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Abstract

Detecting groups of people who are jointly deceptive in video
conversations is crucial in settings such as meetings, sales
pitches, and negotiations. Past work on deception in videos
focuses on detecting a single deceiver and uses facial or vi-
sual features only. In this paper, we propose the concept of
Face-to-Face Dynamic Interaction Networks (FFDINs) and
Negative Dynamic Interaction Networks (NDINs) to model
the interpersonal interactions within a group of people. The
use of FFDINs and NDINs enables us to leverage network re-
lations in detecting group deception in video conversations
for the first time. We use a dataset of 185 videos from a
deception-based game called Resistance. We first character-
ize the behavior of individual, pairs, and groups of deceptive
participants and compare to non-deceptive participants. Our
analysis reveals that pairs of deceivers tend to avoid mutual
interaction and focus their attention on non-deceivers. In con-
trast, non-deceivers interact with everyone equally. We pro-
pose the notion of Negative Dynamic Interaction Networks
(NDINs) to capture the notion of missing interactions. We
create an algorithm to detect deceivers from NDINs extracted
from videos that are just one minute long. We show that our
method outperforms recent state-of-the-art computer vision,
graph embedding, and ensemble methods by at least 20.9%
AUROC in identifying deception from videos.

Introduction
Web-based face-to-face video conversations have become a
pervasive mode of work and communication throughout the
world, especially since the COVID-19 pandemic. Important
tasks, such as interviews, negotiations, deals, and meetings,
are all happening through video call platforms such as Mi-
crosoft Teams, Google Meet, Facebook Messenger, Zoom
and Skype. Furthermore, video content have become a cen-
tral theme in social media and video conversations have also
become an integral part of social media platforms, including
on Facebook, WhatsApp, and SnapChat. Deception and dis-
information in all these settings can be disruptive, counter-
productive, and dangerous.

The problem of accurately and quickly identifying
whether a group of people is being deceptive is crucial in
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many settings. Specifically, consider the scenario where a
group of deceivers work together to fool a group of unsus-
pecting users, but the latter do not know who the deceivers
are. This occurs in practice, for instance, when defectors
are present in security teams, when liars are present in sales
teams, and when people from competing firms infiltrate an
organization.

While there has been significant research in identify-
ing individual deceivers in real-world face-to-face interac-
tions (Wu et al. 2018; Ding et al. 2019; Gogate, Adeel, and
Hussain 2017), little is known about how groups of deceivers
work together in the online setting. Current deception re-
search is largely limited to analysing the audio-visual be-
havior of a single deceiver using voice signatures, gestures,
facial expressions, and body language. In contrast, research
on social media analytics has extensively studied the im-
pact of individual and team of deceivers (Kumar et al. 2017;
Kumar, Spezzano, and Subrahmanian 2015; Kumar, Zhang,
and Leskovec 2019; Addawood et al. 2019; Wu et al. 2017;
Keller et al. 2017), but those findings do not translate to the
case of video-based face-to-face group deception.

The behavioral characteristics when multiple deceivers
operate simultaneously is drastically different from the case
of a single deceiver. This is primarily because the behavior
of one deceiver can influence the behavior of the other de-
ceivers. For instance, when one deceiver lies to a potential
target, other partners of the deceiver may show certain facial
reactions which might be leveraged to predict that decep-
tion is going on. Moreover, multiple simultaneous deceivers,
each deceiving a little bit, may be more successful in deceiv-
ing victims than a single deceiver alone. There is little work
on studying the behavioral patterns of groups of deceivers,
which is a gap that we bridge.

We conduct the first network-based study of group de-
ception in face-to-face discussions. We analyse the verbal
behavior, non-verbal behavior, and inter-personal interac-
tion behavior when multiple deceivers are present within a
group of people. We elicit deceptive behavior in the form of
a multi-person face-to-face game called Resistance1. Resis-
tance is a social role-playing card-based party game, where

1Many variants of Resistance such as Mafia and Werewolf are
played around the world by thousands of people.



Figure 1: Given a group video conversation (left), we extract face-to-face dynamic interaction networks (right) representing the
instantaneous interactions between participants. Participants are nodes and interactions are edges in the network. In this work,
dynamic interaction networks are used to characterize and detect deception.

a small group (deceivers) tries to disrupt the larger group
(non-deceivers) working together. In this study, we use a
dataset of 26 Resistance games, each 38-minutes long on
average (Bai et al. 2019).

We propose the concept of a Face-to-Face Dynamic Inter-
action Network (FFDIN for short) which captures instanta-
neous interactions between the participants. Participants are
nodes and interactions are edges in the network. FFDINs in-
clude both verbal (who talks to whom) and non-verbal (who
looks at whom) interactions. One FFDIN is extracted per
second of the video. An example is shown in Figure 1. As
discussions unfold over the course of the game, FFDINs
evolve rapidly over time and their dynamics can provide
valuable clues for detecting deception. We use the dynamic
FFDINs extracted from the videos of the Resistance games
in this work. Even though 26 games does not plenty, our
dataset consists of 59, 762 FFDINs in total.

We conduct a series of analysis on these networks which
reveal novel behaviors of deceivers, extending the research
done in social sciences (Driskell, Salas, and Driskell 2012;
Baccarani and Bonfanti 2015; Vrij 2008). In particular, we
find that deceivers who are less engaged (as measured by
the number of participants they interact with, how often they
speak, and who listens to them) are more likely to lose the
game. On the other hand, deceivers successfully deceive oth-
ers when they are as engaged in the game as non-deceivers,
thus adeptly camouflaging themselves. Across all games, we
also found that deceivers interact significantly more with
non-deceivers than with other deceivers, echoing previous
findings by (Driskell, Salas, and Driskell 2012). In contrast,
as non-deceivers do not know the identity of other partici-
pants, they interact equally with everyone.

We introduce the notion of Negative Dynamic Interaction
Networks (or NDINs) that captures when two participants
avoid interacting with one another. We then create an algo-
rithm called DeceptionRank that can detect deceivers even
from very short (one minute) video snippets. Deception-
Rank derives NDINs from the original interaction networks
— two nodes are linked with an edge if their correspond-
ing participants do not interact. Our method initializes the

prior deception scores of each node through a novel process
which normalizes and aggregates the verbal and non-verbal
behaviors of nodes. It then iteratively runs PageRank on and
aggregates scores from the set of negative dynamic inter-
action networks. This generates a deception score for each
node. We show that DeceptionRank outperforms the state-
of-the-art computer vision, graph embedding, and ensem-
ble methods by over 20.9% AUROC in detecting deceivers.
Moreover, we show that DeceptionRank is consistently the
best performing method across different lengths of video
segments and regardless of the final outcome of the game.

The dynamic networks dataset along with ground truth
of deception are available at: https://snap.stanford.edu/data/
comm-f2f-Resistance.html.

Dataset Description
Here we create face-to-face dynamic verbal and non-verbal
interaction networks by extending the work by Bai et al.
(2019). In Bai et al. (2019), face-to-face interactions are ex-
tracted from videos of a group of participants playing Resis-
tance game.2 The extraction algorithm is a collective classi-
fication algorithm that leverages computer vision techniques
for eye gaze and head pose extraction. Please refer to the
paper for complete details of how the interactions are ex-
tracted. Each game has 5–8 participants, out of which a sub-
set are assigned the roles of being deceivers (others are non-
deceivers). A participant has the same role throughout the
game. The deceivers know who the other deceivers are, but
the non-deceivers do not know the roles of any other partic-
ipant. One participant is part of exactly one game. In total,
the dataset has 26 game and 185 participants.

The game has multiple rounds. Each round starts with a
free-flowing discussion in which players discuss who the
possible deceivers might be. Players cast votes at the end
of each round. To win the game, the non-deceivers must col-
lectively identify the deceivers as early as possible — but
as they do not know who the deceivers and non-deceivers
are, they must identify who is lying. The dominant winning

2https://en.wikipedia.org/wiki/The Resistance (game)



Property Total Per game
Number of network timeseries 26 1
Temporal length (in seconds) 59,762 2,299

Number of games won by deceivers 14 54%
Number of nodes 185 5–8

Number of look-at edges 689,501 26,519
Number of speak-to edges 26,556 1,021
Number of listen-to edges 25,798 992

Table 1: Statistics of the Resistance dataset.

strategy of the non-deceivers is to be truthful and that of
deceivers is to lie and pretend that they are non-deceivers.
In our dataset, deceivers win 14 out of 26 games (or 54%).
Hence the data is reasonably balanced. We use “DW” to la-
bel the games that the deceivers win and “DL” to identify
games that the deceivers lose.

Face-to-Face Dynamic Interaction Networks (FFDINs).
We create a dataset of FFDINs. Each game is represented as
a sequence of interaction networks, with one network snap-
shot per second. Nodes in a FFDIN represent participants
in the corresponding game. Each node has a binary attribute
representing its role, i.e., deceiver or non-deceiver (a par-
ticipant’s role does not change during the game). An edge
represents the interaction between a pair of participants dur-
ing the corresponding second – we will discuss the types
of edges considered shortly. The resulting FFDINs have
highly dynamic edges because of the free-form discussion
and interaction changes over time. All edges are directed
and weighted — the weight indicates the strength or prob-
ability of the interaction. An example is shown in Figure 1.
In total, there are 26 games (network sequences), 185 par-
ticipants, and 996 minutes of recordings. Table 1 shows the
statistics of the Resistance networks. We create three types
of networks from the video of each game:
• Look-At FFDINs N t

G = (V,Et
G) captures non-verbal in-

teractions between participants. The edges at time t rep-
resent who-is-looking-at-who during the time duration t.
The edge weightEt

G(u, v) is the probability of participant
u looking at participant v at time t.

• Speak-To FFDIN N t
S = (V,Et

S) captures verbal inter-
actions between participants. The edges represent who
speakers are looking at while speaking. At any time point,
the edges emanate from speaker nodes. Edge weights rep-
resent the probabilities of speakers looking at targets.

• Listen-To FFDIN N t
L = (V,Et

L) shows who listens to the
speaker. The edges are incoming weighted edges directed
towards the speaker node at each point in time.

Ethical and IRB Considerations
An extensive set of IRB approvals were obtained by the au-
thors of Bai et al. (2019) to collect the data. IRB review was
conducted at the institutions where the data was collected
as well as the IRB of the project sponsor. The participants
gave permission to the research team of Bai et al. (2019) to
record and analyze their videos. After the networks are ex-
tracted from Bai et al. (2019), all personally identifiable in-

formation (PII) is stripped and original videos are not used
further.

Our data and networks are derived using the interaction
information provided as output by Bai et al. (2019), which
has no PII. As a result, the FFDINs created in this work do
not contain any PII as well. The dynamic networks dataset
we release in this work does not have any PII as well.

Characterizing Deceptive Behavior
The goal of this section is to answer two important ques-
tions: (i) what are the behavioral characteristics that sep-
arate deceivers from non-deceivers? and (ii) what are the
factors that distinguish successful deceivers from unsuccess-
ful ones? We answer these questions through three research
questions.

RQ1: Do deceivers and non-deceivers have distinct
gaze patterns?
There is an asymmetry between the knowledge that de-
ceivers and non-deceivers have. In the game, deceivers know
who the deceivers and non-deceivers are. In contrast, a non-
deceiver only knows her own role and nothing whatsoever
about the other participants. Since deceivers know the roles
of all participants, a natural question to ask is whether they
focus their attention on specific participants? If yes, how
does this focus affect their success in deceiving others?
This is a key question as prior social science research has
shown that frequent/rapid gaze change is linked to low con-
fidence (Rayner 1998) and higher likelihood of both decep-
tion (Pak and Zhou 2013) and anxiety (Dinges et al. 2005;
Laretzaki et al. 2011), which may be exhibited by users in
certain roles. For instance, prior research has found that de-
ceivers are more anxious than non-deceivers (Ströfer et al.
2016).

We analyse the behavior of deceivers in the Look-
At networks. A participant u’s “looking” behavior can
be represented as a sequence of consistent gaze periods
[Pu1, Pu2, . . . Pun]. A period Puk is a continuous time inter-
val [P 0

uk, P
1
uk] with a single gaze target Tuk, i.e., the recipi-

ent of u’s highest weight outgoing edge at every time step in
the interval. Suppose we use Duk to denote the duration of
participant u’s kth period Puk. Thus, the duration sequence
for u’s gaze behavior is represented as [Du1, Du2, . . . Duk],
where Du1+Du2+ . . .+Duk = T , i.e. Du1, Du2, . . . Duk

partition the time interval T .
Gaze Entropy. We calculate the entropy of u’s gaze be-

havior in the game as the entropy of the set {Du1

T , Du2

T ,
. . . Duk

T }. Specifically,Hu = −
∑k

i=1
Dui

T log(Dui

T ). A high
entropy value Hu means that u changes his/her focus of at-
tention very frequently, indicating more engagement in the
game. Conversely, a low Hu means longer periods of gaze
towards the same participant, indicating lower engagement
with the rest of the group.

All scores are normalized per game by subtracting the
mean score of all participants in the game. Thus, after nor-
malization, a positive (negative) gaze entropy of a partici-
pant p means that p shifts her gaze more (less) often than
average. To compare the overall behavior of deceivers and



non-deceivers, we average the normalized entropy score of
all deceivers’ entropy across all games — and likewise do
the same with non-deceivers. Furthermore, since the behav-
ior of participants can vary dramatically based on the game’s
outcome (i.e., whether deceivers win or lose), we aggregate
the scores for DW (Deceivers Win) vs DL (Deceivers Lose)
games separately.

Gaze Reciprocity. We define the reciprocity of u’s gaze
in the kth period Puk as the average looking-at probability
of u’s target Tuk towards u during the same time period.

Specifically, Ruk =

∑P1
uk

t=P0
uk

Et
G(Tuk,u)

Duk
. A high reciprocity

means that u’s targets pay attention to u, while a lower reci-
procity indicates that u’s targets ignore u’s gaze. The aver-
age reciprocity of u in the game is the average reciprocity
across all its periods, weighted by the duration of the period.
We normalize and aggregate reciprocity scores to zero-mean
as we did with entropy.

Findings. Figure 2(left) and (right) respectively compare
the gaze entropy of participants and their gaze reciprocity.
The figures report the mean scores across participants and
the 95% confidence interval of the score distribution. Inde-
pendent two-sample t-test is used to compare distributions
throughout the paper. We observe that the behavior of de-
ceivers depends heavily on the outcome of a game.

Finding (F1): In DW games, deceivers and Non-
Deceivers look at similar numbers of speakers and are
looked at to similar extents by other participants. De-
ceivers and non-deceivers have similar entropy and reci-
procity scores (both p > 0.05) in DW games. Thus, de-
ceivers win when they successfully camouflage themselves
by imitating the nonverbal behavior of non-deceivers.

Finding (F2): In DL games, deceivers look at fewer
participants than non-deceivers and are also looked at
less by other participants. Both gaze entropy and gaze reci-
procity are significantly lower for deceivers in DL games
(p < 0.001), showing that they have a steadier gaze and
receive less attention compared to non-deceivers. This indi-
cates that deceivers are easily identified and lose when they
are less engaging as compared to the rest of the participants.

RQ2: Does the verbal behavior of group of
deceivers differ from non-deceivers?
The way in which people speak has previously been shown
to indicate deception (Baccarani and Bonfanti 2015; Beslin
and Reddin 2004). However, verbal characteristics of a coor-
dinated group of deceivers is less well known. We now com-
pare the speaking patterns of deceivers and non-deceivers.
We use the Speak-To FFDIN network for the analysis. As
before, we compare the differences partitioned by the final
game outcome.

Finding (F3): Deceivers speak less than non-deceivers.
We established this by first computing the fraction of time
slices in which a participant u speaks. Both speaking ex-
cessively and being anomalously quiet have previously been
noted to be indicators of deception (Wiseman 2010; Vrij
2008).
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Figure 2: Non-engaging deceivers are unsuccessful in de-
ceiving others. (Left) Deceivers have a lower entropy of
looking at others compared to non-deceivers in DL (De-
ceivers Lose) games, while this difference does not exist in
DW (Deceivers Win) games. (Right) Deceivers get less at-
tention, measured in terms of reciprocity, in DL games. In
both plots, we observe that deceivers and non-deceivers have
similar scores in DW games, as deceivers successfully cam-
ouflage themselves.
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Figure 3: Deceivers tend to speak less than non-deceivers.
This difference is more pronounced in DL games.

Our experiments show that deceivers speak less than non-
deceivers regardless of the game outcome. As shown in Fig-
ure 3, the differences are statistically significant both in DW
games (0.08 vs −0.13, p < 0.05) and in DL games (0.07 vs
−0.10, p < 0.001). This shows that non-deceivers are more
vocal in all games.

Finding (F4): In DL games, deceivers get less attention
while speaking than non-deceivers. We can infer the at-
tention a speaker u is getting based on how many other
participants are looking at u while u is speaking. We de-
fine the average attention that a participant u gets as the
average weighted in-degree of u in the Listen-To FFDINs:
1
T

∑
t

∑
(v,u)∈Et

L
Et

L(v, u), where T is the number of net-
works in which u is a speaker.

Figure 4 (left) shows that in DL games, less attention
is paid to deceivers when they speak, compared to non-
deceivers. However, the story is different in DW games—
players in both roles receive a similar amount of attention.

Finding (F5): In DL games, deceiver speakers are recip-
rocated less than non-deceivers. We also looked at the
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Figure 4: Deceivers get less attention in the games they lose.
(Left) We observe that when deceivers speak in DL games,
other participants have lower likelihood of looking at the
deceiver as compared to when a non-deceiver is speaking.
(Right) Similarly, the target of speakers is less likely to look
back at deceivers than at non-deceivers in DL games. These
differences are not present in DW games as deceivers are
equally engaged and central to discussions.

gaze behavior of the person who is being spoken to. How of-
ten do they pay attention to the speaker? Specifically, when
person u talks to v, does v look back at u? This is a sign of
trust and respect (Ellsberg 2010; Derber 2000).

We define the reciprocity of u’s target Tut at time t as the
edge weight from Tut to u at the same time. We calculated
the average reciprocity of participant u in the entire time pe-
riod t ∈ [1, T ] as 1

T

∑T
t=1E

t
L(Tut, u). We compared the av-

erage reciprocity of deceivers and non-deceivers in Figure 4
(right). We see that in DL games, deceivers are not as fre-
quently reciprocated as non-deceivers. This suggests that in
DL games, other participants pay less attention to and trust
deceivers less. This, however, is not the case in DW games
where both deceivers and non-deceivers are given equal at-
tention by listeners.

Summarizing, we find that non-deceivers are highly vo-
cal and more active and central compared to deceivers in
DL games. This is not the case in DW games, where the
engagement and importance of deceivers and non-deceivers
is equivalent. This shows that deceivers are successful in
deceiving others when they are as engaging as the non-
deceivers in the game and camouflage their behavior well.

RQ3: Do deceivers interact differently with other
deceivers vs non-deceivers?
Since deceivers know the role of all participants in the game,
do they focus their attention on specific individuals? Past
survey based social science studies (Driskell, Salas, and
Driskell 2012) conclude that deceivers are unlikely to re-
spond to each other. We develop competing hypothesis about
this. The first hypothesis is that the deceivers interact more
with deceivers in order to cooperate and deceive other par-
ticipants. The alternate hypothesis states that deceivers in-
teract less with each other in order to avoid being identified
by non-deceivers.

To test these hypotheses, we compare the pairwise in-
teractions between participants, grouped by their roles:
deceivers vs. deceivers, deceivers vs. non-deceivers, non-
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Figure 5: Deceivers avoid non-verbal interactions with other
deceivers. (Top) Deceivers have lower reciprocity of looking
at other deceivers than at non-deceivers. Non-deceivers have
similar reciprocity for both. (Middle) Deceivers listen less to
other deceivers than to non-deceivers. Non-deceivers have
similar values for both. (Bottom) All pairs of participants
have similar probability of speaking to one another.

deceivers vs. deceivers, and non-deceivers vs. non-
deceivers. Figure 5 compares the average reciprocity of
looking, average talk-to probability, and average listen-to
probability for all pairs of roles. We aggregate the properties
across all games to measure role-specific behavior regard-
less of the game’s outcome. As earlier, we report the mean
and the 95% confidence intervals for all properties. We make
the following three observations by analysing both verbal
and non-verbal behavior of participants.

Finding (F6): Deceivers look less at other deceivers.
First, Figure 5 (top) shows that non-deceivers spend simi-
lar amount of time looking at deceivers and non-deceivers
(p > 0.05). However, the looking behavior of deceivers is
strikingly distinct—deceivers look less at other deceivers
than at non-deceivers (p < 0.001). This has several im-
portant implications. Since deceivers know the identity of
non-deceivers, deceivers spend more time observing non-
deceivers (and less time observing their fellow deceivers).



Deceivers may also interact less with other deceivers to
avoid ‘guilt-by-association’, i.e., getting caught in case the
other deceivers are identified.

In addition, Figure 5 (middle) shows that non-deceivers
have a similar probability of listening to both deceptive and
non-deceptive speakers (p = 0.76). However, this is not the
case for deceiver listeners. Deceivers have a lower proba-
bility of listening to other deceivers as compared to non-
deceivers (p < 0.05). This is possibly in order to avoid being
suspected of supporting the deceiver.

Finally, Figure 5 (bottom) compares the verbal behav-
ior (as opposed to non-verbal behavior in the previous two
paragraphs). Surprisingly, we find that the verbal behav-
ior between all pairs of participants is similar. Since non-
deceivers do not know the roles of other participants, they
speak equally to non-deceivers and deceivers (p = 0.48),
as expected. However, it is surprising that deceivers spend
equal time talking to both deceivers and non-deceivers (p =
0.39). This is in stark contrast to the previous two non-verbal
findings. This shows that deceivers consciously adapt their
verbal behavior to mimic non-deceivers, but not their non-
verbal behavior. Since verbal behavior is noticed by every-
one else, deceivers consciously do not exhibit any bias in
verbal interaction with other participants to avoid getting
caught.

Thus, RQ3 shows that deceivers successfully camouflage
their verbal (speaking) behavior, while they are unable to
camouflage their non-verbal (looking and listening) behav-
ior. Altogether, deceivers avoid non-verbal interactions with
other deceivers.

Network Model for Deception Prediction
In this section, we present DeceptionRank, our PageRank
based model that examines FFDINs in order to predict
whether a given participant is deceptive or not. Automated
detection of deceivers is a challenging task as this is the
goal of the non-deceivers. DeceptionRank tries to do this
with short duration of videos. In contrast, human partici-
pants try to do this throughout the game, which are 38 min-
utes long, on average, but are still unsuccessful in almost
half the games.

DeceptionRank on Negative Dynamic Interaction
Networks
DeceptionRank is built on our findings from the previous
section that deceivers avoid non-verbal interactions with
other deceivers, while non-deceivers do not exhibit this bias.
There are four main steps of DeceptionRank: (i) building the
network, (ii) initializing node deception priors, (iii) applying
network algorithm to obtain node deception scores, and (iv)
training a deception classifier.

Building negative dynamic interaction networks. In or-
der to bring this “non-interaction” to the fore, we gener-
ate negative interaction networks that capture the pairwise
“lack of interactions”. The edges in the negative interac-
tion network connect nodes which avoid interacting with
one another. Given a FFDIN N t = (V,Et) at time t, where
Et(u, v) = wu,v,t, ∀u, v ∈ V , the associated negative inter-

action network NDIN is given by N t− = (V,Et−), where
Et−(u, v) = 1−wu,v,t. Note thatEt−(u, v) = 1 when there
is no edge from u to v at time t in the interaction network,
i.e., when u does not interact with v.

Initializing node deception priors. First we need to ini-
tialize every node’s prior probability of being a deceiver.
We introduce a novel technique for initialization based on
every node’s verbal and non-verbal features compared to
the features of all the nodes in the network. Given a set of
feature values {x1u, ..., xFu} for the F features of a node
u, we aim to combine them into an initial deception score
S(u) ∈ [0, 1], which we describe next.

Based on our analysis in the previous section, we build the
priors using the following four features that best distinguish
between deceivers and non-deceivers: (a) fraction of speak-
ing (FSu), (b) average entropy of looking (Hu), (c) average
in-degree (EG,u), and (d) average in-degree while speaking
(EL,u). Since the feature distributions can vary, we first nor-
malize each feature f(f ∈ {FSu, Hu, EG,u, EL,u}) by lin-
early scaling it between 0 and 1, corresponding to the mini-
mum and maximum values of the feature. Then we subtract
each feature f from 1 because deceivers have lower scores
of f than non-deceivers, so 1− f ensures that the deceivers
tend to have higher initial scores. Finally, we average each
node’s four property scores to get its prior score S(u) for
node u:

S(u) = 1− FSu +Hu + EG,u + EL,u

4
(1)

This score is used to initialize node priors in the first iteration
of our dynamic network algorithm — a higher score would
indicate higher prior probability of the node being deceptive.

Obtaining node deception scores from negative net-
works. To predict whether a participant is a deceiver or not,
we extend the PageRank algorithm (Page et al. 1999). By
default, PageRank is applicable on static networks, thus, we
extend it to apply to dynamic negative interaction network
sequences. The method is shown in Algorithm 1. The over-
all idea is that in each iteration, we aggregate neighborhood
scores for each node in all negative networks independently
and then aggregate the scores of a node across all the net-
works. This aggregated score is used in the next iteration.

In detail, we repeat the following three-step procedure un-
til convergence (or until the maximum number of iterations
is reached). In the first step, we initialize each node with an
initial score in all the networks. Node deception prior scores
are used for the first initialization. In the second step, in
each negative network Et−, we calculate the score st(v) by
aggregating node v’s outgoing neighbors’ scores using the
following equation: st(v) = β

∑
(v,u)∈Et− st(u) · wv,u,t +

(1−β)st(v). Here β weighs the importance of a node’s own
deception score versus the aggregate of neighbors’ scores.
Each neighbor u’s deception score is weighted by the weight
of the outgoing edge from v to u. In the third step, for each
node v, we aggregate the scores of v across all the negative
networks to get v’s output score in current iteration, and nor-
malize the scores. Averaging is used as the aggregation func-
tion; other aggregation functions, such as recency-weighted
averaging, can be used instead, if desired. The normalized



Algorithm 1: DeceptionRank on Negative Dynamic In-
teraction Networks

Input: Negative dynamic interaction networks
[(V,E1−), (V,E2−), ..., (V,ET−)], initial deceptive
scores s(V ), β, convergence threshold τ , maximum
iteration number M

Output: Final deceptive scores s(V )
iter = 0, dif = 1;
while dif > τ and iter < M do

st(V ) = s(V ), ∀t = 1 . . . T ;
for t = 1 . . . T do

foreach v ∈ V do
rt(v) = β

∑
(u,v)∈Et− s

t(u) · wu,v,t+

(1-β)st(v);

r(V ) =
∑

t
rt(V )/T ;

r(V ) = r(V )/ ‖r(V )‖2;
dif = ‖(r(V )− s(V ))‖2;
iter = iter + 1;
s(V ) = r(V )

return s(V )

output scores are used as the initial scores in the next itera-
tion. After convergence, the final deceptiveness scores s(V )
are returned.

Final classification. Finally, we train a binary classifier
for predicting whether a participant is deceptive or not. For
a node u, the features we use are u’s final deceptiveness
scores and u’s four behavior properties, namely the average
fraction of speaking, average entropy of looking, average in-
degree, and average in-degree while speaking.

Experiments
In this section, we compare the performance of Deception-
Rank with state-of-the-art vision and graph embedding base-
lines. We show that DeceptionRank outperforms these base-
lines by at least 20.9% in detecting deceivers.

Experiment Setup

The prediction task is: given a video segment of a game, pre-
dict the roles (deceiver or non-deceiver) of all participants in
the game.

Since there are only 26 games in the dataset, we augment
the dataset by segmenting long videos into several smaller
videos. The roles of the players remain the same in the
videos after segmenting. We split the games into 1 minute
long video segments (we study the effect of segment length
on prediction performance later). This results in a dataset
with 2781 data points.

To ensure that there is no leakage of ground-truth labels,
we split the dataset into training and test set according to
games (not by video segments). Every player in our data par-
ticipated in exactly one game — so we never train on data
of a player in one game and use that to predict whether he is
deceptive or not in another. We conduct all our experiments
with 5-fold cross-validation, where all clips of a game be-

long to the same fold. 3 This ensures that two segments of
the same game can not appear in both training and test sets.
Further, we split the data by participants as well, so a par-
ticipant can only be either in training or test across all seg-
ments. In each fold, we set 60% participants in the training
set and the rest are in the test set (we ensure that at least one
deceiver and non-deceiver are in training and test set). Since
the task is unbalanced, we report the AUROC, averaged over
five folds.

We do not provide any model, either our or the baselines,
with the number of deceivers or non-deceivers in the game,
so there is no leakage of label distribution. All the experi-
ment setting are the same across all models to ensure fair-
ness.

Baselines
We consider two sets of baselines: vision-based methods and
graph embedding methods. All baselines are evaluated in the
same setup and dataset as our model.

Computer vision baselines. We compare our method
with five computer vision baselines with the same experi-
mental setup as our method (Bai et al. 2019; Baltrusaitis
et al. 2018; Demyanov et al. 2015; Bai et al. 2019; Wu
et al. 2018). These methods used features extracted from the
video, including facial emotion, head and eye movement, fa-
cial action units, and time-aggregated features as described
below.

(Demyanov et al. 2015) extracts the averaged facial action
units (FAUs) features over time. (Baltrusaitis et al. 2018)
computes eye movements from the estimated eye ball po-
sitions, and uses the movement distributions over time as
features. (Wu et al. 2018) extracts the individual dense tra-
jectory features from videos, MFCC features from audio,
micro-expression features and text features from transcripts,
and uses an ensemble method called late fusion to come
up with a joint prediction. Since our dataset doesn’t have
transcripts and annotated micro-expressions, we remove the
text features and replace micro-expressions by FAU features
(Demyanov et al. 2015). Lastly, we extract the histograms
of emotion features and LiarRank features proposed by (Bai
et al. 2019) as other two baselines, where LiarRank cap-
tures group information by ranking the feature values in each
group as meta-features.

Note that all these methods make predictions for each
player individually, without considering interactions be-
tween players. Specifically, in these methods, we extract the
feature values for each individual player and use them as
input to train a binary classifier. All these baseline features
are trained with Logistic Regression, Random Forest, Linear
SVM and Navie Bayes. We report the best AUROC among
these classifiers in Table 2.

Graph embedding baselines. Here we compare our
method with dynamic graph embedding based methods. Dy-
namic graph embedding models have shown incredible suc-
cess in making predictions for large-scale social networks.
In particular, we compare with temporal graph convolution

3We do 5-fold cross validation rather than 10-fold because of
the small number of games.



Method Performance % Improvement
Over Baseline

Computer Vision Baselines
Emotions (Bai et al. 2019) 0.538 39.9%

Movements (Baltrusaitis et al. 2018) 0.549 37.2%
FAUs (Demyanov et al. 2015) 0.569 32.3%

LiarRank (Bai et al. 2019) 0.590 27.6%
Late fusion (Wu et al. 2018) 0.594 26.7%

Graph Embedding Baselines
TGCN on Look-At (Liu et al. 2019) 0.550 36.9%
TGCN on Speak-To (Liu et al. 2019) 0.538 39.9%
TGCN on Listen-To (Liu et al. 2019) 0.541 39.2%

Ensemble Baseline
Combining all the above features 0.623 20.9%

Proposed Method
DeceptionRank 0.753 -

Table 2: Our proposed method DeceptionRank outper-
forms state-of-the-art vision, graph embedding, and ensem-
ble baselines in the task of predicting deceivers from 1
minute clips of videos. DeceptionRank outperforms all base-
lines by at least 20.9% AUROC in prediction performance.

networks (TGCN) (Liu et al. 2019) on the look-at network,
speak-to network, and listen-to networks. TGCN model
combines graph convolution network with LSTM. Given a
sequence of networks and the ground-truth training node la-
bels, TGCN trains two-layer GCN models on individual net-
works. All individual networks share the same GCN param-
eters. Mean pooling is used to aggregate neighborhood node
information in the GCN. The sequence of output scores per
node corresponding to the sequence of graphs is fed as input
into an LSTM. All nodes share the same LSTM parameters.
The final output of the LSTM is used to predict the training
nodes’ ground-truth label. The model is trained in an end-to-
end manner, where the GCN and LSTM model parameters
are trained to accurately predict the node labels. We experi-
mented with other variants of temporal graph models (Zhou
et al. 2018; Goyal et al. 2018), which gave similar perfor-
mance.

Ensemble baseline. We create an ensemble baseline
model to combine the strengths of all the baselines. For each
node, we concatenate its baseline scores from all the vi-
sion and graph embedding classifiers described above. This
generates one feature vector per node, which is used as the
node’s input to a Logistic Regression classifier to make the
prediction.

Predictive Performance of DeceptionRank
Here we compare the performance of DeceptionRank with
the baselines. Table 2 shows the cross-validation perfor-
mance (in terms of AUROC) of all methods on 1 minute
segments. We report the performance as average AUROC
scores and their 95% bootstrapped confidence interval.

First, we observe that DeceptionRank significantly out-
performs all other methods, by at least 20.9%. Deception-
Rank has an AUROC of 0.753 with its 95% confidence inter-
val ranging from 0.721 to 0.789. Second, among baselines,
the ensemble performs the best. We note that when used in-
dividually, vision-based baselines outperform baselines that
use graph embeddings. We attribute this difference in per-
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Figure 6: DeceptionRank performs better than all features
across all segment length. DeceptionRank has stable perfor-
mance for all segment lengths too.

formance to the small size of the dataset, leading to lower
performance of deep-learning based GCN methods. Finally,
LiarRank and Late Fusion outperform the other baselines.
This is likely due to the fact that LiarRank was designed to
identify deceivers in networks, while late fusion combines
audio and transcripts with visual features. However, we re-
mind readers that DeceptionRank generates the best perfor-
mance compared to all baselines, suggesting that FFDINs
and Negative Interaction Networks, together with the De-
ceptionRank algorithm generate excellent value in terms of
performance.

Performance vs. Segment Length

The preceding experiment shows the performance of both
DeceptionRank and the baselines using data from segments
that are 1 minute long. We now study the impact of the input
segment length on the performance of predictors. We vary
segment length from 1 minute to 14 minutes. For each seg-
ment length, we randomly sample 100 segments from each
game. As before, we follow a 5-fold cross-validation setting.
Finally, we compare the average AUROC and report the 95%
confidence interval of performance.

As the ensemble baseline performed the best among all
baselines as shown in the previous experiment, we compare
DeceptionRank with this ensemble baseline model. Other
individual vision and graph embedding baselines have lower
performances.

Figure 6 shows the results of varying the segment length.
We show that DeceptionRank outperforms the best baseline
for all segment lengths considered. The margin is large when
the segment lengths considered are small — once the seg-
ment lengths are over 10 minutes long, the performance of
DeceptionRank and the baselines is similar. It is important
to note that DeceptionRank’s performance is stable across
segment lengths, while the baselines have diminished per-
formance when the segments are short. These findings illus-
trate the robustness of our model with respect to the input
durations.
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Figure 7: DeceptionRank performs better than all features
across DL and DW games. Model performances are better
in DL games compared to DW games.

Performance in DL vs. DW Games

Here we compare the performance of the models according
to the game outcome. Specifically, we compare model per-
formance for DL games vs. DW games. Recall that 14 out of
26 games (= 54%) were won by deceivers. Since our anal-
ysis in the previous sections show that the deceivers differ
significantly, we evaluate if that affects the models’ perfor-
mance across these games. As the ensemble baseline per-
formed the best among all baselines, we compare Decep-
tionRank against the ensemble model.

We follow the default setting as outlined earlier for the
experiments. We evaluate the models on 1 minute segments.
We report the performance as average AUROC scores and
their 95% bootstrapped confidence interval. We randomly
sample 100 segments from each game. As before, we follow
a 5-fold cross-validation setting.

When evaluating the model performance for DL games,
we consider only DL games, i.e., we train and test on DL
games only. Similarly, only DW games are considered when
evaluating model performance for DW games.

Figure 7 shows the results of according to the game out-
come. First, we see that regardless of the game outcome, De-
ceptionRank performs better than the ensemble model. Sec-
ond, we note that both models perform better in DL games
compared to their performance in the DW games. The ex-
planation for this observation is that the behavior of de-
ceivers in DL games is significantly different from that of
non-deceivers. This makes it easier for the machine learning
algorithms to distinguish between them. On the other hand,
deceivers and non-deceivers have similar behavior in DW
games, which makes it comparatively harder for the algo-
rithms to identify them. These findings show the robustness
of our model across game outcomes.

In summary, the results in this section show that De-
ceptionRank outperforms the baseline methods by at least
20.9% in identifying deceivers in groups. Deceivers can be
identified effectively even with short segments and better in
DL games.

Related Work
We now summarize related work that was not already dis-
cussed earlier.

Face-to-face deception. There has been much research
on predicting whether an individual is deceptive from fa-
cial and body cues (Ding et al. 2019; Randhavane et al.
2019; Wang et al. 2020) with extensions that also include
audio and linguistic cues (Gogate, Adeel, and Hussain
2017; Wu et al. 2018). Ding et al. (2019) proposed a deep
CNN model to fuse face and body cues together which can
be trained with limited data via meta-learning. Randhavane
et al. (2019) focused on deception prediction by feeding dy-
namic 3D gestures to an LSTM. They also identified de-
ceptive behaviors (e.g. looking around, hands in pockets).
Wang et al. (2020) proposed the attention mechanism with
3D CNN to identify individual deceptive facial patterns. Wu
et al. (2018) combined visual cues (e.g. micro-expression
and video trajectory features) with voice and transcript data
using a highly effective late fusion mechanism. However,
there is limited work on predicting deception in multi-person
face-to-face interaction settings. Chittaranjan and Hung
(2010) pioneered face to face deception detection from con-
versation cues (e.g. speaking turns and number of interrup-
tions). Pak and Zhou (2013) used eye gaze to detect decep-
tion, Sapru and Bourlard (2015) used facial action units as
features, and Bai et al. (2019) proposed the notion of Liar-
Rank within groups to better capture group-based deception.

However, most of these techniques do not work on group
deception and do not consider inter-personal interactions in
order to predict deception. We are the first to do so and to
show that the Negative Dynamic Interaction Networks we
propose are highly effective at detecting deception. This pa-
per does not focus on computer vision — rather it builds on
the technique proposed by Bai et al. (2019) to extract the
visual focus of attention of people — from this, we build
NDINs for deception detection.

Deception detection on social media using social and
interaction networks. Extensive research has been done
to detect deception using interaction and social networks.
Many of these works have focused on web and social media
domains. These include methods to detect fake news (Liu
and Wu 2018; Horne and Adali 2017), rumors (Zeng, Star-
bird, and Spiro 2016; Li et al. 2016), fake reviews (Mukher-
jee et al. 2013; Li et al. 2015), spammers (Wu et al. 2017),
and coordinated activity (Kumar et al. 2017; Subrahmanian
et al. 2016). Liu and Wu (2018) focused on the early de-
tection of fake news on social media by modeling informa-
tion spread on the network. Kumar et al. (2018); Hooi et al.
(2016); Rayana and Akoglu (2015) leveraged the reviewer-
product network to identify fake reviews and fraudulent re-
viewers in e-commerce platforms. Wu et al. (2017) used
sparse learning to detect spammers as a social community
from both online social interactions and TF-IDF content fea-
tures. Kumar et al. (2017) analyzed the behaviors of sock-
puppets (users with multiple accounts to manipulate public
opinions) in social media through multiple perspectives in-
cluding their social networks, posting patterns, posting con-
tents etc. Subrahmanian et al. (2016) developed a mix of
language, network, and neighborhood features in order to



identify both influence bots and botnets as part of a DARPA
challenge.

Though these papers use the concept of networks to study
deception, they have not been applied to the video-based dis-
cussion settings. Compared to social networks, FFDINs ex-
tracted from videos are very different due to two important
reasons. First, the edges in FFDINs represent instantaneous
verbal and non-verbal interactions, and thus, the edges are
highly dynamic. On the other hand, edges in social networks
are relatively long-term and stable. Second, FFDINs have
very few number of nodes and edges, while social networks
have millions of nodes and edges. Both these major differ-
ences call for new methods that can work on small-scale
but highly dynamic networks. Our DeceptionRank method
bridges this gap.

Deception detection in games. The work most related
to us are deception analysis from online chat-based mafia
games (Pak and Zhou 2015; Yu et al. 2015). Pak and Zhou
(2015) builds a reply network over time, and hypothesizes
several deceptive patterns such as centrality and nodes simi-
larity. They conduct statistical analysis of the relationship to
deception, but don’t predict deceivers. Yu et al. (2015) builds
a rule-based attitude network from the chat logs, and clus-
ters nodes into subgroups of deceivers and non-deceivers.
The clustering quality is measured by purity and entropy.
Their results highly depend on the quality of chat logs and
specific rules, which limit the application scope. Moreover,
neither of these directly predicts the role for each player
as we do. Niculae et al. (2015); Azaria, Richardson, and
Kraus (2015) studied the conversational properties patterns
in a games to detect deception. However, none of the above
works have studied deception in face-to-face video commu-
nication, which is the gap we bridge.

Discussion and Conclusion
To the best of our knowledge, this is the first paper to use
network analysis methods in order to predict who is being
deceptive in a video-based group interaction setting.

Using a dataset based on the well-known Resistance
game, we propose the concepts of a Face-to-Face Dynamic
Interaction Network (FFDIN) and a Negative Dynamic In-
teraction Network (NDIN). We propose the DeceptionRank
algorithm, and show that DeceptionRank beats several base-
lines including ones based on computer vision and graph
embedding in detecting deceivers.

Relevance to the web and social media community. Our
research sheds light on group deception in video-based con-
versations. While our work focuses on conversations in a
social game, such conversations are commonplace in ev-
eryday communications via video call apps such as Mi-
crosoft Teams, Google Meet, Facebook Messenger, Zoom
and Skype, and form an integral part of social media plat-
forms like Facebook, SnapChat, and WhatsApp. The inputs
are look-at, speak-to and listen-to interactions between peo-
ple, which can be extracted from these videos from web and
social media platforms. The proposed methods of Negative
Dynamic Interaction Network and DeceptionRank can then
be applied to identify deceivers in those videos. Since there
are no such web and social media datasets with ground-truth

of deception, we leave the experimental evaluation of our
methods on web and social media video-based deception for
future work. Techniques in our work have the potential to
improve the safety and integrity of social media and web-
based communication platforms.

Use of one dataset. Currently, there are no other datasets
of face-to-face video conversations with ground truth of
group deception on which we can test our model. This is
because creating such a dataset is an extremely difficult
and time-consuming effort. This is highlighted in the paper
(Bai et al. 2019) from which we have derived our dataset
— it took the authors about 18 months to collect and pro-
cess the 26 videos. Testing generalizing capability of our
method beyond the current dataset will require creation of
new datasets, a huge task which can be conducted in the fu-
ture.

The only other comparable video dataset is given by
(Pérez-Rosas et al. 2015) which contains 56 people and
spans 57 minutes, but each video only has one person. There
is no group interaction or deception. So, we can not use it for
our task. By comparison, the dataset we use contains 185
participants and spans 1000 minutes. Our dataset is signifi-
cantly larger.

Generalizing beyond a game. Although the setting we
study in this work is in a social game setting, the discus-
sions are free-form and the participants can deceive others
as they want. No instructions or training was provided to
them about how to deceive. Thus, the findings in this pa-
per should represent the general properties of how deceivers
operate in groups. Importantly, the Negative Dynamic Inter-
action Network and DeceptionRank method are general and
can be applied to any setting involving interactions between
groups of people.

Future work. Future work can expand this study to mul-
tiple games and settings such as sales meetings, business ne-
gotiations, job interviews, and more. The methods of Nega-
tive Dynamic Interaction Networks and DeceptionRank can
be tested for deception detection in other datasets, including
social network datasets. Finally, our methods can be used to
study other social affects, such as leadership, trust, liking,
and dominance.
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Kumar, M.; Makhija, D.; and Faloutsos, C. 2016. Birdnest:
Bayesian inference for ratings-fraud detection. In Proceed-
ings of the 2016 SIAM International Conference on Data
Mining, 495–503. SIAM.

Horne, B. D.; and Adali, S. 2017. This just in: fake news
packs a lot in title, uses simpler, repetitive content in text
body, more similar to satire than real news. In International
AAAI Conference on Web and Social Media.

Keller, F. B.; Schoch, D.; Stier, S.; and Yang, J. 2017. How
to manipulate social media: Analyzing political astroturfing
using ground truth data from South Korea. In International
AAAI Conference on Web and Social Media.

Kumar, S.; Cheng, J.; Leskovec, J.; and Subrahmanian, V.
2017. An army of me: Sockpuppets in online discussion
communities. In Proceedings of the International World
Wide Web Conference.

Kumar, S.; Hooi, B.; Makhija, D.; Kumar, M.; Faloutsos, C.;
and Subrahmanian, V. 2018. Rev2: Fraudulent user predic-
tion in rating platforms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining,
333–341.

Kumar, S.; Spezzano, F.; and Subrahmanian, V. 2015. Vews:
A wikipedia vandal early warning system. In Proceedings of
the 21th ACM SIGKDD international conference on knowl-
edge discovery and data mining, 607–616.

Kumar, S.; Zhang, X.; and Leskovec, J. 2019. Predicting
dynamic embedding trajectory in temporal interaction net-
works. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
1269–1278.

Laretzaki, G.; Plainis, S.; Vrettos, I.; Chrisoulakis, A.; Pal-
likaris, I.; and Bitsios, P. 2011. Threat and trait anxiety affect
stability of gaze fixation. Biological psychology 86(3): 330–
336.

Li, H.; Chen, Z.; Mukherjee, A.; Liu, B.; and Shao, J.
2015. Analyzing and detecting opinion spam on a large-
scale dataset via temporal and spatial patterns. In Interna-
tional AAAI Conference on Web and Social Media.

Li, Q.; Liu, X.; Fang, R.; Nourbakhsh, A.; and Shah, S. 2016.
User behaviors in newsworthy rumors: A case study of twit-
ter. In International AAAI Conference on Web and Social
Media.

Liu, Y.; Shi, X.; Pierce, L.; and Ren, X. 2019. Characterizing
and forecasting user engagement with in-app action graph:
A case study of Snapchat. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Liu, Y.; and Wu, Y.-F. B. 2018. Early detection of fake news
on social media through propagation path classification with
recurrent and convolutional networks. In AAAI Conference
on Artificial Intelligence.

Mukherjee, A.; Venkataraman, V.; Liu, B.; and Glance, N.
2013. What yelp fake review filter might be doing? In Inter-
national AAAI Conference on Weblogs and Social Media.



Niculae, V.; Kumar, S.; Boyd-Graber, J.; and Danescu-
Niculescu-Mizil, C. 2015. Linguistic Harbingers of Be-
trayal: A Case Study on an Online Strategy Game. In Pro-
ceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics.

Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999. The
PageRank citation ranking: Bringing order to the web. Tech-
nical report, Stanford InfoLab.

Pak, J.; and Zhou, L. 2013. Eye gazing behaviors in online
deception. In 19th Americas Conference on Information Sys-
tems.

Pak, J.; and Zhou, L. 2015. Temporal Patterns of Struc-
tural Deception Behavior in a Massively Multiplayer Online
Game. In 2015 48th Hawaii International Conference on
System Sciences, 131–140. IEEE.
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