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ABSTRACT
Evaluating whether machines improve on human performance is

one of the central questions of machine learning. However, there

are many domains where the data is selectively labeled in the sense

that the observed outcomes are themselves a consequence of the

existing choices of the human decision-makers. For instance, in

the context of judicial bail decisions, we observe the outcome of

whether a defendant fails to return for their court appearance only

if the human judge decides to release the defendant on bail. �is

selective labeling makes it harder to evaluate predictive models

as the instances for which outcomes are observed do not repre-

sent a random sample of the population. Here we propose a novel

framework for evaluating the performance of predictive models on

selectively labeled data. We develop an approach called contraction
which allows us to compare the performance of predictive models

and human decision-makers without resorting to counterfactual

inference. Our methodology harnesses the heterogeneity of human

decision-makers and facilitates e�ective evaluation of predictive

models even in the presence of unmeasured confounders (unob-

servables) which in�uence both human decisions and the resulting

outcomes. Experimental results on real world datasets spanning

diverse domains such as health care, insurance, and criminal jus-

tice demonstrate the utility of our evaluation metric in comparing

human decisions and machine predictions.

1 INTRODUCTION
Machine learning models have been very e�ective at automating

various perception and recognition tasks such as character recogni-

tion, sentiment detection, question answering, game playing, and

image classi�cation [13, 14, 27, 31]. In all these examples, when

given the same set of input data and enough labeled training data,

machines tend to outperform humans. �ere is a large set of do-

mains, however, where evaluating whether machines improve on

human performance has been much more challenging. O�en, these

are se�ings where humans have already performed the task, and
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where the the machine learning algorithm must be evaluated on

data where the labels are themselves consequence of the existing

choices of the human decision-makers.

We �rst dealt with issues of this form in an analysis of judicial bail

decisions [17], an application which motivated the present paper.

Since this is an important se�ing that illustrates the basic concerns,

it is useful to brie�y describe the underlying background of the

application here. In a bail hearing, by law requires the judge to

base their decision to release defendants on a prediction—if granted

bail, will the defendant return for their court appearance without

commi�ing a crime in the intervening time. Given that millions

of such prediction tasks are being performed each year, and the

outcomes are highly consequential, it is natural to ask whether a

machine learning algorithm could make these predictions be�er

than the judge does.

In comparing the algorithm to the judge, one has to appreciate

how di�erent this type of task is from a more standard task such as

image-based object recognition. First, judges’ predictions rely on

many informative features that are unobservable to the algorithm

because they aren’t recorded in available datasets; these may in-

clude information such as details of the defendant’s behavior in the

courtroom, and related behavioral inferences. Second, the labels we

are trying to predict correspond to whether a defendant returned

for their court appearance without commi�ing a crime—the label

is positive if they did, negative if they did not. But if a defendant is

denied bail, then there is no opportunity for them to commit a crime

or fail to show up for their court appearance, so we have no way

to know what would have happened had they been released. So

how do we evaluate an algorithm that proposes to release someone

that the judge had jailed in the dataset? �is results in a problem

of selective labels: the process generates only a partial labeling of

the instances, and the decision-maker’s choices—the very decisions

we wish to compare the algorithm to—determine which instances

even have labels at all.

Judicial bail decisions represent just one of many fundamental

examples of these types of questions, and the ubiquity of the phe-

nomenon motivates our goal in the present work—to abstract the

selective labels problem beyond any one application and study it as

a general algorithmic question in itself, reaching across multiple do-

mains. To begin with, here are some further basic examples of areas

where the selective labels problem naturally arises. First, a common

type of medical prediction question is whether a patient needs a

costly treatment for a condition; not all patients need treatment,

but the treatment is generally e�ective whenever it is prescribed.

http://dx.doi.org/10.1145/3097983.3098066



�e problem is that if our training data comes from doctors who

were prescribing treatment for the condition, then (i) we typically

won’t know all the features the doctor was able to observe when

meeting a given patient in person, and (ii) there only exist labels for

the people to whom treatment wasn’t prescribed (since the people

for whom treatment was prescribed had no subsequent symptoms,

whether they needed the treatment or not). In a very di�erent

domain, suppose we wanted to predict which proposals for startup

companies to fund, given data on early-stage investor decisions.

Again, the challenge is that these investors generally obtain “so�

information” from conversations with the founders that would be

di�cult to record as features, and we only learn the success or

failure of the startup proposals that were in fact funded.

In this paper, we are interested in how to approach this class of

prediction problems, which we characterize by the set of technical

ingredients outlined in the examples above:

(1) �e data comes from the judgments of decision-makers

making a yes-no decision (e.g., granting bail, investing in a

startup). In doing this, the decision-makers are basing their

decisions on a set of features (X ,Z ) while the algorithm

only observes features X ; the Z are unobservables.
(2) �e judgments of the decision-makers determines which

instances have labels, leading to a selective labels problem.

�ere is a third aspect to these questions that is also relevant to

how we think about them. A common strategy for addressing miss-

ing labels is to randomly acquire labels on hard-to-reach parts of

the distribution, for example via experiments. (Consider for ex-

ample the way in which one might acquire additional labels in

a recommender system by showing suggestions that may not be

ranked �rst by the underlying algorithm.) A key feature of our mo-

tivating applications, however, is that they arise in domains where

such experimentation is simply infeasible. Exactly because these

decisions—releasing a defendant or withholding treatments—is con-

sequential, it is impractical and very o�en unethical to randomize

decisions on a subset of instances simply to increase the variability

in the evaluation data.
1

Evaluating machine learning algorithms in these types of do-

mains, without taking into account the issues above, can create

misleading conclusions. For example, in the se�ing of bail, it could

be that for young defendants, the presence of a defendant’s family

at the court hearing is highly predictive of a positive label (return-

ing for their court appearance without commi�ing a crime). If the

judge accurately uses this feature, we obtain training data where

young defendants have a much lower rate of negative labels. Now,

suppose this feature isn’t recorded in the administrative data avail-

able to an algorithm; then the algorithm trained on this data will

falsely but con�dently learn that young people commit no cime; if

such an algorithm is then deployed, its error rate on young defen-

dants will much higher than we expected. Similar issues can arise

if a doctor is basing treatment decisions on symptoms that he or

1
If we truly tried using randomization to address these types of problems, we would be

doing something very di�erent from, say, a randomized drug trial. �e ethics of drug

trials rely crucially on the point that what’s being tested is a treatment whose e�cacy

is uncertain. �ere is no corresponding basis for deliberately withholding treatments

of known e�cacy simply to create training data for prediction, which is essentially

what we would need to address the problems here through randomization. One can

o�er similarly strong caveats about the other domains that we are considering.

she observes in meeting a patient, but which aren’t recorded and

accessible to the algorithm.

While prior research has explored applications of machine learn-

ing to domains where human judgments are part of the data labeling

process (crime [7, 21, 43], medical diagnosis [6, 22]), the selective

labels problem is o�en overlooked, with evaluation of the models

typically carried out by computing traditional metrics such as AUC

or accuracy only on the data points for which ground truth labels

are available [7]. �is could potentially result in biased estimates of

model’s performance, because the labeled data is in fact a di�cult-

to-interpret non-random sample of the population. �ere has also

been some work on inferring labels using counterfactual inference

techniques [9, 12, 16, 36, 38] and leveraging these estimates when

computing standard evaluation metrics. However, counterfactual

inference techniques explicitly assume that there are no unmea-

sured confounders (that is, no unobservable variables Z ) that could

a�ect the outcome Y . �is assumption does not typically hold in

cases where human decisions are providing data labels [7, 21]. �us,

the combination of two ingredients—selective labels and non-trivial

unobservables—poses problems for these existing techniques.

�e present work. Here we propose a framework for developing

and evaluating prediction algorithms in the presence of the selective

labels problem. Our framework makes use of the fact that many

domains involving selective labels have the following features:

(i) We have data on many decision-makers rather than just one;

(ii) �ese di�erent decision-makers have a similar pool of

cases, so that it is as if the instances had been randomly

assigned across them; and

(iii) �e decision-makers di�er in the thresholds they use for

their yes-no decisions.

If we think of a “yes” decision as producing a label for an instance

(e.g. by granting bail), and a “no” instance as resulting in no label

(e.g. by denying bail), then the decision-makers who have a lower

threshold and say yes on more instances are labeling a larger frac-

tion of their sample of population. �e decision-maker is trying

to avoid a particular bad outcome (e.g. a defendant not returning

for their court appearance, or a company that receives an invest-

ment subsequently failing), and we note that the nature of task

determines that only instances that receive a label can exhibit a

bad outcome. �us, for a particular decision-maker, we de�ne their

acceptance rate to be the fraction of instances on which their de-

cision is yes, and their failure rate to be the fraction of instances

on which the bad outcome occurs. �is leads to a natural trade-o�

curve between acceptance rate and failure rate, and points (i), (ii),

and (iii) mean that we can meaningfully construct such a curve

over the population of decision-makers.
2

To achieve this we make use of the heterogeneity among decision-

makers via technique, which we call contraction. Starting with

the decision-makers of high acceptance rates, we use algorithmic

predictions to “contract” the set of instances they accept until it is

scaled back to acceptance rates matching that of stricter decision-

makers. In this way, we sweep out an algorithmic version of the

curve that trades o� between acceptance rate and failure rate, and

2
Note that the one-sidedness of the labeling implies that a decision-maker can always

guarantee a failure rate of 0 by imposing an acceptance rate of 0; this is a concrete

sense in which reducing the failure rate to 0 is not the overall goal of the process.



in the process evaluate the algorithm only on instances drawn from

the population for which we have labels. Our contraction approach

thus eliminates the need for imputation of labels for all those data

points for which ground truth labels are not available. �is makes

our contraction technique ideal for judgment-based se�ings where

unobservables may in�uence the outcomes.

To illustrate the intuition behind our contraction technique, let

us consider the se�ing of judicial bail decisions. Let j be the judge

with the highest acceptance rate, say 90%, and let Dj be the set of

defendants who appear before j. Now, consider another judge k
with a lower acceptance rate, say 80%, who sees a set of defendants

Dk . By point (ii), the sets Dj and Dk behave distributionally

as if randomly assigned between j and k . Here is how we can

evaluate a form of gain from algorithmic prediction relative to

judge k . Suppose j and k each see 1000 defendants, and hence j
grants bail to 900 while k grants bail to 800. We train a prediction

algorithm on held-out labeled data, and then we apply it to 900

defendants in Dj who were granted bail. We use the algorithm to

reverse the decision to grant bail on a subset of 100 of the defendants

in Dj who had been granted bail by j. In this way, we now have

a set of 800 defendants in Dj who have been granted bail by a

hybrid human-algorithmic mechanism: judge j granted bail to 900

of the original 1000, and then the algorithm kept 800 of these for

the �nal decision set. (�is is the sense in which we “contract”

judge j’s set of 900 released defendants down to 800.) �e point is

that we can now compare the failure rate on this set of 800—the

number of defendants who commit a crime or fail to return for their

court appearance—to the failure rate on the set of 800 released by

judge k . �e extent to which the failure rate is lower for the hybrid

human-algorithmic mechanism is a concrete type of performance

guarantee provided by the contraction technique.

We demonstrate the utility of our contraction framework in com-

paring human judgments and model predictions across three di-

verse domains: criminal justice, health care, and insurance. We also

show that our contraction technique accurately estimates the trade-

o� curve between acceptance rate and failure rate on synthetic

datasets. Finally, we highlight the signi�cance of the contraction

technique by simulating the e�ects of unmeasured confounders (un-

observables) and demonstrating how other counterfactual inference

methods can result in overly optimistic—and hence inaccurate—

estimates of a predictive model’s performance.

2 RELATEDWORK
Below we provide an overview of related research on selective

labels and missing data. We further discuss how prior research

handled these problems when evaluating predictive models. We

then present a detailed overview of techniques proposed for coun-

terfactual inference in causal inference literature.

Missing data problem. Recall that the selective labels problem is

a form of missing data problem [1] which commonly arises in vari-

ous se�ings where judgments of human decision-makers determine

which instances have labels. A more commonly known variant of

this problem is censoring in clinical trials where outcome labels of

certain subjects are not recorded due to a variety of reasons includ-

ing subjects dropping out from trials [25]. �is problem has been

studied extensively in the context of causal inference where the

goal is to determine the e�ect of some treatment [2, 30, 32, 37, 38].

Since it is not always feasible to carry out randomized control tri-

als to determine treatment e�ects, prior research has employed a

variety of imputation techniques (discussed in detail below) to infer

outcomes of counterfactual scenarios. For example, Freemantle et

al. studied the e�ects of dosage of insulin on patients with type

2 diabetes using propensity score matching [11]. Similarly, Mc-

Cormick et al. studied the e�ect of student-teacher relationships on

academic performance using matching techniques [29]. �e e�ec-

tiveness of these techniques relies on the absence of unobservables,

an assumption, which does not hold in our case.

Prior research also categorized missing data problems based on

the reasons behind the missingness [26, 28]. A variable (label or a

feature) value of some data point could be: (1) missing completely

at random (MCAR) (2) missing at random (MAR), where the miss-

ingness can be accounted for by variables where there is complete

information. For example, men are less likely to �ll out depression

surveys, but this is not dependent on their level of depression once

we account for the fact that they are male [39]. (3) missing not at

random (MNAR) [40], where the variable value that is missing is re-

lated to the reason why it’s missing. For example, this would occur

when people with high levels of depression failed to �ll out the de-

pression survey. Depending on the reason for missingness, various

imputation techniques have been proposed to address the missing

data problem. For instance, listwise deletion, where data points

with missing values are removed from the dataset, was used when

data was missing completely at random. and for regression mod-

eling, nearest-neighbor matching, interpolation etc were adopted

when the values are MAR (see Chapter 25 of [12], [18]). Note that

there is a signi�cant overlap between these methods and the tech-

niques used for imputation in causal inference literature. �ese

methods are not readily applicable to our se�ing as they assume

that there are no unobservables in�uencing the occurrence of miss-

ing labels. MNAR problems are o�en addressed using approaches

such as selection and pa�ern-mixture models [24] which require

us to make assumptions about the underlying generative process

of the data.

Evaluation in the presence of selective labels. �ere has been

a lot of interest in developing accurate risk assessment models

in health care [6], education [19], and criminal justice [7]. For

example, Berk et al. [7] developed models to predict if a defendant is

likely to commit a violent crime when released on parole. Selective

labels problem arising in some of these se�ings makes it harder

to train and evaluate predictive models. For instance, Berk et al.

evaluated their model only on the set of defendants who have

been granted parole. �is evaluation could be potentially biased

if the observed feature distribution or the conditional outcome

distribution of the defendants who were released does not match

that of defendants who were denied parole. �is assumption is o�en

violated in practice. �ere have been some a�empts to work around

this problem by using imputation to assign labels to those data

points with missing labels [22, 43]. �ese imputed labels were then

used in evaluating model performance. However, the imputation

procedures adopted also make similar assumptions as above and are

therefore not well suited to address the problem at hand ([43]). In

earlier work [17] we explored techniques to overcome the presence



of unobservables in one particular domain, judicial bail decisions.

In contrast, here we study the issue of selective labels as a general

problem in itself and explore in greater depth the performance of

our proposed solution to address it across a broader set of domains.

Counterfactual inference. Counterfactual inference techniques

have been used extensively to estimate treatment e�ects in observa-

tional studies. �ese techniques have found applications in a variety

of �elds such as machine learning, epidemiology, and sociology [3,

8–10, 30, 34]. Along the lines of Johansson et al. [16], counterfactual

inference techniques can be broadly categorized as: (1) parametric

methods which model the relationship between observed features,

treatments, and outcomes. Examples include any type of regression

model such as linear and logistic regression, random forests and

regression trees [12, 33, 42]. (2) non-parametric methods such as

propensity score matching, nearest-neighbor matching, which do

not explicitly model the relationship between observed features,

treatments, and outcomes [4, 15, 35, 36, 41]. (3) doubly robust meth-

ods which combine the two aforementioned classes of techniques

typically via a propensity score weighted regression [5, 10]. �e

e�ectiveness of parametric and non-parametric methods depends

on the postulated regression model and the postulated propensity

score model respectively. If the postulated models are not identical

to the true models, then these techniques result in biased estimates

of outcomes. Doubly robust methods require only one of the postu-

lated models to be identical to the true model in order to generate

unbiased estimates. However, due to the presence of unobservables,

we cannot guarantee that either of the postulated models will be

identical to the true models.

3 PROBLEM FORMULATION
Here we formalize the notions of selective labels and unobservables,

and formulate our problem statement.

Selective labels and unobservables. �e goal of this work is to

evaluate predictive models in a se�ing that is characterized by:

• Selective labels: �e judgments of decision-makers deter-

mine which instances are labeled in the data(Figure 1).

• Unobservables: �ere exist unobservables (unmeasured con-

founders) which are available to the decision-makers when

making judgments but are not recorded in the data and

hence cannot be leveraged by the predictive models. Fur-

thermore, these unobservables may in�uence the outcomes

and are independent of the features recorded in the data.

Let x i denote the feature values of subject i which are recorded

in the data. Note that each observation i is also associated with

unobservable features zi that are not captured in the data. �is

means that the human decision-maker ji who makes a yes (ti = 1)

or no decision (ti = 0) on subject i has access to both x i and zi .
On the other hand, only x i (but not zi ) is available to predictive

model. Let yi ∈ {0, 1,NA} denote the resulting outcome (that is,

label). �e selective labels problem(Figure 1) occurs because the

observation of the outcome yi is constrained based on the decision

ti made by the judge ji :

yi =

{
0 or 1, if ti = 1

not observed (NA), otherwise

Figure 1: Selective labels problem.

Below, we discuss the characteristics of the observational data

and the black box model which are inputs to our framework:

Input data. A dataset D = {(x i , ji , ti ,yi )} consisting of N obser-

vations, each of which corresponds to a subject (individual) from

an observational study where x i , ji , ti ,yi are as de�ned above.

Black box predictive model. Another input to our framework

is a black box predictive model B which assigns risk scores to

observations in D. More speci�cally, B is a function which maps

the characteristics (or feature values) x of an observation in D to a

probability score s ∈ [0, 1]. �is score indicates how con�dent the

model is in assigning the observation to t = 0 (e.g., denying bail).

Problem statement. Given the observational data D and predic-

tive model B, our goal is to evaluate the performance of B and

benchmark it against the performance of human decisions in D,

given the selective labeling of the data and the presence of unob-
servables.

4 OUR FRAMEWORK
In this section, we introduce contraction, a technique that allows us

to address the selective labels problem in the presence of unobserv-

ables. We show how it can be used to compare the performance of

a predictive model with a given human decision-maker. We then

formally de�ne the trade-o� curve of failure rate versus acceptance
rate, two quantities de�ned in the introduction: the acceptance rate

is the fraction of individuals for whom the decision-maker makes a

yes decision, thus providing them with a label and the failure rate
is the fraction of bad outcomes in the full population of instances

based on the decisions made.

Acceptance rate and failure rate. Decision making o�en in-

volves optimizing for competing objectives. �e goal is to not only

minimize the chance of undesirable outcomes (e.g., crimes) but

also to reduce the burden (physical, monetary, emotional) on the

subjects and other resources (e.g., jail space). In order to quantify

such competing objectives and assess the performance of a decision-

maker (human or machine), we outline the following metrics:

(1) �e failure rate of a decision-maker is de�ned as the ratio

of the number of undesirable outcomes (e.g., crimes) oc-

curring due to the decisions made to the total number of

subjects judged by the decision-maker. For example, if a

judge makes decisions concerning the bail petitions of 100



Figure 2: Pictorial representation of contraction technique.

defendants, releases 70 of them out of which 20 commit

crimes, the failure rate of the judge is 0.2.

(2) �e acceptance rate of a decision-maker is de�ned as the

ratio of the number of subjects assigned to yes decision

(t = 1) (e.g., release) by the decision-maker to the total

number of subjects judged by the decision-maker. For

instance, the acceptance rate of a judge who releases 70%

of defendants who appear before him is 0.7.

�e goal, given these de�nitions, is to achieve a high acceptance

rate with a low failure rate.

Contraction technique. We can compare a black box predictive

model to any given human decision-maker by forcing the accep-

tance rate of the model to be the same as that of the judge and

measuring the corresponding failure rate. If the model exhibits a

lower failure rate than the judge at the same acceptance rate, then

we can claim that the model is be�er than that judge. �ere is,

however, an important caveat to this. It is not straightforward to

evaluate the failure rate of a model because the outcome labels of

some of the observations might be missing due to the selective labels

problem. As discussed earlier, imputation and other counterfactual

inference techniques cannot be used due to the presence of the

unobservables. Here, we discuss a new technique called contraction
which allows us to compare the performance of a predictive model

to any human judge even in the presence of the unobservables.

To illustrate the contraction technique(Figure 2), consider the bail

se�ing where each judge decides on bail petitions of 100 defendants.

Let us say our goal is to compare the performance of a black box

model with that of some judge j ′who releases 70% of the defendants

who appear before him, i.e., judge j ′ releases 70 defendants and

has a acceptance rate value of 0.7. In order to compare the model

performance with j ′, we run the black box model on the set of

defendants judged by the most lenient judge q who releases, say

90%, of the defendants. We achieve this by constraining the black

box model to detain the same 10 defendants who were detained by q
thus avoiding the missing labels. In addition to these 10 defendants,

we allow the black box model to detain another 20 defendants

deemed as highest risk by the model. We then compute the failure

rate on the remaining 70 defendants who are considered as released

by the model. Since the outcome labels (crime/no crime) of all

Algorithm 1 Contraction technique for estimating failure rate at

acceptance rate r

1: Input: Observational data D, Probability scores S, Acceptance rate r
2: Procedure:
3: Let q be the decision-maker with highest acceptance rate in D

4: Dq = {(x , j, t, y) ∈ D |j = q }
5: . Dq is the set of all observations judged by q
6:

7: Rq = {(x , j, t, y) ∈ Dq |t = 1}
8: . Rq is the set of observations in Dq with observed outcome labels

9:

10: Sort observations in Rq in descending order of con�dence scores S
and assign to Rsor tq

11: . Observations deemed as high risk by B are at the top of this list

12:

13: Remove the top [(1.0−r ) |Dq |]−[ |Dq | − |Rq |] observations of Rsor tq
and call this list RB

14: . RB is the list of observations assigned to t = 1 by B
15:

16: Compute u =
|RB |∑
l=1

1(yl =0)
|Dq |

17: Return u

of these defendants are observed, the failure rate can be easily

computed from the data.

More generally, the idea behind the contraction technique is

to simulate the black box model on the sample of observations

judged by the decision-maker q with the highest acceptance rate by

contracting the set of observations assigned to yes decision i.e., t = 1

by q while leveraging the risk scores (or probabilities) assigned

to these observations by the model. �e complete pseudo code

formalizing the contraction technique discussed above is presented

in Algorithm 1. �e contraction technique exploits the following

characteristics of the data and the problem se�ing:

(1) Multiple decision-makers: �ere are many di�erent decision-

makers, rather than just one.

(2) Random assignment of subjects to decision-makers: If the

sample of observations on which we simulate the model is

not identical to the sample seen by the judge with whom

we are comparing the model, it is not possible to fairly

compare the failure rate estimates of the two. We therefore

require that observations/subjects are randomly assigned

to decision-makers. We �nd that this requirement typically

holds in practice in many decision making se�ings (more

details provided in the experimental evaluation section).

(3) Heterogeneity in acceptance rates: �e contraction tech-

nique relies on the fact that di�erent decision-makers can

vary signi�cantly in the thresholds they use for their deci-

sions, resulting in di�erent acceptance rates.

It is important to note that the quality of the failure rate estimate

obtained using contraction depends on the extent of agreement

between the model and the most lenient judge q with respect to

the instances that went unlabeled by q. In the above bail example,

if the 10 defendants denied bail by judge q were also among the

top 30 highest-risk defendants as ranked by the model, then the

estimate of the failure rate would be equal to the true value. If, on

the other hand, none of these 10 defendants were among the top 30



high risk defendants based on the model’s con�dence scores, then

the estimated failure rate would not be the same as the true value.

We now describe how to provide a worst-case bound on the

maximum di�erence between the estimate of failure rate obtained

using contraction and its true value.

Proposition 4.1. Suppose the conditions (1)–(3) noted above for
applying contraction are satis�ed. �e error in the estimate of failure
rate u of B computed by the contraction algorithm (Algorithm 1) at

any value of acceptance rate r ≤ ψ never exceeds
(1.0−a) |Dq−Rq |

|Dq | .
�e notation is de�ned in Algorithm 1. In addition, a is the fraction of
observations in the setDq −Rq that both B and q agree on assigning
to a no decision (t = 0), andψ is the acceptance rate of q.

We now brie�y sketch the argument that justi�es these bounds.

�e error in the estimate stems mainly from the disagreements

between B and q about assigning defendants in the set Dq − Rq
to a no decision (t = 0). Given that B favors assigning (1.0 −
a)|Dq − Rq | subjects in that set to a yes decision i.e., t = 1 (e.g.,

release), in the worst case, all of these subjects might result in

failures or undesirable outcomes. �e upper bound on the failure

rate is therefore u +
(1.0−a) |Dq−Rq |

|Dq | . Similarly in the best case, all

the (1.0 − a)|Dq − Rq | subjects that B chooses to assign to a yes
decision (t = 1) result in no failures, and in addition, the same

number of subjects that B chooses to assign to t = 0 (e.g., deny

bail) turn out to be subjects with undesirable outcomes (failures).

�erefore the lower bound on the failure rate is u − (1.0−a) |Dq−Rq |
|Dq | .

In either case, the di�erence between the failure rate estimated

by the contraction algorithm and its true value does not exceed

(1.0−a) |Dq−Rq |
|Dq | .

Machine and human evaluation curves. We can use the con-

traction technique discussed above to compute the failure rate of

the black box model B at various choices for the acceptance rate

r ∈ [0,ψ ] where ψ is the acceptance rate of the decision-maker q
with highest acceptance rate value. We can then plot the curve

of failure rate vs. acceptance rate for B which we refer to as the

machine evaluation curve.
Analogous to the machine evaluation curve, we can also plot the

failure rate vs. acceptance rate curve for human decision-makers.

�is can be done by grouping decision-makers with similar values

of acceptance rate into bins and treating each bin as a single hypo-

thetical decision-maker. We can then compute the failure rate and

acceptance rate values for each such bin and plot them as a curve.

We refer to this curve as the human evaluation curve.
�e machine and human evaluation curves together provide us

with a useful way of benchmarking a given model’s performance

against human judgment. If the machine evaluation curve exhibits

lower failure rates at all possible values of acceptance rate compared

to the human evaluation curve, this suggests that the model may be

able to make be�er decisions than expert human decision-makers.

5 EXPERIMENTAL EVALUATION
In this section, we discuss the detailed experimental evaluation of

our framework. First, we analyze the accuracy of the estimates

of model failure rates obtained using our contraction technique
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Figure 3: E�ect of selective labels on estimation of predic-
tive model failure rate (error bars denote standard errors):
Green curve is the true failure rate of the predictive model
and the machine evaluation using contraction (blue curve)
follows it very closely. However, various imputation tech-
niques heavily underestimate the failure rate. Based on the
estimates of imputation, one would conclude that the pre-
dictive model outperforms human judges (red curve), while
in fact its true performance is worse than that of the human
judges.

by simulating the selective labels problem using synthetic data.

We also compare the e�ectiveness of our contraction technique to

various state-of-the-art baselines commonly used for counterfactual

inference and imputation. Lastly, we analyze the utility of our

framework in comparing human decisions and model predictions

on real-world tasks which are all a�ected by the selective labels

problem: judicial bail decisions, treatment recommendations in

health care, and insurance application decisions.

5.1 Evaluation on Synthetic Data
Here we analyze how closely the estimates of failure rates obtained

using contraction mimic the true values using synthetic data which

captures the e�ect of selective labels.

Synthetic data. We generate a synthetic dataset with M = 100

human judges each judging 500 subjects (or observations) resulting

in a total of N = 50k observations. We simulate three feature

variables: X , Z , andW . X corresponds to observable information

that is available to both predictive models and human decision-

makers. Z represents an unobservable that is accessible only to

the human decision-makers but not to the predictive models. In

order to mimic real world se�ings, we include a variableW which

represents information that is neither accessible to human decision-

makers nor the predictive models but in�uences the outcome. We

model these as independent Gaussian random variables with zero

mean and unit variance.

We randomly assign subjects to decision-makers and assign an

acceptance rate value r to each decision-maker by uniformly sam-

pling from [0.1, 0.9] and rounding to the nearest tenth decimal

place. �e outcome variable Y is simulated by modeling its con-

ditional probability distribution as follows: P(Y = 0|X ,Z ,W ) =
1

1+exp−(βXX+βZZ+βWW ) where the coe�cients βX , βZ , and βW



are set to 1.0, 1.0, and 0.2 respectively. �e outcome value of an in-

stance for which the variables X ,Z , andW take the values x , z, and

w respectively is set to 0 if P(Y = 0|X = x ,Z = z,W = w) ≥ 0.5,

otherwise its outcome value is set to 1.

Analogously, we simulate the decision variable T by model-

ing its conditional probability distribution as: P(T = 0|X ,Z ) =
1

1+exp−(βXX+βZZ ) + ϵ where ϵ ∼ N (0, 0.1) represents a small

amount of noise. �e decision variable corresponding to an in-

stance for whichX = x ,Z = z is set to 0 if the value of P(T = 0|X =
x ,Z = z) lies within the top (1 − r ) ∗ 100% of instances assigned to

the decision-maker j, otherwise it is set to 1.

Lastly, the selective labels problem is simulated by ensuring that

the outcome labels of only those instances which are assigned to

a yes decision (t = 1) are available in the data for the purposes

of training the predictive models and computing our evaluation

curves.

Model evaluation. We split the synthetic dataset randomly into

two sets of 25k instances each and use one of these sets as a training

set to train the predictive model and the other as an evaluation

test set to which we apply our framework. We train logistic regres-

sion model on this training set. We also experimented with other

predictive models and observed similar behavior. We use only the

instances for which outcome labels are available (i.e., observations

assigned to a yes decision) in the training set to train the predictive

model. We then evaluate the predictive performance of the model

using the following techniques:

• True Evaluation represents the true performance of the

model. We evaluate the failure rate on the entire evaluation

set using all outcome labels (both observed by the model

as well as those hidden from the model)
3
.

• Contraction: We apply contraction technique discussed in

Section 4 to obtain this curve.

• Labeled Outcomes Only: To plot this curve, we �rst obtain

all the subjects whose outcome labels are available in the

evaluation set and rank them in ascending order based on

the probability scores assigned by the predictive model. We

then simulate the model at various values of acceptance

rates r by assigning the observations corresponding to the

top r fraction of the sorted list to yes decisions (t = 1). We

then compute the failure rate on the observations assigned

to yes decisions directly from their corresponding ground

truth labels.

• Imputation: We use several commonly employed impu-

tation techniques such as gradient boosted trees, logistic
regression, nearest neighbor matching based on feature sim-

ilarity, propensity score matching, and doubly robust estima-
tion to impute all the missing outcomes in the evaluation

set [26, 30]. We then use these imputed outcomes wher-

ever true outcome labels are not available to compute the

failure rates of the predictive model. All of the aforemen-

tioned approaches except for nearest neighbor matching

require learning a regression/imputation model. We use

the observations in the evaluation set for which outcome

labels are available to learn these models.

3
Note that selective labels problem does not allow us to compute true evaluation

curves on real world datasets.
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Figure 4: E�ect of unobservables (error bars denote standard
errors): As we increase the in�uence of unobservable Z on
the outcome Y , imputation techniques result in erroneous
estimates of model performance. Contraction, on the other
hand, produces reliable estimates.

Results. Figure 3 shows evaluation curves for the predictive model

as well as the human evaluation curve (Section 4). Note that the true

evaluation curve (green curve) captures the true performance of the

predictive model. It can be seen that the evaluation curve plo�ed

using contraction (blue curve) closely follows the true evaluation

curve demonstrating that contraction is very e�ective in estimating

the true performance of the predictive model.

Figure 3 also shows the failure rates estimated by propensity

score matching. It can be seen that this technique heavily under-

estimates the failure rate of the model. We also observed similar

behavior in the case of other imputation techniques. �is implies

that the estimates of model performance obtained using imputa-

tion techniques in the presence of selective labels problem and

unobservables are not reliable. Similar behavior is exhibited by the

evaluation curve plo�ed using labeled outcomes only.

Lastly, Figure 3 also shows the failure rates of the human judges

(red). Given that the judge has access both to variables X and

Z we observe that the judge is making be�er predictions (lower

failure rate) than the predictive model (which only has access to

variable X ). However, notice that imputation techniques so heavily

overestimate the performance of the predictive model that it would

lead us to wrongly conclude that the model is outperforming the

human judges, while in fact its predictions are less accurate than

those of the human judges.

To further demonstrate the e�ects of selective labels and unob-

servables on accurately estimating the failure rates of predictive

models, we plot the discrepancy, i.e., mean absolute error com-

puted across all possible acceptance rates between the true eval-

uation curve and the estimated performance of the model using

various techniques including contraction(Figure 4). Here we vary

the weight βZ of the unobservable variable Z when generating the

outcome labels in the synthetic dataset. As βZ increases, the ef-

fect of unobservables becomes more pronounced. Notice, however,

that contraction only slightly overestimates the performance of

the model regardless of how strong the problem of selective labels

and unobservables is. On the other hand, imputation techniques

heavily overestimate the performance of the model and the degree



of overestimation steadily increases with βZ . �e mean absolute

error of contraction is 6.4 times smaller (at βZ = 1) compared to the

best performing imputation technique and this gap only increases

with the increase in the value of βZ .

Analyzing the error rate of contraction technique. Recall that

the correctness of the failure rate estimates obtained using con-

traction technique depend on acceptance rate of the most lenient

decision-maker, agreement rate of no decisions between the black

box model B and the most lenient decision-maker, and the total

number of subjects judged by the most lenient decision-maker.

More speci�cally, higher values of each of these parameters result

in tighter error bounds (Section 4) and consequently accurate es-

timates of failure rates. Next we empirically analyze the e�ect of

each of the aforementioned aspects on the correctness of failure

rate estimates obtained using contraction technique.

First, we analyze the e�ect of the acceptance rate of the most

lenient decision-maker on the failure rate estimates obtained using

contraction. We generate multiple synthetic datasets by varying the

upper bound on the acceptance rate values which can be assumed

by decision-makers and then plot the discrepancy (mean absolute

error) between true evaluation curves and the estimates obtained

using contraction(Figure 5(le�)) across various possible acceptance

rates of the most lenient decision-maker. It can be seen that the

discrepancy increases as the acceptance rate of the most lenient

decision-maker decreases. �is is consistent with the error bound

obtained in Section 4 and can be explained by the fact that the

higher the acceptance rate of the most lenient decision-maker, the

larger the number of outcome labels observed in the ground truth.

Next, we analyze the impact of the agreement rate of no decisions

(e.g., who to jail) between the black box model and the most lenient

decision-maker(s). In order to do so, we �rst generate a synthetic

dataset and train a logistic regression model as described earlier. We

then generate multiple instances of the logistic regression model by

changing its predictions in such a way that we can obtain di�erent

values of agreement rates between this model and the most lenient

decision-maker. Figure 5(center) shows the plot of the mean abso-

lute error of the resulting estimates from contraction with respect

to the true evaluation curve at various values of agreement rates.

It can be seen that the mean absolute error is low when the agree-

ment rate values are high and it increases with a decrease in the

agreement rate. �is is mainly because agreement rates are high

when the black box model and the most lenient decision-makers

make no decisions on the same set of subjects. In such a case, the

failure rate estimates can be directly computed from the ground

truth.

Lastly, we analyze the e�ect of the number of subjects judged by

the most lenient decision-maker(s) on the correctness of the failure

rate estimates obtained using contraction. We generate multiple

synthetic datasets by varying the number of subjects judged by

the most lenient decision-maker. �is is achieved by generating

the synthetic data using a similar process as discussed earlier but

instead of se�ing N = 50k, we increase or decrease the value of

N until the desired number of subjects are assigned to the most

lenient decision-maker. Figure 5(right) shows the plot of mean

absolute error of the contraction estimates with respect to the true

evaluation curve at various values of the number of subjects judged

by the most lenient decision-maker. It can be seen that the mean

absolute error decreases steadily with an increase in the number of

subjects assigned to the most lenient decision-maker.

5.2 Experiments on Real World Datasets
Next we apply our framework on real world datasets to compare the

quality of human decisions and model predictions. We highlight

the insights obtained using our evaluation metrics–human and

machine evaluation curves on diverse domains such as criminal

justice, health care, and insurance.

Dataset description. �e bail dataset contains bail decisions of

about 9k defendantscollected from an anonymous district court and

comprises of decisions made by 18 judges. It captures information

about various defendant characteristics such as demographic at-

tributes, past criminal history for each of the 9k defendants. Further,

the decisions made by judges in each of these cases (grant/deny

bail) are also available. �e outcome labels (if a defendant com-

mi�ed a crime when out on bail or not) of all the defendants who

have been granted bail and released are also recorded. �e selective

labels problem in this case stems from the fact that the outcome

labels of defendants who have been denied bail by judges cannot

be observed.

�e medical treatment dataset captures 60k patients su�ering

from coughing and/or wheezing collected by an online electronic

health record company [20]. For each patient various a�ributes

such as demographics, symptoms, past health history, test results

have been recorded. Each patient in the dataset was prescribed

either a milder treatment (quick relief drugs) or a stronger treatment

(long term controller drugs). �e outcome labels in this se�ing

indicate if there was a relapse of patient symptoms within 15 days

of treatment recommendation. If a patient experiences a relapse

of symptoms within 15 days, we consider it a failure. Note that

patients assigned to stronger treatment do not experience such a

relapse, therefore the selective labels problem here is that we do

not observe what would have happened to a patient who received

the stronger treatment if he/she had been assigned to a milder

treatment.

�e insurance dataset comprises of decisions made by 74 man-

agers of an insurance provider which insures large-scale corpora-

tions [21]. �e dataset comprises of about 50k insurance requests

�led by client companies. It captures information about various

aspects of the client companies such as the domain they oper-

ate in (e.g., legal, chemical, tech etc.), losses and pro�ts, assets

owned, previous expertise etc. Each insurance request is either

approved/denied by the manager in charge. �e outcome labels

(pro�t/loss to the insurance provider) of approved insurance re-

quests are available in the data. �e selective labels problem here

stems from the fact that we do not observe pro�t/loss for insurance

requests that were denied.

Experimental setup. We split each of the datasets into training

and evaluation sets so that we can learn the predictive models on

the training set and apply our framework to the evaluation set. In

the bail decisions dataset, we use a subset of 4.8k defendants and

9 judges for evaluation. In case of asthma treatments, we use a

subset of adult patients comprising of 28k instances and spanning

39 doctors as the evaluation set. Analogously, we use a set of 38k
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Figure 5: Analyzing the e�ect of acceptance rate of most lenient decision-makers(le�), agreement rate between the black
box model and the most lenient decision-makers(center), and number of subjects judged by the most lenient decision-
makers(right) on the failure rate estimates obtained using contraction technique. Error bars denote standard errors.
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Figure 6: Comparing the performance of human decision-makers and predictive models on bail(le�), medical treat-
ment(center), and insurance(right) datasets(error bars denote standard errors). Labeled outcomes only curve results in over-
optimistic estimates. Contraction produces more accurate estimates of model performance

subjects and 41 deciding managers associated with chemical domain

as our evaluation set in the insurance requests data and leverage the

rest to train the predictive models. We train the predictive models

on those instances for which outcome labels are available in the

training set. We experimented with various predictive models such

as gradient boosted trees, random forests, decision trees, logistic

regression, and SVMs. Due to space constraints, we only present

results with gradient boosted trees (number of trees = 100) in this

section.

Testing for random assignment:. Recall that the correctness of

our contraction technique relies on the assumption that observa-

tions are randomly assigned to human decision-makers, i.e., there

is no relationship between human decision-makers and character-

istics of subjects. We utilized the following multiple hypothesis

testing procedure [23] to validate this assumption:

(1) We �t a regression model (M1) which predicts the value

of outcome variable yi for each observation characterized

by x i in the evaluation set. We achieve this by training a

regression model on the subjects in the evaluation set who

were assigned to yes decisions (t = 1). Let ŷ = {ŷ1, ŷ2 · · · }
denote the estimates obtained for all the observations in

the evaluation set using M1.

(2) We then �t another regression model (M2) to predict the

estimate (ŷ) of M1 based only on the identi�er information

of human decision-makers.

(3) We then calculate the F-test statistic assuming that the null

hypothesis that there is no relationship between the

decision-makers and characteristics of subjects is true and

call this statistic Fs .

(4) We determine the 95% con�dence interval given the de-

grees of freedom of the regression model M2 and accept the

null hypothesis if Fs falls within this interval. We reject the

null hypothesis and assume that the random assignment

assumption does not hold otherwise.

Based on the above test, we found that the null hypothesis holds

on all our evaluation sets indicating that subjects are randomly

assigned to decision-makers in our evaluation sets.

Evaluation and results. We plot human and machine evaluation

curves for all the three real-world datasets(Figure 6). We plot all the

machine and human evaluation curves as described in Section 5.1.

Figure 6 shows that both the machine evaluation curve plo�ed

using contraction (black) as well as the one plo�ed only using only

the labeled outcomes (blue) indicate that the predictive model is

exhibiting lower failure rates than human decision-makers (red) at

all possible values of acceptance rates on all the three datasets.

�e estimates of model performance obtained using contraction

are more reliable in practice because it turns out to be the case that

the subjects assigned to no decisions (t = 0) by the decision-maker(s)

with highest acceptance rate (let this decision-maker be denoted as

j ′ with risk tolerance r ′) are o�en so risky that the model concurs

with the decision-maker in assigning these subjects to no decision

(t = 0). We found that the agreement rate (see Section 4) which is

the ratio of the number of observations that both the predictive

model at risk tolerance r ′ and j ′ agree on assigning to no decision



(t = 0) to the total number of observations assigned to no decision

by j ′ is 0.891, 0.932, and 0.718 on bail decisions, asthma treatments,

and insurance requests datasets respectively. �ese high agreement

rates ensure that the estimates of model performance obtained

using contraction are close to the true values. It can be inferred

from Figure 6 that the estimates of labeled outcomes only curve

are overly optimistic about the model performance across all the

datasets given that our contraction estimates accurately model the

true values.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we addressed the problem of evaluating predictive

models in se�ings a�ected by the selective labels problem. More

speci�cally, we developed an evaluation metric, failure rate vs. ac-
ceptance rate, which can be used to e�ectively compare human

decisions and algorithmic predictions. Furthermore, we proposed

a novel technique called contraction which can be used to esti-

mate our evaluation metric without resorting to traditional impu-

tation/counterfactual inference procedures which are not suitable

for se�ings with unmeasured confounders (unobservables). �is

work marks an initial a�empt at addressing the problem of selec-

tive labels in the presence of unmeasured confounders and paves

way for several interesting future research directions. For instance,

our framework can be readily applied to various domains where

human decision making is involved ranging from public policy to

health care and education. Furthermore, it would be interesting to

explore how the contraction technique proposed in this work can

be leveraged to improve the process of training machine learning

models on selectively labeled data.
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