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Abstract

Several situations that we come across in our daily lives
involve some form of evaluation: a process where an
evaluator chooses a correct label for a given item. Ex-
amples of such situations include a crowd-worker label-
ing an image or a student answering a multiple-choice
question. Gaining insights into human evaluations is
important for determining the quality of individual eval-
uators as well as identifying true labels of items. Here,
we generalize the question of estimating the quality of
individual evaluators, extending it to obtain diagnostic
insights into how various evaluators label different kinds
of items. We propose a series of increasingly powerful hi-
erarchical Bayesian models which infer latent groups of
evaluators and items with the goal of obtaining insights
into the underlying evaluation process. We apply our
framework to a wide range of real-world domains, and
demonstrate that our approach can accurately predict
evaluator decisions, diagnose types of mistakes evalua-
tors tend to make, and infer true labels of items.

1 Introduction

Several seemingly unrelated tasks such as a crowd-
worker on Amazon Mechanical Turk labeling an image,
a librarian classifying a newly arrived title, a Yelp user
rating a restaurant, or a student providing an answer to
a multiple-choice test share an underlying theme. All
of these and many more such situations are examples
of human evaluation processes, in which an evaluator is
shown an item and attempts to choose a correct label
for it.

The result of each such evaluation depends on the
attributes of both the evaluator and the item. For ex-
ample, consider a crowd-worker (the evaluator) labeling
images of birds (the items). The quality of the labels
produced will likely depend on the characteristics of the
crowd-worker, including her general level of expertise
about birds and/or her experience with different geo-
graphical regions; the quality will also depend on the
characteristics of the birds being labeled.
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A long line of research has studied how to take mul-
tiple labels from non-expert evaluators and synthesize
them into a single high-quality label [I]-[7], and how
to estimate the performance of individual evaluators on
various tasks [§]-[12]. However, relatively little attention
has been focused on obtaining deeper insights into eval-
uations such as understanding the characteristics of mis-
takes being made and identifying the shared attributes
of evaluators and items that are relevant to the quality
of the resulting label. Discovering these patterns may
in turn generate diagnostic insights such as which kinds
of items are particularly hard to label or what types of
mistakes certain kinds of evaluators are making.

In order to understand human evaluations, Dawid
and Skene [I0] proposed a model for estimating con-
fusion matrices of individual evaluators. A confusion
matriz models the labeling decisions of an evaluator.
In a confusion matrix ©U), entry (p,q) is the probabil-
ity of an item with true label p being assigned label ¢
by an evaluator j. Error-free evaluation corresponds to
a diagonal confusion matrix, while off-diagonal entries
record different types of errors. However, the problem
is that often it is too expensive to obtain enough eval-
uations and enough ground-truth labels to estimate a
separate confusion matrix for each evaluator. Further,
it might not be possible to explain all the decisions of
an evaluator with just one such confusion matrix. This
is due to the fact that decisions also depend upon the
characteristics of the items that an evaluator is judging.

Present work: Obtaining diagnostic insights into
human evaluations. In this work, we provide a
framework for obtaining insights into human evaluations
by casting it as a problem of inferring confusion matrices
which explain the decisions made by evaluators.

In order to address the aforementioned drawbacks
of existing solutions, we propose a novel hierarchical
Bayesian framework. The crux of this framework in-
volves inferring two sets of clusters - groups of evalua-
tors and items respectively - which can guide the process
of estimating the confusion matrices. The intuition be-
hind the clustering process is to group together all the
evaluators who share similar attributes and evaluation
styles. Similarly, all the items grouped into the same
cluster would share similar attributes and are likely to
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Figure 1: Overview of our approach.

be subjected to similar kinds of evaluations. Figure [I]
illustrates our approach. Each evaluator j is assigned
to a latent cluster c¢; and each item % to a latent cluster
d;. Each such cluster pair (c;,d;) is associated with a
latent confusion matrix which captures how evaluators
of cluster c; label items of cluster d;.

Our framework allows for inferring true labels of
items, predicting labels given by evaluators, and also
recovering evaluator confusion matrices. Our approach
identifies sub-populations of evaluators and the common
properties of the items on which they make mistakes.
For example, consider students answering multiple-
choice questions; using our methodology we might find
that students taking a machine learning class naturally
cluster into those with a background in statistics and
those with a background in optimization, and that the
statistics students perform better on questions pertain-
ing to graphical models, while students with a back-
ground in optimization perform better on Support Vec-
tor Machines questions. Note that such insights arise
only when we simultaneously consider evaluators (stu-
dents), their attributes (statistics vs. optimization),
items (questions) and their attributes (graphical models
vs. SVMs) in the modeling process.

We demonstrate the generality of our approach by
applying it across a number of different domains: image
and text labeling tasks, students answering multiple-
choice questions, and peer grading of course assign-
ments. For each of these domains, our models outper-
form state-of-the-art approaches on a variety of tasks
such as predicting evaluator decisions, inferring true la-
bels of items, and estimating evaluator confusion matri-
ces. We also obtain interesting domain-specific insights
and identify several interesting patterns of evaluations.

2 Proposed Approach

In this section, we propose a series of hierarchical
Bayesian models for obtaining diagnostic insights into
how evaluators label different types of items. Table
summarizes the notation.

Background. Our probabilistic framework is inspired

Symbol Description
J Number of evaluators
I Number of items
K Number of the classes of items
) Index for items
J Index for evaluators
T4 Label assigned by evaluator j to item ¢
N Number of attributes of evaluators
M Number of attributes of items
ald nth attribute of evaluator j
b%’ mth attribute of item &
L1 Number of clusters of evaluators
Lo Number of clusters of items
eW) Confusion matrix of evaluator j
cj Cluster label assigned to evaluator j
d; Cluster label assigned to item ¢
/() Confusion matrix of cluster ¢
25 True label of item ¢
p,a, o B, 8 Model parameters
€p; €a; €8, €a’s €875 N Hyperparameters and priors

Table 1: Definition of symbols and concepts.

For each item i,
Sample the item label z; ~ Multinomial(p)

For each decision involving evaluator j and item 4,
Sample the decision r; ; ~ Multinomial(@,(zji),:)

Table 2: Generative process for Dawid-Skene model.

by a simple and elegant approach for capturing the
quality as well as the error properties of individual
evaluators due to Dawid and Skene [10]. The underlying
assumption of this model is that each item has a true
label, and an evaluator’s prediction of the item’s label
is a function of the true label masked by the evaluator’s
own confusion matrix. Assuming that there are K labels
an item can have, the model associates a confusion
matrix ), of size K x K, with each evaluator j. Each
element (p,q) of an evaluator’s confusion matrix then
represents the probability that the evaluator labels an
item with label ¢ when the true label of the item is p.
Table 2] describes the generative process for the Dawid-
Skene model.

Our Framework. A major difference between our
framework and previous approaches [10, 12] is that our
framework can obtain deeper insights into the evalua-
tion process in addition to inferring the error properties
of evaluators, and estimating the true labels of items. In
order to obtain such insights, we model evaluators and
items as entities with attributes. For instance, when we
model the process of a student answering a question on
an exam, we consider a student as an entity with various
attributes such as his expertise, personal characteris-



tics, and cognitive abilities. By adding attributes to the
modeling framework, we can connect these attributes
with the evaluations themselves, thus facilitating the
process of finding interesting patterns in the evaluation
process.

Next, we propose three models: FEvaluator Confu-
ston provides a means to discover patterns among eval-
uators by grouping them based on their attributes and
behaviors; Item Confusion analogously groups items;
Finally, Joint Confusion is designed to discover inter-
actions between the attributes of evaluators and items.
We conclude by presenting nonparametric versions of
each of these models which can readily accomodate
changes in the populations of evaluators and items. Our
framework is designed to find a balance between the
number of free parameters in the model and its flexibil-

ity.

Evaluator Confusion (EC) model. The Evaluator
Confusion model groups together evaluators who share
similar attributes and also exhibit similar patterns of
decision making. The model then assigns a single
confusion matrix to each such group. This lets us
study shared attributes of evaluators who have similar
decision making styles, and the characteristics of their
evaluations.  For instance, when modeling student
performance on a machine learning exam, this model
can provide insights such as students with little expertise
in linear algebra have a higher probability of making a
mistake.

More precisely, in the Evaluator Confusion model
each item 17 is associated with a hidden label z; and
a set of observed characteristics/attributes (). Each
evaluator j is assigned to a latent cluster ¢; € {1--- L1}
such that ¢; governs the decisions made by evaluator
j as well as the evaluator’s attributes a?). Therefore,
0U) = ©'(%) for every evaluator j assigned to cluster
cj. Now, each decision made by j is an interaction
between an item ¢ with label z; and the cluster c;.
The decisions made by evaluator j and the evaluator’s
attributes are observed. Further, we assume that all
of the latent confusion matrices are sampled from a
common Dirichlet prior A. We also assume Dirichlet
priors on the other multinomial distributions. The
generative process is outlined in Table

Item Confusion (IC) model. The Item Confusion
model groups items rather than evaluators, and asso-
ciates a shared confusion matrix with each group of
items. This lets us study shared attributes of items
on which evaluators make similar mistakes, as well as
the shared confusion matrices these items generate. For
example, this model can discover patterns such as stu-
dents have a higher probability of making a mistake on

For each evaluator j,
Sample the cluster label ¢; ~ Multinomial(a)
For each of the evaluator’s attributes an € {1--- N}

Sample the attribute value o)) ~ Multinomial(Bc; a., )

For each item i,
Sample the item label z; ~ Multinomial(p)
For each of the attributes b, € {1--- M}

Sample the attribute value bY) ~ Multinomial(ﬁl’)m)

For each decision involving evaluator j and item 4,

Sample the decision r; ; ~ Multinomial(@{z(:?))

Table 3: Evaluator Confusion (EC) model.

For each item i,
Sample the cluster label d; ~ Multinomial(c)
Sample the item label z; ~ Multinomial(pg, )
For each of the item’s attributes b,, € {1--- M}

Sample the attribute value bg,? ~ Multinomial(8/; bm)

For each evaluator j,
For each of the attributes a, € {1--- N}

Sample the attribute value a,(f) ~ Multinomial(fa,, )

For each decision involving evaluator j and item ¢,

Sample the decision 7 ; ~ Multinomial(@lz(ﬁf))

Table 4: Item Confusion (IC) model.

questions pertaining to advanced topics in the course.
In this model, each item i is assigned to a latent
cluster d; € {1---Ls}. The cluster determines the
hidden label of the item, the observed attribute values
associated with the item 7, and the decisions associated
with the item. Each such cluster of items is associated
with a single latent confusion matrix which guides
the decisions pertaining to these items. There is
no evaluator-specific aspect in this model and all the
evaluators share the same set of confusion matrices.
When a evaluator j labels an item ¢, the label is
generated according to the confusion matrix that only
depends on i, O = @'(4), We also assume that all
the confusion matrices associated with various clusters
of items are sampled from a common Dirichlet prior
A. Similarly, the other multinomial distributions that
we come across in the generative process are sampled
from the corresponding Dirichlet priors. The complete
generative process is summarized in Table [4]

Joint Confusion (JC) model. Finally, we describe
the Joint Confusion model, which is designed for iden-
tifying patterns involving the interplay between evalu-
ators and items. We introduce two latent variables c;
and d; which correspond to the cluster assignments of



For each evaluator j,
Sample the cluster label ¢; ~ Multinomial(a)
For each of the attributes a,, € {1---N}

Sample the attribute value aﬁf) ~ Multinomial(,ﬁcj,an)

For each item i,
Sample the cluster label d; ~ Multinomial(«)
Sample the item label z; ~ Multinomial(pg, )
For each of the attributes b, € {1--- M}

Sample the attribute value b% ~ Multinomial(ﬁfii b )

m

For each decision involving evaluator j and item 4,

’

.. . . c,dy
Sample the decision 7; ; ~ Multmomlal(@zicf: ))

Table 5: Joint Confusion (JC) model.

evaluator j and item i, respectively. The evaluations
involving j and ¢ are modeled as interactions between
clusters c¢; and d;. This unified model exploits the in-
teractions between evaluators and items in guiding the
clustering process. In the process of inferring the clus-
ter assignments, those evaluators who share similar at-
tributes and patterns of mistakes get grouped into a
single cluster; the items are grouped similarly. For in-
stance, the model might group all the students with no
background in linear algebra together. Similarly, all the
questions pertaining to the topic non-negative matrix
factorization might be grouped together. This allows
us to come up with the insights pertaining to the in-
teractions between these two groups: students with no
background in linear algebra have a higher probability of
making a mistake when answering questions pertaining
to the topic non-negative matrixz factorization.

In this model, there are L X Lo confusion matrices,
where Lj corresponds to the number of clusters of
evaluators and Lo corresponds to the number of clusters
of items. For every pair consisting of an evaluator
cluster and item cluster, there is an associated latent
confusion matrix which is estimated during the inference
process. All the decisions involving evaluators assigned
to a cluster ¢ and items assigned to a cluster d are
governed by the confusion matrix ©’(¢-%)  and all the
confusion matrices share a common Dirichlet prior A.
The generative process is outlined in Table

Nonparametric Joint Confusion (NJC) model.
We now describe how to extend Joint Confusion model
to handle some additional challenges. First, in most
real-world settings, it is not a prior determined how
many clusters we should work with. Ideally, the model
should provide a means of generating the number of
clusters based on the data and some underlying param-
eters. Second, we would like the model to incorporate
new data as it arrives; in their current form, the addition

of data to the models is not straightforward, and would
requiring re-running the entire algorithm. To deal with
these issues, we propose a nonparametric extension.

For our nonparametric extensions we use Dirichlet
processes, which are a popular prior in clustering appli-
cations where the number of clusters cannot be speci-
fied a priori but instead grows with the data size [I3].
We change the distribution from which we sample the
cluster labels in each of the models (Tables . In-
tuitively, we sample cluster labels as follows: the prob-
ability that an evaluator (or an item) is assigned to an
existing cluster ¢ is proportional to the number of data
points currently in that cluster; and the probability that
an evaluator (or an item) is assigned to a brand new
cluster is proportional to a parameter . This kind of
distribution results in the creation of new clusters at a
greater rate during the beginning of the estimation pro-
cess, when the number of data points already assigned
to any given cluster is comparable to the value of . Let
u. denote the number of evaluators assigned to a cluster
c and let ug denote the number of items assigned to a
cluster d. The probability distribution determining the
cluster assignment of evaluator j is given by:

P(cj = c|-) < u, if ¢ < Ly is an existing cluster
x 7, if ¢ > L is a new cluster

Similarly, the probability distribution determining
the cluster assignment of item ¢ is then given by:

P(d; = d|) < ug, if d < Ls is an existing cluster

o 7', if d > Ly is a new cluster

3 Inference

In this section, we present an inference procedure for
the proposed framework. Due to space constraints, we
only discuss the derived conditional distributions for the
most general Joint Confusion model.

Inference for Joint Confusion. The inference pro-
cess involves estimating the conditional distribution
over the set of hidden variables given all the observed
variables.  Exactly computing this posterior is in-
tractable. Hence, we resort to approximate inference
using Gibbs sampling where the conditional distribu-
tion is computed for each hidden variable based on the
current assignments for all the other variables. In ad-
dition, we employ a variant of Gibbs sampling known
as collapsed Gibbs sampling [14]. This enables faster
convergence and mixing of the sampling chain by inte-
grating out all the latent variables except for the cluster
labels and item labels (¢;, z;, d;).

In the following expressions, ¢ denotes the cluster
assignments of all the evaluators, d denotes the cluster
assignments of all the items, and z denotes all the item



labels. Similarly, we let r» denote the evaluations, and a
and b denote all the attributes of evaluators and items,
respectively. Any variable superscripted with —j and
—1 indicates that evaluator j and item ¢ are excluded
from the counts under consideration.

The three hidden variables that we want to estimate
in this model are ¢, d, and z. In order to do so, we
iterate over each of the variables associated with an
individual evaluator or item and sample their values by
holding the assignments of all the other latent variables
intact. The conditional distribution for the cluster
assignment c¢; of evaluator j is given by:

P(cj =cle™, 2,7, a) o< P(cj = c|e™)
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where u,. denotes the number of evaluators assigned to
cluster ¢, vz, r, ; ¢,4; denotes the number of times an item
with label z; is labeled as r; ; as per the confusion matrix
for evaluator cluster ¢ and the item cluster d;, T,00
denotes the number of times the value of an attribute
a, is set to agf ) when the evaluator cluster is c.

The next hidden variable for which we need to

determine the conditional distribution is d;, which is
the cluster assignment of item ¢ and it is given by:
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where ug denotes the number of items assigned to
cluster d, v, r, ; c;.a denotes the number of times an
item with label z; is labeled as 7; ; as per the confusion
matrix for evaluator cluster c¢; and the item cluster
d, ibﬁf}, , denotes the number of times the value of an

attribute b, is set to bsfl) when the item cluster is d. As
before, the other symbols are defined in Table

Last, we present the conditional distribution of z;,
the label of item 4; this is given by:

Pz =zlz7% r,d,c) x P(z = z|z7%, d)

x I1

evaluators j labeling i

P(n’j|7'_i, d,z, c)
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where g, , denotes the number of items belonging to
cluster d; that have true label z, Vzri jocsod denotes the
number of times an item with label z is labeled as r; ;
as per the confusion matrix for evaluator cluster ¢; and
item cluster d;.

Estimating confusion matrices. Once we have
inferred z;, it is just a matter of computing the confusion
matrices using inferred z; and the already observed r; ;.
An entry in the confusion matrix for an evaluator j is
computed using the expression:

1(2’7 = S)I(’I‘Lj = t)
I(z; = s)

>
(3.1) QU) _ ilabeled by j

s,t

>
i labeled by j

where I(-) is an indicator function. Intuitively, the

expression above denotes the fraction of items for which
the evaluator gave a label ¢ when the actual label of
the item was s. Note that this expression establishes
the connection between the confusion matrix and the
latent variable z; that we estimated. Confusion matrices
corresponding to evaluator and item clusters can be
computed analogously.

4 Experimental Validation

Here, we discuss the experiments with our models on a
variety of datasets. First, we focus on the quantitative
analysis of the proposed framework. We establish that
the proposed models actually capture the underlying
dynamics of human evaluations. Then, we discuss
various qualitative insights that we obtain by applying
our models to several real-world datasets.

Dataset description. We experimented with several
synthetic and real-world datasets to evaluate our mod-
els. Here, we present more details about each of the
real-world datasets. Firstly, we analyze a sample of the
data covering student examinations from two differ-
ent courses on Coursera: Machine Learning and Algo-
rithms. The answers given by several students for a
subset of questions in each of these courses is recorded.
Further, the set of all the correct answers for these ques-
tions constitute the ground-truth for item labels. Our
second dataset comprises of peer grading activity on a
subset of questions of the HCI course offered on Cours-
era. Each homework in this dataset was graded as either
poor, basic, or good by a subset of student peer graders.



Dataset # of # of # of Evaluator Ttem
Evaluators Items  Decisions Attributes Attributes
Student (Algo) 2,000 54 108,000 education, occupation, geography, topic, number of words,
exams (ML) 2,000 53 106,000 gender, purpose of taking the course type (conceptual/numerical)
Peer grading 5,000 6,224 19,208 education, occupation, geography, topic, week number, # of words,
(PG) gender, purpose of taking the course # of nouns, verbs, adjectives

Text labeling 152 4,000 11,400 gender, geography, age, length, # of nouns, verbs, adjectives,

(Text) self-reported confidence score TF-IDF vectors,

# of named entities, topic specific words

Image labeling 101 450 3,915 gender, geography, age, color of upper body, eye, tail, belly,

(Image)

self-reported confidence score

shape of bill, wings

Table 6: Summary statistics of real-world data.

In addition, an expert rating is available for every home-
work and the set of all the expert ratings serve as the
ground-truth for item labels. Each of these datasets
contain various attributes pertaining to students, ques-
tions and answers(Table [6)).

We also analyze the labeling activity on Amazon
Mechanical Turk. We experiment with two different
datasets — one where text documents need to be as-
signed appropriate topic labels and the other in which
images need to be classified into different categories. In
the text labeling task, each document needs to be as-
signed one of four possible topics: atheism, Christian-
ity, baseball, and hockey. In the image labeling task,
each image should be classified into one of the follow-
ing categories: rusty blackbird, yellow-headed black-
bird, brewer blackbird, and gray catbird. Several at-
tributes of labelers, text and images are recorded in
these datasets(Table [6]).

Baselines. We compare our models against the fol-
lowing state of the art models which have been pro-
posed to analyze the quality of judgments of individual
evaluators: Single Confusion model (SC) [12], Dawid-
Skene model (DS) [10], and Hybrid Confusion model
(HC) [12]. Recall that these models are not set up to
enable analysis based on evaluator or item attributes,
but they serve as good candidates for benchmarking the
performance of our algorithms in estimating confusion
matrices, item labels, and predicting labels assigned by
an evaluator.

Experimental setup. In most real-world settings
where the goal is to analyze the quality of evaluators and
also gain insights into their evaluations, we often do not
have explicit access to the confusion matrices. Further,
ground-truth labels are available only for a small subset
of items. In our experiments, we simulate this setting
by employing weak supervsion. The models are allowed
access to true labels (in addition to the evaluator
decisions) for only 15% of the items, while for the
remaining 85% of the items, the models only have access
to evaluator decisions (but not the true item labels).

We run the inference process until the (approximate)
convergence of log-likelihood. The hyperparameters are
intialized to: €, = 0.01 ¢ = €ov = 0.2, €gr = €g = 0.1,
A =1 v=+ =24 In addition, the number of
clusters for evaluators and items were all determined
using Bayesian Information Criterion (BIC) for the
parametric versions of the models. On the other hand,
the nonparametric variants automatically detect the

number of clusters for both the evaluators and items.

Recovering true item labels. We evaluate the
accuracy of each of the models on the task of recovering
true item labels (Table[7] Left). We also experiment with
logistic regression model (LR) as one of the baselines. In
order to ensure a fair comparison between our models
and a supervised approach such as logistic regression
(LR), we use a randomly chosen subset of 15% of the
data for training LR model and evaluate the model
performance on the remaining 85% of the data. We use
all the attributes of evaluators and items as independent
variables in the prediction task. It can be seen that Joint
Confusion and its nonparametric variant outperform all
the other models. Overall, these models result in 8-15%
improvement in predicting true labels of items.

Logistic regression (LR) and Single Confusion (SC)
models turn out to be the weakest baselines. Further
analysis revealed that the training data was insufficient
for the LR model to make accurate predictions. In ad-
dition, the poor performance of SC can be attributed
to its modeling assumptions which force all the evalu-
ators to have a similar evaluation style. Dawid Skene
(DS) and Hybrid Confusion (HC) perform on par with
each other. However, our models consistently outper-
form all the baselines indicating that grouping evalua-
tors and items based on their attribute values and asso-
ciated evaluations is an effective way of recovering true
labels of items.

Recovering confusion matrices. We also evaluate
how accurately our models are able to recover confu-
sion matrices corresponding to each of the evaluators.
In order to achieve this, we use a metric called Mean



Model { Accuracy - predicting item labels

MAE - estimating confusion matrices

Accuracy - predicting evaluator decisions

Algo ML PG Text Image | Algo ML PG Text Image | Algo ML PG Text Image
. Emp. 041 038 0.53 0.51 0.37
Q SC 0.55 0.56 0.57 0.56 0.54 0.43 0.46 0.42 0.48 0.41 0.52 0.58 0.53 0.51 0.56
S DS 0.59 060 0.62 0.65 0.61 034 033 035 0.36 0.32 0.61 061 0.64 0.60 0.64
é HC 0.61 0.60 0.64 0.65 0.63 0.31 0.30 0.30 0.29 0.28 0.62 0.64 0.66 0.59 0.63
LR 0.53 0.57 0.54 0.54 0.55 0.55 0.53 0.51 0.56 0.57
2 IC 0.65 0.64 0.64 0.65 0.67 032 034 034 0.29 0.29 0.67 0.72 0.69 0.64 0.66
3 EC 0.66 0.65 0.66 0.65 0.69 0.28 032 028 0.24 0.27 0.68 0.72 0.70 0.66 0.69
i JC 0.67 0.68 0.69 0.69 0.71 0.22 025 0.26 0.23 0.25 0.68 074 070 0.71 0.71
o NJC 0.70 0.68 0.71 0.70 0.72 0.21 0.22 0.24 0.23 0.23 0.69 0.75 0.73 0.71 0.70
Gain 14.8 13.3 10.9 7.7 14.3 11.3 17.2 10.6 20.3 11.1 32.3 26.7 20 20.7 17.9

Table 7: Experimental results of Predicting True Labels; Estimating Confusion Matrices; Predicting Evaluator
Decisions; Columns correspond to different datasets (Table @ and rows to different algorithms (Section .

Gain denotes the pct. improvement of Non-parametric
Baseline.

Absolute Error (MAE) for assessing the quality of each
estimated confusion matrix. Mathematically, this is ex-
pressed as: MAE(G(j),@(j)) = %Zﬁil Zthl |(:)(§]t) —
@St) | where ©U) corresponds to the empirical esti-
mate of the confusion matrix obtained from the dataset
and ©U) represents the estimate of the same by a
given model. The error of a model is then given by:

i MA}?I(@(J)’G(J)). While the models Single Confu-
sion (SC), Dawid-Skene (DS), Hybrid Confusion (HC),
Evaluator Confusion (EC) associate a single confusion
matrix with each evaluator, Item Confusion (IC) and
Joint Confusion (JC) associate multiple such confusion
matrices with any given evaluator. In order to account
for this, we simply apply the MAE metric to every eval-
uator /item pair each time choosing an appropriate con-
fusion matrix.

We present the results for various real-world
datasets in Table [7] (Center). We also empirically esti-
mate the confusion matrices from the subset of true la-
bels (15%) which we used to initialize our models (Emp.
in Table @ The confusion matrices corresponding to
this subset are computed by simple counting as we have
access to both the true labels as well evaluator decisions
(Equation [3]1). It can be seen that Joint Confusion
and its nonparametric variant consistently outperform
all the other baselines. In addition, it is interesting
to note that the confusion matrices estimated by our
models significantly outperform the empirical estimates
which were accessible to the models.

Predicting labels given by evaluators. Our frame-
work also allows for predicting the label of evaluator
j on an item 4. Though this is a natural side effect of
modeling the process of evaluators’ labeling, it turns out
to be very useful in practice in settings such as behav-
ioral targeting. The way we perform this prediction task
is that we carry out latent variable inference on about

Confusion Model (NJC) over the Hybrid confusion (HC)

90% of the data assuming that we have access to the
evaluator decisions for this chunk of the data. After the
latent variable estimation on the 90% of the data, we
now have a handle on the confusion matrices of all the
evaluators and all the estimated item labels. Now, we
can use these estimates to predict evaluator decisions
on the residual 10% of the data and repeat this process
resulting in a 10-fold cross validation. We obtain the
predictions of the decisions on the residual 10% of the
data in each pass by sampling variables r; ; from the ap-
propriate confusion matrices and running this sampling
process for about a few hundred iterations. The results
of this task are presented in Table 7] (Right).

We observe that Joint Confusion and its nonpara-
metric variant outperform all the other models. Item
Confusion and Evaluator Confusion models almost per-
form similarly across all the datasets. As with all the
other tasks, Single Confusion (SC) is the worst perform-
ing baselines clearly indicating that it is too restrictive
to model all the decisions using a single confusion ma-
trix for all the evaluators.

Qualitative analysis. All the models that we pro-
posed so far produce explicit confusion matrices. The
final step we need to discuss is the interpretation of the
clusters. To interpret clusters, we represent each clus-
ter by its prominent attribute values. To illustrate how
we compute the prominent attribute values, let us con-
sider an attribute gender and a value female in the stu-
dent examinations dataset. Let s¢_p denote the num-
ber of evaluators in the cluster ¢ for whom the attribute
gender has the value female. Further, let s¢ denote the
total number of students grouped into cluster ¢ and let
Sq—p denote all the students in all the clusters for whom
the attribute gender has the value female. The attribute
value gender = female qualifies as a prominent attribute
value if and only if éccs—fF > 1) and 26=F

e
G > w where
Sg=F



1 and w correspond to support thresholds. Once we
determine all the prominent attribute values for indi-
vidual attributes, we also compute the above equation
for combinations of these attributes (e.g. gender = fe-
male and occupation = student) and check if they can
be added to the list of prominent attribute values. Af-
ter this process, we obtain a list of prominent attribute
values defining each cluster and we use them for de-
scribing high-level observations. We set the values of ¢
= (# of possible ;AtStribute values ) and w to 0.80 thl"OllghOllt
this analysis. We then relate these prominent attributes
to the associated confusion matrices to understand the
mistakes.

Analysis of items. We first use the Item Confu-
sion model to obtain insights into the patterns of items
that get evaluated in similar ways. In the text labeling
dataset, lot of mistakes were made in tagging documents
with a small number of sentences (<20). A lot of errors
occur due to confusions between documents on athe-
ism and Christianity, and between baseball and hockey
(Figure a)). In the peer grading dataset, we found
that lengthy answers (>100 words) with lots of nouns
(comprising >15% of all words) received more lenient
grading; In the student examinations dataset, the prob-
ability of answering questions correctly in weeks 7, 8, 9
was much lower compared to all the other weeks (the
probability for the ML class is 0.48). And, in the image
labeling dataset, on images for which the color of the
upper body and belly is gray, there were many mistakes
in choosing between brewer blackbird, rusty blackbird,
and gray catbird.

Analysis of evaluators. Next, we discuss some of
the qualitative insights concerning evaluators which we
obtain using the Evaluator Confusion model. In the text
labeling dataset, we found that the cluster correspond-
ing to females with low self-reported confidence scores
is the cluster that results in the fewest mistakes com-
pared to all the other clusters (Figure[2(b)). In the peer
grading dataset, we found that male students who are
currently pursuing undergraduate education are a lot
stricter in their evaluations of peer assignments. In the
student examinations dataset, we found that students
enrolled in high-school and undergraduate studies have
a lower probability of answering questions right (ML
class probability = 0.23, Algorithms class probability =
0.31).

Analysis of evaluators and items. Finally, we
use the Joint Confusion and its nonparametric variant
to detect patterns that involve interplay between eval-
uators and items. In the text labeling dataset, male
evaluators from Asia often confused documents on athe-
ism and Christianity when there were fewer sentences of
text (<20 sentences). On the other hand, they were able

to very accurately tag documents belonging to baseball
and hockey even with fewer sentences (Figure [2[c)). In
the peer grading dataset, we found that students with
an education level of masters degree and beyond from
the US were very accurate in grading lengthy answers
(>100 words).  In the image labeling dataset, male
evaluators belonging to the older age group (age > 50)
often made mistakes when distinguishing between items
for which a bird’s bill is cone-shaped and upper body
color is gray.

5 Related Work

The growth of crowdwork applications has catalyzed in-
terest in two related but distinct research questions con-
cerning human evaluations: inferring true labels from
multiple annotations [I]-[7] and estimating evaluator ex-
pertise [§]-[12].

There have been attempts at unifying the two re-
search directions by modeling evaluators and items
[9, (15, 16 [17]. [9] associates an expertise level with indi-
vidual evaluators and a difficulty level with each of the
items; the probability that an evaluator rates an item
correctly is then modeled as a function of these two
parameters. This results in a model that can recover
both the true labels and an estimate of the evaluator’s
quality, but since this approach does not quantify the
underlying confusion-matrix structure, there is no di-
rect way to build on it for obtaining diagnotic insights
into the mistakes. [15] and [16] generalize the approach
of [9] to account for characteristics of items and eval-
uators, though also without modeling the structure of
the confusion matrix. Conversely, the models proposed
in [I0] and [12] estimate confusion matrices, but only
at the level of individual evaluators, and so cannot pro-
duce collective insights about larger groupings within
the evaluator population. There have also been recent
approaches using information such as self-reported eval-
uator confidence scores to estimate evaluation quality
and infer true labels [18].

In addition to producing cluster-level estimates of
confusion matrices, our work allows for data in which
each item may have been seen by only a few evaluators,
each evaluator may have only looked at a small number
of items, and ground truth may be missing for many of
the items. Much of the earlier work relies on stronger
assumptions about the data. For instance, [I7] and [g]
assume that each item has been annotated by most of
the evaluators under consideration, which may not be
the case in many natural settings. Approaches that
work with evaluator-item pairs (e.g. [9, 19]) generally
assume enough data to model each evaluator, which
again is often not the case. Our approach also scales
smoothly with the addition of new data, whereas much
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Figure 2: Text labeling. (a). Aggregate item analysis: Documents with number of sentences < 20. (b) Aggregate
evaluator analysis: Females with low self reported confidence scores. (c) Aggregate evaluator-item analysis: Male
evaluators from Asia and Documents with number of sentences < 20.

of the earlier work (e.g. [I5l 12, [18]) requires re-
estimation in the presence of new data.

6 Conclusion

In many settings, evaluators seek to assign labels to
items that they encounter (images, pieces of text,
answers to quiz questions), and their performance can
then be assessed against the ground-truth label for each
item. In contrast to earlier lines of research aimed
at inferring true labels or aggregate error rates, we
estimate full confusion matrices at the level of both
individual evaluators and items, and clusters of these.
Understanding mistakes at the level of classes, across
groups of evaluators with similar behavior, can provide
insights into the structure of these mistakes.

The framework we present thus suggests a number
of directions for further work. In particular, by dis-
covering clusters of common mistake patterns, we can
potentially identify interventions that can improve the
performance of the underlying application. For exam-
ple, in settings where it is possible to route items to
particular evaluators, we can use a model of confusion
matrix structure to find evaluators who will be partic-
ularly effective based on characteristics of the items.
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