
Data-Driven Model Predictive Control of
Autonomous Mobility-on-Demand Systems

Ramon Iglesias1 Federico Rossi2 Kevin Wang3 David Hallac4 Jure Leskovec5 Marco Pavone2

Abstract— The goal of this paper is to present an end-to-end,
data-driven framework to control Autonomous Mobility-on-
Demand systems (AMoD, i.e. fleets of self-driving vehicles). We
first model the AMoD system using a time-expanded network,
and present a formulation that computes the optimal rebalanc-
ing strategy (i.e., preemptive repositioning) and the minimum
feasible fleet size for a given travel demand. Then, we adapt
this formulation to devise a Model Predictive Control (MPC)
algorithm that leverages short-term demand forecasts based
on historical data to compute rebalancing strategies. Using
simulations based on real customer data from DiDi Chuxing, we
test the end-to-end performance of this controller with a state-
of-the-art LSTM neural network to predict customer demand:
we show that this approach scales very well for large systems
(indeed, the computational complexity of the MPC algorithm
does not depend on the number of customers and of vehicles
in the system) and outperforms state-of-the-art rebalancing
strategies by reducing the mean customer wait time by up to
to 89.6 %.

I. INTRODUCTION

The last decade has seen both the emergence and rapid
expansion of Mobility-on-Demand (MoD) services (e.g. car-
sharing and ridesharing) and the promising development of
self-driving technology. Together, MoD services and self-
driving vehicles provide the key components to a new form
of transportation called Autonomous Mobility-on-Demand
(AMoD), wherein a fleet of self-driving vehicles provides
travel services on-demand.

A key operational challenge for AMoD systems, as for
any transportation system with asymmetric demand, is the
problem of imbalance: vehicles naturally concentrate in a
subset of the areas serviced by the MoD system, limiting
the availability in other regions [1], [2].

Devising efficient operating strategies for the imbalance
problem is an active area of research for MoD and AMoD
systems. However, the majority of the existing body of work
does not leverage the ability to forecast customer demand.

1Ramon Iglesias is with the Department of Civil and Envi-
ronmental Engineering, Stanford University, Stanford, CA, 94305,
rdit@stanford.edu.

2Federico Rossi and Marco Pavone are with the Department of
Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305,
{frossi2, pavone} @stanford.edu.

3Kevin Wang is with Houzz Inc., Palo Alto, CA 94301,
kevin.wang@houzz.com.

4David Hallac is with the Department of Electrical Engineering, Stanford
University, Stanford, CA, 94305, hallac@stanford.edu.

5Jure Leskovec is with the Department of Computer Science, Stanford
University, Stanford, CA, 94305, jure@stanford.edu.

This research was supported by the National Science Foundation under
CAREER Award CMMI-1454737 and by the Toyota Research Institute
(“TRI”). This article solely reflects the opinions and conclusions of its
authors and not NSF, TRI, or any other Toyota entity.

Accordingly, most existing control strategies are reactive:
thus, they do not deal well with rapidly time-varying de-
mand due to, e.g., commuting cycles, events, or weather
phenomena. The goal of this paper is to present an end-to-
end, data-driven framework to control AMoD systems with a
focus on the imbalance problem: by leveraging information
about predicted customer demand in the control synthesis
problem, we design a predictive control strategy that antici-
pates imbalances in customer demand and rebalance vehicles
accordingly, and we demonstrate the performance of such
strategy with real-world data.

Literature Review. A considerable amount of research has
been devoted to the design and analysis of optimal control
of taxi-like fleets. In non-autonomous MoD systems such
as Uber, and Lyft, ridesharing operators often use pricing
incentives, commonly known as dynamic pricing, to nudge
drivers towards areas where demand outstrips supply. In [3]
the authors provide a framework for synthesizing pricing
policies; [4] shows that dynamic pricing is not necessarily
better than the optimal static policy, but is more robust with
respect to system parameter uncertainties.

However, in AMoD systems, the fleet operator can directly
control the routes and schedules of the autonomous vehicles.
[5], [6], [7], [8] approach the problem of controlling a
fleet by first formulating steady-state solutions using queuing
theoretical [6], fluidic [5], network flow [7], or Markov [8]
models, respectively, and then deriving heuristic control laws
informed by the steady-state solution that can be applied
in real-time. However, by relying on steady-state formula-
tions, the aforementioned pricing or control heuristics are
time-invariant, and, in particular, cannot accommodate time-
varying forecasted demand. Time-varying, MPC controllers
have been proposed in [9], [10], and the methods in [10],
[11] explicitly consider forecasted demand. In particular,
the Model Predictive Control (MPC) approach from [9] ex-
perimentally outperforms the time-invariant heuristics listed
above, and could potentially leverage forecasted demand.
However, by assigning decision variables to each vehicle
in [9], [10] and enumerating all positioning possibilities in
[11], the problem sizes in these methods grow significantly
for large fleets, which limits their real-life applications to
small or medium fleets. Moreover, the model in [10] requires
that vehicles should be able to pickup and dropoff customers
within a time step, limiting its applicability to systems where
all customer travel times are similar.

Statement of Contributions. Our contribution in this paper
is threefold. First, we propose an efficient approach to find
the optimal dispatching policy for the case when the trip



demand is known ahead of time. This provides an upper
bound on the performance of the system. The approach is
able to simultaneously optimize the dispatching policy and
the number of required vehicles: thus, it can be used for fleet
sizing. Second, we propose an MPC algorithm for operating
the system in real-time by leveraging short-term forecasts
of customer demand. The complexity of the algorithm does
not depend on the number of vehicles or on the number of
customers in the transportation system: thus, the algorithm
can be used to effectively control large-scale AMoD systems.
Third, we validate these approaches using a dataset of DiDi
Chuxing, the major ridesharing company in China: our
results show that the proposed MPC algorithm outperforms
a state-of-the-art algorithm with a 89.6% reduction in mean
customer wait time.

Organization. The rest of this paper is organized as
follows: We first present in Section II a time-varying model
for AMoD systems. In Section III, we leverage the time-
varying model to propose a MPC algorithm that relies on
predicted future customer demand to control an AMoD
system. Finally, in Section IV, we validate the approach on
a real-world scenario based on a dataset of DiDi Chuxing,
and characterize the performance of the proposed controller
as a function of the prediction quality.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

In this section, we propose a time-varying network-flow
model for AMoD systems that assumes perfect information
is available about future customer arrivals. The model is
amenable to efficient optimization: thus, it can be used to
optimize the scheduling and routing for an AMoD system
a posteriori. The model is not causal, and therefore can not
directly be used for real-time control of an AMoD system;
however, it forms the core of the MPC controller presented
in the next section.

We consider an urban environment discretized into a set
N of distinct regions (also known as stations in the AMoD
literature [5], [6]). Time is represented by discrete intervals of
a given size ∆t. For a period under consideration of length
T time intervals, denote T = [1, ..., T ] as the ordered set
of time intervals. An AMoD system provides transportation
services. We denote the travel time experienced by self-
driving vehicles traveling from region i ∈ N to region j ∈ N
as τij : that is, a vehicle departing region i at time t arrives
in region j at time t′ = t+ τij . The travel time can change
depending on the departure time (modeling time-varying
traffic conditions); however, the travel time is assumed to
be independent of the number of vehicles traveling between
the regions (i.e., congestion is considered an exogenous
phenomenon).

Self-driving vehicles service customers’ transportation re-
quests. We denote the number of customers who wish to
travel from region i ∈ N to another region j ∈ N , departing
at time t, as λijt. Similarly, we denote the number of vehicles
that transport customers from i ∈ N to j ∈ N departing at
time t as xpijt.

In order to satisfy the customer demand at each given
region and time interval, the number of available vehicles
at each time and in each region must be no smaller than
the number of customers who wish to depart the region. To
this end, it is necessary to recurrently rebalance the empty
vehicles from stations with an excess number of vehicles to
stations with an insufficient number of available vehicles. We
represent the number of empty, rebalancing vehicles traveling
from i ∈ N to j ∈ N at time t ∈ T as xrijt. When i = j,
the vehicles are considered to be idling, and this is regarded
as a special case of rebalancing.

Finally, let sit represent the number of initial available
vehicles at region i ∈ N at time t ∈ T . The variable sit is
free: the optimizer is allowed to determine the number and
location of vehicles that is required to service all customers.
Initial available vehicles can only be added at the first time
interval: sit = 0∀t > 1. The overall number of vehicles in
the AMoD system is m =

∑
i∈N ,t∈T sit.

A. Optimal Rebalancing Strategy

Under the assumption of perfect knowledge of customer
demand, and assuming that the starting positions of the
vehicles are free, it is possible to find the optimal rebalancing
strategy by solving the following optimization problem:

minimize
Xp,Xr,S

∑
(ijt)

cri,jx
r
ijt, (1a)

subject to xpijt = λijt, ∀i, j ∈ N , t ∈ T , (1b)∑
j∈N

xpijt + xrijt − xpjit−τij − x
r
jit−τij = sit,

∀i ∈ N , t ∈ T (1c)
sit = 0, ∀i ∈ N , t ∈ T , t > 1 , (1d)
xrijt, si1 ∈ N, ∀i, j ∈ N , t ∈ T , (1e)

where crij is the cost of rebalancing a vehicle from i ∈ N to
j ∈ N (proportional to the travel time and distance between
the regions). Idling vehicles are considered a special case of
rebalancing denoted as xriit and have a corresponding cost
criit, which captures time-only dependent costs (e.g. average
cost of ownership per time interval) or costs specific to idling
(e.g. parking). The decision variables are grouped into the
following sets: X p = {xpijt}ijt, X r = {xrijt}ijt, S = {sit}it.
The constraint (1b) ensures that all customer demands are
serviced, and constraint (1c) enforces that, for every time
interval and each region, the number of arriving vehicles
equals the number of departing vehicles. The constraint (1d)
ensures that starting vehicles can only be inserted at the first
time interval, and (1e) constrains the decision variables to be
nonnegative integers.

Problem (1) always admits a feasible solution. The next
theorem formalizes this intuition.

Theorem 1 (Feasibility of the offline optimal rebalancing
problem). Problem (1) admits a feasible solution for any set
of customer demands {λijt}i,j,t.

Proof sketch: The number and location of available vehi-
cles is a decision variable in Problem (1). Thus, a feasible



solution exists where a vehicle is assigned to the departure
location of each customer and idles at the location until the
customer’s departure time.

A few comments are in order. First, while Problem (1) is
stated as an integer linear program (ILP), it can be shown
that the problem is totally unimodular and thus can be
solved efficiently as a linear program (LP) [12]. Thus, very
large instances of the problem can be solved efficiently on
commodity hardware. Second, note that while we model
idling as a special case of rebalancing, we can give it a
different treatment by relying on its cost parameter. For
example, the downtown area of a city might impose a charge
for the time spent within the district or parking might be
expensive in certain areas, thus, incentivizing vehicles to
move. In Section IV, we assume that the cost per time
interval of idling is simply related to time average cost of
ownership, and, therefore, it is lower than rebalancing (since
rebalancing additionally incurs, for example, fuel expenses).
Finally, the starting positions are decision variables: thus,
Problem (1) simultaneously finds the optimal rebalancing
strategy and the corresponding fleet size required to execute
the strategy. Therefore, the solution to this problem can be
used to inform fleet sizing decisions based on historical
customer demand.

III. MODEL PREDICTIVE CONTROL

In this section, we propose an MPC implementation of
the optimal rebalancing problem presented in Section II-A
that leverages predictions of future demand. We begin by
outlying the overall algorithm and then we delve into the
details of each subcomponent.

A. Algorithm

Let T be the planning horizon under consideration and
Tforward the forecasting horizon for which we can obtain a
predicted customer demand (note that Tforward ≤ T ). Also,
denote Λt,t′ = {λijt : ∀i, j ∈ N , t ∈ [t, ..., t′]} as the set
of real customer demands from t to t′, and Λ̂t,t′ = {λ̂ijt :
∀i, j ∈ N , t ∈ [t, ..., t′]} as the set of predicted customer
demands from t to t′. {λij0}ij0 is the set of outstanding
customer demand (customers who have requested a vehicle,
but have not yet been served), and the rest of the notation is
defined as in the previous section.

The proposed algorithm, summarized in Algorithm 1, is as
follows: at a given time t0 we first observe the system state
to capture the vehicle availabilities, S, and the outstanding
customer demand, {λij0}ij0. We then proceed to predict
future customer demand Λ̂t0,t0+Tforward

for the next Tforward

time steps. Using this information, we compute the optimal
rebalancing strategy X r by solving a mixed-integer linear
program (described in Section III-D). Finally, we assign the
rebalancing tasks corresponding to the first time interval to
available vehicles as they become available.

After a period ∆t, i.e. at t0 + 1, we recompute the
rebalancing strategy using Algorithm 1. Thus, this process
is repeated during the entire operation of the system.

Algorithm 1 Model Predictive Control
1: procedure MPC
2: S ← count idle vehicles and estimate trip arrivals
3: λij0 ← count outstanding customers
4: Λ̂t0,t0+Tforward

← f(θt)
5: X p,X r,W,D ← solve Problem (5)
6: Assign {xrij1}ij1 to available vehicles

B. State observation

At the beginning of each iteration of Algorithm 1, the first
step is to capture the current system state in terms of vehicle
availabilities and outstanding passengers.

Unlike in Section II-A, where the vehicles’ starting lo-
cations, S, are decision variables, during the operation of
the system, the time and location at which the vehicles
become available are fully determined by the current system
state. Vehicles are considered available either when they are
idling or after they complete a trip. Thus, at the start of the
optimization process, let ai be the current number of idling
vehicles at region i ∈ N . Additionally, let vit be the number
of vehicles traveling to region j ∈ N expected to arrive at
time interval t. Then, the vehicle starting locations for the
planning horizon are

sit =

{
ai + vit , if t = 1 ,

vit , otherwise
∀i ∈ N , t ∈ T . (2)

Moreover, during real-time operations, the system may
have to plan not only for predicted future customers but also
for outstanding customers that were not serviced at previous
time steps. Thus, in this step we count the outstanding travel
requests and represent them by {λij0}ij0.

C. Forecasting

The second part of Algorithm 1 consists of predicting
future customer demand. Let f be a forecasting model
trained with historical data, θt a diverse set of features
relevant to the model available at the time of prediction
(e.g. current traffic conditions, weather, recent travel demand,
etc.), and Tforward the forecasting horizon. Then, we denote
Λ̂t+1,t+Tforward

= f(θt) as the expected demand for the fore-
casting horizon, where Λ̂t+1,t+Tforward

= {λ̂ijt′}ijt′ ,∀i, j ∈
N , t′ ∈ [t + 1, ..., t + Tforward]. The design of techniques
for forecasting customer demand is beyond the scope of this
paper: we refer the reader to [13] for a recent review. In
Section IV, we propose a forecasting model based on neural
networks and validate its performance with real customer
data.

D. Controller

The third step computes the rebalancing strategy for the
planning horizon [1, ..., T ] using the observed state and the
predicted demand. To achieve this, we adapt Problem (1) for
real-time usage by introducing several modifications to the
problem formulation.



First, from the proof sketch of Theorem 1, note that
the ensured feasibility of (1) depends on being able to
choose the starting vehicle positions S. Thus, for a fixed
S and given customer demands, (1) might be infeasible.
To ensure persistent feasibility of the MPC controller, we
relax constraint (1b) by allowing the optimizer not to service
certain customers. The slack variables D = {dijt}ijt denote
the predicted demand of customers wanting to travel from i
to j departing at time t that will remain unsatisfied.

Second, outstanding customers may be at stations cur-
rently without any available vehicles: thus, it may be in-
feasible to pick them up at t = 1. To mitigate this, we let
the pickup time for outstanding customers be an optimization
variable (with an associated cost that is proportional to the
customers’ waiting time). Formally, we define wijt as the de-
cision variable denoting the number of outstanding customers
at region i ∈ N who wish to travel to region j and be picked
up at time t ∈ T . To ensure that all outstanding customers
are considered, we include the following constraint:∑

t∈T
wijt = λij0 , ∀i, j ∈ N , (3)

where λij0 is the number of outstanding customers wanting
to go from i to j. Accordingly, the counterpart of Equation
(1b) in the MPC controller is:

xpijt + dijt = λ̂ijt + wijt, ∀i, j ∈ N , t ∈ T . (4)

Dropping customer demand and making outstanding cus-
tomers wait are both undesirable. For a given origin-
destination pair i, j ∈ N , we define cwijt and cdijt as the cost
associated with a wait time of t time steps for an outstanding
passenger, and the cost for not servicing a predicted customer
demand at time t, respectively.

We are now in a position to state the overall MPC
optimization problem:

minimize
Xp,Xr,W,D

∑
(ijt)

crijtx
r
ijt + cwijtwijt + cdijtdijt, (5a)

subject to xpijt + dijt − wijt = λ̂ijt, ∀i, j ∈ N , t ∈ T ,
(5b)∑

j∈N

xpijt + xrijt − xpjit−τij − x
r
jit−τij = sit,

∀i ∈ N , t ∈ T , (5c)∑
t∈T

wijt = λi,j,0 , ∀i, j ∈ N , (5d)

xpijt, x
r
ijt, wijt, dijt ∈ N, ∀i, j ∈ N , t ∈ T . (5e)

Here, (5b) and (5c) are the passenger and vehicle continuity
constraints, (5d) ensures that all outstanding passengers are
served, and (5e) limits the decision variables to nonnegative
integers.

E. Discussion

Note that the rebalancing, waiting and dropping costs are
optimization parameters that should be set by the operator to
reflect real-life costs. However, it is important to highlight
that the relative difference between the waiting costs and the

dropping costs should be carefully chosen: the optimizer will
choose to drop a customer if it is cheaper than making her
or him wait. Additionally, the planning horizon should be
carefully chosen: an excessively short planning horizon may
make it impossible for the optimizer to allocate rebalancing
vehicles to customers stranded in remote regions, since the
travel time might be longer than the planning horizon itself.
Finally, Problem (5) is not totally unimodular, due to the
presence of constraint (5d): therefore, the problem must be
solved as a mixed-integer linear program (MILP). However,
unlike existing MILP approaches in literature (e.g. [9], [10])
the problem size of (5) does not grow with the number
of vehicles – a remarkable fact that makes this approach
suitable for large fleet sizes. Indeed, in Section IV we show
that modern MILP algorithms are able to solve Problem (5)
quickly for large-scale problems based on real-world data.

IV. NUMERICAL EXPERIMENTS

In this section, we first present numerical experiments
comparing the performance of the proposed algorithm
against an existing, high-performing rebalancing heuristic
[5], [9]. Then, we test the sensitivity of the algorithm to
the length of the forecast horizon Tforward. The experiments
were carried on simulations based on a real-world dataset
from the Chinese ridesharing company Didi Chuxing.

A. Dataset

The DiDi dataset contains all trips requested by users in
the city of Hangzhou from January 1 to January 21, 2016
(approximately eight million trips). For each trip, the dataset
records the time of the request, the departure and destination
locations (discretized in districts, or regions), a customer ID,
a driver ID, and the price paid. Start locations are discretized
into 66 districts (denoted as core districts), each identified by
a hash. Destination locations are similarly discretized in 793
districts (a superset of the start locations). For the purpose of
our numerical experiments, we disregarded trips that did not
start and end in the core districts (approximately one million
trips).

The dataset reports no geographic information about the
location of the individual districts. Furthermore, no informa-
tion is provided about the duration (and therefore the end
time) of completed trips. However, using RideGuru [14] we
were able to estimate the travel time of each trip from the
trip price; we used this estimate to reconstruct the average
travel time between each pair of districts.

B. Simulation environment

We simulate the operations of an AMoD system servicing
customer trips from the DiDi dataset. The city is modeled as
a set of regions, corresponding to the districts in the DiDi
dataset. Each pair of regions is connected by a road whose
travel time equals the average estimated travel time computed
from the DiDi dataset.

Customer requests are “played back”: for each fulfilled
transportation request in the dataset, we introduce in the
simulation a customer request with the same start time, start



location, and arrival location . If a customer request appears
in a region where a vehicle is available, the customer is
assigned to the vehicle and departs immediately. Otherwise,
the customer waits in a queue for the next available vehicle.
Vehicles remain idle at a region until they are assigned to
either a customer request or a rebalancing task. The travel
time of vehicles assigned to customer requests corresponds
to the travel time of the actual corresponding trip in the
dataset. In contrast, the travel time of vehicles assigned to a
rebalancing task is the average estimated travel time between
the origin and the destination region. The system state
evolves in discrete time: every time step in the simulation
corresponds to 6 seconds.

Every ∆t = 5 minutes, we execute the MPC algorithm (1).
For each region, the algorithm produced a (possibly empty)
list of routes that empty vehicles should follow. The routes
are then assigned to idle vehicles within each region. At
the beginning of each iteration of Algorithm (1), the unused
rebalancing tasks are deleted, and the process is repeated.

C. Forecasting

Long Short-Term Memory (LSTM) neural networks [15]
are a popular and effective method for forecasting time-
series, and have increasingly gained attention in transporta-
tion demand forecasting (e.g. [16], [17], [18]).

In this paper, we built forecasting model based on an
LSTM neural network following the encoder-decoder archi-
tecture [19]. The model’s input is a multivariate time series
describing the demand for each origin and destination pair
for the last Tback time steps. The model forecasts demand
for each origin and destination pair for the following Tforward

time steps for each region. That is, for a trained model f we
forecast demand as follows:

Λ̂t0+1,t0+Tforward
= f(Λt0−Tback,t0) . (6)

D. Detailed results for a single day

We simulated the day with highest activity, January 21,
2016 with 330,000 trips. We compared the performance of
four different controllers:

• MPC-Perfect. The controller described in Algorithm 1
with a planning horizon of T = 50 using the exact
customer demand as it appears in the dataset as a
“forecast” for the next Tforward = 24 time intervals.
The controller is non-causal; however, its performance
offers an upper bound on the performance of the MPC
algorithm.

• MPC-LSTM. The controller described in Algorithm 1
with a planning horizon of T = 50 using the model
described in Section IV-C to forecast customer demand
for the next Tforward = 24 time intervals.

• TV-Reactive. The controller described in Algorithm 1
with a planning horizon of T = 50, but with the
prediction set empty. In essence, this controller is sim-
ply a time-variant planner that “reacts” to outstanding
customer demand.

• Reactive. The controller described in [5]. The controller
is based on a time-invariant model and reactive; how-
ever, it is shown to offer superior performance compared
to several state-of-the-art rebalancing algorithms in [9].

For all scenarios, the rebalancing costs crijt are propor-
tional to the travel time τij . Moreover, we assume that the
operator’s goal is to satisfy as many customer requests as
possible. Thus, the cost of dropping predicted demand, cdijt,
is orders of magnitude larger than the cost of rebalancing,
and the cost of waiting is cwijt = cdijt/T , such that making a
customer wait for the entire planning horizon is equivalent
to not satisfying the request.

To find an appropriate fleet size, we solved Problem (1)
for the selected day: we found that the minimum number
of vehicles required to satisfy customer demand without any
waiting is 4206. In order to account for the effect of imperfect
information, we selected a fleet size of 5000 vehicles for the
ensuing simulations. The initial location of the vehicles was
equally distributed among the 66 regions. The forecasting
model was trained with the first 15 days of the dataset,
using a look-back horizon of Tback = 60 time steps, and
a forecasting horizon of Tforward = 24 time steps.

A summary of the results can be appreciated in Table I. As
expected, the MPC controller with perfect information has
the best performance, with a mean wait time of 3.7 seconds
and a median wait time of 0. The TV-Reactive scenario has
the worst performance, with a mean wait time double than
that of Reactive. This is also not surprising, given that the
Reactive algorithm in [5] has been shown to have excellent
performance, and, without any forecasts, the MPC algorithm
reacts only to outstanding passengers. Notably, however, the
best performing causal controller, MPC-LSTM, has a mean
wait time 89.6% shorter than that of the Reactive controller.
This highlights the value of demand forecasting, even when
imperfect, for operating the fleet.

TABLE I
WAIT TIMES FOR EACH SCENARIO.

Wait time MPC-Perfect MPC-LSTM Reactive TV-Reactive
Mean [s] 3.7 29.4 283.3 543.5

Median [s] 0.0 0.0 72.0 414.0

More detailed results for MPC-Perfect, MPC-LSTM, and
Reactive are shown in Figure 1. We can see the stark
difference in performance from the top chart showing the
number of waiting customers at any given point in time.
Notably, the Reactive scenario has significantly more waiting
customers at any given point in time, peaking at 8,892 in
the afternoon rush. In contrast, the maximum number of
waiting customers with the MPC-LSTM algorithm is 843,
during the morning rush. Much of the performance gain can
be attributed to the possibility of preemptively rebalancing
enabled by the forecasts. For example, both MPC-Perfect
and MPC-LSTM issue a considerable number of rebalancing
tasks around 6AM, right before the morning rush, while
the Reactive controller only starts rebalancing once the rush
begins. Note, however, that not all of the difference is due



to preemptive rebalancing tasks. For example, the Reactive
controller issues, in total, more than 3 times as many
rebalancing tasks as MPC-LSTM, but, on average, has only
37% more vehicles rebalancing. These numbers imply that
the rebalancing trips are shorter for the Reactive controller,
and, thus, occur between nearby regions. However, in its
attempt to keep equal availability across the city, vehicles
are sent to regions where they might not be needed.

time

0

2500

5000

7500

10000

12500

W
ai

ti
n

g
C

u
st

om
er

s

MPC Perfect

Reactive

MPC LSTM

TV-Reactive

time

0

1000

2000

3000

C
ar

ry
in

g
P

as
se

n
ge

rs

time

0

250

500

750

1000

1250

R
eb

al
an

ci
n

g

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00

Time

0

500

1000

1500

R
eb

al
an

ci
n

g
T

as
ks

Is
su

ed

Fig. 1. Results from the MPC-Perfect (gray), MPC-LSTM (blue), Reactive
[5] (orange), and TV-Reactive (green) scenarios at each time step. From
top to bottom: Number of waiting customers; number of vehicles carrying
passengers; number of vehicles rebalancing; and, number of rebalancing
tasks issued.

E. Comparison for different forecasting horizons

For the next set of experiments, we tested the sensitivity of
the controller to different forecasting scenarios. Specifically,
we varied the forecasting forward horizon, Tforward, and
backward horizons, Tback, to different values spanning from
3 to 48 time steps (15min to 4 hours). Thus, we trained an
LSTM specifically for each Tforward and Tback combination.
Note that we kept the planning horizon fixed at T = 50 (4
hours and 10 minutes).

Figure 2 shows the results. On the one hand, the backward
horizon Tback has little effect on the performance. This is
likely due to the fact that time of the day and demand at
the previous time step carry much more predictive power
than the demand at even two time steps before (this was
also observed empirically in [18]). On the other hand, the
length of Tforward follows a diminishing returns pattern,

T
forward

10
20

30
40

50
T bac

k

10
20

30
40

50

M
ea

n
w

ai
t

ti
m

e

40

50

60

T
forward

10
20

30
40

50
T bac

k

10
20

30
40

50

M
ean

w
ait

tim
e 40

50

60

Fig. 2. Mean wait times for different combinations of Tforward and Tback

having significant, positive influence on the performance of
the system at first, and leveling later. The early performance
gains are likely due to the ability to foresee demand that
would require long rebalancing travel times to satisfy.

F. Computational complexity

In general, mixed integer linear programs require expen-
sive computations to solve. However, we show in simulation
that the MILP in Problem (5) can be solved efficiently
on commodity hardware with state-of-the-art solvers. We
kept track of all the MILP instances realized during the
experiments in Section IV-E. The simulations were run in
a PC equipped with a 3.0 GHz Intel Core i7-5960 with
64GB of RAM, and we used IBM CPLEX [20] to solve the
MILP instances. Table II reports our results. The average
time required to solve a single instance of Problem (5) was
15.1s. In 7175 instances, no instance required more than 61
seconds to solve. This suggests that the MILP can be solved
in real-time for control of real transportation networks.

TABLE II
OPTIMIZATION RUNNING TIME.

Samples Mean [s] Median [s] STD [s] Max [s]
7175 15.1 14.0 8.7 61.0

V. CONCLUSIONS

In this paper, we presented a model-predictive control
strategy that leveraged predicted customer demand to control
the operations of an AMoD fleet. We first proposed a time-
expanded network flow model for AMoD systems: the model
allows us to compute the optimal rebalancing strategy and
the minimum fleet size required to satisfy a given customer
demand without waiting. We leverage this model to propose
an MPC algorithm that relies on forecasted demand to control
AMoD systems in real-time. Numerical simulations based on
real-world data show that the algorithm scales well to large
systems and outperforms state-of-the-art rebalancing strate-
gies. Collectively, our results show that the incorporating



forecasted demand in the synthesis of a rebalancing algo-
rithm can yield very significant improvements in customer
satisfaction, with 89.6% shorter customer wait times.

This paper opens several new avenues of research. First,
it is of interest to extend this approach to incorporate other
relevant and promising aspects of AMoD systems, such as
including congestion, integration with the power grid, and
coordination with public transit. As the model is expanded to
include these approaches, in order to preserve computational
tractability, it will be necessary to explore approximate solu-
tion techniques for mixed-integer linear programs, including
rounding and randomized routing approaches. Thus, a sec-
ond line of research would devise optimization algorithms
that provide constraint satisfaction guarantees and bounded
suboptimality. Third, the MPC algorithm outperformed the
state-of-the-art Reactive controller in presence of a forecast
- however, its performance when no forecast is available is
significantly worse than the reactive algorithm’s. One possi-
ble approach to close this gap is to formulate a risk-averse
MPC that takes into account uncertainty of the forecasts.
This research route will require devising forecasting models
that are able to predict not only the expected demand, but
also its probability distribution. Therefore, a fourth route is
to improve existing short-term forecasting techniques such
that they enhance the end-to-end performance of the con-
trol system. Models that provide well-calibrated uncertainty
distributions for their forecasts are of particular interest, as
are forecasting models that leverage heterogeneous sources
of data, such as weather, traffic, or cellular tower records.

REFERENCES

[1] C. Fricker and N. Gast, “Incentives and redistribution in homogeneous
bike-sharing systems with stations of finite capacity,” EURO Journal
on Transportation and Logistics, 2012.

[2] G. K. David, “Stochastic modeling and decentralized control policies
for large-scale vehicle sharing systems via closed queueing networks,”
Ph.D. dissertation, The Ohio State University, 2012.

[3] S. Banerjee, D. Freund, and T. Lykouris. (2016) Multi-
objective pricing for shared vehicle systems. Available at
https://arxiv.org/abs/1608.06819.

[4] S. Banerjee, R. Johari, and C. Riquelme, “Pricing in ride-sharing
platforms: A queueing-theoretic approach,” in ACM Conference on
Economics and Computation, 2015.

[5] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load
balancing for Mobility-on-Demand systems,” Int. Journal of Robotics
Research, vol. 31, no. 7, pp. 839–854, 2012.

[6] R. Zhang and M. Pavone, “Control of robotic Mobility-on-Demand
systems: A queueing-theoretical perspective,” Int. Journal of Robotics
Research, vol. 35, no. 1-3, pp. 186–203, 2016.

[7] R. Zhang, F. Rossi, and M. Pavone, “Routing autonomous vehicles in
congested transportation networks: Structural properties and coordina-
tion algorithms,” in Robotics: Science and Systems, 2016.

[8] M. Volkov, J. Aslam, and D. Rus, “Markov-based redistribution policy
model for future urban mobility networks,” in Proc. IEEE Int. Conf.
on Intelligent Transportation Systems, 2012.

[9] R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of
Autonomous Mobility-on-Demand systems,” in Proc. IEEE Conf. on
Robotics and Automation, 2016.

[10] F. Miao, S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir,
H. Huang, T. He, and G. J. Pappas, “Taxi dispatch with real-time sens-
ing data in metropolitan areas: A receding horizon control approach,”
IEEE Transactions on Automation Sciences and Engineering, 2016.

[11] J. Miller and J. P. How, “Predictive positioning and quality of service
ridesharing for campus mobility on demand systems,” IEEE Conf. on
Robotics and Automation, 2017.

[12] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms and Applications. Prentice Hall, 1993.

[13] K. Zhao, S. Tarkoma, S. Liu, and H. Vo, “Urban human mobility data
mining: An overview,” in IEEE Int. Conf. on Big Data, 2016.

[14] Fare estimates, rideshare questions & answers. RideGuru.
https://ride.guru/.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, 1997.

[16] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at uber,” in Int. Conf. on
Machine Learning, 2017.

[17] X. Song, H. Kanasugi, and R. Shibasaki, “Deeptransport: Prediction
and simulation of human mobility and transportation mode at a city-
wide level.” International Joint Conference on Artificial Intelligence,
2016.

[18] J. Kea, H. Zhengb, H. Yanga, and X. M. Chenb. (2017) Short-
term forecasting of passenger demand under on-demand ride ser-
vices: A spatio-temporal deep learning approach. Available at
https://arxiv.org/abs/1706.06279.

[19] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. (2014) Learning phrase representations
using rnn encoder-decoder for statistical machine translation. Available
at https://arxiv.org/abs/1409.1259.

[20] ILOG CPLEX User’s guide, IBM ILOG, 1987.


