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Abstract

Generating novel graph structures that optimize given objectives while obeying
some given underlying rules is fundamental for chemistry, biology and social
science research. This is especially important in the task of molecular graph
generation, whose goal is to discover novel molecules with desired properties such
as drug-likeness and synthetic accessibility, while obeying physical laws such as
chemical valency. However, designing models to find molecules that optimize
desired properties while incorporating highly complex and non-differentiable rules
remains to be a challenging task. Here we propose Graph Convolutional Policy
Network (GCPN), a general graph convolutional network based model for goal-
directed graph generation through reinforcement learning. The model is trained
to optimize domain-specific rewards and adversarial loss through policy gradient,
and acts in an environment that incorporates domain-specific rules. Experimental
results show that GCPN can achieve 61% improvement on chemical property
optimization over state-of-the-art baselines while resembling known molecules,
and achieve 184% improvement on the constrained property optimization task.

1 Introduction

Many important problems in drug discovery and material science are based on the principle of
designing molecular structures with specific desired properties. However, this remains a challenging
task due to the large size of chemical space. For example, the range of drug-like molecules has been
estimated to be between 1023 and 1060 [32]. Additionally, chemical space is discrete, and molecular
properties are highly sensitive to small changes in the molecular structure [21]. An increase in
the effectiveness of the design of new molecules with application-driven goals would significantly
accelerate developments in novel medicines and materials.

Recently, there has been significant advances in applying deep learning models to molecule generation
[15, 38, 7, 9, 22, 4, 31, 27, 34, 42]. However, the generation of novel and valid molecular graphs that
can directly optimize various desired physical, chemical and biological property objectives remains to
be a challenging task, since these property objectives are highly complex [37] and non-differentiable.
Furthermore, the generation model should be able to actively explore the vast chemical space, as the
distribution of the molecules that possess those desired properties does not necessarily match the
distribution of molecules from existing datasets.

∗The two first authors made equal contributions.
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Present Work. In this work, we propose Graph Convolutional Policy Network (GCPN), an approach
to generate molecules where the generation process can be guided towards specified desired objectives,
while restricting the output space based on underlying chemical rules. To address the challenge of
goal-directed molecule generation, we utilize and extend three ideas, namely graph representation,
reinforcement learning and adversarial training, and combine them in a single unified framework.
Graph representation learning is used to obtain vector representations of the state of generated graphs,
adversarial loss is used as reward to incorporate prior knowledge specified by a dataset of example
molecules, and the entire model is trained end-to-end in the reinforcement learning framework.

Graph representation. We represent molecules directly as molecular graphs, which are more robust
than intermediate representations such as simplified molecular-input line-entry system (SMILES)
[40], a text-based representation that is widely used in previous works [9, 22, 4, 15, 38, 27, 34]. For
example, a single character perturbation in a text-based representation of a molecule can lead to
significant changes to the underlying molecular structure or even invalidate it [30]. Additionally,
partially generated molecular graphs can be interpreted as substructures, whereas partially generated
text representations in many cases are not meaningful. As a result, we can perform chemical checks,
such as valency checks, on a partially generated molecule when it is represented as a graph, but not
when it is represented as a text sequence.

Reinforcement learning. A reinforcement learning approach to goal-directed molecule generation
presents several advantages compared to learning a generative model over a dataset. Firstly, desired
molecular properties such as drug-likeness [1, 29] and molecule constraints such as valency are
complex and non-differentiable, thus they cannot be directly incorporated into the objective function
of graph generative models. In contrast, reinforcement learning is capable of directly representing
hard constraints and desired properties through the design of environment dynamics and reward
function. Secondly, reinforcement learning allows active exploration of the molecule space beyond
samples in a dataset. Alternative deep generative model approaches [9, 22, 4, 16] show promising
results on reconstructing given molecules, but their exploration ability is restricted by the training
dataset.

Adversarial training. Incorporating prior knowledge specified by a dataset of example molecules
is crucial for molecule generation. For example, a drug molecule is usually relatively stable in
physiological conditions, non toxic, and possesses certain physiochemical properties [28]. Although
it is possible to hand code the rules or train a predictor for one of the properties, precisely representing
the combination of these properties is extremely challenging. Adversarial training addresses the
challenge through a learnable discriminator adversarially trained with a generator [10]. After the
training converges, the discriminator implicitly incorporates the information of a given dataset and
guides the training of the generator.

GCPN is designed as a reinforcement learning agent (RL agent) that operates within a chemistry-
aware graph generation environment. A molecule is successively constructed by either connecting a
new substructure or an atom with an existing molecular graph or adding a bond to connect existing
atoms. GCPN predicts the action of the bond addition, and is trained via policy gradient to optimize
a reward composed of molecular property objectives and adversarial loss. The adversarial loss is
provided by a graph convolutional network [20, 5] based discriminator trained jointly on a dataset
of example molecules. Overall, this approach allows direct optimization of application-specific
objectives, while ensuring that the generated molecules are realistic and satisfy chemical rules.

We evaluate GCPN in three distinct molecule generation tasks that are relevant to drug discovery
and materials science: molecule property optimization, property targeting and conditional property
optimization. We use the ZINC dataset [14] to provide GCPN with example molecules, and train
the policy network to generate molecules with high property score, molecules with a pre-specified
range of target property score, or molecules containing a specific substructure while having high
property score. In all tasks, GCPN achieves state-of-the-art results. GCPN generates molecules with
property scores 61% higher than the best baseline method, and outperforms the baseline models in
the constrained optimization setting by 184% on average.

2 Related Work

Yang et al. [42] and Olivecrona et al. [31] proposed a recurrent neural network (RNN) SMILES string
generator with molecular properties as objective that is optimized using Monte Carlo tree search
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and policy gradient respectively. Guimaraes et al. [27] and Sanchez-Lengeling et al. [34] further
included an adversarial loss to the reinforcement learning reward to enforce similarity to a given
molecule dataset. In contrast, instead of using a text-based molecular representation, our approach
uses a graph-based molecular representation, which leads to many important benefits as discussed
in the introduction. Jin et al. [16] proposed to use a variational autoencoder (VAE) framework,
where the molecules are represented as junction trees of small clusters of atoms. This approach can
only indirectly optimize molecular properties in the learned latent embedding space before decoding
to a molecule, whereas our approach can directly optimize molecular properties of the molecular
graphs. You et al. [43] used an auto-regressive model to maximize the likelihood of the graph
generation process, but it cannot be used to generate attributed graphs. Li et al. [25] and Li et al.
[26] described sequential graph generation models where conditioning labels can be incorporated
to generate molecules whose molecular properties are close to specified target scores. However,
these approaches are also unable to directly perform optimization on desired molecular properties.
Overall, modeling the goal-directed graph generation task in a reinforcement learning framework is
still largely unexplored.

3 Proposed Method

In this section we formulate the problem of graph generation as learning an RL agent that iteratively
adds substructures and edges to the molecular graph in a chemistry-aware environment. We describe
the problem definition, the environment design, and the Graph Convolutional Policy Network that
predicts a distribution of actions which are used to update the graph being generated.

3.1 Problem Definition

We represent a graph G as (A,E, F ), where A ∈ {0, 1}n×n is the adjacency matrix, and F ∈ Rn×d
is the node feature matrix assuming each node has d features. We define E ∈ {0, 1}b×n×n to be the
(discrete) edge-conditioned adjacency tensor, assuming there are b possible edge types. Ei,j,k = 1 if
there exists an edge of type i between nodes j and k, and A =

∑b
i=1Ei. Our primary objective is

to generate graphs that maximize a given property function S(G) ∈ R, i.e., maximize EG′ [S(G′)],
where G′ is the generated graph, and S could be one or multiple domain-specific statistics of interest.

It is also of practical importance to constrain our model with two main sources of prior knowledge.
(1) Generated graphs need to satisfy a set of hard constraints. (2) We provide the model with a set of
example graphs G ∼ pdata(G), and would like to incorporate such prior knowledge by regularizing
the property optimization objective with EG,G′ [J(G,G′)] under distance metric J(·, ·). In the case of
molecule generation, the set of hard constraints is described by chemical valency while the distance
metric is an adversarially trained discriminator.

Figure 1: An overview of the proposed iterative graph generation method. Each row corresponds to
one step in the generation process. (a) The state is defined as the intermediate graph Gt, and the set
of scaffold subgraphs defined as C is appended for GCPN calculation. (b) GCPN conducts message
passing to encode the state as node embeddings then produce a policy πθ. (c) An action at with 4
components is sampled from the policy. (d) The environment performs a chemical valency check on
the intermediate state, and then returns (e) the next state Gt+1 and (f) the associated reward rt.
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3.2 Graph Generation as Markov Decision Process

A key task for building our model is to specify a generation procedure. We designed an iterative
graph generation process and formulated it as a general decision process M = (S,A, P,R, γ), where
S = {si} is the set of states that consists of all possible intermediate and final graphs, A = {ai} is
the set of actions that describe the modification made to current graph at each time step, P is the
transition dynamics that specifies the possible outcomes of carrying out an action, p(st+1|st, ...s0, at).
R(st) is a reward function that specifies the reward after reaching state st, and γ is the discount factor.
The procedure to generate a graph can then be described by a trajectory (s0, a0, r0, ..., sn, an, rn),
where sn is the final generated graph. The modification of a graph at each time step can be viewed
as a state transition distribution: p(st+1|st, ..., s0) =

∑
at
p(at|st, ...s0)p(st+1|st, ...s0, at), where

p(at|st, ...s0) is usually represented as a policy network πθ.

Recent graph generation models add nodes and edges based on the full trajectory (st, ..., s0) of the
graph generation procedure [43, 25] using recurrent units, which tends to “forget” initial steps of
generation quickly. In contrast, we design a graph generation procedure that can be formulated as a
Markov Decision Process (MDP), which requires the state transition dynamics to satisfy the Markov
property: p(st+1|st, ...s0) = p(st+1|st). Under this property, the policy network only needs the
intermediate graph state st to derive an action (see Section 3.4). The action is used by the environment
to update the intermediate graph being generated (see Section 3.3).

3.3 Molecule Generation Environment

In this section we discuss the setup of molecule generation environment. On a high level, the
environment builds up a molecular graph step by step through a sequence of bond or substructure
addition actions given by GCPN. Figure 1 illustrates the 5 main components that come into play in
each step, namely state representation, policy network, action, state transition dynamics and reward.
Note that this environment can be easily extended to graph generation tasks in other settings.

State Space. We define the state of the environment st as the intermediate generated graph Gt at
time step t, which is fully observable by the RL agent. Figure 1 (a)(e) depicts the partially generated
molecule state before and after an action is taken. At the start of generation, we assume G0 contains
a single node that represents a carbon atom.

Action Space. In our framework, we define a distinct, fixed-dimension and homogeneous action
space amenable to reinforcement learning. We design an action analogous to link prediction, which
is a well studied realm in network science. We first define a set of scaffold subgraphs {C1, . . . , Cs}
to be added during graph generation and the collection is defined as C =

⋃s
i=1 Ci. Given a graph Gt

at step t, we define the corresponding extended graph as Gt ∪ C. Under this definition, an action
can either correspond to connecting a new subgraph Ci to a node in Gt or connecting existing nodes
within graphGt. Once an action is taken, the remaining disconnected scaffold subgraphs are removed.
In our implementation, we adopt the most fine-grained version where C consists of all b different
single node graphs, where b denotes the number of different atom types. Note that C can be extended
to contain molecule substructure scaffolds [16], which allows specification of preferred substructures
at the cost of model flexibility. In Figure 1(b), a link is predicted between the green and yellow atoms.
We will discuss in detail the link prediction algorithm in Section 3.4.

State Transition Dynamics. Domain-specific rules are incorporated in the state transition dynamics.
The environment carries out actions that obey the given rules. Infeasible actions proposed by the
policy network are rejected and the state remains unchanged. For the task of molecule generation, the
environment incorporates rules of chemistry. In Figure 1(d), both actions pass the valency check, and
the environment updates the (partial) molecule according to the actions. Note that unlike a text-based
representation, the graph-based molecular representation enables us to perform this step-wise valency
check, as it can be conducted even for incomplete molecular graphs.

Reward design. Both intermediate rewards and final rewards are used to guide the behaviour of
the RL agent. We define the final rewards as a sum over domain-specific rewards and adversarial
rewards. The domain-specific rewards consist of the (combination of) final property scores, such
as octanol-water partition coefficient (logP), druglikeness (QED) [1] and molecular weight (MW).
Domain-specific rewards also include penalization of unrealistic molecules according to various
criteria, such as excessive steric strain and the presence of functional groups that violate ZINC
functional group filters [14]. The intermediate rewards include step-wise validity rewards and
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adversarial rewards. A small positive reward is assigned if the action does not violate valency rules,
otherwise a small negative reward is assigned. As an example, the second row of Figure 1 shows the
scenario that a termination action is taken. When the environment updates according to a terminating
action, both a step reward and a final reward are given, and the generation process terminates.

To ensure that the generated molecules resemble a given set of molecules, we employ the Generative
Adversarial Network (GAN) framework [10] to define the adversarial rewards V (πθ, Dφ)

min
θ

max
φ

V (πθ, Dφ) = Ex∼pdata [logDφ(x)] + Ex∼πθ [logDφ(1− x)] (1)

where πθ is the policy network, Dφ is the discriminator network, x represents an input graph, pdata
is the underlying data distribution which defined either over final graphs (for final rewards) or
intermediate graphs (for intermediate rewards). However, only Dφ can be trained with stochastic
gradient descent, as x is a graph object that is non-differentiable with respect to parameters φ. Instead,
we use −V (πθ, Dφ) as an additional reward together with other rewards, and optimize the total
rewards with policy gradient methods [44] (Section 3.5). The discriminator network employs the
same structure of the policy network (Section 3.4) to calculate the node embeddings, which are then
aggregated into a graph embedding and cast into a scalar prediction.

3.4 Graph Convolutional Policy Network

Having illustrated the graph generation environment, we outline the architecture of GCPN, a policy
network learned by the RL agent to act in the environment. GCPN takes the intermediate graph Gt
and the collection of scaffold subgraphs C as inputs, and outputs the action at, which predicts a new
link to be added, as described in Section 3.3.

Computing node embeddings. In order to perform link prediction in Gt ∪ C, our model first
computes the node embeddings of an input graph using Graph Convolutional Networks (GCN)
[20, 5, 18, 36, 8], a well-studied technique that achieves state-of-the-art performance in representation
learning for molecules. We use the following variant that supports the incorporation of categorical
edge types. The high-level idea is to perform message passing over each edge type for a total of L
layers. At the lth layer of the GCN, we aggregate all messages from different edge types to compute
the next layer node embeddingH(l+1) ∈ R(n+c)×k, where n, c are the sizes ofGt and C respectively,
and k is the embedding dimension. More concretely,

H(l+1) = AGG(ReLU({D̃−
1
2

i ẼiD̃
− 1

2
i H(l)W

(l)
i },∀i ∈ (1, ..., b))) (2)

where Ei is the ith slice of edge-conditioned adjacency tensor E, and Ẽi = Ei + I; D̃i =
∑
k Ẽijk.

W
(l)
i is a trainable weight matrix for the ith edge type, and H(l) is the node representation

learned in the lth layer. We use AGG(·) to denote an aggregation function that could be one of
{MEAN,MAX, SUM, CONCAT} [12]. This variant of the GCN layer allows for parallel implementa-
tion while remaining expressive for aggregating information among different edge types. We apply a
L layer GCN to the extended graph Gt ∪ C to compute the final node embedding matrix X = H(L).

Action prediction. The link prediction based action at at time step t is a concatenation of four com-
ponents: selection of two nodes, prediction of edge type, and prediction of termination. Concretely,
each component is sampled according to a predicted distribution governed by Equation 3 and 4.

at = CONCAT(afirst, asecond, aedge, astop) (3)

ffirst(st) = SOFTMAX(mf (X)),

fsecond(st) = SOFTMAX(ms(Xafirst , X)),

fedge(st) = SOFTMAX(me(Xafirst , Xasecond)),

fstop(st) = SOFTMAX(mt(AGG(X))),

afirst ∼ ffirst(st) ∈ {0, 1}n

asecond ∼ fsecond(st) ∈ {0, 1}n+c

aedge ∼ fedge(st) ∈ {0, 1}b

astop ∼ fstop(st) ∈ {0, 1}

(4)

We use mf to denote a Multilayer Perceptron (MLP) that maps Z0:n ∈ Rn×k to a Rn vector, which
represents the probability distribution of selecting each node. The information from the first selected
node afirst is incorporated in the selection of the second node by concatenating its embedding Zafirst
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with that of each node in Gt ∪ C. The second MLP ms then maps the concatenated embedding
to the probability distribution of each potential node to be selected as the second node. Note that
when selecting two nodes to predict a link, the first node to select, afirst, should always belong to
the currently generated graph Gt, whereas the second node to select, asecond, can be either from
Gt (forming a cycle), or from C (adding a new substructure). To predict a link, me takes Zafirst
and Zasecond

as inputs and maps to a categorical edge type using an MLP. Finally, the termination
probability is computed by firstly aggregating the node embeddings into a graph embedding using an
aggregation function AGG, and then mapping the graph embedding to a scalar using an MLP mt.

3.5 Policy Gradient Training

Policy gradient based methods are widely adopted for optimizing policy networks. Here we adopt
Proximal Policy Optimization (PPO) [35], one of the state-of-the-art policy gradient methods. The
objective function of PPO is defined as follows

maxLCLIP(θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], rt(θ) =
πθ(at|st)
πθold(at|st)

(5)

where rt(θ) is the probability ratio that is clipped to the range of [1− ε, 1+ ε], making the LCLIP(θ) a
lower bound of the conservative policy iteration objective [17], Ât is the estimated advantage function
which involves a learned value function Vω(·) to reduce the variance of estimation. In GCPN, Vω(·)
is an MLP that maps the graph embedding computed according to Section 3.4.

It is known that pretraining a policy network with expert policies if they are available leads to better
training stability and performance [24]. In our setting, any ground truth molecule could be viewed
as an expert trajectory for pretraining GCPN. This expert imitation objective can be written as
minLEXPERT(θ) = − log(πθ(at|st)), where (st, at) pairs are obtained from ground truth molecules.
Specifically, given a molecule dataset, we randomly sample a molecular graph G, and randomly
select one connected subgraph G′ of G as the state st. At state st, any action that adds an atom or
bond in G \G′ can be taken in order to generate the sampled molecule. Hence, we randomly sample
at ∈ G \G′, and use the pair (st, at) to supervise the expert imitation objective.

4 Experiments

To demonstrate effectiveness of goal-directed search for molecules with desired properties, we
compare our method with state-of-the-art molecule generation algorithms in the following tasks.

Property Optimization. The task is to generate novel molecules whose specified molecular prop-
erties are optimized. This can be useful in many applications such as drug discovery and materials
science, where the goal is to identify molecules with highly optimized properties of interest.

Property Targeting. The task is to generate novel molecules whose specified molecular properties
are as close to the target scores as possible. This is crucial in generating virtual libraries of molecules
with properties that are generally suitable for a desired application. For example, a virtual molecule
library for drug discovery should have high drug-likeness and synthesizability.

Constrained Property Optimization. The task is to generate novel molecules whose specified
molecular properties are optimized, while also containing a specified molecular substructure. This
can be useful in lead optimization problems in drug discovery and materials science, where we want
to make modifications to a promising lead molecule and improve its properties [2].

4.1 Experimental Setup

We outline our experimental setup in this section. Further details are provided in the appendix1.

Dataset. For the molecule generation experiments, we utilize the ZINC250k molecule dataset [14]
that contains 250,000 drug like commercially available molecules whose maximum atom number is
38. We use the dataset for both expert pretraining and adversarial training.

Molecule environment. We set up the molecule environment as an OpenAI Gym environment [3]
using RDKit [23] and adapt it to the ZINC250k dataset. Specifically, the maximum atom number is

1Link to code and datasets: https://github.com/bowenliu16/rl_graph_generation
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Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Method
Penalized logP QED

1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC 4.52 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

Hill Climbing − − − − 0.838 0.814 0.814 100.0%

ORGAN 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%
JT-VAE 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

set to be 38. There are 9 atom types and 3 edge types, as molecules are represented in kekulized form.
For specific reward design, we linearly scale each reward component according to its importance
in molecule generation from a chemistry point of view as well as the quality of generation results.
When summing up all the rewards collected from a molecule generation trajectory, the range of the
reward value that the model can get is [−4, 4] for final chemical property reward, [−2, 2] for final
chemical filter reward, [−1, 1] for final adversarial reward, [−1, 1] for intermediate adversarial reward
and [−1, 1] for intermediate validity reward.

GCPN Setup. We use a 3-layer defined GCPN as the policy network with 64 dimensional node
embedding in all hidden layers, and batch normalization [13] is applied after each layer. Another
3-layer GCN with the same architecture is used for discriminator training. We find little improvement
when further adding GCN layers. We observe comparable performance among different aggregation
functions and select SUM(·) for all experiments. We found both the expert pretraining and RL
objective important for generating high quality molecules, thus both of them are kept throughout
training. Specifically, we use PPO algorithm to train the RL objective with the default hyperparameters
as we do not observe too much performance gain from tuning these hyperparameters, and the learning
rate is set as 0.001. The expert pretraining objective is trained with a learning rate of 0.00025, and we
do observe that adding this objective contributes to faster convergence and better performance. Both
objectives are trained using Adam optimizer [19] with batch size 32.

Baselines. We compare our method with the following state-of-the-art baselines. Junction Tree VAE
(JT-VAE) [16] is a state-of-the-art algorithm that combines graph representation and a VAE framework
for generating molecular graphs, and uses Bayesian optimization over the learned latent space to
search for molecules with optimized property scores. JT-VAE has been shown to outperform previous
deep generative models for molecule generation, including Character-VAE [9], Grammar-VAE [22],
SD-VAE [4] and GraphVAE [39]. We also compare our approach with ORGAN [27], a state-of-
the-art RL-based molecule generation algorithm using a text-based representation of molecules. To
demonstrate the benefits of learning-based approaches, we further implement a simple rule based
model using the stochastic hill-climbing algorithm. We start with a graph containing a single atom
(the same setting as GCPN), traverse all valid actions given the current state, randomly pick the next
state with top 5 highest property score as long as there is improvement over the current state, and loop
until reaching the maximum number of nodes. To make fair comparison across different methods,
we set up the same objective functions for all methods, and run all the experiments on the same
computing facilities using 32 CPU cores. We run both deep learning baselines using their released
code and allow the baselines to have wall clock running time for roughly 24 hours, while our model
can get the results in roughly 8 hours.

4.2 Molecule Generation Results

Property optimization. In this task, we focus on generating molecules with the highest possible
penalized logP [22] and QED [1] scores. Penalized logP is a logP score that also accounts for ring
size and synthetic accessibility [6], while QED is an indicator of drug-likeness. Note that both scores
are calculated from empirical prediction models whose parameters are estimated from related datasets
[41, 1], and these scores are widely used in previous molecule generation papers [9, 22, 4, 39, 27].
Penalized logP has an unbounded range, while the QED has a range of [0, 1] by definition, thus
directly comparing the percentage improvement of QED may not be meaningful. We adopt the same
evaluation method in previous approaches [22, 4, 16], reporting the best 3 property scores found by
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Table 2: Comparison of the effectiveness of property targeting task.

Method
−2.5 ≤ logP ≤ −2 5 ≤ logP ≤ 5.5 150 ≤ MW ≤ 200 500 ≤ MW ≤ 550

Success Diversity Success Diversity Success Diversity Success Diversity

ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 −
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 − 0.2% 0.909 15.1% 0.759 0.1% 0.907
GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920

Table 3: Comparison of the performance in the constrained optimization task.

δ
JT-VAE GCPN

Improvement Similarity Success Improvement Similarity Success

0.0 1.91± 2.04 0.28± 0.15 97.5% 4.20± 1.28 0.32± 0.12 100.0%
0.2 1.68± 1.85 0.33± 0.13 97.1% 4.12± 1.19 0.34± 0.11 100.0%
0.4 0.84± 1.45 0.51± 0.10 83.6% 2.49± 1.30 0.47± 0.08 100.0%
0.6 0.21± 0.71 0.69± 0.06 46.4% 0.79± 0.63 0.68± 0.08 100.0%

each model and the fraction of molecules that satisfy chemical validity. Table 1 summarizes the best
property scores of molecules found by each model, and the statistics in ZINC250k is also shown
for comparison. Our method consistently performs significantly better than previous methods when
optimizing penalized logP, achieving an average improvement of 61% compared to JT-VAE, and
186% compared to ORGAN. Our method outperforms all the baselines in the QED optimization task
as well, and significantly outperforms the stochastic hill climbing baseline.

Compared with ORGAN, our model can achieve a perfect validity ratio due to the molecular graph
representation that allows for step-wise chemical valency check. Compared to JT-VAE, our model
can reach a much higher score owing to the fact that RL allows for direct optimization of a given
property score and is able to easily extrapolate beyond the given dataset. Visualizations of generated
molecules with optimized logP and QED scores are displayed in Figure 2(a) and (b) respectively.

Although most generated molecules are realistic, in some very rare cases, especially where we reduce
the of the adversarial reward and expert pretraining components, our method can generate undesirable
molecules with astonishingly high penalized logP predicted by the empirical model, such as the one
on the bottom-right of Figure 2(a) in which our method correctly identified that Iodine has the highest
per atom contribution in the empirical model used to calculate logP. These undesirable molecules
are likely to have inaccurate predicted properties and illustrate an issue with optimizing properties
calculated by an empirical model, such as penalized logP and QED, without incorporating prior
knowledge. Empirical prediction models that predict molecular properties generalize poorly for
molecules that are significantly different from the set of molecules used to train the model. Without
any restrictions on the generated molecules, an optimization algorithm would exploit the lack of
generalizability of the empirical property prediction models in certain areas of molecule space. Our
model addresses this issue by incorporating prior knowledge of known realistic molecules using
adversarial training and expert pretraining, which results in more realistic molecules, but with lower
property scores calculated by the empirical prediction models. Note that the hill climbing baseline
algorithm mostly generates undesirable cases where the accuracy of the empirical prediction model is
questionable, thus its performance with optimizing penalized logP is not listed on Table 1.

Property Targeting. In this task, we specify a target range for molecular weight (MW) and logP,
and report the percentage of generated molecules with property scores within the range, as well as the
diversity of generated molecules. The diversity of a set of molecules is defined as the average pairwise
Tanimoto distance between the Morgan fingerprints [33] of the molecules. The RL reward for this
task is the L1 distance between the property score of a generated molecule and the range center. To
increase the difficulty, we set the target range such that few molecules in ZINC250k dataset are within
the range to test the extrapolation ability of the methods to optimize for a given target. The target
ranges include −2.5 ≤ logP ≤ −2, 5 ≤ logP ≤ 5.5, 150 ≤ MW ≤ 200 and 500 ≤ MW ≤ 550.
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Figure 2: Samples of generated molecules in property optimization and constrained property opti-
mization task. In (c), the two columns correspond to molecules before and after modification.

As is shown in Table 2, GCPN has a significantly higher success rate in generating molecules with
properties within the target range, compared to baseline methods. In addition, GCPN is able to
generate molecules with high diversity, indicating that it is capable of learning a general stochastic
policy to generate molecular graphs that fulfill the property requirements.

Constrained Property Optimization. In this experiment, we optimize the penalized logP while
constraining the generated molecules to contain one of the 800 ZINC molecules with low penalized
logP, following the evaluation in JT-VAE. Since JT-VAE cannot constrain the generated molecule to
have certain structure, we adopt their evaluation method where the constraint is relaxed such that the
molecule similarity sim(G,G′) between the original and modified molecules is above a threshold δ.

We train a fixed GCPN in an environment whose initial state is randomly set to be one of the 800
ZINC molecules, then conduct the same training procedure as the property optimization task. Over
the 800 molecules, the mean and standard deviation of the highest property score improvement and
the corresponding similarity between the original and modified molecules are reported in Table 3.
Our model significantly outperforms JT-VAE with 184% higher penalized logP improvement on
average, and consistently succeeds in discovering molecules with higher logP scores. Also note that
JT-VAE performs optimization steps for each given molecule constraint. In contrast, GCPN can
generalize well: it learns a general policy to improve property scores, and applies the same policy
to all 800 molecules. Figure 2(c) shows that GCPN can modify ZINC molecules to achieve high
penalized logP score while still containing the substructure of the original molecule.

5 Conclusion

We introduced GCPN, a graph generation policy network using graph state representation and ad-
versarial training, and applied it to the task of goal-directed molecular graph generation. GCPN
consistently outperforms other state-of-the-art approaches in the tasks of molecular property opti-
mization and targeting, and at the same time, maintains 100% validity and resemblance to realistic
molecules. Furthermore, the application of GCPN can extend well beyond molecule generation.
The algorithm can be applied to generate graphs in many contexts, such as electric circuits, social
networks, and explore graphs that can optimize certain domain specific properties.
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7 Appendix

Validity. We define a molecule as valid if it is able to pass the sanitization checks in RDKit.

Valency. This specifies the chemically allowable node degrees for an atom of a particular element.
Some elements can have multiple possible valencies. At each intermediate step, the molecule
environment checks that each atom in the partially completed graph has not exceeded its maximum
possible valency of that element type.

Steric strain filter. Valid molecules can still be unrealistic. In particular, it is possible to generate
valid molecules that are very sterically strained such that it is unlikely that they will be stable at
ordinary conditions. We designed a simple steric strain filter that performs MMFF94 forcefield [11]
minimization on a molecule, and then penalizes it as being too sterically strained if the average angle
bend energy exceeds a cutoff of 0.82 kcal/mol.

Reactive functional group filter. We also penalize molecules that possess known problematic
and reactive functional groups. For simplicity, we use the same set of rules that was used in the
construction of the ZINC dataset, as implemented in RDKit.

Reward design implementation. For property optimization task, we use linear functions to roughly
map the minimum and maximum property score of ZINC dataset into the desired reward range. For
property targeting task, we use linear functions to map the absolute difference between the target and
the property score into the desired reward range. We threshold the reward such that the reward will not
exceed the desired reward range, as is described in Section 4.1. For specific parameters, please refer to
the open-sourced code: https://github.com/bowenliu16/rl_graph_generation
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