp) be a signature module whose typing
function,T', is total and% is a BCPO. Each iteration of the appropriateness consoliatio
algorithm does not change the type assignment of typed ndtlasnew node is added
(stage 4), it is assigned a fresh type. Henc#; i total, so isT3.

Now, defineQu... = {¢ € @ | for every featurelf, |target(q, F)| < 1 and for
all ¢ € @ such thaty’ % q, target(q’, F)| < 1}. SinceS is a signature module, it
maintains the relaxed upward condition. Observe that ges?aof each iteratior§|g,, .
(the restriction ofS to Qu.n., S€e definition 61, page 120) is a signature module whose
appropriateness relation is a function that maintains ugwisure (the technical proof is
suppressed). From theorem 5 it follows that the approprése consolidation algorithm
terminates and it terminates whéh,,. = Q. WhenQgone = @, Slo,,.. = Slo = S
and therefore5; is a signature module whose appropriateness relation incidn that
maintains upward closure.

The Ap-consolidation algorithm affects the subtypingtielaonly in stages 3 and 4:
Ap-closure does not affect the subtyping relation and siheeyping function is total and
the input is a signature module, the only affect of compassr{stage 6) is removement
of redundant Ap-arcs. The addition of a new type (stage 4)aldition of subtyping arcs
(stages 3 and 4) are done in exactly the same way as in the BCP@atmm algorithm of
Penn (2000). The proof that these additions maintain balindepleteness is the same

as the proof of the correctness of the BCPO completion in PEBB0)2 O

Theorem 7. If S is a signature module whose appropriateness relation is etfan, then

the underlying PSSs ¢fand ApConsolidate(S) are equal.
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Proof. Follows immediately from the fact that#f is a signature module whose appropri-
ateness relation is a function then the appropriatenessotidation algorithm terminates

at stage 2 of the first iteration. O

To maintain the associativity of signature modules comtimnave used a method of
powerset-lift In contrast to type signatures, thi relation of signature modules is not
required to be a function. Rather, it is a relation which magcsy severalappropriate
nodes for the values of a featuféat a node;. In this way, each module may specify
its own appropriate values without needing to know the vapeification of other mod-
ules. When two modules are combined (in either one of the twdbamation operations),
multiple outgoingAp-arcs are preserved and are not replaced by a single arc ém ord
to maintain the associativity of the combination (see eXarfp. Only in the resolution
stage isAp determinized, converted from a relation to a function. Thethud we use
here is apowerset-liftof the domain and the corresponding operation. In this why, a
the possibilities are ‘remembered’ and a resolution stagelded to produce the desired
result. This method is a general method which is also appkct some other, related,
formalisms; we show in chapter 5 that it can be used to gueealfite associativity of

module combination in PUG.

2.5 Grammar Modules

A grammar (definition 12) is defined over a concrete type signature aralstructure
including a set of rules (each a TMRYS), a lexicon mapping waodsets of TFSand a
start symbol which is a TFS. grammar modulés a structurel/ = (S, G), whereS'is a
signature module and is a grammar. The grammar is defined over the signature module
analogously to the way ordinary grammars are defined over signatures, albeit with

two differences:

1. TFSs are defined over type signatures, and therefore each palle inES is as-
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sociated with a type. When TKESare defined over signature modules this is not
the case, since signature modules may include anonymowsnddherefore, the
standard definition of TFSis modified such that every path in a TFS is assigned a

node in the signature module over which it is defined, rathan & type.

2. Enforcing all TFS in the grammar to be well-typed is problematic for three rea-

sons:

(a) Well-typedness requires thét(7F') be an upper bound of all the (target)
nodes which are appropriate féx(7) and . However, each module may
specify only a subset of these nodes. The whole set of taagktsis known

only after all modules combine.

(b) A module may specify several appropriate valuesd6r) and F', but it may

not specify any upper bound for them.

(c) Well-typedness is not preserved under module comlonafihe natural way
to preserve well-typedenss under module combination regaddition of

nodes and arcs, which would lead to a non-associative catibin

To solve these problems, we enforce only a relaxed versiovetttypedness. The
relaxation is similar to the way upward closure is relaxed :eWdverO(r) = g,
O(nF) is required to be a subtype oheof the values)’ such thatq, F', ¢') € Ap.
This relaxation supports the partiality and associativéguirements of modular
grammar development (section 1.2). After all modules arelined, the resulting

grammar is extended to maintain well-typedness.

The two combination operatonfiergeandattachmentare lifted from signature mod-
ules to grammar modules. In both cases, the components gfdénemars are combined
using simple set union. This reflects our initial observaigection 1.2) that most of the
information in typed formalisms is encoded by the signgtare therefore modulariza-

tion is carried out mainly through the distribution of thgrsature between the different
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modules; the lifting of the signature combination opematimoperations on full grammar
modules is therefore natural and conservative.

Finally, grammar modules are extended to bona fide typedcatidn grammars by
extending the underlying signature module into an orditgpe signature and adjusting
the grammar accordingly.

Since these definitions naturally extend the basic grammfanition (definition 12)
and the definitions and algorithms presented in this chap&isuppress them here and

they are given in appendix C.

’In practice, an extra adjustment is required in order taresiell-typedness, see appendix C.
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Chapter 3

Modular Construction of the Basic

HPSG Signature

To demonstrate the utility of signature modules for pradtgrammar engineering we
use signature modules and their combination operatorssrséttion to work out a mod-
ular design of the HPSG grammar of Pollard and Sag (1994)s iBha grammar of
English whose signature, covering several aspects of samad semantics, is developed
throughout the book. The signature is given (Pollard and (%864), Appendix4,) as
one unit, making it very hard to conceptualize and, theesftw implement and main-
tain. We reverse-engineered this signature, breakingintasmaller-scale modules that
emphasize fragments of the theory that are more local, andhthractions among such
fragments through ‘merge’ and ‘attachmehtSome of the fragments make use of the
signature modulé.ist of Figure 2.12.

We begin with a module definingbjects(Figure 3.1), where the typebjectis the
most general type. This module defines the main fragmentsedignature.

Figure 3.2 defines the modul&gn. It consists of the typsign, and its two subtypes

1Of course, other ways to break up the given signature to nesdale conceivable. In particular, the

Synsem module of Figure 3.5 may better be broken into two modules.
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sign

mod_synsem  head

@)

category

con_struc

non_local

©)

local

©)

Object

Figure 3.1: The main fragments of the signature

word phrase .o struct
——--=-0
<> DTRS
synsem
YNSEM
4<</ , \_ _______
SIS
A% 7 AN
YAN A
quanti fier_list phonestring_list

Sign
Imp = (phonstring

Exp =

Figure 3.2: A sig

_list, quanti fier list)

(phrase)

nature modul&;gn

word andphrase The latter is exported and will be used by other modules gagresently

show. In addition, two of the appropriate featuresigihare lists; note that the values of

PHONan

dRETRIEVED are imported.

Next, we consider constituent structure, and in partichaded structures, in Fig-

ure 3.3. Note in particular that the featutempP-DTRS, defined atheadstruc takes as

values a list of phrases; this is an imported type, which taiolkd as a result of several
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attachment operations (Figure 2.12).

A
__________________ 2y
e T T ~\\y,/’:,———,——g~:\\&?\
- word phrase _ ==~ elist é\,qo\\ N O>4
- -7 T~< AN N
-7 o 0** "0 o7
o N N A\ \
&Q. 7 \ / \ / \ !
S \ 7N CNe 1
4 \ / / \
O@// head_comp_struc %7 . L/ 5 \\2 /o \ O o
Oy A Q) TAVNZ /& \%o [
/ o 7;}\‘ Q. RS /' VS h
I 2" & SRR ' & S
‘ L T/ O\ 9 /S D,
\ S, / EXREC A o /
N \ / ? i 0 \ // 4
/ . / . /
N head_mark_struc\ / head_adj_struc\; ,/ head_filter_struc\,
con_struc
ConStruc

I'mp = (phrase_list)

Figure 3.3: Phrase structure

Figure 3.4 describes the fragment of the signature rooteaelag This is basically
a specification of the inventory of syntactic categoriesraefiby the theory. Note how
simple it is to add, remove or revise a category by acceshiadgragment only.

Figure 3.5 provides straight-forward definitionsoaftegory andsynsemrespectively.
As another example, Figure 3.6 depicts the type hierarchnyoofinal objects, which is

completely local (in the sense that it does not interact witier modules, except at the
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Figure 3.4: A signature modulélead

root). Finally, Figure 3.7 abstracts over the internal e of Phonstringand Quan-

tifier; these are only representatives of the actual signaturall@®avhich define these
fragments.

local nonlocal
synsem_list head marking O /O
(O\\ 0ot
A 0] /O Q P
~ =) ) ’ -% PR $\/
N <! PR none
o> I L7 synsem
U~ S
(PNl p; <& O
4)\\(')/ \§ \
category O
mod_synsem

Cat Synsem

Figure 3.5: Signature modules

61



O O
ppro \anc/
©) ©)
npro Nro/
O O

NomObj

Figure 3.6: A classification of nominal objects

phonstring quanti fier
& &
Phonstring Quanti fier

Figure 3.7: Parametric signature modules

The full HPSG signature consists of several more fragmdraswe do not depict
here. With this in mind, the HPSG signature can now be coct&duin a modular way
from the fragments defined above. The construction is ginéfgure 3.8.

First, we produce two lists gfhonestringandquantifier, which are merged into one

module through the operation

List(Phonestring U List(Quantifien

Then, this module instantiates the two imported nquemestringlist andquantifier list

in the moduleSign through the operation

Sign(List(Phonestring U List(Quantifier))

Notice how the order of the parameters ensures the corrsnimiation. Now, in the
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Sign(List(Phonestring) U List(Quantifier))
y
ConStruc(List(Sign))

y
Cat(List(Synsem))

u
Object
1]

Head
u

NomObj

Figure 3.8: HPSG signature construction

second elementlist(Sign) both creates a list gbhrase(sincephraseis an exported
node in the modulé'ign) and unifies the information in the two modules. Similarly,
ConStruc(List(Sign)) unifies the information in the three modules and instarditte
nodephraselist in the moduleC'onStruc. In the same waylList(Synsem) both creates
a list of synsenfsincesynsems an exported node in the modutgnsem) and unifies
the information in the two modules. The@iat(List(Synsem)) unifies the information
in the three modules and instantiates the neglesendist in the moduleC'at. Finally,
all the information from the different modules is unifieddbgh the merge operation.
Other modules can be added, either by merge or by attachéeditionally, the internal
structure of each module can be locally modified. Such cheibgeome much easier
given the smaller size and theoretical focus of each of théutes.

This modular approach has significant advantages over thlittoc approach of

Pollard and Sag (1994): The signature of Pollard and Sagijli9%ard to conceptualize
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since all the information is presented in a single hierardhycontrast, looking at each
small fragment (module) separately, it is easier to undadsthe information encoded in
the module. Contemporary type signatures are in fact mugetdaworking with small
fragments in such grammars is instrumental for avoidingacking errors. Moreover,
grammar maintenance is significantly simplified, since geancan be done locally, at
the level of specific modules. Of course, when a new gramnaavisloped from scratch,
modularization can be utilized in such a way as to reflectpedéeent fragments of the
linguistic theory in separate modules.

While the grammar of Pollard and Sag (1994) is not really lacge, it is large
enough to reflect the kind of knowledge organization exaibiby linguistically-motiv-
ated grammars, but is at the same time modest enough sosthatlésign in a modular
way can be easily comprehended. It is therefore useful as@ipal example of how
type signatures can be constructed from smaller, simpjeasire modules. Real-world
grammars are not only much larger, they also tend to be marplex, and in partic-
ular express interactions in domains other than the typsatige (specifically, as type
constraints and as phrase-structure rules). Extendingaution to such interactions is

feasible, but is beyond the scope of this work.
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Chapter 4

MODALE: A Platform for Modular

Development of Signature Modules

In this work we focus on typed unification grammars (TUG), émeir implementation
in grammar-development platforms. Two leading implemioreplatforms are available
for the development of typed unification grammars: The ListgeiKnowledge Building
system (LKB) (Copestake, 2002) and TRALE (Meurers, Penn, andt&ic2002), an
extension of the Attribute Logic Engine (ALE) (Carpenter928). MODALE (MODular
ALE) is a system that supports modular development of typeagures in both ALE and

TRALE. The main features of the system are:

e The system provides a description language with which sigaanodules can be
specified. The description language is intuitive and isthuplon the description
language of ALE. For example, the descriptionSef the signature module of fig-

ure 2.2, is shown in figure 4.1.

e Signature modules may be combined using either one of thebmbination op-
erators, merge and attachment, or by a complex combinatiaiving several op-

erators.
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e Signature modules can be resolved to yield a bona fide typatsices.

e The system compiles resolved modules into output files wethgr ALE or TRALE

syntax; these files can be directly manipulated by one of\tlesystems.

e Signature modules can be printed using the syntax of therigésa language.
This feature allows inspection of a signature module that evaated as a result of

several combination operators.

modul e( S1)
{
cat sub [n,v].
n sub [gerund].
n approp [agr:{anon(qg5)}].
gerund sub [].
gerund approp [agr:{anon(g4), anon(g5)}].
v sub [gerund].
v approp [agr:{anon(qg4)}].
agr sub [anon(g4), anon(g5)].

}

{
i nt=<>,
i np=<anon(g4), anon( g5) >.
exp=<>.

}

Figure 4.1: MODALE description of

Consider again the modular design of the basic HPSG gramnedlai@® and Sag,
1994) which was presented in Chapter 3. In appendix D, seciioh and D.2 use the
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description language to depict both the modular design haddsolved HPSG gram-
mar, respectively. Clearly, the modular description isdgaasier to conceptualize, and
changes can be done locally and easily.

ALE and TRALE share the same underlying core, and are base@tansttuctures
and algorithms that take advantage of type signature ptiepesuch as bounded com-
pleteness, upward closure, feature introduction and thetifonality of appropriateness
specification (i.e., no multiplelp-arcs), none of which can be assumed when working
with signature module. As a result, our implementation is andirect adaption of the
existing ALE/TRALE code, but a new system that was developed from scratdienB-
ing the algorithms of Penn (2000) from type signatures irgaaure modules is left as a
direction for future research.

The MODALE system provided us with an opportunity to expenntally evaluate
the time efficiency of module combination. Indeed, the corabon and resolution al-
gorithms are computationally inefficient as they requineeaded calculations of graph
iIsomorphism, a problem which is neither known to be solvablpolynomial time nor
NP-completé. However, in the signatures we have experimented with sofargn-
countered no time issues. Furthermore, it is important te titat these calculations are
executed only once, in compile time, and have no impact onuhéme of ALE/TRALE

which is the crucial stage in which efficiency is concerned.

1Garey and Johnson (1979) provide a list of 12 major probleimsse complexity status was open at
the time of writing. Recognition of graph isomorphism is afehose, and one of the only two whose

complexity remains unresolved today.
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Chapter 5

Implications on Other Formalisms

5.1 Overview

While our main focus in this work is facilitating the necegsafrastructure for modular
construction of typed unification grammars, the methods s& have an impact also
on the development of large-scale grammars in some othetede formalisms, e.g.,
Polarized unification grammar (PUG) (Kahane, 2006) and XNdGchier, Le Roux, and
Parmentier, 2004; Crakb 2005). In this chapter we focus on PUG. We show that the
grammar combination operator proposed by Kahane (2006pti@ssociative, and we
correct it by adapting thpowerset-liftmethhod used in chapter 2.

PUG is a linguistic formalism which useslaritiesto better control the way grammar
fragments interact. A PUG is defined ovesysstem of polaritiesP, -) whereP is a set (of
polarities) and -’ is an associative and commutative product o¥erA PUG generates
a set of finite structures (e.g., trees) over objects (eagles) which are determined for
each grammar separately. The objects are associated Wahtijes, and structures are
combined by identifying some of their objects. The comborats sanctioned by polar-
ities: objects can only be identified if their polarities angfiable; the resulting object

has the unified polarity. A non-empty, strict subset of theo$golarities, called the set
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of neutral polarities, determines which of the resulting structunes\alid: A polarized
structure issaturatedif all its polarities are neutral, and the language gendraiethe
grammar includes the saturated structures that result &lbthe possible combinations
of elementary structures. PUG is a powerful and flexible fdism which was shown to
be capable of simulating many grammar formalisms, inclgdiAG, LFG, HPSG, etc.

However, unlike other tree-based formalisms and unlikeaguproach, PUG does not
take the metagrammar approach: the basic units are gracainakijects (e.g., trees or
graphs) rather than grammatical descriptions (e.g., fasdescribing grammatical ob-
jects).

The grammar combination operation of PUG was conjecturdzbtassociative (Ka-
hane and Lareau, 2005; Kahane, 2006). We show that it is wei; &taching polarities
to objects does not render grammar combination order-gntgnt. In section 5.2 we
formalize the tree combination operation of PUG and set anaomnotation. We limit
the discussion to the case of trees, rather than the agbabgects of PUG, for the sake of
simplicity; all our results can easily be extended to adbojtrstructures and objects (e.qg.,
graphs and their nodes and edges). In section 5.3 we showxisting polarity systems
do not guarantee associativity. This is not accidental: ngggthat no non-trivial polarity
system can guarantee the associativity of grammar conamat/e analyze the reasons
for this in section 5.4 and introduce new definitions, based move from trees to forests,
which induce an associative grammar combination operata.immediate contribution
of this chapter is thus the identification—and correctiori-a-significant flaw in this oth-
erwise powerful and flexible formalism. Moreover, the metie propose is general, and
therefore applicable to a variety of formalisms. In secBdhwe show that our results can
be used to define an alternative semantics for XMG (DuchiefRbux, and Parmentier,

2004; Crabbk, 2005).
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5.2 Tree Combination in PUG

To the best of our knowledge, no formal definition of PUG wakligihed and the formal-
ism is only discussed informally (Kahane and Lareau, 20@Hd6ae, 2006). We therefore
begin by defining the formalism and its combination opergtimoth with and without po-

larities, to establish a common notation.

Definition 22. Atree(V, E, r) is a connected, undirected, acyclic graph with vertites

edgesF and a unique root € V.

Every pair of nodes in a tree is connected by a unique pathtten@dges have a
natural orientation, toward or away from the root. L&t F,r) be atree and let € V.
Any vertexu which is located on the single path fronto v is anancestorof v, andv
is adescendanf u. If the last arc on the path fromto v is (u, v) thenw is the parent
of v andv is thechild of u. The meta-variabléd ranges over trees and F, r over their

components. The meta-varialileranges over sets of trees.

Definition 23. Two treesl, T, are disjoint if V; NV, = (). Two sets of tree$;, 7, are

disjoint if forall 7}, € 7;, T, € T5, Vi NV, = 0.

Definition 24. Two treesT; = (Vi, Ey, 1), Ty = (Va, Es, o) are isomorphic, denoted
T, ~Ts, if there exists a total one to one and onto functiori;, — V5 such thati(r,) = 7,
and for all u,v € Vi, (u,v) € E; iff (i(u),i(v)) € E,. Two sets of tree¥;,7; are
isomorphic, denoted7; =7, if there exist total functiong : 7; — 7, andi, : 7o, — T4

such that for alll” € 77, T~ iy (T) and for all' T € 75, T~ i5(T).

Next, we define how two trees are combined. An equivalenedioal over the nodes
of the two trees states which nodes should be identified.dmehult of the combination,
nodes are equivalence classes of that relation and arceconodes that are connected
in their members. The equivalence relation is sanctioned#ay that guarantees that the

resulting graph is indeed a tree.
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Definition 25. Let T} = (Vi, E1,r1), To = (Vs, E5, 19) be two disjoint trees. An equiva-

lence relation &’ over Vi UV, is legalif all the following hold?

1. forall vy,vy € Vi UV, if vléw andwv; # v, then eitherv; € Vi andwv, € V5 or

v € Voandwv, € V)

. t . .
2. for all uy, vy, uqe,v9 € V4 U Vy, if vy=wuy, uy is the parent ob; andus, is the parent

t
of v, thenu,;~u,

3. there exists € V; UV, such that[v] , | > 1

t
~

Eq (T, Ty) is the set of legal equivalence relations overJ V5.

The first condition of definition 25 states that when two nodes identified, they
must belong to different trees. The second condition reguinat when two nodes are
identified, all their ancestors must identify as well. Fipathe last condition requires
that at least two nodes (each from a different tree) be ifledti The first two conditions

guarantee that the resulting graph is acyclic and the thiedantees that it is connectéd.

Definition 26. LetT7 = (Vi, Ey,r1), To = (Va, Es, o) be two disjoint trees and ety
be a legal equivalence relation over U V;. Thetree combinationof 73, T, with respect

to é denotedl’ + ; T»,isatreeT = (V, E,r), where:

o« V={ll, lveviuv}
o E={(lul, vl )| (wv) € By UE}
B [7’1}& if [Tl]é = {r}or [Tl]é = {r, 72}
[ro] +  otherwise

t
~

Lif* =" is an equivalence relation thén|— is the equivalence class ofwith respect to=".
2The second condition is not an original requirement of PUW@;added for the case in which the basic

structures are trees to guarantee that the resulting gsdptieed a tree.
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When two trees are combined, nodes belonging to the sameatenie class are
identified. Since the equivalence relation is legal, thelltegy graph is indeed a tree.
Observe that since the equivalence relation is legal, rettieetwo roots are identified,;
or one of them is identified with a non-root node and the otkerains alone. In the
former case, the root of the new tree is the node created tiendéntification of the two
roots; in the latter case, the new root is the root whose atprnice class is a singleton.
In definition 26, a systematic replacementrofandr, in the definition ofr would have

yielded the same result.

Example 14. Figure 5.1 depicts three tre€$;, T,, T5. T andT” are tree combinations of
T, andT;. T is obtained by identifying; with ¢3 and ¢, with ¢4. Notice that sincey is
identified withg,, ¢g; must be identified withs to maintain a tree structure (condition 2 of
definition 25).7" is obtained by identifying, with ¢3. 7" is not a tree combination df;,
andTs; since it identifiegg with ¢7, which belong to the same treéB,, in contradiction to

condition 1 of definition 25.

Ty T 15 T T T

L5l a4 s 1,43 i 3,45

L2 L4 / \417 LQ, 44 {[2, as 24, ds; 47
\414

Figure 5.1: Tree combination

Definition 27. Let 7, 75 be two disjoint sets of trees. Thee combination of 73, 75,

72



t
denotedZ; +75, is the set of trees

T = U T, +L T
T €T, T €T
L € BEq(Ty, T)

The tree combination operation takes as input two setseé tad yields a set of trees
which includesall the tree combinations of any possible pair of trees belapgirthe two
different sets with respect tany possible legal equivalence relations. Notice that the
definitions allows multiple isomorphic trees in the samecdétees, which may result in
inefficient processing. It is assumed that the grammar desig responsible for avoiding

such inefficiency.

Example 15. The sets of trees defined I{)Tl}jr{Tz} and {TQ}Jtr{Tg} (Figure 5.1) are

depicted in Figures 5.2 and 5.3, respectively.

é11,43 él1 3 é1,43
LQaq4 ZQvQ?) g/lvq4 / \414

éa a2
. t
Figure 5.2:{T: } +{1»}

This combination operation is extended by attaching piégrio nodes (Cratiband
Duchier, 2004; Perrier, 2000; Kahane, 2006). In a polarizachework, an extra con-
dition for the identification of two nodes is that their palie@s combine; in this case a
new node (obtained by identifying two nodes) has a polarityctvis the product of the

polarities of the two identified nodes.

Definition 28. A system of polarities is a paitP, -), whereP is a non-empty set and

IS a commutative and associative product o¥ex P.
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3,45 3,45 é13, 45

O AN

é5 é5
% \{17 c/ \{137 qr sz, qs
\44 \414 1[ \07

Figure 5.3:{T2}Jtr{T3}

In the sequel, if(P,-) is a system of polarities and b € P, ab| means that the
combination ofa andb is defined andibT means that. andb cannot combine. For the

following discussion we assume that a system of polarities) has been specified.

Definition 29. A polarized tree (V| E,r,p) is a tree in which each node is assigned a
polarity through a total functiorp : V. — P. If (V, E,r,p) is a polarized tree then
(V, E,r) is itsunderlying tree. Two polarized trees ardisjoint if their underlying trees

are disjoint.

Definition 30. Two polarized tree§’ = (Vi, Ey,r1,p1), To = (Va, Es, 19, po) areiso-
morphic, denotedl’; ~T5, if their underlying trees are isomorphic and, additioryatior
all v € Vi, p1(v) = po(i(v)). The definition of isomorphism of sets of trees is trivially

extended to sets of polarized trees.

Definition 31. LetTy = (V4, Ey,7r1,p1), To = (Va, Es, 19, po) be two disjoint polarized
trees. An equivalence relations’ over Vi U V4 islegalif it is legal over the underlying
trees ofl; and T, and, additionally, for allv; € V; andv, € V5, if vlévg, thenp (vy) -

p2(v2)l. Eq,(T1,T5) is the set of legal equivalence relations overJ V5.

Definition 32. LetTy = (V4, Eq,r1,p1), To = (Va, Es, 19, po) be two disjoint polarized
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trees and let&’ be a legal equivalence relation ovéf U V,. Thepolarized tree combi-
nation of 71, T, with respect to é denotedl; + 3 T, isatreel = (V, E,r,p) where

V, E andr are as in definition 26, and for a[b] eV,

(p1 U p2)(v) if [o] ¢ = {v}
={v,u} andu # v

22*

p([v]¢) =

t
~

(1 Up2)(v) - (pr Upa)(u) if [v]

22“

Notice that since’ is legal, p is well defined. The definition of tree combination of
sets of trees, denoteei‘, is trivially extended to sets of polarized trees.

The language of a PUG consists of the neutral structuresnglokdy combining the
initial structure and a finite number of elementary struesurin the derivation process,
elementary structures combine successively, each neweatany structure combining

with at least one object of the previous result.

Definition 33. A Polarized Unification Grammar (PUG) is a structure G =
(Tv, T, (P,-)) whereT is a set of polarized treedy, € 7 is the initial tree and(P, -)
is the system of polarities over which the polarized tree doatton is defined.

Let A; be a sequence of tree sets whelig = {TO}JtrT and for allz,7 > 1, A, =
Ai_lJtrT. Thelanguagegenerated by~, denoted.(G), is L(G U A;.

1€EN
PUG is a powerful grammatical formalism that was shown todpable of simulating

various linguistic theories (Kahane, 2006). It can be imsntal for grammar engineer-
ing, and in particular for modular development of largelscggammars, where grammar
fragments are developed separately and are combined h&itgisic combination opera-
tion defined above. A pre-requisite for such an applicatsoohviously that the grammar
combination operation be associative: one would natueadpect that, if &’ is a grammar
combination operator, theh; o (G, o G3) =(G; 0 G) o G5 for any three grammars (and,
therefore,L(G; o (G 0 G3)) = L((G1 0 G) o G3)).

The grammar combination operation of PUG was indeed camedto be associative

(Kahane and Lareau, 2005; Kahane, 2006). The present paasmwo main contri-
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butions: In the next section we show that the combinationatjmn defined above isot
associative. In section 5.4 we introduce an alternativebioation operation which we
prove to be associative. We thus remedy the shortcomingeobtiginal definition, and

render PUG a more suitable formalism for modular grammaeldgvnent.

5.3 Tree Combination is not Associative

In this section we show that tree combination as defined glvatte or without polarities,
IS not associative. In the examples below, the relation Wwiietermines how polarities
combineis indeed associative; it is the tree combination operatioithvbses polarities

that is shown to be non-associative.

5.3.1 Non-Polarized Tree Combination

Theorem 8. (Non-polarized) tree combination is a non-associative apien: there exist

sets of treeq§;, 75, 75 such thaﬂ}i(?}i%)%(ﬁiﬂ)i%.

Proof. Consider agaifiy, T, T3 of Figure 5.1 and the sets of trees defineo[ﬁy}jr{TQ}
and{Tg}Jtr{Tg}, depicted in Figures 5.2 and 5.3, respectivélyof Figure 5.4 is a mem-
ber Of{TQ}j—{Tg}, obtained by identifyingjs of 75 andgs of 73. Similarly, 75 of Fig-
ure 5.4 is a member o[ﬂ”l}jr{ﬂ}. HenceT; € {Tl}j—({Tg}j—{Tg}). However,T5 (or

any tree isomorphic to it) is not a member(c@Tl}Jtr{Tﬂ)jr{Tg}. O

5.3.2 Colors

Crable and Duchier (2004) useplorsto sanction tree node identification. Their color
combination table is presented in Figure 518, B and R denote white, black and red,

respectively, and. represents the impossibility to combine.
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5 5

Ty : 44\.(]7 Ts : 4 \017%

é4 &4 é2

Figure 5.4: Non-polarized tree combination

WIB|R
W (W |B|Ll
BB |L|L
R|L|L]L

Figure 5.5: Color combination table

Theorem 9. The color scheme of Figure 5.5 does not guarantee assatyativet

(P,-) be the system of Figure 5.5. Then there exist sets of fees, 7; such that
t t t t

T+ (To+13) 2 (T+T2)+ T

Proof. Consider Figure 5.6. The results of combinii¥g }, {77}, {7s} in different orders
demonstrate tha(t{TG}th{T7})Jtr{Tg}%{Tﬁ}i({ﬂ}i{Tg}).
O

Notice that in Figure 5.6 all the intermediate and final Soha are saturated. There-

fore, the saturation rule does not guarantee associativity

5.3.3 Polarities

Kahane and Lareau (2005) and Kahane (2006) use two systepmdawities which are
depicted in Figure 5.7. The first system includes three pi@ay gray, white and black,

where the neutral polarities are black and gray. A black nodg be unified with 0, 1
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T62 B T72 B Tgi w

W B R
(T3 HTY | (T HT )T (THTY [T+ HT))

B B B B B B B B
AN /SN
B B R B B | B R B B B
] /\ /N
B B B R B R B R B

R R

Figure 5.6: Tree combination with colors

or more gray or white nodes and produce a black node; a whide nay absorb 0, 1 or
more gray or white nodes but eventually must be unified witllagakbone producing a
black node; and a gray hode may be absorbed into a white ock btale. The second
system extends the first by adding two more non-neutral pielsrplus and minus, which
may absorb 0, 1 or more white or gray nodes but eventually suqppddle must be unified

with a minus node to produce a black node.

Theorem 10. PUG combination with either of the polarity systems of Figbiré is not

associative.

Proof. Consider Figure 5.8. CIearI\jTg}Jtr({Tlo}:t{Tn})%({Tg}jr{Tm})jr{Tn}.
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e|le/0 @ e|leo| |t @
olo|o| e ollolo|~|T| e
oo o - - - - |1 et

{To}+{Too} | (T} HTo))HTu} [ {Tio} HTu} | {0} +({Tuo}+{Tu})

[ ] @) [ [ ] @) [ [ ] [ [ ]

Figure 5.8: Tree combination with polarities

5.3.4 General Polarity Systems

We showed above that some existing polarity systems yietdassociative grammar
combination operators. This is not accidental; in whatoiw we show that the only
polarity scheme that induces associative tree combingitnivial: the one in which no
pair of polarities are unifiable. This scheme is uselessdoctoning tree combination

since it disallows any combination.

79



Definition 34. A system of polaritie&P, -) is trivial if for all a,b € P, ab 1.

Theorem 11. Let (P, -) be a system of polarities. If there existg P such thaiua| then

the polarized tree combination based @ -) is not associative.

Proof. Let (P,-) be a system of polarities and lete P be such thata |. Assume
toward a contradiction that the polarized tree combinaltiased or( P, -) is associative.
ConsiderT,T5,T; of Figure 5.1 andl; of Figure 5.4. Letl], Ty, T3, T: be polarized
trees obtained by attaching the polarity to all tree nodes ofly, 15, T3, T5, respec-
tively. 7} € {T{}:L({TQ’}:L{Tg}), but T} (or any tree isomorphic to it) is not a member
of ({T{}:L{TQ’}):L{Tg} (see the proof of theorem 8 for the complete details). Clearly
(T AT TN 2 (T T3+ T2}, a contradiction. 0

Theorem 12. Let (P,-) be a non-trivial system of polarities. Then the polarizegktr

combination based ofP, -) is not associative.

Proof. Let (P, -) be a non-trivial system of polarities. [P| = 1 then letP = {a}. Since
P is non-trivial,aa = a. Then, by theorem 11 P, -) is not associative. Now assume that
|P| > 1. Assume toward a contradiction that the polarized tree ¢oation based on

(P,-) is associative. There are two possible cases:

1. There exista € P suchthata]: Then from theorem 11 it follows that the resulting

tree combination operation is not associative, a conttiaic

2. Foralla € P, aa?: Then since P, -) is non-trivial and sincéP| > 1, there exist
b,c € P such thath # ¢, bbT, ccT andbc|. ConsiderT;, Ty, Ts of Figure 5.9.
Of all the trees in({Tl}jr{Tz})jr{Tg} and {Tl}j’({TQ}j—{Tg}), focus on paths
of length 3. All possible instantiations of these trees apicted in Figure 5.9
(we suppress the intermediate results). Notice that thress fare only candidate
solutions; they are actually accepted only if the polar@gybinations occurring in
them are defined. Sinéé?, cc] andbc, ({Tl}j—{Tg})j—{Tg} has no solutions and

{Tl}j‘({TQ}j‘{Tg}) has one accepted solution (the rightmost tree), a contiaulic
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LT T | (DB HD) (T}

b c c c b c c b b c c

c b c cb cc bb cc cc cc cc cb
cc cb cc bb cb cc bbb
b c c c c b ¢ c

Figure 5.9: Candidate solutions for PUG tree combination

For the sake of completion, we also mention the reverseteirec

Theorem 13. Let (P, -) be a trivial system of polarities. Then the polarized treenbé

nation based ofiP, -) is associative.

Proof. If (P, -) is a trivial system of polarities then any combination of teeds of polar-
ized trees results in the empty set (no solutions). Evigieptilarized tree combination

based or{ P, -) is associative. ]

Corollary 14. Let(P,-) be a system of polarities. Then polarized tree combinataset

on (P, -) is associative if and only ifP, ) is trivial.

5.3.5 Practical Consequences

Evidently, (polarized) tree combination induces a noreaisgive grammar combination
for PUG. In some cases the result of the non-associativjijais overgeneration: For ex-
ample, in Figure 5.6({T6}Jtr{T7})Jtr{T8} strictly includes (and, consequently, overgen-
erates with respect t({)l"ﬁ}i({ﬂ}jr{Tg}). In general, however, non-associativity results

in two non-equal sets: For example, consider Figure 5.9 sncandidate solutions for
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length-3 paths and assume tlhat= bc = bb = cc = b. The length-3 solutions of this
case are depicted in Figure 5.10. Clearly the resulting setsa equal but none of them
overgenerates with respect to the other. The non-assatyiaif the combination clearly
compromises its usability for (modular) development oféascale grammars: When the
grammar designer wrongly assumes that the combinatiorabperis associative, he or
she can take advantage of this misconception to achieve e effizient computation of
the combination. This may lead to an incorrect result (whithy sometimes over- or
undergenerate with respect to the correct result). Sudiigares may be difficult to locate

due to the size of the grammar.

T % | T (T HT)HD) {T}+({T2} HT:))

b c c c b c b b c

cl b | c| b b b boob b
b b b boob b
b c c c b c

Figure 5.10: Length-3 paths solutions

When a combinations associative, the grammar designer is free to conceptualize
about the combination of grammar fragments in any order;rnas that this makes the
formalism more “friendly” to the grammar engineer, and leeeasier to work with. In the
next section we analyze the reasons for the non-assotyativi introduce new definitions

which induce an associative grammar combination operator.
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5.4 From Trees to Forests

Let us now analyze the reasons for the non-associativityeef tombination. Consider
againTy, Ty, T3 of Figure 5.1 and’; of Figure 5.4.T5 is a member O{Tl}jr({TQ}jr{T?,})
but not of({Tl}Jtr{Tz})Jtr{Tg}. The reason is that iffy, 7; and 7> are substructures
separated by/3. When7T; and T3 are combined first/; connects to one of the nodes
of T3; then, whenT} is added, it is connected to another nodelpf However, when
T andT, combine first, they must be connected through a common natleamot be
separated as they areip.

Similarly, considering agaiity, 77, 71, of Figure 5.8 and their combinations, clearly

(T} +({Tio}+H{Tu HZ AT} H{Tio))+H{Tn }

WhenTy, andT;; are combined, their two single nodes must identify in ordeyield
a tree. However, whefly and T}, combine first, the single node @f, can identify
with either of the two nodes dfy. Then, when the resulting tree is combined with,
the single node of}; can be identified with the other node Bf (the one that was not
identified with the node ofy). This is Why({Tg}Jtr{Tlo})th{Tn} overgenerates with
respect to{ 7} + ({Tio} HTw1}).

The above cases exemplify the causes for the non-assdgiatiiree combination:
When two trees are combined, at least two nodes (each frorfeaadiif tree) must identify.
Hence, the two trees must be connected in the resultingli@eever, other combination
orders that allow two trees to be separated (by other tregsyield results which cannot
be obtained when the two trees are first combined together.

The solution we propose is based on a move to the powersetnlan@ader to ensure
associativity of grammar combination. Working in the posegrdomain, rather than the
original entities, enables the operator to ‘rememladirthe possibilities; then, after the
combination, an extra stage is added (corresponding toetmution stage in TUG) in

which the original entities are restored.
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In the case of tree combination, the basic units should lestsrather than trees; and
forest combinatiommust be defined over sets of forests rather than sets of tFe@est
combination is defined in much the same way as above: twotfoe#s combined by
identifying some of their nodes. Again, if two nodes are tifead then all their ancestors
must be identified as well. We allow two forests to combinene¥@one of their nodes
are identified. Furthermore, similarly to tree combinatiovo different nodes in the same
forest represent different entities. Therefore, when terests are combined, two nodes

can be identified only if they belong to the two different feise

Definition 35. A forest (V, £, R) is a finite set of node-disjoint trees with verticés

edgest and rootsR. If (V, E,r) is atree, thenV, E, {r}) is its corresponding forest

The meta-variable”’ ranges over forests and E, R over their components. The
meta-variableF ranges over sets of forests. The definition of disjointnessivially

extended to forests and set of forests.

Definition 36. Two forestsFy, = (V4, Eq, Ry), F» = (Vs, By, Ry) are isomorphic, de-
notedl’; ~ I3, if there exists a total one to one and onto functiorl; — V5 such that for

all u,v € Vi, (u,v) € Eyiff (i(u),i(v)) € Ey; and forallu € Vi, u € Ry iff i(u) € Rs.

The definition of isomorphism of sets of trees is extendects sf forests (using the

above definition of forests isomorphism).

Definition 37. Let I, = (V4, E1, Ry), Fo = (Va, By, Rs) be two disjoint forests. An

equivalence relationé’ over V; U V; is legal if both:

1. for all vy, v € V3 U Vs, if Ulévg andwv; # v, then eitherv; € V4 andv, € V5 or

v; € Vo andwv, € Vi and

2. forall uy, vy, ug, v9 € V3 U Vs, if vlévg, uy IS the parent ofy; andu, is the parent

f
of vy, thenu; Xus,.

Eq(Fy, F») is the set of legal equivalence relations ovgru Vx.

84



Notice that in contrast to definition 25, a legal equivaleratation over forests permits
a combination in which no nodes unify. Such a grammar contisinamounts to a set

union of the two forests.

Definition 38. Let F} = (V4, Ey, Ry), F» = (Va, Esy, Ry) be two disjoint forests and let
é be a legal equivalence relation ovéf U V,. Theforest combination of F;, F5 with
respect to é denotedr, + , F3, is a forestF" = (V, E, R), wherel” and E are as in
rfor all u € [r]

definition 26, andk = {[r] u € Ry URy}.

o
~

Q=

When two forests are combined, nodes in the same equivaléas® are identified.

Since the equivalence relation is legal, the resultingcstine is indeed a forest.

Definition 39. Let F;, 5, be two disjoint sets of forests. Tl@est combination of

f .
Fi1, Fo, denotedF; +F;, is the set of forests

F= U P+, F
Fy € F1,F € F2

f
~ € Eqp(F1, I2)

Example 16. ConsiderF,, F}, of Figure 5.11. Three membersbﬂ}i{Fg}, namelyFs;,
Fy, F5, are depicted in Figure 5.12F% is obtained by identifying; andgg, F is obtained
by not identifying any of the nodes aig is the result of identifying; with ¢; and ¢;
with ¢;. Notice that inf7, the two separated trees 61 are connected through the single
tree of . Fg of Figure 5.12 is not a member @Fl}—{—{Fg} because it identifieg, and

g5 Which belong to the same forest.

Example 17. Consider agairl}, 15, T5 of Figure 5.1 andl; of Figure 5.4. LetF}, Fs,
F3, F5 be their corresponding forests, respectivelly. of Figure 5.13 is a member of
{Fl}‘{'{FQ} which is obtained by not identifying any of the two forests soflgis a mem-
ber Of{F}—{-{Fg} which is obtained by identifying the two rootsi®fwith the two leaves
of F3. Hence,F5 is a member of botI@Fl}ﬁfL({Fg}T{{Fg}) and({Fl}—{{Fg})—{{F3}.
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Fy Fy

él1 él4
42/ \03 L5 L?

Figure 5.11: Two forests to be combined

Fg F4 F5 F6
él4
4,46
1 4 /
1 4 d6 é5, 46
/\ / 1,495,497
> i3 45506 / \ ‘ ‘ ‘ /\
2 é3 &5 &7 é1,q7
\ 2 3
7
2 3

Figure 5.12: Legal and illegal combinations6f, F;

The forest combination operation can be easily extenddtketpalarized case. This is
done in the same way tree combination is extended to pothtize combination: Polari-

ties are attached to nodes and an extra condition for théifidation of two nodes is that

Figure 5.13: A forest combination @f; and F,
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their polarities combine; in that case the new node has tkeipowhich is the product
of the two nodes polarities.

We extend the forest combination operation to the polarzask. This is done in
the same way tree combination is extended to polarized tedbination: Polarities are
attached to nodes and an extra condition for the identi@inadf two nodes is that their
polarities combine; in that case the new node has the pplahich is the product of the
two nodes polarities. For the following discussion we asstimat a system of polarities
(P,-) is given.

Definition 40. A polarized forest(V, E, R, p) is a forest in which each node is associated

with a polarity through a total functiop : V' — P. If (V, E| R, p) is a polarized forest

then(V, £, R) is itsunderlying forest.
Definition 41. Two polarized forests amisjoint if their underlying forests are disjoint.

Definition 42. Two polarized forest; = (Vi, Ey, Ry, p1), Fo = (Va, Es, Ro, po) are
isomorphic, denotedF; ~ F,, if their underlying forests are isomorphic and, addititiga

forall v € Vi, p1(v) = p2(i(v)).

The definition of isomorphism of sets of forests is triviaéiytended to sets of polar-

ized forests.

Definition 43. Let I} = (Vi, By, Ry, p1), Fo» = (Va, Es, Ry, p2) be two disjoint polarized
forests. An equivalence relatioé‘ over V; UV, islegalif it is legal over the underlying
forests of F; and F, and, additionally, for allv; € V; andwvy, € V5, if vléz@, then
p1(U1) 'p2(U2)l-

Eq¢(Fy, Fy) is the set of legal equivalence relations ovgru V5.

Definition 44. Let F}, = (Vi, Ey, Ry, p1), F» = (Vs Es, Ra, po) be two disjoint polarized
forests and Ieté’ be a legal equivalence relation ovéf; U V;. Thepolarized forest
combination of F, F; with respect to é denoted” + ; Fyis aforestl’ = (V, E, R, p)

where:
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e V. I/ and R are as in definition 38

[ (0 Up)(0) ], =}
e forall [’U]é € V,p([v]é) =9 (p1Ups)(v) - (p1Upo)(u) if [U]i = {v,u} and
u# v

\

The definition of forest combination of sets of forests igiétlly extended to sets of

polarized forests.

Example 18. Consider again the systems of polarities depicted in Figurg &nd
Ty, T19, T1, of Figure 5.8. LetFy, Fiy, 11 be their corresponding forests, respectively.
The forest combination dfFy}, {Fio}, { 11} is depicted in Figures 5.14 (intermediate

results) and 5.15. Here,

{Fo - {Fio ) H P 2 {Fo - ({Fo} H{ P )

{Fo} H{Fio} [Fo} HF}
o O ® O
‘ ‘ ‘ o| (0 o
O o o

Figure 5.14: Intermediate results

In order to guarantee the associativity of tree combinatvenmoved from trees to
the powerset domain, i.e., to forests. However, our intaees the trees rather than
the forests. Therefore, after all the forests are combiae@solution stage is required
in which only desired solutions are retained. In our cass,ithdone by eliminating all
forests which are not singletons. For example, executiegréisolution stage over the

forests of Figure 5.15, retains only the four forests of thpar row.
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Figure 5.15: Forest combination 6%, o and Fy1: ({Fo}+{Fio}) +{Fi.} =

(R} ({Fuo} H{Fu )

Theorem 15. Forest combination is an associative operationif, 75, F3 are disjoint
fof fof . :
sets of forests thef{ F1+F,)+F3)=(F1+(F2+F3)). This holds both for non-polarized

and for polarized combination, as long B, -) is commutative.

The proof is given in the following section.

Summing up, we showed how to redefine tree combination in RU&der to guar-
antee the associativity of the operation. In this way, thelgioation operator can be
implemented more flexibly, independently of the order of &hguments, which results
in more efficient computation. In particular, we showed esponding (but associative!)

computations of all the (non-associative) examples of tegipus sections.

5.5 (Polarized) Forest Combination is Associative

We now show that forest combination (both with and withouaptes) is an associative
operation. We begin by proving the associativity of the potarized case. To do so, we
need to show that if’ ((]—“1—];}"2)4];]-“3) then (3’-“14]0—(]-"24];]-“3)) includes an isomorphic
forest of F'. The isomorphism is required in order to ignore the irretéveames of nodes.

To be able to refer to any isomorphic tree of the combinatesult, we definenutual
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combination If F3 is a forest combination af; and F;, with respect to some legal equiv-
alence relation then both, and F;, are substructures df;, and furthermorel; contains
no redundant information: Every arc and nodéirbelongs to either of the substructures
that are induced by} andF5. This property is common for all the isomorphic treedpf
Moreover, F; and F;, induce in all these isomorphic trees the exact same subhstesc

F3 and all its isomorphic trees are mutual combinationgoédnd F.

Definition 45. Let I}, F5, F5 be disjoint forests F3 is amutual combination of F; and
F,, denotedF; @ Iy — F3, if there exists a total functiofi : ViUV, — V3 (a combination

function) such that all the following hold:

e fisonto

e for all u,v € V3 UV, if uis the parent ob (in either F} or F3) then f(u) is the

parent of f(v) in Fj3

e forall u,v € V3, if u is the parent ob in F3 then there exist’, v € V; U V5 such

that«' is the parent o/ (in either F} or Fy), f(v') = uvand f(v') = v

e forall u,v € VUV, if f(u) = f(v) andu # v then eitheru € V; andv € V; or

u e Vyandv € V)

The second condition guarantees thatind F; are substructures df;. The first and
third conditions guarantee that contains no redundant information. The last condition
guarantees that two different nodes in the same forestgsepting different entities)
correspond to different nodes iy. Lemma 16 and theorem 17 show that indeed mutual

combination corresponds to forest combination.

Lemma 16. If F}, F5, F3, F, are disjoint forests such that; ® £, — F5 and F3~F}, then
F1 D F2 [d F4.

Proof. Let F}, F5, F3, Fy be disjoint forests such thdt, ® F, — F; and F3~F},. Then

there exist a combination functigh: V; U V, — V3 and an isomorphism: V3 — Vj.
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Defineh : V; U Vo, — V; where for allv € V; U Vs, h(v) = i(f(v)). h is a combination

function (the actual proof is suppressed) and hehge) F; — F). O]

Theorem 17. Let Iy, F5, F5 be disjoint forests. The following two conditions are equiva-

lent:
[ ] Fl D FQ [d F3

e there exist a foresf), and a legal equivalence relatioé € Eqs(Fy, F,) such that

Fy=F +f F andF3~F4

Proof. Let Fy, F», F3 be disjoint forests and assume that there exist a fdteand a legal
equivalence relatior{s € Eq(Fy, Fy) such thatFy = Fy + ; F, and F3~F). Observe

[v] f)|(u,v) € Ey U Ey}. Define

L

thatVy = {[v];|v € vi UV} and Ey = {([u]
h: ViUV, — AX}4 where for allv € V1 U V5, h(v) = [v] ;. his a combination function
and hencefl; @ I, — F}. SinceF,~F3 and by lemma I6F1 @ Fy — F3.

Let Fy, F5, F5 be disjoint forests and assume that® F, — F3. Therefore, there
exists a combination functiofi: V; UV, — V3. Define a relation&’ over V; U V, where
forall u,v € Vi U Vs, u = v iff f(u) = f(v). Clearly, =’ is an equivalence relation.
Furthermore, %’ is legal. Now, definef, = F| +~ F5 and defing : V, — V3 where for

all [v]~ € V4, i(Jv]~) = f(v). Notice thati is well defined because for all v such that

uv, f(u) = f(v).iis an isomorphism of; and F,. O

Notice that since forest isomorphism is reflexive and by teeol7, if F + , Fy = F3

thenF1 & Iy — Iy,

Theorem 18. Forest combination is an associative operationif, 7, F3 are disjoint

Fof fof
sets of forests thef{F,+F2)+F3) = (Fi+(Fo+F3))

Proof. Let Fy, F,, F3 be disjoint sets of forests and assume that= (V,E, R) €
Fof . f
(Fi+F2)+Fs. Then there exist’ € Fi+F,, 5 € Fs3 and~,€ Eqp(F', F3) such

that F’ +~, F3 = F. Therefore by theorem 1%’ ¢ F; — F, and hence, there exists a
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combination functiory; : VU V3 — V. F' € }“ﬁft}“g and therefore there exist ¢ 7,
F, € F, and~ye Eq¢(Fy, Fy) such thatFy +~, >, = F'. Therefore by theorem 17,
F, ® F, — F' and hence, there exists a combination function; UV, — V. Define
f:ViuV,uVs — V where:

fi(v) veVs

filfa(v) veVIUV,
Let F, be a graph defined by the restrictionfofo V5 U V3, where:

flv) =

o Vi={f(v) |velaUVs}

o Eyv={(f(u), f(v)) | (u,v) € E;U Es}

e Ry = {f(r) | » € Ry U R3 and for allv € V, U V3 such thatf(v) = f(r),
UGRQUR;),}

Fy is a forest andfjy,uy, (the restriction off to V5 U V3) is a combination function of
F, and F; to F) (the actual proof is suppressed). Hengge® F3 — Fy and therefore
by theorem 17, there exist a fores and a legal equivalence relatiepyc Eqs(Fs, F3)
such thatFy = F; +~, F3 and Fs~F,. Hence,F; € fgn{fg. Leti : V3 — V; be an
isomorphism off; and ;. Defineh : Vs U Vi — V where:

flv) ven

i(v) vels

h(v) =

h is a combination function of; and F; to F. Hence,F; & F5 — F', and therefore by
theorem 17, there exists a forest and a legal equivalence relatieeye Eq;(Fy, F)
such thatt” = F} +~, Fs andF"~F’. Hence,F" € fl—{—(fgifg) andF"~F".

The proof that ifF € fl—fk(fgnftfg) then there exist$” ¢ (fl‘{‘fé)‘{‘fg such that

F~F'is symmetric. [l

We now prove the associativity of polarized forest comborat The proof idea is
similar to the proof of the non-polarized case. For the feitg discussion, assume that

a system of polaritiegP, -) has been specified.
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Definition 46. Let F}, F,, F3 be disjoint polarized forestst; is a mutual combination
of I} and F;, denotedF; & F, — Fj3, if there exists a total functiorf : V; UV, —
V3 (a combination function) such thatf is a combination function of the underlying
forests, and, additionally, for alb,, v, € Vi U Vs, if f(v1) = f(ve) andv; # vy then

(p1Upz)(v1) - (pr Upz)(v2)] @and(py U pa)(v1) - (p1 U p2)(v2) = ps(f(v1)).

Lemma 19. If Fy, F», F3, F, are disjoint polarized forests such th&at ¢ F, — F3 and
FgNF4, thenF1 ® Iy — Fy.

Proof. Similar to the proof of lemma 16. O]

Theorem 20. Let F, Fy, F3 be disjoint polarized forests. The following two conditions

are equivalent:

e there exist a foresf); and a legal equivalence relatioh € Eq;(F, F) such that

F,=F —|—f F, andF3~F4
o @ Fy— Iy
Proof. Similar to the proof of theorem 17. ]

Theorem 21. Let (P,-) be a system of polarities. Then polarized forest combinatio

based on P, -) is an associative operation: jf;, F,, F5 are disjoint sets of forests then
f VR | f
(F4+F)+F3) X Fi+(Fe+F3))

Proof. Similar to the proof of theorem 18. n

5.6 Forest Combination and XMG

The results of the previous section bear relevance to thegreenmar paradigm and
specifically to XMG (Duchier, Le Roux, and Parmentier, 2004l6Ee, 2005). In partic-
ular, the forest-based grammar combination operation eandtrumental for defining an

alternative semantics for XMG, which we sketch in this satti
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XMG provides the grammar writer with a tree-descriptionitpgvhose semantics
is based on trees. A given formula denotes an infinite seteefsireach satisfying the
conditions of the formula. This denotation is restricteddmynsidering only the finite
set ofminimaltrees satisfying the description (Duchier and Gardent918ichier and
Gardent, 2001). Conceptually, computation of the minirmes tnodels of a given formula
consists of two stages: The first computes the (infinite 9eted models of a formula and
the second extracts from these models only the minimal ofles.following definitions

are based on Duchier and Gardent (1999) and Duchier and G4a0©1).

Definition 47. Aformula ¢ is an arbitrary conjunction of dominance and labeling con-

strains
pu=¢ANG |raylrz=y|aly

wherez, y are taken from a set of variablés.
The semantics is given by interpretation over finite treecttires.

Definition 48. LetV,; be the set of variables occurring in a formula A tree solution of
¢ is a pair (T, I) whereT = (V, E,r) is a finite tree (atree mode) and/ : V, — V' is
a function (aninterpretation ) that maps each variable in to a node inT". = <y means
that, in the solution tred” , I(x) must dominatd (y); * = y means that (x) = I(y);
andz_Ly means that (x) # I(y). Thedenotation of a formula¢, denotedsS,,,,(¢) is

the set of its tree solution7', I) | (T, I) is a tree solution of}.

If T'is a tree model of, then every tre@” which containg” as a subtree is also a tree
model ofy. Therefore, there are infinitely many tree models of any fdam. To restrict
the infinite set to desired treesiinimal (finite) models are considered. Any formuba

has only finitely many minimal tree models (up to isomorphism

3Duchier and Gardent (1999) and Duchier and Gardent (20Gihedgeveral more operators (e.g., prece-
dence and labeling). For the sake of simplicity we restnigselves to the list of operators presented in this

definition, but all the results can be extended to the fulldfoperators.
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Definition 49. A tree modell” is a minimal tree model* of ¢ if all nodes inT interpret
at least one variable i. Thenextract(Symy(¢)) = {T | (T,1) € Symy(¢) andT is a

minimal tree model op}.

We propose an alternative semantics, dendtedfor tree descriptions, based on the
forest combination operation of section 5.4.9p. a formula denotes the set of minimal
forests satisfying it. Forest combination operates diyext minimal forests in a way that
corresponds to formula conjunction in the syntactic leVéle denotation of a conjunction
of formulas is the combination of the denotations of the goofs. Here, also, a resolution

stage is required, to retain only forests which are singke{ae., trees).

Definition 50. LetV be the set of variables occurring in a formula A forest solution
of ¢ is a pair (F, I) whereF = (V, E, R) is a finite minimal forest (éorest mode) and
I .V, — Vis an onto function (amterpretation) that maps each variable in to a
node inf such that all nodes i interpret at least one variable in. x <y means that,
in the solution fores¥' , I(x) must dominatd (y); * = y means that (z) = I(y); and
Ly means that (x) # I(y). Thedenotation of a formula¢, denotedS;.(¢), is the set
of its forest solutiong (#, I) | (F, I) is a forest solution of}. Defineresolve(Ss.(¢)) =

{F'| (F,1I) € St.(¢) and F' is a singleton.

Observe that in this semantics a formula can denote onlglnihany forests (up to

isomorphism). The two semantics,,,,, and.Sy,, coincide.
Theorem 22. extract(Symg(¢)) = resolve(Sg.(¢))

Proof. AssumeT’ € extract(Sumg(¢)). Then, there exists an interpretatiérirom the

variables ofp to the nodes of" such tha{ 7', I) is a tree solution of and7" is a minimal

4In Duchier and Gardent (1999) and Duchier and Gardent (208& definition of minimal tree models
is based on the notion of D-trees (Rambow, Vijay-Shanket \&air, 1995). For the sake of simplicity we

do not use this notion, but all the results can be easily ee@mo D-trees.
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tree model. Any tree is also a forest (a singleton) and tbeeet” is also a forest model
of ¢. Hence(T',I) € S;.(¢). SinceT is a tree, it follows thatT’, I) € resolve(S¢.(¢)).
Now assume that’ € resolve(Ss.(¢)). Then, there exists an interpretatidrirom
the variables ofs to the nodes of" such that(F, I) is a forest solution of and F' is a
tree. Sincef'is atree(F, ) € Symy(¢). (F,I) is a forest solution of and therefore”

is a minimal model. HencéF, I) € extract(Symg(¢)). O

Since the two semantics coincide, either one of them candmkingn implementation
of XMG. Specifically, in the existing implementation of XM@&e& grammar designer is
presented with finite trees only, and the infinite tree modedsnever explicitSy, offers
the opportunity to use finite trees as the bona fide denotafibree descriptions. This,
however, comes with a cost: the number of tree fragments oan gery fast, and a
sophisticated cashing mechanism will be necessary in astipal implementation.

Both approaches require a resolution stage; the resolutge & the forest combina-
tion approach seems to be simpler, requiring only the etitraof singletons from a set.
However, it could also be less efficient, due to the growttharumber of trees and the
fact that resolution is deferred to the end of the computatio

To sum up, the forest combination semantics provides thempar writer with a
formally defined operation executed directly on the minimmaidels amounting to the
conjunction operation in the syntactic level of tree dgaans. Whether or not it can be

practically beneficial remains to be seen.

5.7 Conclusion

We have shown how the tree combination operation in PUG caed®ined to guarantee
associativity, thus facilitating the use of this powerfatdlexible formalism for grammar
engineering and modular grammar development. The key tedllwion is gpowerset-lift

of the domain and the corresponding operation: Rather thakimgowith trees, manip-
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ulating forests provides means to ‘rememlat’'the possible combinations of grammar
fragments. Then, after all fragments are combinadsalutionstage is added to produce
the desired results. The same powerset-lift has been useditain the associativity of
signature modules combination with respect to therelation (section 2.2). We believe
that this method is sufficiently general to be applicable vargety of formalisms. In par-
ticular, it is applicable to the general case of PUG wherdrary objects and structures
are manipulated. In this case also, the move to the powensedid by manipulating sets

of objects, rather than the objects themselves, enforces@divity.
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Chapter 6

Discussion and conclusions

We presented the foundations of typed unification grammalutes and their interaction.
Unlike existing approaches, our solution is formally definmathematically proven, can
be easily and efficiently implemented, and conforms to eddhedesiderata listed in

section 1.2 as we show below.

Signature focus: Our solution focuses on the modularization of the signattiapter 2)
and the extension to grammar modules (section 2.5) is rfednchconservative.
We do restrict ourselves in this work to standard type signestwithout type con-
straints. We defer the extension of type signatures to dechiso type constraints

to future work.

Partiality: Our solution provides the grammar developer with meanseoi§pany piece
of information about the signature. A signature module n@sc#y partial infor-
mation about the subtyping and appropriateness relationgke ordinary signa-
tures, the appropriateness relation is not a function aediéveloper may specify
several appropriate nodes for the values of a feaktuat a node;. The anonymity
of nodes and relaxed upward closure also provide means falgg. Another re-
laxation that supports partiality is not enforcing featunteoduction and the BCPO

conditions. Finally, the possibility to distribute the granar between several mod-
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ules and the relaxation of well-typedness also suppordéssderatum.

Extensibility: In section 2.4 we show how a signature module can be detesticily

extended into a bona fide signature.

Consistency: When modules are combined, either by merge or by attachnimengjgna-
ture modules are required to be mergeable or attachabjgeategely. In this way,
contradicting information in different modules is detetpeior to the combination.
Notice that two signature modules can be combined only iféiselting subtyping

relation is indeed a partial order.

Flexibility: The only restrictions we impose on modules are meant to ptesdbtyping

cycles.

(Remote) Reference:This requirement is achieved by the parametric view of nodes

Anonymity of nodes also supports this desideratum.

Parsimony: When two modules are combined, they are first unioned; thusethéting
module includes all the information encoded in each of thelutes. Additional
information is added in a conservative way by compactionfAmalosure in order

to guarantee that the resulting module is indeed well-défine

Associativity: We provide two combination operatiomsergeandattachment The at-
tachment operation is an asymmetric operation, like fomcpplication, and there-
fore associativity is not germane. The merge operationghikisymmetric, is both

commutative and associative and therefore conforms wishdinsideratum.

Privacy: Privacy is achieved through internal nodes which encodenmétion that other

modules cannot view or refer to.

Modular construction of grammars, and of type signaturgzanticular, is an essen-

tial requirement for the maintainability and sustainapibf large-scale grammars. We
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believe that our definition of signature modules, along whit operations omergeand
attachmentprovide grammar developers with powerful and flexible $dok collabora-
tive development of natural language grammars, as denad@gtin section 3.

Modules provideabstraction for example, the moduléist of Figure 2.12 defines
the structure of a list, abstracting over the type of its @ets. In a real-life setting, the
grammar designer must determine how to abstract away respiects of the developed
theory, thereby identifying the interaction points betwé®e defined module and the rest
of the grammar. A first step in this direction was done by Berahel Flickinger (2005);
we believe that we provide a more general, flexible and pawéidmework to achieve
the full goal of grammar modularization.

This work can be extended in various ways. First, this wodkigas on the modularity
of the signature. This is not accidental, and reflects thérakty of the type signature
in typed unification grammars. An extension of signature uheslto include also type
constraints is called for and will provide a better, fullehgion to the problem of grammar
modularization. In a different track, we also believe that&modularization capabilities
can still be provided by means of the grammar itself. Thigedtion is left for future
research.

While the present work is mainly theoretical, it has impotfaractical implications.
An environment that supports modular construction of lesgale grammars will greatly
contribute to grammar development and will have a significapact on practical imple-
mentations of grammatical formalisms. The theoreticalsdoa®g presented in this work
was implemented as a system, MODALE, that supports mod@aeldpment of type
signatures (chapter 4). Once the theoretical basis is @&teto include also type con-
straints, and they as well as grammar modules are fully rated in a grammar devel-
opment system, immediate applications of modularity arecewable (see section 1.2).
Furthermore, while there is no general agreement amongi$itegon the exact form of

modularity in grammar, a good modular interface will pravttie necessary infrastructure
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for the implementation of different linguistic theoriesdawill support their comparison
in a common platform.

Finally, our proposed mechanisms clearly only fill very f@agunae of existing gram-
mar development environments, and various other prowssiah be needed in order for
grammar engineering to be as well-understood a task asaef@ngineering now is. We

believe that we make a significant step in this crucial journe

101



Bibliography

References

Abeillé, Anne, Marie-Hlene Candito, and Alexandra Kinyon. 2000. FTAG: developing
and maintaining a wide-coverage grammar for French. Intf@rkanrichs, Detmar
Meurers, and Shuly Wintner, editolBroceedings of the ESSLLI-2000 Workshop on

Linguistic Theory and Grammar Implementatjgages 21-32.

Basili, R., M. T. Pazienza, and F. M. Zanzotto. 2000. Custonkzatodular lexicalized
parsing. InProceedings of the sixth international workshop on parseahhologies

(IWPT 2000) pages 41-52, Trento, Italy, February.

Bender, Emily M., Dan Flickinger and Stephan Oepen. 2002. Jriaenmar matrix:
An open-source starter-kit for the rapid development o$s#inguistically consistent
broad-coverage precision grammars. Firoceedings of the Workshop on Grammar
Engineering and Evaluation at the 19th International Coafeze on Computational

Linguistics. Taipei, Taiwarpages 8-14.

Bender, Emily M. and Dan Flickinger. 2005. Rapid prototypirfigcalable grammars:
Towards modularity in extensions to a language-indepetnct@e. InProceedings of

IJCNLP-05 Jeju Island, Korea.

Bender, Emily M., Dan Flickinger, Fredrik Fouvry, and Melargiegel. 2005. Shared

102



representation in multilingual grammar engineerinesearch on Language and

Computation3:131-138.

Brogi, Antonio, Evelina Lamma, and Paola Mello. 1993. Compgsipen logic pro-

grams.Journal of Logic and Computatioi3(4):417-439.

Brogi, Antonio, Paolo Mancarella, Dino Pedreschi, and Foafgrini. 1990. Compo-
sition operators for logic theories. In J. W. Lloyd, edit@pmputational Logic —

Symposium Proceedingsages 117-134. Springer, November.

Brogi, Antonio, Paolo Mancarella, Dino Pedreschi, and Foaharini. 1994. Modu-
lar logic programming.ACM transactions on programming languages and systems

16(4):1361-1398, July.

Brogi, Antonio and Franco Turini. 1995. Fully abstract comiional semantics for an

algebra of logic programslheoretical Computer Scienck49:201-229.

Bugliesi, Michele, Evelina Lamma, and Paola Mello. 1994. Madty in logic pro-

gramming.Journal of Logic Programmingl9,20:443-502.

Candito, Marie-Hlene. 1996. A principle-based hierarchical representatfdiTAGs.
In COLING-96 pages 194-199, Copenhagen, Denemark. Association for Gampu

tional Linguistics.

Carpenter, Bob. 1992a. ALE — the attribute logic engine: 4sguide. Technical report,
Laboratory for Computational Linguistics, Philosophy Depeent, Carnegie Mellon
University, Pittsburgh, PA 15213, December.

Carpenter, Bob. 1992bThe Logic of Typed Feature Structure€ambridge Tracts in

Theoretical Computer Science. Cambridge University Press.

Cohen-Sygal, Yael and Shuly Wintner. 2006. Partially spegisignatures: A vehicle for

grammar modularity. IfProceedings of the 21st International Conference on Com-

103



putational Linguistics and 44th Annual Meeting of the Assioan for Computational
Linguistics (COLING-ACL)pages 145-152, Sydney, Australia, July.

Cohen-Sygal, Yael and Shuly Wintner. 2007. The non-assaityabf polarized tree-
based grammars. I@elbukh, A., editor, Proceedings of the Conference on Compu-
tational Linguistics and Intelligent Text Processing (CI6§42007), volume 4394 of
Lecture Notes in Computer Science (LNCS), Berlin and Heidell&pgnger, pages
208-217, Mexico City, Mexico, February.

Copestake, Ann. 2002mplementing typed feature structures gramma&$SLI publica-

tions, Stanford.

Copestake, Ann and Dan Flickinger. 2000. An open-source imia@ntdevelopment en-
vironment and broad-coverage English grammar using HP8®rdceedings of the
Second conference on Language Resources and EvaluatidbCA2R00) Athens,

Greece.

Crable, Benoit. 2005. Grammatical development with XMG.Rroceedings of the 5th
International Conference on Logical Aspects of Computalidiaguistics (LACL)

Bordeaux, France, April.

Crable, Benoit and Denys Duchier. 2004. Metagrammar reduxC3hP, Copenhagen,

Denemark.

Dalrymple, Mary. 2001Lexical Functional Grammawolume 34 ofSyntax and Seman-

tics. Academic Press.

Debusmann, Ralph. 2006Extensible Dependency Grammar: A Modular Grammar

Formalism Based On Multigraph DescriptioRh.D. thesis, University of Saarlandes.

Debusmann, Ralph, Denys Duchier, and Andreas Rossberg. 2@08ular grammar

design with typed parametric principles. Pmoceedings of FG-MOL 2005: The 10th

104



conference on Formal Grammar and The 9th Meeting on Mathemat Language

Edinburgh, August.

Duchier, Denys and Claire Gardent. 1999. A constraint-b&eedment of descriptions.

In Third International Workshop on Computational SemantivgqIS-3)

Duchier, Denys and Claire Gardent. 2001. Tree descriptimmsstraints and incremen-
tality. In Harry Bunt, Reinhard Muskens, and Elias Thijssétoed, Computing Mean-
ing, Volume 2volume 77 ofStudies In Linguistics And Philosoph§luwer Academic

Publishers, Dordrecht, December, pages 205-227.

Duchier, Denys, Joseph Le Roux, and Yannick Parmentier. .200¢% metagrammar
compiler: An NLP application with a multi-paradigm arclutere. InProceedings
of the Second International Mozart/Oz Conference (MOZ 200Harleroi, Belgium,

October.

Erbach, Gregor and Hans Uszkoreit. 1990. Grammar engmgerProblems and
prospects. CLAUS report 1, University of the Saarland andr@erresearch cen-

ter for Artificial Intelligence, July.
Fodor, Jerry. 1983The modularity of MindMIT Press, Cambridge, Mass.

Gaifman, Haim and Ehud Shapiro. 1989. Fully abstract coitipnal semantics for
logic programming. Inl6th Annual ACM Symposium on Principles of Logic Pro-

gramming pages 134-142, Austin, Texas, January.

Garey, Michael R. and David S. Johnson. 19Z@mputers and Intractability: A Guide

to the Theory of NP-Completene$. H. Freeman, New York.

Hinrichs, Erhard W., W. Detmar Meurers, and Shuly Wintned0£. Linguistic theory

and grammar implementatioResearch on Language and Computatidri55-163.

Jackendoff, Ray. 200ZFoundations of LanguageOxford University Press, Oxford, UK.

105



Joshi, Aravind K., L. Levy, and M. Takahashi. 1975. Tree AdjuGrammars.Journal

of Computer and System Sciences

Kahane, Sylvain. 2006. Polarized unification grammars.Pioceedings of the 21st
International Conference on Computational Linguistics adthdAnnual Meeting of
the Association for Computational Linguistics (COLING-ACL @0pages 137-144,

Sydney, Australia, July.

Kahane, Sylvain and Francois Lareau. 2005. Meaning-teiication grammar: mod-
ularity and polarization. IrProceedings of the 2nd International Conference on

Meaning-Text Theorypages 197-206, Moscow.

Kallmeyer, Laura. 2001. Local tree description gramm@wmsammars 4(2):85-137.

Kaplan, Ronald M., Tracy Holloway King, and John T. MaxwelD02. Adapting exist-
ing grammars: the XLE experience. @OLING-02 workshop on Grammar engineer-
ing and evaluatioppages 1-7, Morristown, NJ, USA. Association for Computelo

Linguistics.

Kasper, Walter and Hans-Ulrich Krieger. 1996. Modulamgoodescriptive grammars for
efficient parsing. InProceedings of the 16th Conference on Computational Linguis

tics, pages 628—633, Kopenhagen. Also available as VerbmolpibiR&40.

Keselj, Vlado. 2001. Modular hpsg. Rroceedings of the 2001 IEEE Systems, Man, and

Cybernetics Conferenc®ctober.

King, Tracy Holloway, Martin Forst, Jonas Kuhn, and MiriamtBu2005. The feature
space in parallel grammar writingqResearch on Language and Computatidri39—

163.

Mancarella, Paolo and Dino Pedreschi. 1988. An algebragid jorograms. In Robert A.

Kowalski and Kenneth A. Bowen, editorspgic Programming: Proceedings of the

106



Fifth international conference and symposiuysages 1006—-1023, Cambridge, Mass.
MIT Press.

Melnik, Nurit. 2006. A constructional approach to verbtiali constructions in modern

hebrew.Cognitive Linguistics17(2):153-198.

Meurers, Detmar, Gerald Penn, and Frank Richter. 20R2nveb-based instructional
platform for constraint-based grammar formalisms and pags In Dragomir Radev
and Chris Brew, editors, Effective Tools and MethodologiesTeaching NLP and

CL, The Association for Computational Linguistics, New Bruiguy NJ.

Mitchell, John C. 2003.Concepts in Programming Language€ambridge University
Press, Cambridge, UK.

Muller, Stefan. 2007. The Grammix CD Rom. a software collectmndeveloping
typed feature structure grammars. In Tracy Holloway King &mily M. Bender,
editors,Grammar Engineering across Frameworks 20&fudies in Computational

Linguistics ONLINE. CSLI Publications, Stanford, pages 2866.

Oepen, Stephan, Dan Flickinger, Hans Uszkoreit, and JoiriFBujii. 2000. Introduction

to this special issueNatural Language Engineering(1):1-14.

Oepen, Stephan, Daniel Flickinger, J. Tsujii, and Hans biszik editors. 2002Collabo-
rative Language Engineering: A Case Study in Efficient GrarBased Processing
CSLI Publications, Stanford.

O’keefe, R. 1985. Towards an algebra for constructing logagmams. In J. Cohen
and J Conery, editor®roceedings of IEEE symposium on logic programmpages

152-160, New York. IEEE Computer Society Press.

Penn, Gerald B. 2000r'he algebraic structure of attributed type signatur®$.D. thesis,

School of Computer Science, Carnegie Mellon UniversitysBiitgh, PA.

107



Perrier, Guy. 2000. Interaction grammars. Rroceedings of the 18th conference on

Computational linguistics (COLING 200Qages 600—-606.

Pollard, Carl and Ivan A. Sag. 199#lead-Driven Phrase Structure Grammaddniver-

sity of Chicago Press and CSLI Publications.

Rambow, Owen, K. Vijay-Shanker, and David Weir. 1995. D-geammars. IiProceed-
ings of the 33rd Annual Meeting of the Association for Comfpartal Linguistics
pages 151-158.

Ranta, Aarne. 2007. Modular grammar engineering inRgsearch on Language and

Computation5(2):133-158.

Sygal, Yael and Shuly Wintner. 2008. Type signature modulesPhilippe de Groote
(Ed.) Proceedings of FG 2008: The 13th conference on Formah&nar, pages 113—

128, Hamburg, Germany, August.

Sygal, Yael and Shuly Wintner. 2009. Associative grammanlwoation operators for
tree-based grammargdournal of Logic, Language and Informatiph8(3):293-316,

July.

Vijay-Shanker, K. 1992. Using descriptions of trees in & @djoining grammarCom-

putational Linguistics18(4):481-517.
Wintner, Shuly. 2002. Modular context-free gramma@sammars 5(1):41-63.

Wintner, Shuly, Alon Lavie, and Brian MacWhinney. 2009. Folrgiammars of early
language.In: Orna Grumberg, Michael Kaminski, Shmuel Katz, and Shulytieér,
editors, Languages: From Formal to Natural, Lecture Notes impater Science,

Berlin: Springer Verlag5533.

XTAG Research Group. 2001. A lexicalized tree adjoining greanfor English. Tech-
nical Report IRCS-01-03, IRCS, University of Pennsylvania.

108



Zajac, Remi and Jan W. Amtrup. 2000. Modular unification-based parse Proceed-
ings of the sixth international workshop on parsing techgae (IWPT 200Q)pages
278-288, Trento, Italy, February.

109



Appendix A

Compactness

Definition 51. Let S = ((Q,T, =<, Ap), Int,Imp, Exp) be a pre-signature module.
(¢1,q2) €= is aredundant subtyping arc if there existp;,...,p, € @, n > 1, such

thatgy <p1 < p2 < ... X pp X @o.

Definition 52. Let P = ((Q,T,=, Ap), Int, Imp, Exp) be a pre-signature module.

(q1, F,q2) € Ap is aredundant appropriateness arcif there existsy, € @ such that

G = 4y, G2 7# ¢y and(q1, F, q5) € Ap.

For an example of the above two definitions see example 3.

The following definitions set the basis for determining wiegttwo nodes are indis-
tinguishable or not. Since signature modules are just aapease of directed, labeled
graphs, we can adapt the well-defined notion of graph isohsmpto pre-signature mod-
ules. Informally, two pre-signature modules are isomarptinen their underlying PSSs
have the same structure; the identities of their nodes mi#gr dvithout affecting the
structure. In our case, we require also that an anonymous bednapped only to an
anonymous node and that two typed nodes, mapped to eachlmhearked by the same
type. However, the classification of nodes as internal, mgaband/or exported has no
effect on the isomorphism since it is not part of the core efitiformation encoded by

the signature module.
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Definition 53. Two pre-signature modules, = ((Q1, 71, =1, Ap1), Inty, Imp;, Exp,),
Sy = ((Q2, Ty, =2, Aps), Ints, Imps, Expy) are isomorphic, denotedS;~S,, if there
exists a total, one-to-one and onto functiofisomorphism) mapping the nodes ¢f; to

the nodes ob,, such that all the following hold:
1. forall g € Q1, Ti(q) = Tu(i(q)).
2. forallq,q' € Q1,q =1 ¢ iffi(q) 22 i(q)
3. forallq,¢’ € Q, andF € FEAT, (¢, F,¢') € Ap, iff (i(q), F,i(¢')) € Ap,.

Theenvironmenbf a nodey is the set of nodes accessible frgmia any sequence of
arcs (subtyping or appropriateness, in any direction),ougntd including the first typed

node. The environment of a typed node includes itself only.

Definition 54. LetS = ((Q, T, <, Ap), Int, Imp, Exp) be a pre-signature module. For

all ¢ € Q let theenvironment of ¢, denotecenv(q), be the smallest set such that:
e ¢ € env(q);

e If ¢’ € env(q) andT'(¢”)1 and for some/ € Q and F' € FEAT, eitherq’ < ¢” or

" =qor(¢,Fq") e Apor(¢', F,q) € Ap, thenq € env(q).

Definition 55. Let S = ((Q,T, =, Ap), Int, Imp, Exp) be a pre-signature module
and letQ’ C Q. Thestrict restriction of S to ¢, denotedS|&/*, is ((Q', Ts, =,

, Apo), Inty, Impy, Exps), Where:
[ ] T2 = j—iQ/
o ¢1 =9 o iff @1 =< g2, q1,q2 € Q' and eitherT’(q,)1 or T'(g2)7T (or both)

o (q1,F,q) € Apsiff (q1, F,q2) € Ap, 1,2 € Q" and eitherT'(¢,)1 or T'(¢g2)7 (or
both)

o Inty = Int|g
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e Impy = Impg
o Expy, = Expigy

The strict restriction of a pre-signature moduieto a set of node®’, is the subgraph
induced by the nodes @)’ without any labeled or unlabeled arcs connecting two typed

nodes inQ’.

Definition 56. LetS = ((Q, T, <, Ap), Int, Imp, Exp) be a pre-signature module. Two
nodesy, ¢ € @ areindistinguishable, denoted;; = ¢, if S |57t )~ S |strict | via an

env(q1 env(qz)

isomorphism such that(q;) = ¢..

Example 19. Let S; be the signature module of Figure A.knv(qs) = env(q;) =
{a1, a4, a7}, env(q2) = env(gs) = {q1, 2,96}, env(gs) = {q1,¢5,qs} andenv(q,) =
{q1}. The strict restrictions ob; to these environments are depicted in Figure A2~
¢4 andgs ~ g7, where in both cases the isomorphisni is {q; — ¢1, ¢ — q4,q6 — g7 }-
Howeverygs is distinguishable from, andg, becaus€’(¢s) # T'(qs) andT'(gs) # T(q7).
Notice also thats is distinguishable from,, ¢, andgs; because it has no outgoing appro-

priateness arcs.

Figure A.1: A signature module with indistinguishable neds
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S ‘stmct — S |st7’zct S |strict — S |strict S |stmct S |stmct

env(q2) env(ge) env(qa) env(qr) env( env(q1)
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Figure A.2: Strict restriction subgraphs

Theorem 23.LetS = ((Q,T, <X, Ap), Int, Imp, Exp) be a pre-signature module. Then

‘~’ Is an equivalence relation ovep.
Proof. Let S = ((Q, T, <, Ap), Int, Imp, Exp) be a pre-signature module.

Reflexivity: Forallg € Q S |St”0t S |Smct by the identity functioni : env(q) —

env(q) env(

env(q) that maps each node imv(q) to itself. Evidently,i is an isomorphism and

henceg =~ q.
Symmetry: Letq;, ¢ € Q be such tha; ~ ¢,. ThereforeS |§ch;1 S |§fjg(ﬁ§2 via an

isomorphismi : env(q1) — env(ga). S [~ S [0 ) via the isomorphism

env(qz) env(q1

i1 env(qy) — env(qr) (the detailed proof that ! is indeed such an isomorphism

is suppressed). Henag, ~ ¢;.
Transitivity: Let ¢1,¢2,¢3 € Q be such that; ~ ¢, andg, ~ ¢;. Hence,S [¥7i¢! |~

env(q1)

S [smcs,y via an isomorphisni, : env(q1) — env(gz) andS [0 ~ S 500 via

env(q2) env(q2) env(gs)

an isomorphismiy : env(q1) — env(gz). Therefore,S [/ \~ S 570 ) via the

isomorphismi; o i5 : env(q1) — env(qs) defined byi; o iy : (¢) = i2(i1(q)) for all

q € env(q;) (again, the detailed proof thato i, is indeed such an isomorphism is
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suppressed).
[

Definition 57. A pre-signature moduleé = ((Q,T, =, Ap), Int, Imp, Exp) is non-
redundant if it includes no redundant subtyping and appropriateness and for all

1,92 € Q, 1 = g2 impliesg; = ¢».

Definition 58. Let S = ((Q,T,=<,Ap),Int,Imp, Exp) be a pre-signature mod-
ule. The coalesced pre-signature module denoted coalesce(S), is ((Q1,T1, =<1

, Apy), Inty, Impy, Exp,) where:
e 1 ={[¢l~ | ¢ € Q} (Q; is the set of equivalence classes with respest)}to
 Ti([g]~) = T(q') for somey’ € [g]~
o =i={(la)~ [2l~) | (@1, ¢2) €=}
o Apy = {([a]~ F.l@2]~) | (a1, F, q2) € Ap}
o Int; ={[q|l~ | q € Int}
o Imp1 = {[ql~ | ¢ € Imp and[q]~ ¢ Int}
o Exp; = {[g]~ | ¢ € Exzpand[g]~ ¢ Int}

e the order ofimp, and Exp, is induced by the order afmp and Exp, respectively,

with recurring elements removed

When a pre-signature module is coalesced, indistinguishadaes are identified. Ad-
ditionally, the parameters and arities are induced fronse¢haf the input pre-signature
module. All parameters may be coalesced with each otheongsds they are otherwise
indistinguishable. If (at least) one of the coalesced nasles internal node, then the

result is an internal node. Otherwise, if one of the nodemjzorted then the resulting
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parameter is imported as well. Similarly, if one of the nodesxported then the resulting
parameter is exported.
The input to the compactness algorithm is a pre-signaturdutecand its output is a

non-redundant signature module which encodes the sanmenation.
Algorithm 4. compact (S = ((Q, T, =<, Ap), Int, Imp, Exp))
1. LetS; = ((Q1,Th, =1, Ap1), Inty, Imp,, Exp;) be such that:
e 1 =0
o1 =T
e <1={(q1,92) €=| (¢1, ¢2) is a non-redundant subtyping arc f}

o Apy = {(q1, F,q2) € Ap | (q1, F, g2) is a non-redundant appropriateness arc

in S}
o Int; = Int
o Imp; =Imp
o Fap, = FExp

2. 8" = coalesce(S)
3. If §” is non-redundant, returs’, otherwise returrcompact(S’).

The compactness algorithm iterates as long as the respitergignature module in-
cludes redundant arcs or nodes. In each iteration, all thenaant arcs are first removed
and then all indistinguishable nodes are coalesced. Hawteeidentification of nodes
can result in redundant arcs or can trigger more nodes to dlesaed. Therefore, the
process is repeated until a non-redundant signature maglolstained. Notice that the
compactness algorithm coalesces pairs of nodes markecelsathe type regardless of
theirincoming and outgoing arcs. Such pairs of nodes mast exa pre-signature module

(but not in a signature module).
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Example 20. Consider againS;, the signature module of Figure A.1. The compacted
signature module o is depicted in Figure A.3. Notice th&t has no redundant arcs to
be removed and thag and ¢s were coalesced withy and ¢;, respectively. All nodes in

compact(S;) are pairwise distinguishable and no arc is redundant.

@9‘

—_ =

T

—)8_

Figure A.3: The compacted signature moduleSof

Example 21. ConsidersSs, Ss, S4, S5, the signature modules depicted in Figure A.4. Ex-
ecuting the compactness algorithm 8 first the redundant subtyping arc frog to ¢

Is removed, resulting i3 which has no redundant arcs. Thepn,and g3 are coalesced,
resulting inSy. In Sy, {¢2, ¢35} =~ {qu} and{g¢s} ~ {gs}, and after coalescing these two

pairs, the result isS; which is non-redundant.
Theorem 24. The compactness algorithm terminates.

Proof Idea. Stage 1 of the algorithm removes redundant arcs, if such éxistage 2, the
signature module is coalesced. If it is non-redundant therbalesce algorithm returns a
signature module in which each new node is an equivalenes clantaining the previous
node and then the algorithm terminates in stage 3. If theasiga module includes nodes

that should be identified, then the coalesce algorithm resittee number of nodes at least
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Figure A.4: A compactness example

in one node. To sum up, each iteration of stages 1 and 2 redineesumber of arcs
and nodes in the signature module. Since the number of atta@ies in a signature
module is finite, there could be only a finite number of suctatiens and the algorithm

terminates. ]

Theorem 25. The compactness algorithm is deterministic, i.e., alwagspces the same

result.

Proof. Follows immediately from the fact that there is no elementtadice in any of the

algorithm stages. ]

Theorem 26. If S is a signature module thefvmpact(S) is a non-redundant signature

module.

Proof. Follows immediately from the fact that the algorithm terates only when a non-
redundant module is obtained (stage 3). The terminatioheftgorithm is guaranteed

by theorem 24. ]

Theorem 27.If S is a non-redundant signature module thempact(S) ~ S.
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Proof. Let S be a non-redundant signature module. In that case, stag#hé afgorithm

has no effect o1y In stage 25 is coalesced intooalesce(S). Define a function : Q —

Q1 by i(q) = [¢]~. ¢ is an isomorphism betweehandcoalesce(S) (the detailed proof is
suppressed). Evidentlypalesce(.S) is non-redundant and hence the algorithm terminates

in stage 3, returningoalesce(S) ascompact(S). Hence,S ~ compact(S). O
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Appendix B

Name Resolution

During module combination only pairs of indistinguishablgonymous nodes are coa-
lesced. Two nodes, only one of which is anonymous, can gtiitherwise indistinguish-
able but they are not coalesced during combination to ertearassociativity of module
combination. The goal of theame resolutiomprocedure is to assign a type to every
anonymous node, by coalescing it with a typed node with anticle environment, if
one exists. If no such node exists, or if there is more thansack node, the anonymous
node is given an arbitrary type. We show how for a given anawsmode the set of its
typedequivalent nodes is calculated. The calculation is reroamsof the calculation of
isomorphic nodes (see Appendix A) but some modificationsexjaired to deal with the

comparison of typed nodes versus anonymous nodes as witdvensbelow.

Definition 59. Two pre-signature modules, = ((Q1, 11, <1, Ap1), Inty, Imp,, Exp,),
Sy = ((Q2, Ty, 2o, Aps), Ints, Imps, Exp,) are quasi-isomorphic, denotedsS; LS,
if there exists a total, one-to-one and onto functiqiquasi-isomorphism) mapping the

nodes ofS; to the nodes of,, such that all the following hold:
1. forallg € @1, if Ty(g)| andTx(i(q))! thenT(q) = Ta(i(q))

2. forallq,q" € Qi,q =1 ¢ iffi(q) 22i(q)
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3. forallq,q € @, and F € FEAT, (q, F,q') € Ap, iff (i(q), F,i(q')) € Ap,.

Quasi-isomorphism is a relaxed version of isomorphism iittedn 53) since it allows
an anonymous node to be mapped onto a typed node and viseluatrsso typed nodes,

mapped to each other, still must be marked by the same type.

Definition 60. Theextended environmentof ¢, denotedextenv(q), is the smallest set

such that:
e g € extenv(q);

o If ¢’ € extenv(q) and for some’ € ) and F' € FEAT, eitherq’ < ¢" or¢” < ¢ or

(¢, F,q") € Apor (¢",F,q) € Ap, thenq’ € extenv(q) .

The extended environmenf a nodeg extends its environment (definition 54) by in-
cluding all the nodes accessible franvia any sequence of arcs, regardless of whether
these nodes are typed or not. Clearly, the environment of @ is@lsubset of its extended

environment.

Definition 61. Let S = ((Q,T, =X, Ap), Int,Imp, Exp) be a pre-sighature mod-
ule and let@’ C (. Therestriction of S to ', denotedS|y, is ((Q', 11, =

,Ap1), Inty, Impy, Expy), where:

[ ] Tl :ﬂQ/

¢ =1 qiff g 2 g andg, ¢ € Q'

(1, F,q2) € Apy iff (qu, F,q2) € Apandgqy, g2 € Q'

o Int; = Int)gy
e Imp; = Impy
o Exp, = Expigy
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The strict restriction (definition 55) of a pre-signaturedute, S, to a set of nodes,
(', is a subgraph of the restriction 6fto ()’ as it does not include any labeled or unla-
beled arcs connecting two typed nodes. In particular, adhat the graph that is strictly-

induced byenv(q) is a subgraph of the graph induceddaytenv(q).

Definition 62. Let S = ((Q,T, =, Ap), Int,Imp, Exp) be a pre-signature module.
Two nodesy;, ¢; € @ are quasi-indistinguishable denotedy, ~ ¢, If S yemtem(ql)r‘i

S |eatenv(qz) Via @ quasi-isomorphismsuch thati(q;) = go.

Compare the two notions of node similarity defined in defini® and definition 62.
To determine if two nodes are indistinguishable, smallés sénodes are inspected than
in determining quasi-indistinguishability. However irethatter the mapping between
these two sets is more liberal, allowing a typed node to bepednto an anonymous
one and vise versa.

In a signature module any two indistinguishable nodes areqlasi-indistinguishable,
but two quasi-indistinguishable nodes can still be distislgable as the following exam-

ple shows:

Example 22. Consider the signature module depicted in Figure Bdutenv(q;) =
extenv(qe) = extenv(qs) = {q1, q2, g3} andextenv(qy) = extenv(qs) = extenv(qs) =

{94,05, 9} @ 2 G4, Go % g5 and g3 &9 gs Where in all cases the quasi-isomorphism is

{1 — Q1,92 — q5,q3 — qs}. Observe that; % g4, ¢2 % g5 andgs # ge.

Theorem 28.LetS = ((Q,T, =, Ap), Int, Imp, Exp) be a signature module. For all

. q
¢, ¢ € Q,if 1 = g theng, = .

Proof. LetS = ((Q, T, =<, Ap), Int, Imp, Exp) be a signature module and gt ¢; € Q

be such that; ~ ¢. By the definition of the relation =/ it follows that S |7t )~

env(q1

S |stret ©via an isomorphism such thati(q;) = ¢o. Evidently,env(q;) C extenv(q)

env(qz2)
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Figure B.1: Quasi-indistinguishability versus indistinghability
andenv(qa) C extenv(qq). Letiy : extenv(q,) — extenv(qe) be a function defined by:

, i(q) q € env(q)
ir(q) =
q otherwise

Clearly,i1(q1) = @2 S |eatenv(@)™~ S |eztennv(go) Via the isomorphisni,. The detailed
proof thati; is indeed such an isomorphism is suppressed. Howevergenbit sinces

Is a signature module, each typed node is unique with respésttype and therefore all
the nodes that belong to the extended environment and o &nvironment are mapped

to themselves. Hence, 2 o. O

Notice that theorem 28 does not hold when general pre-sigmamodules are con-
cerned since they may contain multiple nodes marked by tine $gpe.

As theorem 23 shows, indistinguishability is an equivaéeredation over the nodes of
a pre-signature module. However, this is not the case welgthasi-indistinguishability

relation.
Theorem 29.LetS = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module. Then:

q, . . . .
1. ‘=’ is a reflexive and symmetric relation over.
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2. ‘~'is not necessarily a transitive relation ovéy.
Proof. Let S = ((Q, T, <, Ap), Int, Imp, Exp) be a pre-signature module.
1. The proof of reflexivity and symmetry ol is the same as in theorem 23.

2. Let S be the signature module depicted in Figure Bq?..é q2> and ¢, 2 q3 but

0 aqé g3 sinceT(q1) = a # b =T(qs3).

a b

Figure B.2: A signature module with a non transitive relation

]

The input to the name resolution algorithm is a non-redundigmature module and
its output is a non-redundant signature module whose tyfingtion, 7', is total. Let
S ={Q,T,=,Ap), Int, Imp, Exp) be a signature module, and leAMES C TYPE be
an enumerable set of fresh types from which arbitrary naraede taken to mark nodes

in Q. The following algorithm marks all the anonymous nodes'in

Algorithm 5. NameResolution (S = ((Q, T, <X, Ap), Int, Imp, Exp))
1. forall ¢ € @ such thatl’(¢)T, computel), = {¢' € Q | T'(¢')| andgq % q}.
2. 1etQ ={q€Q|T(¢)T and|Q,| = 1}. If Q # 0 then:

2.1. forallg € Q, S := NodeCoalesce(S, q,q') whereQ, = {¢'} (for the

definition of NodeCoalesce, see definition 21)
2.2. S := compact(S)

2.3. goto (1)
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3. Mark remaining anonymous nodes@nwith arbitrary unique types frolNAMES

and halt.

The name resolution algorithm is reminiscent of the compess algorithm, but some
changes are required to deal with comparison of typed noelestis anonymous nodes.
Most significantly, the quasi-indistinguishability retat (‘%’, stage 1) is used to com-
pare nodes instead of indistinguishability (definition.5&urther more, the subroutine
NodeCoalesce is used to directly coalesce two nodes instead of coalesmjng/alent
classes as in the compactness algorithm. The reasons f& thanges are exemplified

in the following example:

Example 23. Consider the signature modules depicted in Figure B.3lQ),, = Q,, =
{gs}, Qp. = {1, qu} aNd Qy, = Q4 = Qg = 0. The result of executing stage 2.1 of the
name resolution algorithm ofis is S;7. In S7, g3, g¢ and gy are all indistinguishable from
each other, and therefore stage 2.2 resultsin Then, returning to stage 1, there is no
anonymous node, for which@), is a singleton, and hence stage 3 is applied, resulting
in Sy which is the final result.

The result after executing stage 2.19s which is obtained by coalescing and g5
with ¢s. Notice that the environment (definition 54)@fincludes onlygs and the envi-
ronment ofg; includesqy, g5 and ¢s. If we want to compareg with g5 we must add to
the environment ofs also ¢; and ¢go. More generally, the environment of a node must
include also the nodes which are connected to typed nodesdtfitican of nodes to the
environment cannot be stopped when a typed node is encodintéres is why the name
resolution algorithm, through the¥’ relation, compares extended environments instead
of environments . Furthermore, when the extended envirotsnéns and ¢g; are com-
pared, evidently they are not isomorphic and in particulaere is no isomorphism that
mapsgs to gs (since the former is anonymous and the later is typed). Qigasnorphism
relaxes isomorphism by allowing a typed node to be mapped smanymous node and

vise versa, thus the extended environment ¢ quasi-isomorphic to the extended envi-
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ronment ofys via a quasi-isomorphism that magsto ¢s. This is why the name resolution
algorithm uses quasi-isomorphism and not isomorphismirAglais is done through the
‘2’ relation (stage 1). Finally, observe thai ~ ¢, andg; ~ ¢, butq, % ¢, sinceq,

and ¢, are marked by different types. Evidentlyfl!;"is not transitive and hence not an
equivalence relation. This is why we use the subroutine NodeSoaland do not use

coalescion of equivalent classes as in the compactnessthlgo(see definition 58).

S@ S? 58 59

o "
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Figure B.3: Name resolution

Example 24. Consider the signature modulés,, S11, S12 depicted in Figure B.4. It%,

Qg = {2} andQ,, = Q,, = 0. The result of executing stage 2.1 of the name resolution
algorithm overS;q is S1;. S11 is non-redundant and therefore stage 2.2 has no effect.
However, inSy, Q, = {¢} and@,, = {¢s} and therefore another iteration of stages
1-2 is required (stage 2.3). This second iteration resuit$i, which is also the final

result.
Theorem 30. The name resolution algorithm terminates.

Proof Idea. Stage 1 of the algorithm computes for each anonymous nodsethef its
typed equivalent nodes. In stage 2, first, pairs of an anonognmode and its unique

typed equivalent node (if such exist) are coalesced. If ot @air exists, the algorithm
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Figure B.4: Name resolution

advances to stage 3 and terminates. If such pairs existatigeyoalesced, reducing the
number of anonymous nodes by at least one node. Then, thdensdompacted, and by
theorem 24 (Appendix A), the compactness algorithm terteménotice that compaction
cannot turn a typed node into an anonymous node and therefan@ot increase the
number of anonymous nodes). To sum up, each iteration aésthgnd 2 terminates and
reduces the number of anonymous nodes in the signature eo8irice the number of
nodes in a signature module is finite and therefore so is theeuof anonymous nodes,
there could be only a finite number of such iterations and theralgorithm advances to

stage 3 where it terminates. n

Theorem 31.If S is a signature module theName Resolution(S) is a signature module

whose typing function is total.

Proof. If S is a signature module ang 2 ¢, then NodeCoaelesce(S, q,q') is also a
signature module (the technical proof is suppressed). Rh@morem 26 it follows that
the compactness of stage 2.2 also returns a signature maddeihee, ifS is a signature
module, each iteration of stages 1 and 2 of the algorithmuymresl a signature module.

From theorem 30 it follows that the number of iterations afysts 1 and 2 is finite. Then,
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the algorithm advances to stage 3 where all remaining anongmodes are assigned
types and the algorithm terminates. Hendeyme Resolution(S) is a signature module

whose typing function is total. O

Theorem 32. If S is a signature module whose typing function is total, then

NameResolution(S) = S.

Proof. If S is a signature module whose typing function is to€l= () at stage 2 of the
first iteration. Therefore, the algorithm moves to stage Bictv has no effect sinc€ is

total. Hence NameResolution(S) = S. O
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Appendix C

Grammar modules

C.1 Defining Grammar Modules

TFSs are defined over type signatures, and therefore each patle iRES is associated
with a type. When TFS are defined over signature modules this is not the case, since
signature modules may include anonymous nodes. Theref@enodify the standard
definition of TFS such that every path in a TFS is assigned a node in the signatur

module over which it is defined, rather than a type.

Definition 63. LetS = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module. #ped
feature structure (TFS) over S is a pre-TFSA = (II, ©,) for which the following

requirements hold:

e Il is prefix-closedA is fusion-closed anck is an equivalence relation with a finite

index (as in definition 8)

e O : II — (@ is a total function, assigning a node to each path that retsptee

equivalence: ifr; > 7, then©(m) ~ O(my)

Notice that for© to respect the equivalence, it is required to assign to atpnv

paths indistinguishable nodes and not necessarily tha szawe node. By the definition
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of signature modules, indistinguishable nodes will evaliyibe coalesced and therefore

denote the same type.

Definition 64. LetS = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module. #ped
multi-rooted structure (TMRS) overS is a pre;TMRS o = (Ind, 11, ©, 1<), where:

e Il is prefix-closedy is fusion-closed anck is an equivalence relation with a finite

index (as in definition 10)

e O : Il — (@ is a total function, assigning a node for all paths that respethe

equivalence: ifiiy, 1) > (ig, mo) thenO((iy, m)) ~ O({iz, ma))

While the above definitions assign each path in a TFS a noderrdtan a type,
in cases where all nodes in the signature module are typediepiet TFS using the
standard convention where paths are assigned types.

Well-typedness is extended in the natural way: The first timmdrequires thatt’ be
an appropriate value fdd(r); the second requires th&(« F") be an upper bound of all
those nodes which are appropriate &(fr) and F’ (recall that in signature modules, the
appropriateness relation may specify several appropnides for the values of a feature

F at a node q; only after all modules combine is a unique apat@ovalue determined).

Definition 65. LetS = ((Q, T, =, Ap), Int, Imp, Exp) be a signature module. AFSA =
(I1, ©, ) is well-typed if wheneverr € Il and F' € FEAT are such thatr ' € 11, then

all the following hold:
e there existg € ) such that©(r), F,q) € Ap
e forall ¢ € Q suchthat©(n), F,q) € Ap, q 3 O(rF)
Enforcing all TFS in the grammar to be well-typed is problematic for three oeas
1. Well-typedness requires th@t(wF') be an upper bound of all the (target) nodes

which are appropriate fap(w) and F'. However, each module may specify only a
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subset of these nodes. The whole set of target nodes is knawafter all modules

combine.

2. A module may specify several appropriate valuesdor) and F', but it may not

specify any upper bound for them.

3. Well-typedness is not preserved under module combimatihe natural way to
preserve well-typedenss under module combination regjauiélition of nodes and

arcs, which would lead to a non-associative combination.

To solve these problems, we enforce only a relaxed versiarebftypedness. The relax-
ation is similar to the way upward closure is relaxed : When®/fer) = ¢, O(nF) is
required to be a subtype oheof the values)’ such that(q, F,¢') € Ap. This relaxation
supports the partiality and associativity requirementmotiular grammar development
(section 1.2). After all modules are combined, the resglijrammar is extended to main-

tain well-typedness, see section C.3.

Definition 66. Let S = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module and let
A = (II,0,x) be aTFSover S. A is weakly well-typed if wheneverr € II and
F € FEAT are such thatt F' € 11, there existg; € @ such that(O(n), F,q) € Ap and

q % O(nF).

Definition 67. Let S = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module and let
o= (Ind,Il,©,< ) be aTMRSoverS. ¢ is weakly well-typed if wheneveri, 7) € 11
and ' € FEAT are such thati, 7F') € 11, there existg € () such that{©((i,r)), F,q) €
Ap andg < O((i, 7F)).

Definition 68. LetS = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module. Alle
over S is a weakly well-typed MRS of length greater than or equal to 1 with a desig-
nated (first) element, theead of the rule. The rest of the elements form the rubessly
(which may be empty, in which case the rule is depicted a&8). A lexiconis a to-

tal function fromWOoRDS to finite, possibly empty sets of weakly well-tygdeSs. A
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grammar G = (R, L, A) is a finite set of rule®k, a lexiconL and a finite set of weakly

well-typedTFSs, A, which is the set ddtart symbols
Finally, we define grammar modules:

Definition 69. A grammar module is a structurgs, G) whereS is a signature module

andG is a grammar overs.

C.2 Grammar Module Combination

We extend the combination operators defined for signatuuias (section 2.3) to gram-
mar modules. In both cases, the grammars are combined usimgpke set union and the
only adjustment is of th® function according to the combination of the signature mod-
ule. We begin, however, by extending tbempactnesslgorithm (which is used as a

mechanism to coalesce corresponding nodes in the two ng)dalgrammar modules.

C.2.1 Compactness

Definition 70. A grammar moduléS, G) is non-redundantif S is non-redundant.

In Appendix A we showed how a signature module can be comg@ante a non-
redundant signature module that encodes the same infamate extend this process
to grammar modules. The only effect of signature module @rtipn on the grammar is
that the® function must be adjusted to assign to each patta new node which is the

equivalence class @ ().

Definition 71. Let S = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module and let
A = (II,0,x) be aTFSover S. coalesce(A) = (II,0',), where for allr € II,
©'(m) = [0(7)]~ (‘= is the indistinguishability equivalence relation ovegsature mod-

ule nodes).
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Definition 72. Let S = ((Q, T, <, Ap), Int, Imp, Exp) be a signature module and let
o = (Ind,I1,0,x) be aTMRS overS. coalesce(c) = (Ind,II,©', ), where for all
(i,m) € IL, ©'((z, 7)) = [O({i, T))]~-

Definition 73. Let M = (S,G) be a grammar module whe@ = (R, L, A). The

coalesced moduledenoted-oalesce(M), is (Si, G1) where:
e S = coalesce(P) (see definition 58)
e Ry = {coalesce(c) | o € R}
e forall w € WORDS L(w) = {coalesce(A) | A € L(w)}
o Ay = {coalesce(A) | A € A}

Notice that the coalesce algorithm has three versionsigoature modules, for TFS
and TMR & and for grammar modules. The version is decided accorditigetonput.
The input to the compactness algorithm is a grammar modweétsioutput is a non-

redundant grammar module which encodes the same informatio
Algorithm 6. compact (M = (S, G)) whereS = ((Q,T, <X, Ap), Int, Imp, Exp)
1. LetS; = (@1, T, =1, Ap1) be such that:
* 1 =Q
o1 =T
o <1={(q1,92) €=| (¢1, ¢2) is a non-redundant subtyping arc }

o Apy = {(q1, F,q2) € Ap | (¢1, F, q2) is @ non-redundant appropriateness arc

in S}
o Int; = Int
o Imp; = Imp
o Fap, = FExp
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2. M'" = coalesce((S1, G))

3. If M’ is non-redundant, returd/’, otherwise returrcompact(M’).

C.2.2 Merge and Attachment
Definition 74. Let M = (S, G) be a grammar module. Th&p-Closure of M, denoted
ApCIl(M), is (ApCI(S), G).

Definition 75. Let M, = (S1,Gy), My = (S5, Go) be two grammar modules such that
S and .S, are consistent and disjoint\/;, M, are mergeableif S}, S, are mergeable, in

which case, theimerge denotedV/; W M is:
My U My = compact(ApCl(compact({S, G))))
where:
e S=5US;
e G=(R,L,A) where:

— R=Ri1URy
— forall w € WORDS L(w) = L1(w) U L2(w)

- A=A UA

When two modules are merged, their components are first caahbising simple set
union. This results S, G). Then, using compactness and Ap-closure, anonymous nodes
and nodes marked by the same type in the signature are cedlé€dompactness and Ap-
closure adjust th® function accordingly. This process is similar to the mergeration
defined on signatures (definition 18). The only differenaa& here the grammar has to
be slightly addapted.

The attachment operation is similar to signature attachr{dgfinion 20), with the

natural adjustment of the grammar components. The compemérthe grammar are
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unioned by set union, and the function is adjusted according to the changes in the

signature.

Definition 76. Let M; = (S1, G1), My = (S,, G2) be two grammar modules such that
and S, are consistent and disjoinfl/; can be attached td/; if S, can be attached t6§,

in that case, thattachmentof M, to M;, denoted\; (M), is:
My (Ms) = compact( ApCl(compact({S, G))))
where:
e S is defined as in definition 20
o G=(R,L,A) where:

- R = {{Ind,IL,0" )| (Ind,II,0,x) € Ry U R, and for all (i,r) € II,

O'((i,m)) = [©({i,7))]=} (= is the equivalence relation of definition 20)

— forall w € WORDS, L(w) = {{II, ©,>x)|(I], ©,x) € L;(w) U Lo(w) and
forall m € I1, ©'(7) = [O(7)]=}

— A= {(I,0',50)|(I1,0,<) € A, U A, and for all € I1, & (x) = [O(r))=}

C.3 Extending Grammar Modules to Full Type Unifica-
tion Grammars

We now show how to extend a grammar module into a bona fide typiidation gram-
mar. Such extension must deal with two aspects: Extendiagutiderlying signature
module into a full type signature and enforcing well-typests

In section 2.4 we showed how to extend a signature moduleairitdl type signa-
ture. We use the same process to extend the grammar moduke finlt type unification

grammar, but some modifications are required to deal witlygtaenmar as well. For that
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purpose we use the four algorithms of section 2.4, in the saher as in the resolution

algorithm (algorithm 1):
1. Name resolutionassigning types to anonymous nodes.

2. Appropriateness consolidatiodeterminizingip, converting it from a relation to a

function and enforcing upward closure and well-typedness.
3. Feature introduction completiorenforcing the feature introduction condition.
4. BCPO completion

The name resolution procedure (section 2.4) assigns aypety anonymous node
whether by coalescing it with a typed node with a similar emwment, if one uniquely
exists, or by giving it an arbitrary type. The only effectsigrocess has on a grammar
module is that when two nodes are coalescedgtifienction must be adjusted as well: if
a nodeq is coalesced with a nodg, then every path in the grammar that was assigned
g needs to be assigned Appropriateness consolidation both converts therelation
into a function and enforces upward closure and well-typsdn Here, a more careful
modification is required as will be shown below. Finally,ti@a introduction completion
and BCPO completion have no affect on the grammar. Notice tigatltassification of
nodes is ignored during the extension, since resolutioxeisiged after all the information
from the different modules have been gathered, and hensel#ssification is no longer
needed.

The input to the resolution algorithm is a grammar module igsdutput is a bona

fide typed unification grammar.
Algorithm 7. Resolve(M = (S, G))
1. M := NameResolution(M)

2. S := BCPO-Completion(S)
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3. S :=ApCl(S)
4. M := ApConsolidate(M)

5. § := FeaturelntroductionCompletion(S)

»

. S := BCPO-Completion(S)

\]

.S = ApCl(S)
8. M := ApConsolidate(M)

9. returnM

C.3.1 Appropriateness Consolidation

In section 2.4 we showed how to convert tHe relation into a function and enforce
upward closure. We extend the algorithm from signature riesio grammar modules.
Here, the© function of the TFS of the grammar must be adjusted as well: Consider
a nodeq and its set of outgoing appropriateness arcs with the sabed l§, Out =
{(¢, F,q) | (¢,F,q¢") € Ap}. The appropriateness consolidation algorithm replades al
these arcs by a single afg, F', ¢;), whereg, is thelub of the types of ally (¢, may exist
in the signature or may be added as a fresh new node by thetlaighr Then, for each
pathr £ in any of the TFS in the grammar wher®(r) = ¢, if O(7F) is a nodey; such
that(©(r), F, ¢1) is a member of the s€ut, then® is adjusted to assignF’ the node;,.
However, if the node, is not a member o®ut, then it is a subtype of a node @t and
hence it is also a subtype @f(by the definition of the algorithm), and there is no need to
adjust the value o®(w F).

The input to the following procedure is a grammar module wehgignature module
typing function,T’, is total and whose signature module subtyping relatiorBERO; its
output is a grammar module whose signature module typingtimm, 7', is total, whose

signature module subtyping relation is a BCPO, and its sigaatwdule appropriateness
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relation is a function that maintains upward closure andT&bs and TMRS of the
grammar are well-typed. Le¥/ = (S, G) whereS = ((Q,T, =, Ap), Int, Imp, Exp)

andG = (R, L, A) be a grammar module. For eaglkt Q andF’ € FEAT, let
e target(q, F) ={q | (¢, F,q¢') € Ap}
o sup(q) ={¢ €Q|qd =g}
o sub(q) ={d €Q|q=¢}

Algorithm 8. ApConsolidate (M = (S, G)), whereS = ((Q, T, <, Ap), Int, Imp, Exp)
andG = (R, L, A):

1. Setint := Imp := Exp =)

2. Find a node; € @ and a featureF” for which|target(q, F))| > 1 and for all¢’ € @

such thaty’ % q, |target(q’, F)| < 1. If no such pair exists, halt.

3. Iftarget(q, F) has a lubp, then:

(@) forall ¢’ € target(q, F), remove the ar¢q, F', ¢') from Ap

(b) add the ardq, F,p) to Ap

(c) forall ¢ € target(q, F') and for all¢” € sub(q'), if p # ¢” then add the arc

(p,q") t0 =

(d) forall A € AU, cworpsL(w) whereA = (II,0,0q), if there exists
nF € Il suchthaO(r) = ¢ andO(7F) € target(q, F), then se®(rF) = p

(e) for allc € R wheres = (Ind, 11,0, ), if there existg(i, 7F) € II such

thatO((i, 7)) = ¢gandO({i, 7 F')) € target(q, F'), then se®({(i,7F)) = p
4. Otherwise, itarget(q, F') has no lub, then:

(a) Add a new nodey, to Q with:
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e sup(p) = target(q, F)
o sub(p) = Uq/etwget(qﬂ sub(q’)
(b) Mark p with a fresh type fronNAMES
(c) Forall ¢’ € target(q, F'), remove the ar¢q, F,q") from Ap
(d) Add(q, F,p) to Ap
(e) forall A € AU, ,cworpsL(w) whereA = (II,©,), if there exists
mF € Il suchthaO(r) = ¢ andO(nF) € target(q, F'), then seB(nF) = p

(f) for all 0 € R whereo = (Ind, 11,0, ), if there exists(i, 7F') € II such

thatO((i, 7)) = ¢ andO((i, 7 F')) € target(q, I'), then se©((i,7F)) = p
5. M := ApCl(M)
6. M := compact(M)
7. goto (2).

Example 25. Let M; = (S;,G;) be a grammar module whose signature mod-

ule is depicted in Figure C.1 and’;, = (A;,Ry, L), where 4, = 0, Ry =

a a
— and for allw € WORDS, £;(w) = 0. In the first iteration of
Folg] s

the algorithm, in stage 1, the node typed, is selected sinc&irget(qi, F) = {q2, qs3}-
Since these nodes have no lub, a fresh new ngdes added to the signature (stages 3a—
3d), resulting inS;. Stage 3e has no effect but stage 3f effects only the lefiT$i@&sof
the single rule of the grammar. In the left sidé&S, the node typed, ¢s, is replaced
by the node typedew, ¢, sinceqs € target(q;, F'). However the node typed ¢, is
not a member ofarget(qq, F') but a subtype of; which is a member ofarget(q, F).
Therefore it is not changed in order to maintain the desineigripretation of thisTFS.

The first iteration of the algorithm results i, = (Ss, G5) whose signature module is
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a a
So and Gz = (A, Rs, L2) Where A, = 0, Ry = — and
o] [F o

and for allw € WORDS Ly(w) = (. This is also the final result of the algorithm. Notice

that the appropriateness relation 6% is a function that maintains upward closure and

all TFSsandTMRSsin G, are well-typed.

®= =
®=

Figure C.1: Grammar appropriateness consolidation
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Appendix D

MODALE Description of the Basic

HPSG Grammar of Chapter 3

D.1 Modular Design

% CGeneral guidelines:

% 1.
%
% 2.
% 3.
%
%
%
%
%
%
%
% 4.

%

The character ‘% is used to insert coment.

Everything from*®% till *\n’ is ignored.

Extra spaces and tabs are ignored but can be used for clarity
The general description of a nodule is:

nodul e( nodul eNane)

{
description of subsunpi on and appropriateness relations
}
{
node cl assification
}

nodes are specifyied by their types unless they are anonynous

in which case they are reffered to as anon(nodeNane).
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%5. As in ALE\TRALE, types and features may consist of the letters

% a-z, digits and the character ‘' but must start with a letter

nodul e(Li st)

{
anon(qg4) sub [elist,anon(qg2)].
anon(q2) approp [first:{anon(qg3)},
rest: {anon(qg4)}].
elist sub [].
}
{
i nt=<>.
i mp=<anon(qg3) >.
exp=<anon( qg4) >.
}

nodul e( Obj ect)

{
obj ect sub [sign, nod_synsem head, cat egory, con_st ruc,
| ocal , non_| ocal ] .
}
{
i nt =<>,
i mp=<>.
exp=<>.
}
nodul e( Si gn)
{
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sign sub [word, phrase].

sign approp [retrieved: {quantifier_list},
phon: {phonestring |ist},
synsem {synsem] .

phrase approp [dtrs:{con_struc}].

}

{
int=<>.
i mp=<phonestring_Ilist,quantifier_list>.
exp=<phr ase>.

}

nodul e( ConSt r uc)

{
con_struc sub [coord _struc, head struc].
head_struc sub [head_conp_struc, head_mark_struc,
head_adj struc, head filter_struc].
head struc approp [conp_dtrs:{phrase |ist},
head_dtr: {sign}].
head_mar k_struc approp [narker_dtr:{word},
head_dtr: {phrase},
conmp_dtrs:{elist}].
head_adj struc approp [adjunct_dtr:{phrase},
head_dtr: { phrase},
conmp_dtrs:{elist}].
head_filter_struc approp [filter_dtr:{phrase},
head_dtr: {phrase},
conmp_dtrs:{elist}].
}
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i nt=<>,

i np=<phrase_l|i st >.

exp=<>.
}
nodul e( Head)
{
head sub [substantive, functional].
substantive sub [noun, prep,verb,reltvzr,adj].
substanti ve approp [ prd:{bool ean},
nod: {mod_synsen}] .
noun approp [case:{case}].
prep approp [pform {pforn}].
verb approp [aux:{bool ean},
i av: { bool ean},
viorm {vfornt].
functional sub [marker, det].
functional approp [spec:{synsent].
}
{
i nt=<>.
i np=<>.
exp=<>.
}
nodul e( Cat)
{

category approp [subcat:{synsemlist},
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head: { head},

mar ki ng: { mar ki ng}] .

}

{
i nt=<>.
i mp=<synsem | i st>.
exp=<>.

}

nodul e( Synsem

{

nod_synsem sub [ none, synsenj .

synsem approp [l ocal:{local},
nonl ocal : {non_| ocal }].

}
{

i nt=<>.

i np=<>.

exp=<synsenp.
}

modul e( Non0bj )

{
nom obj sub [npro, pron].
nom obj approp [index: {index}].
pron sub [ppro, ana].
ana sub [refl,recp].
}
{
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i nt =<>.

i np=<>.

exp=<>.

nodul e( Phonestri ng)

{
phonestring sub [].
}
{
int=<>,
i mp=<>.
exp=<phonestri ng>.
}

nodul e( Quanti fi er)

{
quantifier sub [].
}
{
i nt =<>.
i np=<>.
exp=<quanti fier>.
}
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D.2 The Resolved HPSG Signature

nodul e( hpsg_res)
{
bot sub [quantifier list, phonestring |ist, phonestring,
quantifier, phrase_list, synsemlist, marking,
obj ect, bool ean, case, pform vform nomobj,
i ndex, new _node_ 5].
quantifier_list sub [elist, new node_2].
elist sub [].
new node 2 sub [].
new node 2 approp [rest:{quantifier _list},
first:{quantifier}].
phonestring list sub [elist, new node_ 1].
new node 1 sub [].
new_node_1 approp [rest: {phonestring_list},
first:{phonestring}].
phonestring sub [].
quantifier sub [].
phrase_list sub [elist, new node_3].
new _node_3 sub [].
new node_ 3 approp [first:{phrase},
rest:{phrase list}].
synsem|ist sub [elist, new_node_ 4].
new node 4 sub [].
new node_4 approp [rest:{synsemlist},
first:{synseni].
mar ki ng sub [].

obj ect sub [sign, con_struc, category, head, nod_synsem
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| ocal, non_local].
sign sub [word, phrase].
sign approp [synsem {synsent
phon: { phonestring list},
retrieved: {quantifier_list}].
word sub [].
word approp [retrieved: {quantifier l|ist},
phon: { phonestring_list},
synsem {synseni]
phrase sub [].
phrase approp [retrieved:{quantifier list},
phon: { phonestring_list},
synsem {synsen},
dtrs:{con_struc}].
con_struc sub [coord_struc, head_struc].
coord_struc sub [].
head_struc sub [head_conp_struc, head nmark_struc,
head adj struc, head filter_struc].
head_struc approp [conp_dtrs: {phrase_list},
head_dtr: {sign}].
head_conp_struc sub [].
head conp_struc approp [head _dtr: {sign},
conp_dtrs:{phrase_list}].
head_mark_struc sub [].
head_mark_struc approp [narker dtr: {word},
head_dtr: { phrase},
conp_dtrs:{elist}].
head_adj struc sub [].

head_adj struc approp [adjunct _dtr: {phrase},
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head_dtr: {phrase},
conp_dtrs:{elist}].
head filter_struc sub [].
head filter_struc approp [filter _dtr:{phrase},
head_dtr: {phrase},
conp_dtrs:{elist}].
category sub [].
category approp [ marking: {marKking},
head: { head},
subcat: {synsem list}].
head sub [substantive, functional].
substantive sub [noun, prep, verb, reltvzr, adj].
substanti ve approp [nod: {nod_synsen}
prd: { bool ean}].
noun sub [].
noun approp [ prd: {bool ean},
nmod: { nod_synsent,
case: {case}].
prep sub [].
prep approp [prd: {bool ean},
nmod: { nod_synsent,
pform {pfornt].
verb sub [].
verb approp [prd: {bool ean},
nod: { nod_synsent,
viorm {vfornit,
i av: {bool ean},
aux: { bool ean}].

reltvzr sub [].
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reltvzr approp [prd:{bool ean},
nod: {mod_synsent] .
adj sub [].
adj approp [prd:{bool ean},
nod: {mod_synsent] .
functional sub [rmarker, det].
functional approp [spec:{synsen}].
mar ker sub [].
mar ker approp [spec:{synsent].
det sub [].
det approp [spec:{synsent]
nod_synsem sub [synsem none]j.
synsemsub [].
synsem approp [ nonl ocal : {non_I| ocal },
| ocal : {l ocal }].
none sub [].
| ocal sub [].
non_|l ocal sub [].
bool ean sub [].
case sub [].
pformsub [].
viormsub [].
nom obj sub [npro, pron].
nom obj approp [index: {index}].
npro sub [].
npro approp [index:{index}].
pron sub [ppro, ana].
pron approp [index:{index}].

ppro sub [].
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ppro approp [index:{index}].
ana sub [refl, recp].
ana approp [index:{index}].
refl sub [].
refl approp [index:{index}].
recp sub [].
recp approp [index: {index}].
i ndex sub [].
new_node_5 sub [new_node_6].
new node 5 approp [first:{bot}].
new node 6 sub [new node_ 1, new node 2,
new_node_3, new_node_4].
new _node_6 approp [first:{bot},

rest:{bot}].

i nt=<>.
I mp=<>.

exp=<>.
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