
Learning Backward Compatible Embeddings
Weihua Hu

Stanford University
weihuahu@cs.stanford.edu

Rajas Bansal
Stanford University

rajasb@cs.stanford.edu

Kaidi Cao
Stanford University

kaidicao@cs.stanford.edu

Nikhil Rao
Amazon

nikhilsr@amazon.com

Karthik Subbian
Amazon

ksubbian@amazon.com

Jure Leskovec
Stanford University
jure@cs.stanford.edu

ABSTRACT
Embeddings, low-dimensional vector representation of objects, are
fundamental in building modern machine learning systems. In in-
dustrial settings, there is usually an embedding team that trains an
embedding model to solve intended tasks (e.g., product recommen-
dation). The produced embeddings are then widely consumed by
consumer teams to solve their unintended tasks (e.g., fraud detec-
tion). However, as the embedding model gets updated and retrained
to improve performance on the intended task, the newly-generated
embeddings are no longer compatible with the existing consumer
models. This means that historical versions of the embeddings can
never be retired or all consumer teams have to retrain their models
to make them compatible with the latest version of the embeddings,
both of which are extremely costly in practice.

Here we study the problem of embedding version updates and
their backward compatibility. We formalize the problem where the
goal is for the embedding team to keep updating the embedding
version, while the consumer teams do not have to retrain their
models. We develop a solution based on learning backward compat-
ible embeddings, which allows the embedding model version to be
updated frequently, while also allowing the latest version of the em-
bedding to be quickly transformed into any backward compatible
historical version of it, so that consumer teams do not have to re-
train their models. Our key idea is that whenever a new embedding
model is trained, we learn it together with a light-weight backward
compatibility transformation that aligns the new embedding to the
previous version of it. Our learned backward transformations can
then be composed to produce any historical version of embedding.
Under our framework, we explore six methods and systematically
evaluate them on a real-world recommender system application.
We show that the best method, which we call BC-Aligner, main-
tains backward compatibility with existing unintended tasks even
after multiple model version updates. Simultaneously, BC-Aligner
achieves the intended task performance similar to the embedding
model that is solely optimized for the intended task.1

1Code is publicly available at https://github.com/snap-stanford/bc-emb

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539194

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
embeddings, backward compatibility, graph neural networks, rec-
ommender systems
ACM Reference Format:
Weihua Hu, Rajas Bansal, Kaidi Cao, Nikhil Rao, Karthik Subbian, and Jure
Leskovec. 2022. Learning Backward Compatible Embeddings. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Min-
ing (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM, Washington,
DC, USA, 11 pages. https://doi.org/10.1145/3534678.3539194

1 INTRODUCTION
Embeddings are widely used to build modern machine learning
systems. In the context of recommender systems, embeddings are
used to represent items and to capture similarity between them.
Such embeddings can be then used for many tasks like item recom-
mendations, item relevance prediction, item property prediction,
item sales volume prediction as well as fraud detection [18, 22].

The universality of embeddings and the proliferation of state
of the art methods to generate these embeddings [7] pose an in-
teresting challenge. Many machine learning practitioners develop
embeddings for a specific purpose (e.g., for item recommendation)
but then the embeddings get utilized by many other downstream
consumer teams for their own purposes and tasks. Oftentimes, the
number of such consumer teams is very large and hard to track. At
the same time, the original embedding team aims to further evolve
their embedding model architecture, training data, and training pro-
tocols, with the goal to improve performance on their specific task.
In this process, the embedding team generates new and improved
versions of the embeddings but these are incompatible with exist-
ing downstream consumer models. This means the downstream
consumers of these embeddings must retrain their models to use
the improved embeddings, or choose to stick with the older, poten-
tially poorer embeddings as inputs to their models. To maintain
compatibility with all the existing consumer tasks, the embedding
team needs to maintain all historical versions of their embedding
model, generate all historical versions of the embeddings and make
them available to the consumer teams. This means that the histori-
cal embedding models can never be retired and significant human
and computational resources are wasted. An alternative approach
would be to retire old versions of the embeddings and encourage
the consumer teams to retrain their models and migrate to the new
version of the embeddings. In practice, this is extremely hard. It can
take years before all the consumer teams move to a new version

 

3018

https://github.com/snap-stanford/bc-emb
https://doi.org/10.1145/3534678.3539194
https://doi.org/10.1145/3534678.3539194


KDD ’22, August 14–18, 2022, Washington, DC, USA Weihua Hu et al.

Version updates
…

…

Ver-0 emb model 𝑀!
(intended task 𝑇) 

Ver-k emb model 𝑀"
(intended task 𝑇) 

{𝒛!}

{𝒛"}

Consumer model 𝐶!
(unintended task 𝑈!) 

Consumer model 𝐶"
(unintended task 𝑈") 

Ver-0 embs

Ver-k embs

Compatible with ver-0 emb

Compatible with ver-k emb

Embedding team Consumer teams

Incompatible

…

Figure 1: Problem formulation. The embedding team trains
embedding model𝑀0 to solve their intended task 𝑇 . The con-
sumer teams may then utilize the produced embeddings {z0}
to solve some unintended task 𝑈0 using consumer model
𝐶0. The issue arises when the embedding team releases new
improved versions of the embedding model 𝑀1, 𝑀2, . . . over
time. At version 𝑘 , the latest-version embedding model 𝑀𝑘
produces ver-𝑘 embeddings {z𝑘 } that are incompatible with
consumer model 𝐶0 that is trained on the ver-0 embeddings
{z0}. Our goal is to quickly transform the latest-version em-
bedding z𝑘 into a backward compatible historical version
of it so that existing consumer models can readily use the
transformed embedding without being retrained.

of the embeddings, and the old versions can be retired. In general,
the problem of backward incompatible embeddings slows down
iteration cycles and leads to significant human and computing cost.
Present work: Backward compatible embeddings. Here we
study the problem of evolving embedding models and their back-
ward compatibility (Figure 1). We formalize a realistic setting where
the embedding team works on developing an embedding model𝑀
that is trained to predict a given intended task 𝑇 (intended for the
embedding team), e.g., item recommendation. Over time, the em-
bedding team adds new training data, keeps experimenting with
different model architectures, embedding dimensions, and hyper-
parameters, which results in evolving versions of the embedding
model,𝑀0, 𝑀1, 𝑀2, . . ., where we use the subscript to indicate the
version. Given an input data point 𝑥 , each such embedding model
𝑀𝑖 produces its own 𝐷𝑖 -dimensional embedding z𝑖 ≡ 𝑀𝑖 (𝑥) ∈ R𝐷𝑖 .
Notice that at version 𝑘 , we have 𝑘 + 1 versions of embeddings
z0, z1, . . . , z𝑘 for the same input data point 𝑥 . We call z𝑖 ver-𝑖 em-
bedding of 𝑥 . In practice, we have a collection of input data points,
for which we use the embedding model to generate the embeddings.
Such embeddings are then stored and shared with other teams. We
use {} to denote the collection of the generated embeddings, e.g.,
{z𝑘 } denotes the collection of ver-𝑘 embeddings. Note that {z𝑘 }
can be refreshed frequently as new data points arrive, e.g., item
embeddings may be refreshed every day as new items/iteractions
arrive.

At the same time, we have many other consumer teams that
utilize the produced embeddings to solve their unintended tasks (un-
intended for the embedding team), e.g., fraud detection. Consider a
consumer team that started to use the embeddings at some version
𝑗 . They would use ver- 𝑗 embeddings to train their consumer model
𝐶 𝑗 for their own unintended task𝑈 𝑗 . However, later ver-𝑘 embed-
dings (𝑘 > 𝑗 ) are generally incompatible with consumer model 𝐶 𝑗 ;

Version update from 𝑘 − 1 to 𝑘

Ver-k-1 emb model 𝑀!"#
(intended task 𝑇) 

Ver-k emb model 𝑀!
(intended task 𝑇) 

{𝒛!"#}

{𝒛!}

Consumer model 𝐶$
(unintended task 𝑈$) 

Embedding team Consumer teams

For any past version 𝑗

…𝑩𝒌 Compose learned backward 
transformations
𝑩𝒋'𝟏 ∘ ⋯ ∘ 𝑩𝒌

Learn backward 
transformation

Figure 2: An overview of our framework. We train a new
embedding model 𝑀𝑘 and a light-weight backward transfor-
mation function 𝐵𝑘 by optimizing the two training objectives
simultaneously: (1) to solve the intended task 𝑇 , and (2) to
align ver-𝑘 embeddings {z𝑘 } to ver-𝑘 − 1 embeddings {z𝑘−1}
using 𝐵𝑘 . We use the latest-version embedding model𝑀𝑘 to
produce embeddings {z𝑘 } and store them. For any existing
consumer model 𝐶 𝑗 requesting a ver- 𝑗 compatible embed-
ding z̃ 𝑗 , we compose the learned backward transformations
as 𝐵 𝑗+1 ◦ · · · ◦ 𝐵𝑘 on-the-fly, i.e., z̃ 𝑗 = 𝐵 𝑗+1 ◦ · · · ◦ 𝐵𝑘 (z𝑘 ).
hence, 𝐶 𝑗 cannot simply use ver-𝑘 embeddings as input. So, either
the consumer model 𝐶 𝑗 need to be retrained and recalibrated on
the later ver-𝑘 embeddings, or both the old ver- 𝑗 embeddings have
to be also maintained. Both solutions lead to significant cost and
overhead.

We first formalize the problem where the goal is for the embed-
ding team to keep improving and updating the embedding model,
while the existing consumer teams do not have to retrain their
models when a new version of the embedding model is released.
We then develop a solution based on learning backward compat-
ible embeddings (Figure 2), which allows the embedding model
version to be updated frequently, while also allowing the latest-
version embedding to be quickly transformed into any backward
compatible historical version of it, so that the existing consumer
teams do not have to retrain their models. Our key idea is that
whenever a new embedding model 𝑀𝑘 is trained, we learn it to-
gether with a light-weight backward (compatibility) transformation
𝐵𝑘 : R𝐷𝑘 → R𝐷𝑘−1 that aligns ver-𝑘 embeddings z𝑘 ∈ R𝑘 to its
previous version z𝑘−1 ∈ R𝑘−1, i.e., 𝐵𝑖 (z𝑘 ) ≈ z𝑘−1. At version 𝑘 , we
maintain the learned 𝐵𝑘 as well as all past backward transformation
functions learned so far: 𝐵1, 𝐵2, . . . , 𝐵𝑘−1.

Importantly, our learned backward transformations can be com-
posed to approximate any historical version of the embedding.
Specifically, at version 𝑘 , the latest-version embedding z𝑘 can be
transformed to approximate any historical ver- 𝑗 embedding z 𝑗
( 𝑗 < 𝑘) by 𝐵 𝑗+1 ◦ · · · ◦ 𝐵𝑘−1 ◦ 𝐵𝑘 (z𝑘 ) ≈ z 𝑗 , where ◦ denotes the
function composition. We call the transformed embedding ver- 𝑗
compatible embedding, and denote it as z̃ 𝑗 . Because z̃ 𝑗 ≈ z 𝑗 , the
embedding z̃ 𝑗 can be used by consumer model 𝐶 𝑗 in a compatible
manner. The backward transformations are fast and lightweight so
they can be applied on-the-fly whenever a consumer team requests
a historical version of the latest-version embedding. Furthermore
our solution is fully inductive: given an unseen input data point
𝑥 , the learned backward transformations can be used to quickly
transform the newly-generated ver-𝑘 embedding z𝑘 ≡ 𝑀𝑘 (𝑥) into
its historically compatible version z̃ 𝑗 for any 𝑗 < 𝑘 .

 

3019



Learning Backward Compatible Embeddings KDD ’22, August 14–18, 2022, Washington, DC, USA

At version 𝑘 , we use the linear model for 𝐵𝑘 and jointly train it
with𝑀𝑘 to solve the intended task 𝑇 as well as to encourage 𝐵𝑘 to
align the embedding output of𝑀𝑘 to that of𝑀𝑘−1, i.e., 𝐵𝑘 ◦𝑀𝑘 ≈
𝑀𝑘−1. Additionally, we develop a novel loss that suppresses the
amplification of the alignment error caused by the composition of
backward transformations. Altogether, we arrive at our proposed
method, which we call BC-Aligner. In addition, we consider five
other method variants under our framework, with different design
choices of 𝐵𝑘 , loss function, and training strategy of 𝐵𝑘 and 𝑀𝑘 ,
some of which includes prior methods [12, 16].

To systematically evaluate different methods, we introduce a re-
alistic experimental setting in the real-world recommender system
application [22]. We consider link prediction as the intended task
𝑇 , graph neural networks as the embedding model 𝑀 , and propose
five different unintended tasks𝑈 that are of practical interest. We
empirically show that BC-Aligner provides the best performance
compared to the other method variants including the prior works.
BC-Aligner maintains nearly-perfect backward compatibility with
existing unintended tasks even after multiple rounds of embedding
model updates over time. Simultaneously, BC-Aligner achieves the
intended task performance comparable to the embedding model
that is solely optimized for the intended task.

Overall, our work presents the first step towards solving the
critical problem of incompatibility between the embedding model
and unintended downstream consumer models. We hope our work
spurs an interest in community to solve the new problem setting.

2 PROBLEM SETTING
Here we formalize our problem setting. We ground our application
to recommender systems, though our formulation is general and
applicable to broader application domains that use embeddings to
perform a wide range of tasks, such as computer vision, natural
language processing, search and information retrieval. The new
concepts and terminology introduced in this paper are bolded.

2.1 Terminology and Setting
We consider two types of machine learning tasks: The intended
task 𝑇 and unintended tasks𝑈 . The intended task is the task that
the embedding team originally intended to solve and is solved by
using embeddings produced by a deep learning model, which we
call the embedding model 𝑀 . This embedding model is trained
to solve the intended task 𝑇 . At the same time, these embeddings
can be used by many consumer teams to solve their tasks that may
not be originally intended by the embedding team; we call such a
task the unintended task 𝑈 . Precisely, to solve the unintended task
𝑈 , a consumer team trains their consumer model 𝐶 on top of the
produced embeddings.

The above setting is prevalent in industry, where the produced
embeddings are widely shared within the organization to power
a wide variety of unintended tasks [22]. As a concrete example,
let us consider a recommender system application. The intended
task 𝑇 could be user-item interaction prediction. We can use a
Graph Neural Network (GNN) [5, 22] as the embedding model𝑀 to
generate user and item embeddings, which are then used to produce
the likelihood score that the user will interact with a given item. At
the same time these embeddings can be used by many consumer

teams to perform their unintended tasks. For instance, a consumer
team can use the item embeddings to build model 𝐶 to solve the
task𝑈 of detecting fraudulent items.
Embedding model version updates. The embedding team up-
dates the embedding model 𝑀 every once in a while to improve
the performance on the intended task 𝑇 . We use𝑀0, 𝑀1, 𝑀2, . . . to
denote the evolving versions of the embedding model, where 𝑀𝑘
is the 𝑘-th model version. At version 𝑘 , we learn𝑀𝑘 to solve 𝑇 by
minimizing the objective:

𝐿𝑘 (𝑀𝑘 ) . (1)

Given single input data 𝑥 , each ver-𝑘 embedding model 𝑀𝑘
produces ver-𝑘 embedding z𝑘 ≡ 𝑀𝑘 (𝑥). The collection of the ver-
𝑘 embeddings is denoted as {z𝑘 }, which is computed over current
sets of input data points and may be refreshed as new data arrives.
Moreover, for each version𝑘 , we consider a consumer team that uses
ver-𝑘 embeddings and consumermodel𝐶𝑘 to solve their unintended
task𝑈𝑘 .
Compatibility of embeddings. Different versions 𝑗 < 𝑘 of the
embeddings z𝑘 , z 𝑗 may be incompatible because of the difference
between 𝑀𝑘 and 𝑀𝑗 that generate them. This presents an issue
that consumer model 𝐶 𝑗 trained on ver- 𝑗 embeddings will not be
compatible with the later ver-𝑘 embeddings. Feeding z𝑘 into 𝐶 𝑗
will give random/arbitrary predictions.

To resolve this issue, in Section 3, we develop a cost-efficient
framework to generate ver- 𝑗 compatible embedding z̃ 𝑗 from later-
version embedding z𝑘 such that feeding z̃ 𝑗 into 𝐶 𝑗 gives robust
predictive performance. We consider the problem of backward
compatible embedding learning, i.e., learn to produce z̃ 𝑗 from
z𝑘 for any historical version 𝑗 < 𝑘 .

2.2 Generality of our Setting
We show that the above simple problem setting is general enough
to capture complex real-world scenarios.
Complex embedding model evolution. Our assumption on the
evolving embedding model𝑀 is minimal: Each model version𝑀𝑘
just needs to output an embedding given an input data point. Our
setting, therefore, allows different𝑀𝑘 ’s to have different internal
model architectures and output dimensionality. For instance, our
setting allows a later-version embedding model to use a more ad-
vanced model architecture.
Evolving training data and loss functions. Not only can differ-
ent𝑀𝑘 ’s have different architectures, they can also be trained on
different data and with different loss functions. All such differences
are absorbed into ver-𝑘-specific objective 𝐿𝑘 in Eq. (1). For instance,
our setting allows later-version embedding model to be trained on
more data with an improved loss function.
Multiple different intended tasks. We consider a single shared
intended task 𝑇 for simplicity, but our setting naturally handles
multiple intended tasks that are different for different embedding
model versions. This is because we only assume each 𝑀𝑘 to be
trained on objective 𝐿𝑘 , which can be designed to solve different
intended tasks for different version 𝑘 .
Multiple consumer teams. For each version 𝑘 , we consider a sin-
gle consumer team solving 𝑈𝑘 using model 𝐶𝑘 for simplicity. How-
ever, our setting naturally handles multiple consumer teams using

 

3020



KDD ’22, August 14–18, 2022, Washington, DC, USA Weihua Hu et al.

the same embedding version 𝑘 . We can simply index the consumer
teams as solving𝑈𝑘,0,𝑈𝑘,1,𝑈𝑘,2, . . . using models𝐶𝑘,0,𝐶𝑘,1,𝐶𝑘,2, . . .,
respectively.

3 METHODOLOGICAL FRAMEWORK
Here we present our framework to learn backward compatible
embeddings. At version 𝑘 , our framework mainly keeps the latest
ver-𝑘 embedding model 𝑀𝑘 and its generated embeddings {z𝑘 };
hence, we say our framework follows the keep-latest (embedding
model) approach. We start by contrasting it with what we call
keep-all (embedding models).

3.1 Ideal but Costly Baseline: Keep-All
Given unlimited human and computational budget, we can simply
keep all versions of the embeddingmodel𝑀0, 𝑀1, . . . , 𝑀𝑘 and let them
produce embeddings {z0}, {z1}, . . . , {z𝑘 }. Then, for any 𝑗 ≤ 𝑘 , {z 𝑗 }
can be directly used by consumer model𝐶 𝑗 in a compatible manner.
We refer to this approach as keep-all (embedding models), which
we formalize below.
Training setting. At version 𝑘 , we learn each𝑀𝑘 by minimizing
objective 𝐿𝑘 of Eq. (1) to solve the intended task 𝑇 . Once 𝑀𝑘 is
trained to produce ver-𝑘 embeddings, a consumer team trains their
model 𝐶𝑘 on them to solve their unintended task 𝑈𝑘 .
Inference setting. At version 𝑘 , we keep all versions of the embed-
ding model learned so far: 𝑀0, 𝑀1, . . . , 𝑀𝑘 . To solve the intended
task 𝑇 , we use the latest-version embedding model𝑀𝑘 to produce
embeddings {z𝑘 } and store them. In addition, we use all the histor-
ical versions of the embedding model to produce the embeddings
{z0}, {z1}, . . . , {z𝑘−1} and store all of them. For any 𝑗 ≤ 𝑘 , we can
perform unintended task𝑈 𝑗 by simply feeding compatible embed-
dings {z 𝑗 } to consumer model 𝐶 𝑗 .
Issues with Keep-All. The issue with the keep-all approach is that
it is too costly in large-scale applications, e.g., web-scale recom-
mender systems that utilize billions of embeddings [22, 24]. This is
because embeddings need to be produced and stored for every ver-
sion.2 The cost of maintaining all versions of the embeddings and
the embeddingmodel quickly grows especiallywhen the embedding
model version is updated frequently. Despite the impracticality, the
keep-all approach sets the high standard in terms of the intended
and unintended task performance, which we try to approximate
with our cost-efficient framework.

3.2 Our Framework: Keep-Latest
Our framework follows the keep-latest approach, where only the
latest-version embedding model and embeddings are kept at any
given timestamp.
Backward transformation. The key to our approach is to learn a
backward (compatibility) transformation 𝐵𝑘 : R𝐷𝑘 → R𝐷𝑘−1

that aligns ver-𝑘 embedding z𝑘 ∈ R𝐷𝑘 to its previous version
z𝑘−1 ∈ R𝐷𝑘−1 . 𝐵𝑘 has to be light-weight so that the alignment can
be performed cheaply on-the-fly. Whenever we update𝑀𝑘−1 to𝑀𝑘 ,
we learn the backward transformation 𝐵𝑘 to align the output of𝑀𝑘
back to that of𝑀𝑘−1. At version 𝑘 , we maintain all the backward
2We assume the inference cost of 𝑀𝑘 is high, which makes it costly to infer ver-𝑘
embedding every time it is requested.

transformations learned so far: 𝐵1, . . . , 𝐵𝑘 . Maintaining 𝐵1, . . . , 𝐵𝑘
is much cheaper than maintaining and storing all historical versions
of the embeddings {z0}, {z1}, . . . , {z𝑘−1}.

The key insight is that we can compose the backward transfor-
mations to align z𝑘 into any of its historical version 𝑗 < 𝑘 . Let us
introduce the composed backward function 𝐵 𝑗

𝑘
≡ 𝐵 𝑗+1 ◦ · · · ◦ 𝐵𝑘 .

We see that 𝐵𝑘−1
𝑘

≡ 𝐵𝑘 and 𝐵 𝑗
𝑘
aligns ver-𝑘 embedding z𝑘 to ver- 𝑗

embedding z 𝑗 . As the alignment may not be perfect in practice, we
say 𝐵 𝑗

𝑘
transforms z𝑘 into ver- 𝑗 compatible embedding z̃ 𝑗 :

z̃ 𝑗 = 𝐵
𝑗

𝑘
(z𝑘 ) . (2)

Our aim is to have z̃ 𝑗 ≈ z 𝑗 so that z̃ 𝑗 can be fed into 𝐶 𝑗 to give
robust predictive performance on unintended task 𝑈 𝑗 .
Function alignment. We wish to use 𝐵𝑘 to align z𝑘 ≡ 𝑀𝑘 (𝑥) to
z𝑘−1 ≡ 𝑀𝑘−1 (𝑥) for every 𝑥 , which reduces to aligning two func-
tions: 𝐵𝑘 ◦𝑀𝑘 and𝑀𝑘−1. We introduce function alignment objective
𝐿align (𝐵𝑘 ◦𝑀𝑘 , 𝑀𝑘−1), which encourages the two functions to be
similar, i.e., given same input, produce similar output. We discuss
the specific realization of 𝐿align in Section 3.2.2.
Training setting. We propose to add the function alignment ob-
jective 𝐿align to the original objective 𝐿𝑘 for solving 𝑇 :

𝐿𝑘 (𝑀𝑘 ) + 𝜆 · 𝐿align (𝐵𝑘 ◦𝑀𝑘 , 𝑀𝑘−1) , (3)

where 𝜆 > 0 is a trade-off hyper-parameter. At version 𝑘 , parame-
ters of𝑀𝑘 and 𝐵𝑘 are learned, and the parameters of the previous
version𝑀𝑘−1 are fixed. Once𝑀𝑘 and 𝐵𝑘 are learned, we can safely
discard𝑀𝑘−1 because𝑀𝑘−1 can be approximately reproduced by
𝐵𝑘 ◦𝑀𝑘 .
Inference setting. At version 𝑘 , we only need to maintain the
latest-version embedding model𝑀𝑘 , and a series of transformation
functions learned so far: 𝐵1, . . . , 𝐵𝑘 . Consider an ideal situation after
minimizing Eq. (3), where we have the perfect function alignment
for every version until version 𝑘 . Then, we have the following single-
step equations:

𝐵𝑘 ◦𝑀𝑘 = 𝑀𝑘−1, 𝐵𝑘−1 ◦𝑀𝑘−1 = 𝑀𝑘−2 , . . . , 𝐵1 ◦𝑀1 = 𝑀0 . (4)

In this ideal situation, we see that the composed backward func-
tion in Eq. (2) can exactly reproduce any historical version of the
embedding model𝑀𝑗 ( 𝑗 < 𝑘) as

𝐵
𝑗

𝑘
◦𝑀𝑘 = 𝑀𝑗 . (5)

In practice, each equation in Eq. (4) only holds approximately, and
the approximation error of Eq. (5) increases for smaller 𝑗 or larger 𝑘
due to more accumulation of the single-step approximation errors
in Eq. (4). In our experiments, however, we find that the approxi-
mation error stays relatively stable over time and only increases
sub-linearly with larger 𝑘 (i.e., using later-version embedding model
to approximate 𝑀0). In Section 3.2.2, we mathematically analyze
the approximation error and provide a possible explanation for the
robust approximation performance even after multiple rounds of
model updates.

Inductive capability. Eq. (5), or more realistically, 𝐵 𝑗
𝑘
◦𝑀𝑘 ≈ 𝑀𝑗 ,

implies that our framework is fully inductive. Given unseen data 𝑥 ,
we can first obtain its latest ver-𝑘 embedding z𝑘 and store it. Then,
ver- 𝑗 compatible embedding z̃ 𝑗 for any 𝑗 can be quickly obtained by

 

3021



Learning Backward Compatible Embeddings KDD ’22, August 14–18, 2022, Washington, DC, USA

𝐵
𝑗

𝑘
(z𝑘 ) and is expected to be similar to the actual ver- 𝑗 embedding

z 𝑗 ≡ 𝑀𝑗 (𝑥). Importantly, z̃ 𝑗 is obtained on-the-fly without being
stored nor requiring the past model 𝑀𝑗 . In our experiments, we
utilize this inductive capability of 𝐵 𝑗

𝑘
to transform embeddings

unseen during training.

3.2.1 Choices of 𝐵𝑘 . We want backward transformation 𝐵𝑘 to be
light-weight. Here we consider two natural choices.
Linear. We use 𝐵𝑘 (z𝑘 ) = W𝑘z𝑘 , where W𝑘 ∈ R𝐷𝑘−1×𝐷𝑘 is a
learnable weight matrix. In this case, Eq. (2) is written as

z̃ 𝑗 = W 𝑗

𝑘
z𝑘 , (6)

where W 𝑗

𝑘
≡ W 𝑗+1 · · ·W𝑘 ∈ R𝐷 𝑗×𝐷𝑘 is pre-computed for every 𝑗 .

NoTrans. As a baseline, we also consider not applying any trans-
formation to z𝑘 . In other words, our backward transformation
functions are all identity functions. This means that when training
𝑀𝑘 , the produced ver-𝑘 embedding z𝑘 is learned to be directly sim-
ilar to its previous version z𝑘−1. Therefore, z𝑘 is directly backward
compatible with z𝑘−1 and any of its historical version z 𝑗 . In the
case of 𝐷𝑘 ≥ 𝐷𝑘−1, we simply take the first 𝐷𝑘−1 elements of z𝑘 .
Remark on limited expressiveness of NoTrans. NoTrans seems
like a very natural solution to our problem as it enforces z𝑘 to be
directly similar to z𝑘−1 (e.g., by minimizing Euclidean distance be-
tween embeddings z𝑘 and z𝑘−1). However, NoTrans is not desirable
when the embeddings suitable for performing the intended task
𝑇 change over time as a result of distribution shift. For instance,
in recommender systems, users’ interests and items’ popularity
change over time, so we want their embeddings to also change
over time, which is discouraged in the NoTrans case. In contrast,
the Linear case allows z𝑘 to be different from z𝑘−1. The additional
expressiveness is crucial for z𝑘 to perform well on the intended
task 𝑇 , as we will show in our experiments.

3.2.2 Choices of 𝐿align and Preventing Error Amplification. Single-
step alignment loss. The role of the alignment objective 𝐿align
is to make 𝐵𝑘 ◦𝑀𝑘 similar to𝑀𝑘−1. We enforce the alignment on
a set of data points X = {𝑥}, which we assume to be given. For
instance, in recommender systems, X can simply be all the users
and items. Then, our alignment objective becomes:

𝐿align (𝐵𝑘 ◦𝑀𝑘 , 𝑀𝑘−1) =
1
|X|

∑︁
𝑥 ∈X

∥𝐵𝑘 ◦𝑀𝑘 (𝑥) −𝑀𝑘−1 (𝑥)∥2

=
1
|X|

∑︁
𝑥 ∈X

∥𝐵𝑘 (z𝑘 ) − z𝑘−1∥2

=
1
|X|

∑︁
𝑥 ∈X

∥𝜹𝑘 (𝑥)∥2 , (7)

where 𝜹𝑘 (𝑥) ≡ 𝐵𝑘 (z𝑘 ) − z𝑘−1 is the single-step alignment error
between 𝐵𝑘 (z𝑘 ) and z𝑘−1 on a data point 𝑥 .

While natural, it is unclear how well the single-step alignment
loss of Eq. (7) enforces the smallmulti-step alignment error 𝜹 𝑗

𝑘
(𝑥) ≡

𝐵
𝑗

𝑘
(z𝑘 )−z 𝑗 , where 𝑗 < 𝑘−1. Belowwemathematically characterize

their relation.

Error amplification. Let us focus on the linear case of Eq. (6). Then,
the multi-step alignment error on a single data point 𝑥 becomes:

𝜹 𝑗
𝑘
(𝑥) = W 𝑗

𝑘
z𝑘 − z 𝑗 . (8)

We note that Eq. (8) cannot be optimized directly because the keep-
latest approach assumes𝑀𝑗 and z 𝑗 are no longer kept when𝑀𝑘 is
being developed. However, we learn from Eq. (7) that all the his-
torical backward transformation weightsW 1,W 2, . . . ,W𝑘−1, have
been learned to minimize the L2 norm of the single-step alignment
errors, 𝜹1 (𝑥), 𝜹2 (𝑥), . . . , 𝜹𝑘−1 (𝑥), respectively.

We can rewrite the multi-step alignment error 𝜹 𝑗
𝑘
(𝑥) in Eq. (8)

using the single-step alignment errors, 𝜹 𝑗+1 (𝑥), 𝜹 𝑗+2 (𝑥), . . . , 𝜹𝑘 (𝑥):

𝜹 𝑗
𝑘
(𝑥) = W 𝑗

𝑘−1 (W𝑘z𝑘 ) − z 𝑗

= W 𝑗

𝑘−1 (z𝑘−1 + 𝜹𝑘 (𝑥)) − z 𝑗

=

{
W 𝑗

𝑘−2 (W𝑘−1z𝑘−1) − z 𝑗
}
+W 𝑗

𝑘−1𝜹𝑘 (𝑥)

.

.

.

=

(
W 𝑗

𝑗+1z 𝑗+1 − z 𝑗
)
+W 𝑗

𝑗+1𝜹 𝑗+2 (𝑥) + · · · +W 𝑗

𝑘−1𝜹𝑘 (𝑥)

= 𝜹 𝑗+1 (𝑥) +W 𝑗

𝑗+1𝜹 𝑗+2 (𝑥) + · · · +W 𝑗

𝑘−1𝜹𝑘 (𝑥) . (9)

From Eq. (9), we see that the single-step errors are not simply added
up but are potentially amplified by the historical backward trans-
formation weights. We call this error amplification. Minimizing
the single-step error does not necessarily lead to the smaller ampli-
fied error, causing the large multi-step alignment error of Eq. (8) in
practice. This in turn deteriorates the unintended task performance.
Multi-step alignment loss. To suppress the error amplification,
here we develop the multi-step alignment loss. We see from the last
term of Eq. (9) that the error 𝜹𝑘 (𝑥) made at version 𝑘 (learning
𝑀𝑘 andW𝑘 ) gets amplified byW 𝑗

𝑘−1 in the multi-step error 𝜹 𝑗
𝑘
(𝑥).

Our multi-step alignment loss explicitly suppresses the amplified
error for every 𝑗 = 0, . . . , 𝑘 − 2, 𝑘 − 1:

1
𝑘
·
( 

W 0

𝑘−1𝜹𝑘 (𝑥)


2 + · · · +




W𝑘−2
𝑘−1𝜹𝑘 (𝑥)




2 + 


W𝑘−1
𝑘−1𝜹𝑘 (𝑥)




2 ),
(10)

where we note thatW𝑘−1
𝑘−1 = I . Thus, our multi-step alignment loss

ensures the error 𝜹𝑘 (𝑥) made at version 𝑘 would not get amplified
when we compute its historical version z̃ 𝑗 for any 𝑗 < 𝑘 .

The final multi-step alignment loss is the average of Eq. (10)
over 𝑥 ∈ X, analogous to Eq. (7). Although Eq. (10) contains 𝑘
terms, computing the loss itself is often much cheaper than comput-
ing embedding z𝑘 , so Eq. (10) adds negligible computational cost
compared to the single-step loss of Eq. (7).
Remark on the NoTrans case. We note that NoTrans method
does not suffer from the error amplification. To see this, we can
replace all the weight matrices in Eq. (9) with identity matrices,
resulting in the simple additive accumulation of the non-amplified
errors. However, NoTrans suffers from the limited expressiveness,
as discussed in Section 3.2.1.
Remark on Error Accumulation. As shown in Eq. (9), both the
Linear and NoTrans would suffer from the additive accumulation
of the single-step errors. However, in practice, the L2 norm of the

 

3022



KDD ’22, August 14–18, 2022, Washington, DC, USA Weihua Hu et al.

Table 1: A set of all 6 method variants we consider under our
framework. We vary transformation function (linear vs. no
transformation), alignment loss function (single- vs. multi-
step) and alignment (joint vs. posthoc)3.

Trans function / Lalign Joint-Align Posthoc-Align

Linear / Single-Step-Loss Joint-Lin-SLoss Post-Lin-SLoss [11]
Linear / Multi-Step-Loss Joint-Lin-MLoss Post-Lin-MLoss(BC-Aligner)

NoTrans / Single-Step-Loss Joint-NoTrans [16] Non-BC

multi-step error grows gradually (Figure 3). As a result, the unin-
tended task performance stays robust even after multiple rounds
of embedding version updates (Figure 4)

3.2.3 Choices of Training Strategies of 𝐵𝑘 . We consider two strate-
gies to train 𝐵𝑘 via Eq. (3).
Joint-Align. We jointly train 𝐵𝑘 with𝑀𝑘 to minimize Eq. (3).
Posthoc-Align. We first train𝑀𝑘 to minimize 𝐿𝑘 . We then fix𝑀𝑘
and train 𝐵𝑘 to minimize 𝐿align in a post-hoc manner.

3.2.4 Method Variants. In all, we explore six different method vari-
ants under our framework, as shown in Table 1. We note that the
techniques used in some method variants were already presented
by prior works in different contexts. Specifically, the Joint-NoTrans
was originally presented by [16] in the context of backward com-
patible representation learning in open-set image recognition. The
Posthoc-Lin-SLoss is broadly adopted in cross-lingual word embed-
ding alignment [11]. Details discussion are in Section 6.

Empirically, we will show that these two variants are outper-
formed by the best method under our framework, namely Joint-
Lin-MLoss. We give a special name to this method, BC-Aligner.

4 EVALUATION FRAMEWORK
Here we present an evaluation framework to measure the success
of the keep-latest approach presented in Section 3. We consider
a series of embedding model updates,𝑀0, · · · , 𝑀𝐾 to improve the
performance of the intended task 𝑇 . At the same time, consumer
teams train their models to solve their unintended tasks. Without
loss of generally, we consider multiple consumer teams that use
ver-0 embeddings (generated by𝑀0) to solve their unintended tasks.

We provide three summary metrics calculated at every version
𝑘 = 0, 1, . . . , 𝐾 . To make the comparisons meaningful, we assume
the keep-all and keep-latest approaches share the same base objec-
tive 𝐿𝑘 and model architecture𝑀𝑘 for every 𝑘 .
(1) Degradation of intended task performance compared to
keep-all. The keep-all approach provides an upper bound in terms
of the intended task𝑇 performance, as𝑀𝑘 is solely optimized for 𝐿𝑘 .
Note, however, that this upper bound is impractical to achieve in
most settings, as the keep-all approach is prohibitively costly. The
keep-latest approach (and potentially other approaches) needs to
maintain backward compatibility in addition to optimizing for 𝐿𝑘 ,
which could deteriorate its intended task performance. Therefore

3TheNoTransmodel does not require themulti-step alignment loss. The combination of
the NoTrans model and the Posthoc-Align does not guarantee backward compatibility,
as the identity has no parameter to learn in the post-hoc alignment stage; hence, we
call it “Non-BC”.

Table 2: Statistics of 3 different dynamic datasets we use.

Dataset Feature stats
#Users #Items #Interact. #Brands #Sub cat.

Musical Instruments 27,530 10,611 231,312 391 349
Video Games 55,223 17,389 496,315 330 149
Grocery 127,496 41,280 1,143,063 1,806 774

we measure the intended task performance degradation compared
to𝑀𝑘 trained solely with 𝐿𝑘 .
(2) Degradation of unintended task performance compared
to keep-all. The keep-all approach also provides an upper bound
in terms of the unintended task 𝑈0 performance. This is because
consumer model 𝐶0 is optimized to perform well on ver-0 embed-
dings, which can be directly produced by the keep-all approach
via kept 𝑀0. On the other hand, at version 𝑘 , the keep-latest ap-
proach does not have access to 𝑀0 and can only approximate z0
by backward compatible embedding z̃0. Therefore, we measure
the unintended task 𝑈0 performance degradation when using ver-0
compatible embedding z̃0 instead of the actual ver-0 embedding z0.
(3) Embedding alignment error. Metric (2) above is dependent
on the choice of the unintended task 𝑈0, which may not cover the
entire spectrum of unintended tasks for which the embeddings
can be used. It is therefore useful to have task-agnostic metric that
generally correlates well with a wide range of unintended tasks. To
this end, we propose to measure the embedding alignment error
between z̃0 (e.g., we use 𝐵1 ◦ · · · ◦ 𝐵𝑘 (z𝑘 ) in our methods) and
the actual z0. We calculate it as the L2 distance between z̃0 and z0,
which we then average over a set of data points.

5 EXPERIMENTS
We evaluate our methods following the evaluation protocol pre-
sented in Section 4. We start with introducing a new benchmark in
Section 5.1. Then, we present experimental results in Section 5.2.

5.1 Recommender System Benchmark
5.1.1 Overview. We consider evolving user-item bipartite graph
datasets in recommender systems, where new users/items and their
interactions appear over time. As the intended task, we consider
the standard user-item link prediction task, and use GNNs trained
on this task as the embedding model that generate user/item em-
beddings. To simulate the phenomenon of increasing dataset sizes
and model capabilities over time, we consider larger GNN models
trained on more edges over time. We consider five different unin-
tended tasks that are of interest to practitioners. Below we explain
the benchmark in more details.

5.1.2 Datasets. We use public Amazon Product Reviews dataset4
that contains timestamped Amazon product reviews, spanning May
1996 - July 2014 [13]. The entire dataset is partitioned according to
the categories of products/items. In our experiments, we use the
datasets from three categories: Musical Instruments, Video Games,
andGrocery. Each item has brand and subcategory features, that can
be expressed as multi-hot vectors. User features are not available
in this dataset. Dataset statistics is summarized in Table 2.

4Available at https://jmcauley.ucsd.edu/data/amazon/

 

3023

https://jmcauley.ucsd.edu/data/amazon/


Learning Backward Compatible Embeddings KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 3: Results over 3 dataset. Absolute performance of the Keep-All is included in brackets. For all the metrics, the relative
degradation is computed after the average is taken across different timestamps and the five unintended tasks. We see from the
3rd column that the BC-Aligner provides the best trade-off between the intended and unintended task performance, yielding
the closest performance to the costly Keep-All approach.

Dataset Approach Method
(1) Intented task (2) Unintended task (1)+(2) (3) Emb

d Degradation from Degradation from Degradation from Align
Keep-All (%) ↑ Keep-All (%) ↑ Keep-All (%) ↑ Error ↓

Keep-All Keep-All (Abs. perf.) -0.00 (12.13) -0.00 (68.66) -0.00 0.00
Keep-𝑀0

Fix-𝑀0 -26.81 -0.00 -26.81 0.00
Finetune-𝑀0 [3] -7.69 -7.46 -15.15 1.01

Keep-Latest

Non-BC -0.00 -26.45 -26.45 2.61
Musical Post-Lin-SLoss [11] -0.00 -10.25 -10.25 1.27
Instruments Post-Lin-MLoss -0.00 -14.43 -14.43 1.34

Joint-NoTrans [16] -9.00 -0.80 -9.80 0.41
Joint-Lin-SLoss -3.67 -1.07 -4.74 0.48
BC-Aligner -2.96 -0.65 -3.62 0.38

Keep-All Keep-All (Abs. perf.) -0.00 (12.69) -0.00 (72.76) -0.00 -0.00
Keep-𝑀0

Fix-𝑀0 -25.55 -0.00 -25.55 0.00
Finetune-𝑀0 [3] -10.61 -6.72 -17.32 0.87

Keep-Latest

Non-BC -0.00 -30.81 -30.81 2.65
Video Post-Lin-SLoss [11] -0.00 -8.25 -8.25 1.10
Games Post-Lin-MLoss -0.00 -14.56 -14.56 2.51

Joint-NoTrans [16] -9.12 -0.62 -9.74 0.32
Joint-Lin-SLoss -3.98 -1.03 -5.01 0.40
BC-Aligner -3.35 -0.59 -3.94 0.28

Grocery

Keep-All Keep-All (Abs. perf.) -0.00 (7.78) -0.00 (65.82) -0.00 -0.00
Keep-𝑀0

Fix-𝑀0 -27.79 -0.00 -27.79 0.00
Finetune-𝑀0 [3] -24.74 -5.52 -30.26 1.12

Keep-Latest

Non-BC -0.00 -22.07 -22.07 2.69
Post-Lin-SLoss [11] -0.00 -6.36 -6.36 1.30
Post-Lin-MLoss -0.00 -15.69 -15.69 4.84
Joint-NoTrans [16] -11.31 -0.33 -11.64 0.18
Joint-Lin-SLoss -2.90 -2.17 -5.07 0.52
BC-Aligner -3.21 -0.07 -3.28 0.13

(1) (2) (3)

Figure 3: Performance over time. For the sub-figures (1) and (2), we plot the relative performance degradation from Keep-All in
the 𝑦-axis (closer to zero, the better).

The datasets can be naturally modeled as evolving graphs, where
nodes represent users/items, and each edge with a timestamp rep-
resents a user-item interaction, i.e., a user review an item at the
particular timestamp. We scale the timestamp between 0 and 1,
representing the ratio of edges observed so far, e.g., a timestamp of
0.6 means 60% of edges have been observed until that timestamp.
This allows us to compare methods across the datasets.

We consider embedding models to be updated at 𝑡0 = 0.5, 𝑡1 =

0.6, ...𝑡𝐾 = 0.9,𝐾 = 4. In total, five versions of the embedding model
are developed. We use 𝐸𝑘 to denote the set of all edges up to 𝑡𝑘 .

5.1.3 Intended Task. As the intended task, we consider the stan-
dard link prediction in recommender systems. [19]. At every times-
tamp 𝑡𝑘 for 𝑘 = 0, . . . , 𝐾 , we train𝑀𝑘 on 𝐸𝑘 and use it to predict on
the edges between time 𝑡𝑘 and 𝑡𝑘+1, i.e., 𝐸𝑘+1 \ 𝐸𝑘 , where 𝑡𝐾+1 = 1
by construction. We follow the same strategy as [6, 19] to train and
evaluate𝑀𝑘 . Specifically, given user/item embeddings generated
by 𝑀𝑘 , we use the dot product to score the user-item interaction
and use the BPR loss [14] to train 𝑀𝑘 . We then evaluate 𝑀𝑘 on
𝐸𝑘+1 \ 𝐸𝑘 using Recall@50.

5.1.4 Embedding Models. We use the GraphSAGE models [5] as
our core embedding models. To simulate the updates in model

 

3024



KDD ’22, August 14–18, 2022, Washington, DC, USA Weihua Hu et al.

0.6 0.7 0.8 0.9
Time of evaluation tk

1.0

0.5

0.0

0.5

1.0

1.5

Re
l. 

de
g.

 fr
om

 K
ee

p-
Al

l (
%

)

Unintended task performance over time
User positive activity
User activity
Item rating std
Item rating avg
Edge rating

Figure 4: Unintended task performance degradation of BC-
Aligner compared to Keep-All (dotted line) over time. The
performance degradation of each unintended task stays rela-
tively stable over time.

architecture over time, we start with a small GraphSAGE mode
at 𝑡0 and make it larger (both deeper and wider) over time. Please
refer to Appendix A.1 for more details.

5.1.5 Methods and Baselines. We consider the six methods under
our framework, as depicted in Table 1. They all follow the cost-
efficient Keep-Latest approach. For the joint-training methods, we
set 𝜆 = 16 in Eq. (3) unless otherwise specified.

We also consider the following two cost-efficient baseline meth-
ods that only keep the ver-0 embeddingmodel𝑀0 (as opposed to the
latest embedding model); we group the methods under Keep-𝑀0.
Fix-𝑀0. We train𝑀0 at timestamp 𝑡0 and fix its parameters through-
out the subsequent timestamps. For all the timestamps, the same
𝑀0 is used to perform the link prediction task as well as to generate
the embeddings for the unintended tasks. As ver-0 embeddings
are always produced, there is no backward compatibility issue for
Fix-𝑀0. However, the method always uses𝑀0 and cannot benefit
from additional data and better model architectures available in the
future. This will impact performance on the intended task 𝑇 .
Finetune-𝑀0. We also consider a method more advanced than the
Fix-𝑀0, originally introduced by [3]. Specifically, we train 𝑀0 at
timestamp 𝑡0. Then, in the subsequent timestamp 𝑡𝑘 with 1 ≤ 𝑘 ,
we finetune 𝑀𝑘−1 to obtain 𝑀𝑘 . Note that fine-tuning allows 𝑀0
to learn from more data over time. However, the approach cannot
benefit from improved model architecture over time, as fine-tuning
is not possible for different model architectures.

We evaluate the methods against the costly Keep-All approach
by measuring the performance degradation and the embedding
alignment error explained in Section 4. We specifically consider
the relative performance degradation in %, which is calculated as
100·(Perf−PerfKeep−All)

PerfKeep−All
, where Perf is the performance of a method of

interest. The value should be negative in most cases (as PerfKeep−All
is the upper bound); the closer to zero, the better. The trained𝑀0
is exactly the same across all the methods, as all the methods train
𝑀0 using only 𝐿0 and the same random seed.

Note that at every timestamp, we encounter new data (e.g., ex-
isting users/items with more interactions, new users/items), which
are never seen at previous timestamps. As our embedding model

and transformations are inductive, we can generate backward com-
patible embeddings z̃0 on the new data and make its prediction.

5.1.6 Unintended Tasks. We prepare five unintended binary classi-
fication tasks that include prediction on users, items, and user-item
interactions. We utilize the review rating information in design-
ing the unintended tasks, which is not used by the intended link
prediction task. For all the tasks, we use 1-hidden-layer MLPs and
evaluate the performance using ROC-AUC. Refer to Appendix A.2
for details.

• User activity prediction: Predict whether a given user will
interact with at least a single item in the near future.

• User positive activity prediction: Predict if a given user
will have at least one positive interaction in the near future.

• Item rating avg prediction: Predict whether the average
rating of a given item until the near future will be above a
threshold.

• Item rating std prediction: Predict whether the standard
deviation of the ratings of a given item until the near future
will be above a threshold.

• Edge rating prediction: Predict whether a given user will
give a positive rating to a given item.

5.2 Results
In Table 3, we summarize the averaged results of different methods
on the threemetrics presented in Section 4, namely, (1) intended task
degradation, (2) unintended task degradation, and (3) alignment
error. We use the simple addition of intended task degradation and
unintended task degradation as the unified metric to capture the
trade-off between the intended and unintended task performance.

First, we observe high correlation between the unintended task
degradation and alignment error; the smaller the unintended task
performance degradation is, the smaller the embedding alignment
error is. This validates our claim that alignment error can be used
as a general proxy for unintended task performance degradation.

Second, Non-BC suffers from large unintended task degradation
and alignment error, as the new versions of the embedding model
are not trained to be backward compatible.

Third, we see that Fix-𝑀0 suffers from large intended task degra-
dation, indicating that it is highly sub-optimal to not update the
embedding model over time to improve the intended task perfor-
mance. The more advanced Finetune-𝑀0 [3] still suffers from large
intended task degradation due to its inability of adopting the new
model architectures over time. Moreover, the unintended task per-
formance of Finetune-𝑀0 degrades by 5–7%, implying that fine-
tuned embedding models are generally no longer compatible with
the original model.

Fourth, Post-Lin-SLoss [11] performs poorly on unintended task,
degrading the performance by 6–10%. This is likely due to the large
embedding alignment error.

Fifth, Joint-NoTrans [16] provides the small unintended task
degradation and alignment error, but falls short on the intended task,
degrading its performance by 9–11%. Compared to Joint-NoTrans,
Joint-Lin-SLoss produces gives smaller intended task degradation.
However, Joint-Lin-SLoss performs relatively poorly on unintended

 

3025



Learning Backward Compatible Embeddings KDD ’22, August 14–18, 2022, Washington, DC, USA

(1) (2) (3)

Figure 5: Performance as a function of the trade-off hyper-parameter 𝜆. For sub-figures (1) and (2), we plot the relative
degradation from Keep-All (closer to zero, the better).

tasks, degrading the performance by 1–2%. As we will see in Fig-
ure 3, this is possibly due to the amplification of the single-step
embedding alignment error.

Overall, BC-Aligner provides the best trade-off between the
intended and unintended task performance, only suffering from
around 3% (resp. 0.5%) degradation in the intended (resp. unin-
tended) task performance. It also achieves the smallest embedding
approximation error among all the methods.

From now on, we consider theMusical Instruments dataset for all
results. We focus on the three methods that give the most promising
averaged results: Joint-NoTrans, Joint-Lin-SLoss, and BC-Aligner.
Results over time. Figure 3 shows the intended task degradation,
unintended task degradation, and alignment error over time. For
all the metrics, we observe that BC-Aligner provides the best per-
formance across almost all the timestamps. In Figure 3 (3), we see
the sharp increase in the embedding alignment error over time
for Joint-Lin-Sloss. This is likely due to the error amplification, as
the single-step error (the error at 𝑡 = 0.6) is comparable across
the methods. Indeed, once the multi-step alignment loss is used in
BC-Aligner, the embedding alignment error increases less sharply.
Results on each unintended task performance over time. Fig-
ure 4 shows the performance degradation of each unintended task
over time, when BC-Aligner is used. We see that the degradation
from Keep-All is relatively stable over time.
Averaged results with varying 𝜆. Figure 5 shows how the trade-
off parameter 𝜆 in Eq. (3) affects the three metrics. We consider
𝜆 ∈ {1, 2, 4, 8, 16, 32}, and the results are averaged over timestamps
and unintended tasks. As we increase 𝜆, all the methods have larger
degradation in the intended task performance, smaller degradation
in the unintended task performance, and smaller embedding align-
ment error, as expected. For fixed 𝜆, BC-Aligner often gives the
best or comparable performance compared to the other methods.
In practice, 𝜆 should be chosen based on the trade-off one wants to
achieve between the intended and unintended task performance.

6 RELATEDWORK
Backward compatible representation learning. Our problem
formulation shares a similar motivation as [16], which considers
backward compatible representation learning for open-set image
recognition. Meng et al. [10], Shen et al. [16] update the embedding

model so that embeddings computed by the updated model are
directly comparable to those generated by the previous model. Our
work differs from this work in two aspects. First, Shen et al. [16]
only considers a single task of interest (face recognition), while our
work considers a more practical scenario of having both intended
and unintended tasks and evaluates the trade-offs between the two.
Second, Shen et al. [16] mainly consider single-step backward com-
patibility, while we focus on multi-step backward compatibility. We
show that our novel multi-step alignment loss achieves very small
degradation of unintended task performance even after multiple
version updates.
Embedding alignment. Our work builds on cross-lingual em-
bedding alignment methods, where source word embeddings are
aligned to target embeddings by learning a linear transformation
function [1, 2, 9, 12, 15, 20, 21]. Tagowski et al. [17] applies the
embedding alignment technique to the graph domain, where they
align a set of node2vec embeddings [4] learned over different snap-
shots of an evolving graph. However, all these methods assume the
embeddings are fixed, which could result in a large alignment error
if two sets of pretrained embeddings are very distinct [23]. Unlike
thesemethods, we jointly learn the embeddings alongwith the back-
ward transformation function, achieving much better alignment
performance and better unintended task performance.

7 CONCLUSION
In this paper, we formulated the practical problem of learning back-
ward compatible embeddings. We presented a cost-efficient frame-
work to achieve the embedding backward compatibility even after
multiple rounds of updates of the embedding model version. Un-
der the framework, we proposed a promising method, BC-Aligner,
that achieves a better trade-off between the intended and unin-
tended task performance compared to prior approaches. There are
numerous future directions to investigate. For instance, the trade-
off could be further improved by using more expressive backward
transformation functions with non-linearity. It is also of interest to
assume some partial knowledge about the unintended tasks (e.g.,
the pre-trained consumer models are accessible to the embedding
team) to actually improve the unintended task performance without
re-training the consumer models. Finally, it is useful to apply our
framework to other applications domains, such as those involving
sentence and image embeddings.

 

3026



KDD ’22, August 14–18, 2022, Washington, DC, USA Weihua Hu et al.

ACKNOWLEDGEMENTS
We thank Andrew Wang and Rex Ying for their early discussion on
the work. Weihua Hu is supported by Funai Overseas Scholarship
and Masason Foundation Fellowship. We also gratefully acknowl-
edge the support of DARPA under Nos. HR00112190039 (TAMI),
N660011924033 (MCS); ARO under Nos. W911NF-16-1-0342 (MURI),
W911NF-16-1-0171 (DURIP); NSF under Nos. OAC-1835598 (CINES),
OAC-1934578 (HDR), CCF-1918940 (Expeditions), NIH under No.
3U54HG010426-04S1 (HuBMAP), Stanford Data Science Initiative,
Wu Tsai Neurosciences Institute, Amazon, Docomo, Hitachi, In-
tel, JPMorgan Chase, Juniper Networks, KDDI, NEC, Toshiba, and
UnitedHealth Group.

The content is solely the responsibility of the authors and does
not necessarily represent the official views of the funding entities.

REFERENCES
[1] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016. Learning principled bilin-

gual mappings of word embeddings while preserving monolingual invariance.
In Conference on Empirical Methods in Natural Language Processing (EMNLP).
2289–2294.

[2] Goran Glavas, Robert Litschko, Sebastian Ruder, and Ivan Vulic. 2019. How to
(properly) evaluate cross-lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. arXiv preprint arXiv:1902.00508
(2019).

[3] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. Dyngem: Deep em-
bedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018).

[4] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD). ACM, 855–864.

[5] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems
(NeurIPS). 1025–1035.

[6] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In www. 173–182.

[7] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. In Advances in Neural Information Processing
Systems (NeurIPS).

[8] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations (ICLR).

[9] Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. 2012. Inducing crosslin-
gual distributed representations of words. In International Conference ON Com-
putational Linguistics (COLING). 1459–1474.

[10] Qiang Meng, Chixiang Zhang, Xiaoqiang Xu, and Feng Zhou. 2021. Learning
compatible embeddings. In International Conference on Computer Vision (ICCV).
9939–9948.

[11] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013. Exploiting similarities
among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013).

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems (NeurIPS). 3111–3119.

[13] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In Conference on
Empirical Methods in Natural Language Processing (EMNLP). 188–197.

[14] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[15] Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019. A survey of cross-lingual
word embedding models. Journal of Artificial Intelligence Research 65 (2019),
569–631.

[16] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto. 2020. Towards
backward-compatible representation learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 6368–6377.

[17] Kamil Tagowski, Piotr Bielak, and Tomasz Kajdanowicz. 2021. Embedding Align-
ment Methods in Dynamic Networks. In International Conference on Computa-
tional Science. Springer, 599–613.

[18] AndrewZWang, Rex Ying, Pan Li, Nikhil Rao, Karthik Subbian, and Jure Leskovec.
2021. Bipartite Dynamic Representations for Abuse Detection. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
3638–3648.

[19] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In ACM SIGIR conference on Research and
development in Information Retrieval (SIGIR). 165–174.

[20] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embed-
ding and orthogonal transform for bilingual word translation. In North American
Chapter of the Association for Computational Linguistics (NAACL). 1006–1011.

[21] Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. 2018. Dynamic
word embeddings for evolving semantic discovery. In Proceedings of the eleventh
acm international conference on web search and data mining. 673–681.

[22] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD). 974–983.

[23] Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi, Stefanie Jegelka, and Jordan
Boyd-Graber. 2019. Are Girls Neko or Sh\= ojo? Cross-Lingual Alignment
of Non-Isomorphic Embeddings with Iterative Normalization. arXiv preprint
arXiv:1906.01622 (2019).

[24] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. Aligraph: A comprehensive graph neural network platform.
arXiv preprint arXiv:1902.08730 (2019).

 

3027



Learning Backward Compatible Embeddings KDD ’22, August 14–18, 2022, Washington, DC, USA

A ADDITIONAL IMPLEMENTATION DETAILS
A.1 Embedding Models
We evolve the GraphSAGE embedding models as follows. For the
Musical Instruments and Video Games, we start with a 2-layer
GraphSAGE model with the hidden dimensionality of 256 at 𝑡0.
Then, we increase the layer size to 3 at 𝑡2 and increase the hidden
dimensionality by 64 at every timestamp. For the Grocery dataset,
we use smaller models due to the limited GPU memory; we start
with a 1-layer GraphSAGE model with hidden diemensionality of
256 at 𝑡0. Then, we increase the layer size to 2 at 𝑡2 and increase
the hidden dimensionality by 64 until 𝑡2. All the models are trained
for 500 epochs with Adam [8], with a learning rate of 0.001, and
the weight decay of 0.01.

A.2 Unintended Tasks
In designing unintended tasks, we utilize the review rating infor-
mation associated with each edge, which takes an integer value
of between 1 and 5. Below we explain each unintended task, how
training is performed on ver-0 embeddings and how predictions
are made at each timestamp. We let 𝑉 (user)

𝑘
and 𝑉 (item)

𝑘
denote the

set of users and items appearing at least once in 𝐸𝑘 .
• User activity prediction: Given a user embedding obtained
at 𝑡𝑘 , we predict whether the user will interact with at least
a single item between 𝑡𝑘 and 𝑡𝑘+1. At training time, we train
on users in 𝑉 (user)

0 at 𝑡0, and validate on users in 𝑉 (user)
1 at

𝑡1. At test time 𝑡𝑘 , 2 ≤ 𝑘 , we make predictions on users in
𝑉

(user)
𝑘

.
• User positive activity prediction: The task is the same as
the above, except that we predict whether a user will have

at least one positive interaction with an item (i.e., rating ≥ 4)
or not.

• Item rating avg prediction: Given an item embedding ob-
tained at 𝑡𝑘 , predict the average rating of the item until 𝑡𝑘+1,
where we only consider items that receive more than 10
reviews until 𝑡𝑘 . We binarize the average rating by thresh-
olding it at the median value at 𝑡0. At training time 𝑡0, we
train on items in 𝑉 (item)

0 for the average item rating until 𝑡0
and validate on the average item rating until 𝑡1. At test time
𝑡𝑘 , 1 ≤ 𝑘 , we make predictions on items in 𝑉 (item)

𝑘
.

• Item rating std prediction: The task is the same as the
above, except that we predict the standard deviation of the
item ratings. The standard deviation is binarized by thresh-
olding at 1.

• Edge rating prediction: Given a pair of user and item em-
beddings at 𝑡𝑘 , predict whether the user gives a positive
rating (i.e., ≥ 4) to the item between 𝑡𝑘 and 𝑡𝑘+1. At training
time 𝑡0, we train on edges in 𝐸0 and validate on edges in
𝐸1 \ 𝐸0. At test time 𝑡𝑘 , 1 ≤ 𝑘 ≤ 𝐾 , we make predictions on
edges in 𝐸𝑘+1 \ 𝐸𝑘 .

Note that the test prediction for the first two tasks is performed
for 𝑡𝑘 , 2 ≤ 𝑘 , while the test prediction for the last three tasks is
performed for 𝑡𝑘 , 1 ≤ 𝑘 . This is because the first two tasks are
predicting future activity of existing users.

All the tasks are binary classification, and we use ROC-AUC
on the test set series as the performance metric. All consumer
models are 1-hidden-layer MLP models and are trained on ver-0
embeddings generated by 𝑀0. For each task, we tune the hidden
embedding dimensionality from {128, 256, 512, 1024}, the dropout
ratio from {0, 0.25, 0.5}, and performed early-stopping based on
performance on the validation set. We report the unintended task
performance averaged over 10 random seeds.

 

3028


	Abstract
	1 Introduction
	2 Problem Setting
	2.1 Terminology and Setting
	2.2 Generality of our Setting

	3 Methodological Framework
	3.1 Ideal but Costly Baseline: Keep-All
	3.2 Our Framework: Keep-Latest

	4 Evaluation Framework
	5 Experiments
	5.1 Recommender System Benchmark
	5.2 Results

	6 Related Work
	7 Conclusion
	References
	A Additional Implementation Details
	A.1 Embedding Models
	A.2 Unintended Tasks




