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Abstract

One of the fundamental problems in Artificial Intelligence is to perform complex
multi-hop logical reasoning over the facts captured by a knowledge graph (KG).
This problem is challenging, because KGs can be massive and incomplete. Recent
approaches embed KG entities in a low dimensional space and then use these
embeddings to find the answer entities. However, it has been an outstanding
challenge of how to handle arbitrary first-order logic (FOL) queries as present
methods are limited to only a subset of FOL operators. In particular, the negation
operator is not supported. An additional limitation of present methods is also that
they cannot naturally model uncertainty. Here, we present BETAE, a probabilistic
embedding framework for answering arbitrary FOL queries over KGs. BETAE is
the first method that can handle a complete set of first-order logical operations:
conjunction (∧), disjunction (∨), and negation (¬). A key insight of BETAE
is to use probabilistic distributions with bounded support, specifically the Beta
distribution, and embed queries/entities as distributions, which as a consequence
allows us to also faithfully model uncertainty. Logical operations are performed in
the embedding space by neural operators over the probabilistic embeddings. We
demonstrate the performance of BETAE on answering arbitrary FOL queries on
three large, incomplete KGs. While being more general, BETAE also increases
relative performance by up to 25.4% over the current state-of-the-art KG reasoning
methods that can only handle conjunctive queries without negation.

1 Introduction

Reasoning is a process of deriving logical conclusion or making predictions from available knowl-
edge/facts. Knowledge can be encoded in a knowledge graph (KG), where entities are expressed
as nodes and relations as edges. Real-world KGs, such as Freebase [1], Yago [2], NELL [3], are
large-scale as well as noisy and incomplete. Reasoning in KGs is a fundamental problem in Artifi-
cial Intelligence. In essence, it involves answering first-order logic (FOL) queries over KGs using
operators existential quantification (∃), conjunction (∧), disjunction (∨), and negation (¬).

To find answers, a given FOL query can be viewed as a computation graph which specifies the steps
needed. A concrete example of the computation graph for the query “List the presidents of European
countries that have never held the World Cup” is shown in Fig. 1. The query can be represented as a
conjunction of three terms: “Located(Europe,V)”, which finds all European countries; “¬Held(World
Cup,V)”, which finds all countries that never held the World Cup; and “President(V,V?)”, which finds
presidents of given countries. In order to answer this query, one first locates the entity “Europe”
and then traverses the KG by relation “Located” to identify a set of European countries. Similar
operations are needed for the entity “World Cup” to obtain countries that hosted the World Cup. One
then needs to complement the second set to identify countries that have never held the World Cup and
intersect the complement with the set of European countries. The final step is to apply the relation
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Figure 1: BETAE answers first-order logic queries that include ∃, ∧, ∨ and ¬ logical operators.
(A): A given query “List the presidents of European countries that have never held the World Cup”
can be represented by its computation graph where each node represents a set of entities and each
edge represents a logical operation. (B): BETAE models each node of the computation graph as a
Beta distribution over the entity embedding space and each edge of the computation graph transforms
the distribution via a projection, negation, or intersection operation. BETAE applies a series of logical
operators that each transform and shape the Beta distribution. The answer to the query are then
entities that are probabilistically close to the embedding of the query (e.g., embedding of “Macron” is
closer to the query embedding and the embedding of “Rebelo de Sousa”).

“President” to the resulting intersection set to find the list of country presidents, which gives the query
answer.

KG reasoning presents a number of challenges. One challenge is the scale of KGs. Although
queries could be in principle answered by directly traversing the KG, this is problematic in practice
since multi-hop reasoning involves an exponential growth in computational time/space. Another
challenge is incompleteness, where some edges between entities are missing. Most real-world KGs
are incomplete and even a single missing edge may make the query unanswerable.

Previous methods [4, 5, 6, 7, 8] aim to address the above challenges by using embeddings and this
way implicitly impute the missing edges. Methods also embed logical queries into various geometric
shapes in the vector space [9, 10, 11, 12]. The idea here is to design neural logical operators and
embed queries iteratively by executing logical operations according to the query computation graph
(Fig. 1). An advantage of these approaches is that they do not need to track all the intermediate entities,
and that they can use the nearest neighbor search [13] in the embedding space to quickly discover
answers. However, these methods only support existential positive first-order (EPFO) queries, a
subset of FOL queries with existential quantification (∃), conjunction (∧) and disjunction (∨), but not
negation (¬). Negation, however, is a fundamental operation and required for the complete set of FOL
operators. Modeling negation so far has been a major challenge. The reason is that these methods
embed queries as closed regions, e.g., a point [9, 11, 12] or a box [10] in the Euclidean space, but the
complement (negation) of a closed region does not result in a closed region. Furthermore, current
methods embed queries as static geometric shapes and are thus unable to faithfully model uncertainty.

Here we propose Beta Embedding (BETAE), a method for multi-hop reasoning over KGs using full
first-order logic (FOL). We model both the entities and queries by probabilistic distributions with
bounded support. Specifically, we embed entities and queries as Beta distributions defined on the
[0, 1] interval. Our approach has the following important advantages: (1) Probabilistic modeling can
effectively capture the uncertainty of the queries. BETAE adaptively learns the parameters of the
distributions so that the uncertainty of a given query correlates well with the differential entropy of
the probabilistic embedding. (2) We design neural logical operators that operate over these Beta
distributions and support full first-order logic: ∃, ∧, ∨ and most importantly ¬. The intuition behind
negation is that we can transform the parameters of the Beta distribution so that the regions of high
probability density become regions of low probability density and vice versa. (3) Our neural modeling
of ∧ and ¬ naturally corresponds to the real operations and captures several properties of first-order
logic. For example, applying the negation operator twice will return the same input. (4) Using the
De Morgan’s laws, disjunction ∨ can be approximated with ∧ and ¬, allowing BETAE to handle a
complete set of FOL operators and thus supporting arbitrary FOL queries.

Our model is able to handle arbitrary first-order logic queries in an efficient and scalable manner.
We perform experiments on standard KG datasets and compare BETAE to prior approaches [9, 10]
that can only handle EPFO queries. Experiments show that our model BETAE is able to achieve
state-of-the-art performance in handling arbitrary conjunctive queries (including ∃, ∧) with a relative
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increase of the accuracy by up to 25.4%. Furthermore, we also demonstrate that BETAE is more
general and is able to accurately answer any FOL query that includes negation ¬. Project website
with data and code can be found at http://snap.stanford.edu/betae.

2 Related Work

Uncertainty in KG Embeddings. Previous works on KG embeddings assign a learnable vector
for each entity and relation with various geometric intuitions [4, 5, 6, 7, 8] and neural architectures
[14, 15, 16]. Besides vector embeddings, KG2E [17] and TransG [18] both model the uncertainties of
the entities and relations on KGs by using the Gaussian distributions and mixture models. However,
their focus is link prediction and it is unclear how to generalize these approaches to multi-hop
reasoning with logical operators. In contrast, our model aims at multi-hop reasoning and thus learns
probabilistic embeddings for complex queries and also designs a set of neural logical operators over
the probabilistic embeddings. Another line of work models the uncertainty using order embeddings
[19, 20, 21, 22, 23], distributions [17, 24, 25] and Quantum logic [26]. The difference here is that
our goal is to model the logical queries and their answers, which goes beyond modeling the inclusion
and entailment between a pair of concepts in KGs.

Multi-hop Reasoning on KGs. Another line of related work is multi-hop reasoning on KGs. This
includes (1) answering multi-hop logical queries on KGs, which is most relevant to our paper, and
(2) using multi-hop rules or paths to improve the performance of link prediction. Previous methods
that answer queries [9, 10, 11, 12] can only model a subset of FOL queries, while our method
can handle arbitrary FOL queries with probabilistic embeddings. Rule and path-based methods
[27, 28, 29, 30, 31, 32] pre-define or achieve these multi-hop rules in an online fashion that require a
modeling of all the intermediate entities on the path, while our main focus is to directly embed and
answer a complex FOL query without the need to model the intermediate entities, which leads to
more scalable algorithms.

3 Preliminaries

Knowledge Graph (KG) G is heterogeneous graph structure that consists of a set of entities V and
a set of relation types R, G = (V,R). Each relation type r ∈ R is a binary function r : V × V →
{True, False} that indicates (directed) edges of relation type r between pairs of entities.

We are interested in answering first-order logic (FOL) queries with logical operations including
conjunction (∧), disjunction (∨), existential quantification (∃) and negation (¬) 1. We define valid
FOL queries in its disjunctive normal form (DNF), i.e., disjunction of conjunctions.
Definition 1 (First-order logic queries). A first-order logic query q consists of a non-variable anchor
entity set Va ⊆ V , existentially quantified bound variables V1, . . . , Vk and a single target variable V?,
which provides the query answer. The disjunctive normal form of a logical query q is a disjunction of
one or more conjunctions.

q[V?] = V? . ∃V1, . . . , Vk : c1 ∨ c2 ∨ ... ∨ cn

1. Each c represents a conjunctive query with one or more literals e. ci = ei1 ∧ ei2 ∧ · · · ∧ eim.

2. Each literal e represents an atomic formula or its negation. eij = r(va, V ) or ¬ r(va, V )
or r(V ′, V ) or ¬ r(V ′, V ), where va ∈ Va, V ∈ {V?, V1, . . . , Vk}, V ′ ∈ {V1, . . . , Vk},
V 6= V ′, r ∈ R.

Computation Graph: As shown in Fig. 1, we can derive, for a given query, its corresponding com-
putation graph by representing each atomic formula with relation projection, merging by intersection
and transforming negation by complement. This directed graph demonstrates the computation process
to answer the query. Each node of the computation graph represents a distribution over a set of entities
in the KG and each edge represents a logical transformation of this distribution. The computation
graphs of FOL queries can be viewed as heterogeneous trees, where each leaf node corresponds to
a set of cardinality 1 that contains a single anchor entity va ∈ Va (note that one anchor entity may

1Note that we do not consider FOL queries with universal quantification (∀) in this paper. Queries with
universal quantification do not apply in real-world KGs since no entity connects with all the other entities.
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Figure 2: Illustration of our probabilistic intersection operator I (left) and probabilistic negation
operator N (right). I transforms the input distribution by taking the weighted product of the PDFs;
N transforms the input distribution by taking the reciprocal of its parameters.

appear in multiple leaf nodes) and the root node represents the unique target variable, which is the set
of answer entities. The mapping along each edge applies a certain logical operator:

1. Relation Projection: Given a set of entities S ⊆ V and relation type r ∈ R, compute
adjacent entities ∪v∈SAr(v) related to S via r: Ar(v) ≡ {v′ ∈ V : r(v, v′) = True}.

2. Intersection: Given sets of entities {S1, S2, . . . , Sn}, compute their intersection ∩ni=1Si.

3. Complement/Negation: Given a set of entities S ⊆ V , compute its complement S ≡ V \S.

We do not define a union operator for the computation graph, which corresponds to disjunction.
However, this operator is not needed, since according to the De Morgan’s laws, given sets of entities
{S1, . . . , Sn}, ∪ni=1Si is equivalent to ∩ni=1S.

In order to answer a given FOL query, we can follow the computation graph and execute logical
operators. We can obtain the answers by looking at the entities in the root node. We denote the answer
set as JqK, which represents the set of entities on G that satisfy q, i.e., v ∈ JqK ⇐⇒ q[v] = True.
Note that this symbolic traversal of the computation graph is equivalent to traversing the KG, however,
it cannot handle noisy or missing edges in the KG.

4 Probabilistic Embeddings for Logical Reasoning

To answer queries in a large and incomplete KG, we first introduce our model BETAE, which embeds
both entities and queries as Beta distributions. Then we define probabilistic logical operators for
relation projection, intersection and negation. These operate on the Beta embeddings which allow us
to support arbitrary FOL queries. Finally, we describe our training objective.

4.1 Beta Embeddings for Entities and Queries

In order to model any FOL query, the desirable properties of the embedding include: (1) the embed-
ding can naturally model uncertainty; (2) we can design logical/set operators (conjunction/intersection
and especially negation/complement) that are closed. The closure property is important for two
reasons: (i) operators can be combined in arbitrary ways; (ii) the representation remains at a fixed
space/time complexity and does not grow exponentially as additional operators are applied.

We propose to embed both the entities and queries into the same space using probabilistic embeddings
with bounded support. With a bounded support, the negation/complement can be accordingly defined,
where we follow the intuition to switch high-density regions to low density and vice versa (Fig. 2).
Specifically, we look at the [0, 1] interval and adopt the Beta distribution. A Beta distribution
Beta(α, β) has two shape parameters, and our method relies on its probability density function
(PDF): p(x) = xα−1(1−x)β−1

B(α,β) , where x ∈ [0, 1] and B(·) denotes the beta function. The uncertainty
of a Beta distribution can be measured by its differential entropy: H = lnB(α, β)− (α− 1)[ψ(α)−
ψ(α+ β)]− (β − 1)[ψ(β)− ψ(α+ β)], where ψ(·) represents the digamma function.

For each entity v ∈ V , which can be viewed as a set with a single element, we assign an initial Beta
embedding with learnable parameters. We also embed each query q with a Beta embedding, which is
calculated by a set of probabilistic logical operators (introduced in the next section) following the
computation graph. Note that BETAE learns high-dimensional embeddings where each embedding
consists of multiple independent Beta distributions, capturing a different aspect of a given entity or a
query: S = [(α1, β1), . . . , (αn, βn)], where n is a hyperparameter. We denote the PDF of the i-th
Beta distribution in S as pS,i. Without loss of generality and to ease explanation, we shall assume
that each embedding only contains one Beta distribution: S = [(α, β)], and we denote its PDF as pS.
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4.2 Probabilistic Logical Operators

In order to answer a query using the computation graph, we need probabilistic logical operators for
the Beta embedding. Next, we describe the design of these logical operators used in computation
graphs, which include relation projection P , intersection I and negation N . As discussed before,
union can be implemented using intersection and complement. Each operator takes one or more Beta
embeddings as input and then transforms them into a new Beta embedding.

Probabilistic Projection OperatorP: In order to model the relation projection from one distribution
to another, we design a probabilistic projection operator P that maps from one Beta embedding S to
another Beta embedding S′ given the relation type r. We then learn a transformation neural network
for each relation type r, which we implement as a multi-layer perceptron (MLP):

S′ = MLPr(S) (1)

The goal here is that for all entities S covered by the input distribution, we can achieve the embedding
distribution that covers entities S′ = ∪v∈SAr(v), where Ar(v) ≡ {v′ ∈ V : r(v, v′) = True}.
Importantly, projection operation represents a relation traversal from one (fuzzy) set of entities to
another (fuzzy) set, and may yield a huge number of results, yet here we represent it with a single
fixed-size Beta embedding, making BETAE scalable.

Probabilistic Intersection Operator I: Given n input embeddings {S1, . . . ,Sn}, the goal of
probabilistic intersection operator I is to calculate the Beta embedding SInter that represents the
intersection of the distributions (i.e., the intersection of the distributions defining fuzzy input sets of
entities). We model I by taking the weighted product of the PDFs of the input Beta embeddings:

pSInter =
1

Z

∏
pw1

S1
. . . pwnSn

, (2)

where Z is a normalization constant and w1, . . . , wn are the weights with their sum equal to 1.

To make the model more expressive, we use the attention mechanism and learn w1, . . . , wn through a
MLPAtt that takes as input the parameters of Si and outputs a single attention scalar:

wi =
exp(MLPAtt(Si))∑
j exp(MLPAtt(Sj))

(3)

Since Si is a Beta distribution [(αi, βi)], the weighted product pSInter is a linear interpolation of the
parameters of the inputs. We derive the parameters of SInter to be [(

∑
wiαi,

∑
wiβi)]:

pSInter(x) ∝ x
∑
wi(αi−1)(1− x)

∑
wi(βi−1)

= x
∑
wiαi−1(1− x)

∑
wiβi−1 (4)

Our approach has three important advantages (Fig. 2): (1) Taking a weighted product of the PDFs
demonstrates a zero-forcing behavior [33] where the effective support of the resulting Beta embedding
SInter approximates the intersection of the effective support of the input embeddings (effective
support meaning the area with sufficiently large probability density [33]). This follows the intuition
that regions of high density in pSInter should have high density in the PDF of all input embeddings
{pS1 , . . . , pSn}. (2) As shown in Eq. 4, the probabilistic intersection operator I is closed, since
the weighted product of PDFs of Beta distributions is proportional to a Beta distribution. (3) The
probabilistic intersection operator I is commutative w.r.t the input Beta embeddings following Eq. 2.

Probabilistic Negation Operator N : We require a probabilistic negation operator N that takes
Beta embedding S as input and produces an embedding of the complement N (S) as a result. A
desired property of N is that the density function should reverse in the sense that regions of high
density in pS should have low probability density in pN (S) and vice versa (Fig. 2). For the Beta
embeddings, this property can be achieved by taking the reciprocal of the shape parameters α and
β: N ([(α, β)]) = [( 1

α ,
1
β )]. As shown in Fig. 2, the embeddings switch from bell-shaped unimodal

density function with 1 < α, β to bimodal density function with 0 < α, β < 1.
Proposition 1. By defining the probabilistic logical operators I and N , BETAE has the following
properties (with proof in Appendix A):

1. Given Beta embedding S, S is a fixed point of N ◦N : N (N (S)) = S.

5



2. Given Beta embedding S, we have I({S,S, . . . ,S}) = S.

Proposition 1 shows that our design of the probabilistic intersection operator and the probabilistic
negation operator achieves two important properties that obey the rules of real logical operations.

4.3 Learning Beta Embeddings

Distance: Assume we use a n-dimensional Beta embedding for entities and queries, which means
that each embedding consists of n independent Beta distributions with 2n number of parameters.
Given an entity embedding v with parameters [(αv1, β

v
1 ), . . . , (αvn, β

v
n)], and a query embedding q

with parameters [(αq1, β
q
1), . . . , (αqn, β

q
n)], we define the distance between this entity v and the query

q as the sum of KL divergence between the two Beta embeddings along each dimension:

Dist(v; q) =

n∑
i=1

KL(pv,i; pq,i), (5)

where pv,i (pq,i) represents the i-th Beta distribution with parameters αvi and βvi (αqi and βqi ). Note
that we use KL(pv,i; pq,i) rather than KL(pq,i; pv,i) so that the query embeddings will “cover” the
modes of all answer entity embeddings [34].

Training Objective: Our objective is to minimize the distance between the Beta embedding of a
query and its answers while maximizing the distance between the Beta embedding of the query and
other random entities via negative sampling [6, 10], which we define as follows:

L = − log σ (γ − Dist(v; q))−
k∑
j=1

1

k
log σ

(
Dist(v′j ; q)− γ

)
, (6)

where v ∈ JqK belongs to the answer set of q, v′j /∈ JqK represents a random negative sample, and γ
denotes the margin. In the loss function, we use k random negative samples and optimize the average.

Discussion on Modeling Union: With the De Morgan’s laws (abbreviated as DM), we can naturally
model union operation S1 ∪ S2 with S1 ∩ S2, which we can derive as a Beta embedding. However,
according to the Theorem 1 in [10], in order to model any queries with the union operation, we
must have a parameter dimensionality of Θ(M), where M is of the same order as the number of
entities [10]. The reason is that we need to model in the embedding space any subset of the entities.
Q2B [10] overcomes this limitation by transforming queries into a disjunctive normal form (DNF) and
only deals with union at the last step. Our DM modeling of union is also limited in this respect since
the Beta embedding can be at most bi-modal and as a result, there are some union-based queries that
BETAE cannot model in theory. However, in practice, union-based queries are constrained and we do
not need to model all theoretically possible entity subsets. For example, a query “List the union of
European countries and tropical fruits.” does not make sense; and we further learn high-dimensional
Beta embeddings to alleviate the problem. Furthermore, our DM modeling is always linear w.r.t the
number of union operations, while the DNF modeling is exponential in the worst case (with detailed
discussion in Appendix B). Last but not least, BETAE can safely incorporate both the DNF modeling
and DM modeling, and we show in the experiments that the two approaches work equally well in
answering real-world queries.

Inference: Given a query q, BETAE directly embeds it as q by following the computation graph
without the need to model intermediate entities. To obtain the final answer entities, we rank all the
entities based on the distance defined in Eq. 5 in constant time using Locality Sensitive Hashing [13].

5 Experiments

In this section, we evaluate BETAE on multi-hop reasoning over standard KG benchmark datasets.
Our experiments demonstrate that: (1) BETAE effectively answers arbitrary FOL queries. (2) BETAE
outperforms less general methods [9, 10] on EPFO queries (containing only ∃, ∧ and ∨) that these
methods can handle. (3) The probabilistic embedding of a query corresponds well to its uncertainty.
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Figure 3: Top: Training and evaluation queries represented with their graphical structures, an
abbreviation of the computation graph. Naming convention: p projection, i intersection, n negation,
u union. Bottom: Query structures with negation used in our experiments.

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avgDNF DM DNF DM

FB15k
BETAE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.0 25.2 25.4 41.6
Q2B 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 - 16.7 - 38.0
GQE 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 - 11.6 - 28.0

FB15k-237
BETAE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 11.1 9.7 9.9 20.9
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 - 7.6 - 20.1
GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 - 5.7 - 16.3

NELL995
BETAE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 11.0 8.5 8.6 24.6
Q2B 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 - 10.3 - 22.9
GQE 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 - 8.8 - 18.6

Table 1: MRR results (%) of BETAE, Q2B and GQE on answering EPFO (∃, ∧, ∨) queries.

5.1 Experiment Setup

Our experimental setup is focused on incomplete KGs and thus we measure performance only over
answer entities that require (implicitly) imputing at least one edge. More precisely, given an incom-
plete KG, our goal is to obtain non-trivial answers to arbitrary FOL queries that cannot be discovered
by directly traversing the KG. We use three standard KGs with official training/validation/test edge
splits, FB15k [4], FB15k-237 [35] and NELL995 [27] and follow [10] for the preprocessing.

Evaluation Protocol: We follow the evaluation protocol in [10]. We first build three KGs: training
KG Gtrain, validation KG Gvalid, test KG Gtest using training edges, training+validation edges,
training+validation+test edges, respectively. Our evaluation focuses on incomplete KGs, so given
a test (validation) query q, we are interested in discovering non-trivial answers JqKtest\JqKval
(JqKval\JqKtrain). That is, answer entities where at least one edge needs to be imputed in order to
create an answer path to that entity. For each non-trivial answer v of a test query q, we rank it against
non-answer entities V\JqKtest. We denote the rank as r and calculate the Mean Reciprocal Rank
(MRR): 1

r ; and, Hits at K (H@K): 1[r ≤ K] as evaluation metrics.

Queries: We base our queries on the 9 query structures proposed in Query2Box (Q2B) [10] and
make two additional improvements. First, we notice that some test queries may have more than 5,000
answers. To make the task more challenging, we thus regenerate the same number of validation/test
queries for each of the 9 structures, keeping only those with answers smaller than a threshold. We
list the statistics of the new set of queries in Table 6 (in Appendix C). We evaluate BETAE on
both the queries in Q2B and our new realistic queries, which are more challenging since they use
the same training queries without any enforcement on the maximum number of answers for a fair
comparison. Second, from the 9 structures we derive 5 new query structures with negation. As
shown in Fig. 3, in order to create realistic structures with negation, we look at the 4 query structures
with intersection (2i/3i/ip/pi) and perturb one edge to perform set complement before taking the
intersection, resulting in 2in/3in/inp/pni/pin structures. Additional information about query
generation is given in Appendix C.

As summarized in Fig. 3, our training and evaluation queries consist of the 5 conjunctive structures
(1p/2p/3p/2i/3i) and also 5 novel structures with negation (2in/3in/inp/pni/pin). Furthermore,
we also evaluate model’s generalization ability which means answering queries with logical structures
that the model has never seen during training. We further include ip/pi/2u/up for evaluation.
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Dataset Metrics 2in 3in inp pin pni avg

FB15k MRR 14.3 14.7 11.5 6.5 12.4 11.8
H@10 30.8 31.9 23.4 14.3 26.3 25.3

FB15k-237 MRR 5.1 7.9 7.4 3.6 3.4 5.4
H@10 11.3 17.3 16.0 8.1 7.0 11.9

NELL995 MRR 5.1 7.8 10.0 3.1 3.5 5.9
H@10 11.6 18.2 20.8 6.9 7.2 12.9

Table 2: MRR and H@10 results (%) of BETAE on answering queries with negation.

Baselines: We consider two state-of-the-art baselines for answering complex logical queries on KGs:
Q2B [10] and GQE [9]. GQE embeds both queries and entities as point vectors in the Euclidean
space; Q2B embeds the queries as hyper-rectangles (boxes) and entities as point vectors so that
answers will be enclosed in the query box. Both methods design their corresponding projection and
intersection operators, however, neither can handle the negation operation since the complement
of a point/box in the Euclidean space is no longer a point/box. For fair comparison, we assign the
same dimensionality to the embeddings of the three methods2. Note that since the baselines cannot
model negation operation, the training set for the baselines only contain queries of the 5 conjunctive
structures. We ran each method for 3 different random seeds after finetuning the hyperparameters.
We list the hyperparameters, architectures and more details in Appendix D.

5.2 Modeling Arbitrary FOL Queries

Modeling EPFO (containing only ∃, ∧ and ∨) Queries: First we compare BETAE with baselines
that can only model queries with conjunction and disjunction (but no negation). Table 1 shows the
MRR of the three methods. BETAE achieves on average 9.4%, 5.0% and 7.4% relative improvement
MRR over previous state-of-the-art Q2B on FB15k, FB15k-237 and NELL995, respectively. We refer
the reader to Tables 9 and 10 in Appendix E for the H@1 results. Again, on EPFO queries BETAE
achieves better performance than the two baselines on all three datasets.

DNF vs. DM: As discussed in Sec. 4.3, we can model queries with disjunction in two ways: (1)
transform them into disjunctive normal form (DNF); (2) represent disjunction with conjunction and
negation using the De Morgan’s laws (DM). We evaluate both modeling schemes (Table 1(right)).
DNF modeling achieves slightly better results than DM since it is able to better represent disjunction
with multi-modal embeddings. However, it also demonstrates that our DM modeling provides a nice
approximation to the disjunction operation, and generalizes really well since the model is not trained
on 2u and up queries. Note that BETAE is very flexible and can use and improve both modeling
approaches while the baselines can only use DNF since they cannot model the negation operation.

Modeling Queries with Negation: Next, we evaluate our model’s ability to model queries with
negation. We report both the MRR and H@10 results in Table 2. Note that answering queries with
negation is challenging since only a small fraction of the training queries contain negation. As shown
in Table 7 (Appendix), during training, the number of 2in/3in/inp/pin/pni queries is 10 times
smaller than the number of conjunctive queries. Overall, BETAE generalizes well and provides the
first embedding-based method that can handle arbitrary FOL queries.

5.3 Modeling the Uncertainty of Queries

We also investigate whether our Beta embeddings are able to capture uncertainty. The uncertainty
of a (fuzzy) set can be characterized by its cardinality. Given a query with answer set JqK, we aim
to calculate the correlation between the differential entropy of the Beta embedding pJqK and the
cardinality of the answer set |JqK|. For comparison, Q2B embeds each query as a box, which can also
model the uncertainty of the query by expanding/shrinking the box size. We consider two types of
statistical correlations: Spearman’s rank correlation coefficient (SRCC), which measures the statistical
dependence between the rankings of two variables; and Pearson’s correlation coefficient (PCC), which
measures the linear correlation of the two variables. Table 3 and Table 11 (in Appendix E) show
that BETAE achieves up to 77% better correlation than Q2B. We conclude that BETAE with Beta
embeddings is able to capture query uncertainty. Furthermore, note that BETAE naturally learns this
property without any regularization to impose the correlation during training.

2If GQE has embeddings of dimension 2n, then Q2B has embeddings of n since it needs to model both the
center and offset of a box, and BETAE also has n beta distributions since each has two parameters, α and β.
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Dataset Model 1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni

FB15k Q2B 0.301 0.219 0.262 0.331 0.270 0.297 0.139 - - - - -
BETAE 0.373 0.478 0.472 0.572 0.397 0.519 0.421 0.622 0.548 0.459 0.465 0.608

FB15k-237 Q2B 0.184 0.226 0.269 0.347 0.436 0.361 0.199 - - - - -
BETAE 0.396 0.503 0.569 0.598 0.516 0.540 0.439 0.685 0.579 0.511 0.468 0.671

NELL995 Q2B 0.154 0.288 0.305 0.380 0.410 0.361 0.345 - - - - -
BETAE 0.423 0.552 0.564 0.594 0.610 0.598 0.535 0.711 0.595 0.354 0.447 0.639

Table 3: Spearman’s rank correlation between learned embedding (differential entropy for BETAE, box
size for Q2B) and the number of answers of queries. BETAE shows up to 77% relative improvement.

1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni
0.825 0.766 0.793 0.909 0.933 0.868 0.798 0.865 0.93 0.801 0.809 0.848

Table 4: ROC-AUC score of BETAE for all the 12 query structures on classification of queries
with/without answers on the NELL dataset.

Modeling Queries without Answers: Since BETAE can effectively model the uncertainty of a
given query, we can use the differential entropy of the query embedding as a measure to represent
whether the query is an empty set (has no answers). For evaluation, we randomly generated 4k
queries without answers and 4k queries with more than 5 answers for each of the 12 query structures
on NELL. Then we calculate the differential entropy of the embeddings of each query with a trained
BETAE and use this to classify whether a query has answers. As a result, we find an ROC-AUC score
of 0.844 and list the ROC-AUC score of each query structure in Table 4. These results suggest that
BETAE can naturally model queries without answers, since (1) we did not explicitly train BETAE to
optimize for correlation between the differential entropy and the cardinality of the answer set; (2) we
did not train BETAE on queries with empty answers.

6 Conclusion

We have presented BETAE, the first embedding-based method that could handle arbitrary FOL queries
on KGs. Given a query, BETAE embeds it into Beta distributions using probabilistic logical operators
by following the computation graph in a scalable manner. Extensive experimental results show that
BETAE significantly outperforms previous state-of-the-art, which can only handle a subset of FOL,
in answering arbitrary logical queries as well as modeling the uncertainty.

Broader Impact

BETAE gives rise to the first method that handles all logical operators in large heterogeneous KGs. It
will greatly increase the scalability and capability of multi-hop reasoning over real-world KGs and
heterogenous networks.

One potential risk is that the model may make undesirable predictions in a completely random KG,
or a KG manipulated by adversarial and malicious attacks [36, 37]. Recent progress on adversarial
attacks [36, 37] have shown that manipulation of the KG structure may effectively deteriorate the
performance of embedding-based methods. And this may mislead the users and cause negative impact.
We will continue to work on this direction to design more robust KG embeddings. Alternatively, this
issue can also be alleviated through human regularization of real-world KGs.
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Appendix
A Proof for Proposition 1

We restate the proposition 1 and its proof here.
Proposition 2. Given the probabilistic logical operators I and N defined in Sec. 4.2, BETAE has
the following properties:

1. Given Beta embedding S, S is a fixed point of N ◦N : N (N (S)) = S.

2. Given Beta embedding S, we have I({S,S, . . . ,S}) = S.

Proof. For the first property, the probabilistic negation operator N takes the reciprocal of the
parameters of the input Beta embeddings. If we apply N twice, it naturally equals the input Beta
embeddings. For the second property, the probabilistic intersection operator I takes the weighted
product of the PDFs of the input Beta embeddings, and according to Eq. 4, the parameters of the
output Beta embeddings are linear interpolation of the parameters of the input Beta embeddings.
Then we naturally have S = I({S, . . . ,S}).

B Computation Complexity of DM and DNF

Here we discuss the computation complexity of representing any given FOL query using the De
Morgan’s laws (DM) and the disjunctive normal form (DNF). Given a FOL query q, representing
q with DNF may in the worst case creates exponential number of atomic formulas. For example,
transforming a valid FOL query (q11 ∨ q12) ∧ (q21 ∨ q22) · · · ∧ (qn1 ∨ qn2) leads to exponential
explosion, resulting in a query with 2n number of formulas in the DNF. For DM, since we could
always represent a disjunction operation with three negation operation and one conjunction operation:
q1 ∨ q2 = ¬(¬q1 ∧ ¬q2), which is a constant. Hence, the DM modeling only scales linearly.

C Query Generation and Statistics

Generation of EPFO (with ∃, ∨ and ∧) Queries: Following [10], we generate the 9 EPFO query
structures in a similar manner. Given the three KGs, and its training/validation/test edge splits,
which is shown in Table 5, we first create Gtrain, Gvalid, Gtest as discussed in Sec. 5.1. Then for
each query structure, we use pre-order traversal starting from the target node/answer to assign an
entity/relation to each node/edge iteratively until we instantiate every anchor nodes (the root of
the query structure). After the instantiation of a query, we could perform post-order traversal to
achieve the answers of this query. And for validation/test queries, we explicitly filter out ones that do
not exist non-trivial answers, i.e., they can be fully answered in Gtrain/Gvalid. Different from the
dataset in [10], where the maximum number of test queries may exceed 5,000, we set a bar for the
number of answers one query has, and additionally filter out unrealistic queries with more than 100
answers. We list the average number of answers the new test queries have in Table 6 and the number
of training/validation/test queries in Table 7.

Dataset Entities Relations Training Edges Validation Edges Test Edges Total Edges
FB15k 14,951 1,345 483,142 50,000 59,071 592,213
FB15k-237 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,804

Table 5: Knowledge graph dataset statistics as well as training, validation and test edge splits.

Dataset 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni
FB15k 1.7 19.6 24.4 8.0 5.2 18.3 12.5 18.9 23.8 15.9 14.6 19.8 21.6 16.9
FB15k-237 1.7 17.3 24.3 6.9 4.5 17.7 10.4 19.6 24.3 16.3 13.4 19.5 21.7 18.2
NELL995 1.6 14.9 17.5 5.7 6.0 17.4 11.9 14.9 19.0 12.9 11.1 12.9 16.0 13.0

Table 6: Average number of answers of test queries in our new dataset.
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Queries Training Validation Test
Dataset 1p/2p/3p/2i/3i 2in/3in/inp/pin/pni 1p others 1p others
FB15k 273,710 27,371 59,097 8,000 67,016 8,000
FB15k-237 149,689 14,968 20,101 5,000 22,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000

Table 7: Number of training, validation, and test queries generated for different query structures.

Generation of Queries with Negation: For the additional queries with negation, we derive 5 new
query structures from the 9 EPFO structures. Specifically, as shown in Fig. 3, we only consider
query structures with intersection for the derivation of queries with negation. The reason is that
queries with negation are only realistic if we take negation with an intersection together. Consider
the following example, where negation is not taken with intersection, “List all the entities on KG
that is not European countries.”, then both “apple” and “computer” will be the answers. However,
realistic queries will be like “List all the countries on KG that is not European countries.”, which
requires an intersection operation. In this regard, We modify one edge of the intersection to further
incorporate negation, thus we derive 2in from 2i, 3in from 3i, inp from ip, pin and pni from pi.
Note that following the 9 EPFO structures, we also enforce that all queries with negation have at
most 100 answers.

D Experimental Details

We implement our code using Pytorch. We use the implementation of the two baselines GQE [9] and
Q2B [10] in https://github.com/hyren/query2box. We finetune the hyperparameters for the
three methods including number of embedding dimensions from {200, 400, 800} and the learning
rate from {1e−4, 5e−3, 1e−3}, batch size from {128, 256, 512}, and the negative sample size from
{32, 64, 128}, the margin γ from {20, 30, 40, 50, 60, 70}. We list the hyperparameters of each model
in the Table 8. Additionally, for our BETAE, we finetune the structure of the probabilistic projection
operator MLPr and the attention module MLPAtt. For both modules, we implement a three-layer MLP
with 512 latent dimension and ReLU activation.

embedding dim learning rate batch size negative sample size margin
GQE 800 0.0005 512 128 30
Q2B 400 0.0005 512 128 30
BETAE 400 0.0005 512 128 60

Table 8: Hyperparameters used for each method.

Each single experiment is run on a single NVIDIA GeForce RTX 2080 TI GPU, and we run each
method for 300k iterations.

E Additional Experimental Results

Here we list some additional experimental results.

We show in Table 1 the MRR results of the three methods on answering EPFO queries. Our methods
show a significant improvement over the two baselines in all three datasets.

We show in Table 10 the MRR results of the three methods on answering EPFO queries in the dataset
proposed in [10], where the queries may have more than 5,000 answers. Our method is still better
than the two baselines.

We show in Table 11 the Pearson correlation coefficient between the learned embedding and the
number of answers of queries. Our method is better than the baseline Q2B in measuring the uncertainty
of the queries.
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avgDNF DM DNF DM

FB15k
BETAE 52.0 17.0 16.9 43.5 55.3 32.3 19.3 28.1 17.0 16.9 17.4 31.3
Q2B 52.0 12.7 7.8 40.5 53.4 26.7 16.7 22.0 - 9.4 - 26.8
GQE 34.2 8.3 5.0 23.8 34.9 15.5 11.2 11.5 - 5.6 - 16.6

FB15k-237
BETAE 28.9 5.5 4.9 18.3 31.7 14.0 6.7 6.3 6.1 4.6 4.8 13.4
Q2B 28.3 4.1 3.0 17.5 29.5 12.3 7.1 5.2 - 3.3 - 12.3
GQE 22.4 2.8 2.1 11.7 20.9 8.4 5.7 3.3 - 2.1 - 8.8

NELL995
BETAE 43.5 8.1 7.0 27.2 36.5 17.4 9.3 6.9 6.0 4.7 4.7 17.8
Q2B 23.8 8.7 6.9 20.3 31.5 14.3 10.7 5.0 - 6.0 - 14.1
GQE 15.4 6.7 5.0 14.3 20.4 10.6 9.0 2.9 - 5.0 - 9.9

Table 9: H@1 results (%) of BETAE, Q2B and GQE on answering EPFO (∃, ∧, ∨) queries.

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avg

FB15k
BETAE 65.0 42.1 37.8 52.9 64.0 41.5 22.9 48.8 26.9 44.6
Q2B 67.1 38.0 27.5 49.2 62.8 36.2 19.2 49.0 28.9 42.0
GQE 54.6 30.5 22.2 37.7 48.4 24.8 14.7 33.8 24.7 32.4

FB15k-237
BETAE 39.1 24.2 20.4 28.1 39.2 19.4 10.6 22.0 17.0 24.4
Q2B 40.3 22.8 17.5 27.5 37.9 18.5 10.5 20.5 17.4 23.6
GQE 35.0 19.0 14.4 22.0 31.2 14.6 8.8 15.0 14.6 19.4

NELL995
BETAE 53.0 27.5 28.1 32.9 45.1 21.8 10.4 38.6 19.6 30.7
Q2B 41.8 22.9 20.8 28.6 41.2 19.9 12.3 26.9 15.5 25.5
GQE 32.8 19.3 17.9 23.1 31.9 16.2 10.3 17.3 13.1 20.2

Table 10: MRR results (%) on queries from [10], where we show that we are also able to achieve
higher performance than baselines Q2B and GQE on all three KGs.

Dataset Model 1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni

FB15k Q2B 0.075 0.217 0.258 0.285 0.226 0.245 0.133 - - - - -
BETAE 0.216 0.357 0.383 0.386 0.299 0.311 0.312 0.438 0.413 0.343 0.360 0.442

FB15k-237 Q2B 0.017 0.194 0.261 0.366 0.488 0.335 0.197 - - - - -
BETAE 0.225 0.365 0.450 0.362 0.307 0.319 0.332 0.464 0.409 0.390 0.361 0.484

NELL995 Q2B 0.068 0.211 0.306 0.362 0.287 0.240 0.338 - - - - -
BETAE 0.236 0.403 0.433 0.404 0.385 0.403 0.403 0.515 0.514 0.255 0.354 0.455

Table 11: Pearson correlation coefficient between learned embedding (differential entropy for BETAE,
box size for Q2B) and the number of answers of queries (grouped by different query type). Ours
achieve higher correlation coefficient.
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