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A fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is
typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e., induces
a triangle in the network. However, higher-order cliques beyond triangles are crucial to understanding complex
networks, and the clustering behavior with respect to such higher-order network structures is not well understood.
Here we introduce higher-order clustering coefficients that measure the closure probability of higher-order network
cliques and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-order
clustering coefficients are a natural generalization of the traditional clustering coefficient. We derive several
properties about higher-order clustering coefficients and analyze them under common random graph models.
Finally, we use higher-order clustering coefficients to gain new insights into the structure of real-world networks
from several domains.
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I. INTRODUCTION

Networks are a fundamental tool for understanding and
modeling complex physical, social, informational, and biolog-
ical systems [1]. Although such networks are typically sparse,
a recurring trait of networks throughout all of these domains is
the tendency of edges to appear in small clusters or cliques
[2,3]. In many cases, such clustering can be explained by
local evolutionary processes. For example, in social networks,
clusters appear due to the formation of triangles where two
individuals who share a common friend are more likely
to become friends themselves, a process known as triadic
closure [2,4]. Similar triadic closures occur in other networks:
In citation networks, two references appearing in the same
publication are more likely to be on the same topic and
hence more likely to cite each other [5], and in coauthorship
networks, scientists with a mutual collaborator are more likely
to collaborate in the future [6]. In other cases, local clustering
arises from highly connected functional units operating within
a larger system, e.g., metabolic networks are organized by
densely connected modules [7].

The clustering coefficient quantifies the extent to which
edges of a network cluster in terms of triangles. The clustering
coefficient is defined as the fraction of length-2 paths, or
wedges, that are closed with a triangle [3,8] (Fig. 1, row C2). In
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other words, the clustering coefficient measures the probability
of triadic closure in the network.

The clustering coefficient is an important statistic for data
modeling in network science [9–11], as well as a useful feature
in machine-learning pipelines for, e.g., role discovery [12] and
anomaly detection [13]. The statistic has also been identified
as an important covariate in sociological studies [14].

However, the clustering coefficient is inherently restrictive
as it measures the closure probability of just one simple
structure—the triangle. Moreover, higher-order structures such
as larger cliques are crucial to the structure and function
of complex networks [15–17]. For example, 4-cliques reveal
community structure in word association and protein-protein
interaction networks [18] and cliques of sizes 5–7 are more
frequent than triangles in many real-world networks with
respect to certain null models [19]. However, the extent of
clustering of such higher-order structures has neither been well
understood nor quantified.

Here we provide a framework to quantify higher-order
clustering in networks by measuring the normalized frequency
at which higher-order cliques are closed, which we call higher-
order clustering coefficients. We derive our higher-order clus-
tering coefficients by extending a novel interpretation of the
classical clustering coefficient as a form of clique expansion
(Fig. 1). We then derive several properties about higher-order
clustering coefficients and analyze them under the Gn,p and
small-world null models.

Using our theoretical analysis as a guide, we analyze
the higher-order clustering behavior of real-world networks
from a variety of domains. Conventional wisdom in network
science posits that practically all real-world networks exhibit
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FIG. 1. Overview of higher-order clustering coefficients as clique
expansion probabilities. The �th-order clustering coefficient C� mea-
sures the probability that an �-clique and an adjacent edge, i.e., an
�-wedge, is closed, meaning that the � − 1 possible edges between
the �-clique and the outside node in the adjacent edge exist to form
an (� + 1)-clique.

clustering; however, we find that the clustering property only
holds up to a certain order. More specifically, once we control
for the clustering as measured by the classical clustering coef-
ficient, networks from some domains do not show significant
higher-order clustering in terms of higher-order clique closure.
Moreover, by examining how the clustering changes with the
order of the clustering, we find that each domain of networks
has its own higher-order clustering pattern. Since the traditional
clustering coefficient only provides one measurement, it does
not show such trends by itself. In addition to the theoretical
properties and empirical findings exhibited in this paper, our
related work also theoretically connects higher-order cluster-
ing and community detection [20].

II. DERIVATION OF HIGHER-ORDER CLUSTERING
COEFFICIENTS

In this section, we derive our higher-order clustering coef-
ficients and some of their basic properties. We first present an
alternative interpretation of the classical clustering coefficient
and then show how this novel interpretation seamlessly gen-
eralizes to arrive at our definition of higher-order clustering
coefficients. We then provide some probabilistic interpreta-
tions of higher-order clustering coefficients that will be useful
for our subsequent analysis. Throughout this paper, we confine
our discussion to homogeneous networks with only one type
of node and leave the development of higher-order clustering
on bipartite and multilayer networks for further work.

A. Alternative interpretation of the classical
clustering coefficient

Here we give an alternative interpretation of the clustering
coefficient that will later allow us to generalize it and quantify
clustering of higher-order network structures (this interpreta-
tion is summarized in Fig. 1). Our interpretation is based on a
notion of clique expansion. First, we consider a 2-clique K in
a graph G (that is, a single edge K; see Fig. 1, row C2, column
1). Next, we expand the clique K by considering any edge e

adjacent to K , i.e., e and K share exactly one node (Fig. 1,
row C2, column 2). This expanded subgraph forms a wedge,
i.e., a length-2 path. The classical global clustering coefficient

C of G (sometimes called the transitivity of G [21]) is then
defined as the fraction of wedges that are closed, meaning that
the 2-clique and adjacent edge induce a (2 + 1)-clique or a
triangle (Fig. 1, row C2, column 3) [8,22]. The novelty of our
interpretation of the clustering coefficient is considering it as a
form of clique expansion rather than as the closure of a length-2
path, which is key to our generalizations in the next section.

Formally, the classical global clustering coefficient is

C = 6|K3|
|W | , (1)

where K3 is the set of 3-cliques (triangles), W is the set of
wedges, and the coefficient 6 comes from the fact that each
3-clique closes 6 wedges—the 6 ordered pairs of edges in the
triangle.

We can also reinterpret the local clustering coefficient [3] in
this way. In this case, each wedge again consists of a 2-clique
and adjacent edge (Fig. 1, row C2, column 2), and we call the
unique node in the intersection of the 2-clique and adjacent
edge the center of the wedge. The local clustering clustering
coefficient of a node u is the fraction of wedges centered at u

that are closed:

C(u) = 2|K3(u)|
|W (u)| , (2)

where K3(u) is the set of 3-cliques containing u and W (u) is
the set of wedges with center u [if |W (u)| = 0, then we say
that C(u) is undefined]. The average clustering coefficient C̄

is the mean of the local clustering coefficients,

C̄ = 1

|Ṽ |
∑
u∈Ṽ

C(u), (3)

where Ṽ is the set of nodes in the network where the local
clustering coefficient is defined.

B. Generalizing to higher-order clustering coefficients

Our alternative interpretation of the clustering coefficient,
described above as a form of clique expansion, leads to a natural
generalization to higher-order cliques. Instead of expanding
2-cliques to 3-cliques, we expand �-cliques to (� + 1)-cliques
(Fig. 1, rows C3 and C4). Formally, we define an �-wedge to
consist of an �-clique and an adjacent edge for � � 2. Then
we define the global �th-order clustering coefficient C� as the
fraction of �-wedges that are closed, meaning that they induce
an (� + 1)-clique in the network. We can write this as

C� = (�2 + �)|K�+1|
|W�| , (4)

where K�+1 is the set of (� + 1)-cliques and W� is the set of
�-wedges. The coefficient �2 + � comes from the fact that each
(� + 1)-clique closes that many wedges: Each (� + 1)-clique
contains � + 1 �-cliques, and each �-clique contains � nodes
which may serve as the center of an �-wedge. Note that the
classical definition of the global clustering coefficient given in
Eq. (1) is equivalent to the definition in Eq. (4) when � = 2.

We also define higher-order local clustering coefficients:

C�(u) = �|K�+1(u)|
|W�(u)| , (5)
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where K�+1(u) is the set of (� + 1)-cliques containing node u,
W�(u) is the set of �-wedges with center u (where the center is
the unique node in the intersection of the �-clique and adjacent
edge comprising the wedge; see Fig. 1), and the coefficient
� comes from the fact that each (� + 1)-clique containing u

closes that many �-wedges in W�(u). The �th-order clustering
coefficient of a node is defined for any node that is the center
of at least one �-wedge, and the average �th-order clustering
coefficient is the mean of the local clustering coefficients:

C̄� = 1

|Ṽ�|
∑
u∈Ṽ�

C�(u), (6)

where Ṽ� is the set of nodes that are the centers of at least one
�-wedge.

To understand how to compute higher-order clustering
coefficients, we consider the following useful identity:

|W�(u)| = |K�(u)|(du − � + 1), (7)

where du is the degree of node u. Substituting Eq. (7) into
Eq. (5) gives:

C�(u) = �|K�+1(u)|
(du − � + 1)|K�(u)| . (8)

From Eq. (8), it is easy to see that we can compute all local �th-
order clustering coefficients by enumerating all (� + 1)-cliques
and �-cliques in the graph. The computational complexity
of the algorithm is thus bounded by the time to enumerate
(� + 1)-cliques and �-cliques. Using the Chiba and Nishizeki
algorithm [23], the complexity is O(�a�−2m), where m is the
number of edges and a is the arboricity of the graph, that is, the
minimum number of edge-disjoint spanning forests to compose
the graph [24]. (Arboricity is a specific measure of network
density useful in the design of fast algorithms for globally
sparse graphs; a dense graph with many edges would have
large arboricity.) The arboricity a may be as large as

√
m, so

this algorithm is only guaranteed to take polynomial time if �

is a constant. In general, determining if there exists a single
clique with at least � nodes is NP-complete [25].

For the global clustering coefficient, note that

|W�| =
∑
u∈V

|W�(u)|. (9)

Thus, it suffices to enumerate �-cliques [to compute |W�| using
Eq. (7)] and to count the total number of (� + 1)-cliques. In
practice, we use the Chiba and Nishizeki to enumerate cliques
and simultaneously compute C� and C�(u) for all nodes u. This
suffices for our clustering analysis with � = 2,3,4 on networks
with over a hundred million edges in Sec. IV.

C. Probabilistic interpretations of higher-order
clustering coefficients

To facilitate understanding of higher-order clustering co-
efficients and to aid our analysis in Sec. III, we present a
few probabilistic interpretations of the quantities. First, we
can interpret C�(u) as the probability that a wedge w chosen
uniformly at random from all wedges centered at u is closed:

C�(u) = P[w ∈ K�+1(u)]. (10)

The variant of this interpretation for the classical clustering
case of � = 2 has been useful for graph algorithm development
[26].

For the next probabilistic interpretation, it is useful to
analyze the structure of the 1-hop neighborhood graph N1(u)
of a given node u (not containing node u). The vertex set
of N1(u) is the set of all nodes adjacent to u, and the
edge set consists of all edges between neighbors of u, i.e.,
{(v,w) | (u,v),(u,w),(v,w) ∈ E}, where E is the edge set of
the graph.

Any �-clique in G containing node u corresponds to a
unique (� − 1)-clique in N1(u), and specifically for � = 2, any
edge (u,v) corresponds to a node v in N1(u). Therefore, each
�-wedge centered at u corresponds to an (� − 1)-clique K and
one of the du − � + 1 nodes outside K [i.e., in N1(u)\K]. Thus,
Eq. (8) can be rewritten as

�|K�[N1(u)]|
(du − � + 1)|K�−1[N1(u)]| , (11)

where Kk[N1(u)] denotes the number of k-cliques in N1(u).
If we uniformly at random select an (� − 1)-clique K from

N1(u) and then also uniformly at random select a node v from
N1(u) outside of this clique, then C�(u) is the probability that
these � nodes form an �-clique:

C�(u) = P[K ∪ {v} ∈ K�[N1(u)]]. (12)

Moreover, if we condition on observing an �-clique from
this sampling procedure, then the �-clique itself is selected
uniformly at random from all �-cliques in N1(u). Therefore,
C�−1(u) · C�(u) is the probability that an (� − 1)-clique and
two nodes selected uniformly at random from N1(u) form an
(� + 1)-clique. Applying this recursively gives

�∏
j=2

Cj (u) = |K�[N1(u)]|(
du

�

) . (13)

In other words, the product of the higher-order local clustering
coefficients of node u up to order � is the �-clique density
amongst u’s neighbors.

III. THEORETICAL ANALYSIS AND HIGHER-ORDER
CLUSTERING IN RANDOM GRAPH MODELS

We now provide some theoretical analysis of our higher-
order clustering coefficients. We first give some extremal
bounds on the values that higher-order clustering coefficients
can take given the value of the traditional (second-order)
clustering coefficient. After, we analyze the values of higher-
order clustering coefficients in two common random graph
models—the Gn,p and small-world models. The theory from
this section will be a useful guide for interpreting the clustering
behavior of real-world networks in Sec. IV.

A. Extremal bounds

We first analyze the relationships between local higher-
order clustering coefficients of different orders. Our technical
result is Proposition 1, which provides essentially tight lower
and upper bounds for higher-order local clustering coefficients
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u u u

C2(u) 1 d
2(d−1) ≈ 1

2
d−2
4d−4 ≈ 1

4

C3(u) 1 0 d−4
2d−4 ≈ 1

2

C4(u) 1 0 d−6
2d−6 ≈ 1

2

FIG. 2. Example 1-hop neighborhoods of a node u with degree
d with different higher-order clustering. Left: For cliques, C�(u) = 1
for any �. Middle: If u’s neighbors form a complete bipartite graph,
then C2(u) is constant while C�(u) = 0, � � 3. Right: If half of u’s
neighbors form a star and half form a clique with u, then C�(u) ≈√

C2(u), which is the upper bound in Proposition 1.

in terms of the traditional local clustering coefficient. The main
ideas of the proof are illustrated in Fig. 2.

Proposition 1: For any fixed � � 3,

0 � C�(u) �
√

C2(u). (14)

Moreover,
1. There exists a finite graph G with a node u such that the

lower bound is tight and C2(u) is within ε of any prescribed
value in [0, �−2

�−1 ].
2. There exists a finite graph G with a node u such that

C�(u) is within ε of the upper bound for any prescribed value
of C2(u) ∈ [0,1].

Proof: Clearly, 0 � C�(u) if the local clustering coefficient
is well defined. This bound is tight when N1(u) is (� − 1)-
partite, as in the middle column of Fig. 2. In the (� − 1)-partite
case, C2(u) = �−2

�−1 . By removing edges from this extremal case
in a sufficiently large graph, we can make C2(u) arbitrarily
close to any value in [0, �−2

�−1 ].
To derive the upper bound, consider the 1-hop neighborhood

N1(u) and let

δ�[N1(u)] = |K�[N1(u)]|(
du

�

) (15)

denote the �-clique density of N1(u). The Kruskal-Katona
theorem [27,28] implies that

δ�[N1(u)] � [δ�−1[N1(u)]]�/(�−1)

δ�−1[N1(u)] � [δ2[N1(u)]](�−1)/2.

Combining this with Eq. (8) gives

C�(u) � [δ�−1[N1(u)]]
1

�−1 �
√

δ2[N1(u)] =
√

C2(u),

where the last equality uses the fact that C2(u) is the edge
density of N1(u).

The upper bound becomes tight when N1(u) consists of a
clique and isolated nodes (Fig. 2, right) and the neighborhood
is sufficiently large. Specifically, let N1(u) consist of a clique

of size c and b isolated nodes. When � = 2,

C�(u) =
(
c

2

)
(
c+b

2

) = (c − 1)c

(c + b − 1)(c + b)
→

(
c

c + b

)2

and by Eq. (11), when 3 � � � c,

C�(u) = �
(
c

�

)
(c + b − � + 1)

(
c

�−1

) = c − � + 1

c + b − � + 1
→ c

c + b
.

By adjusting the ratio c/(b + c) in N1(u), we can construct a
family of graphs such that C2(u) takes any value in the interval
[0,1] as du → ∞ and C�(u) → √

C2(u) as du → ∞.
The second part of the result requires the neighborhoods

to be sufficiently large in order to reach the upper bound.
However, we will see later that in some real-world data, there
are nodes u for which C3(u) is close to the upper bound

√
C2(u)

for several values of C2(u).
Next, we analyze higher-order clustering coefficients in two

common random graph models: the Erdős-Rényi model with
edge probability p (i.e., the Gn,p model [29]) and the small-
world model [3].

B. Analysis for the Gn, p model

Now we analyze higher-order clustering coefficients in
classical Erdős-Rényi random graph model, where each edge
exists independently with probability p (i.e., the Gn,p model
[29]). We implicitly assume that � is small in the following
analysis so that there should be at least one �-wedge in the
graph (with high probability and n large, there is no clique of
size greater than (2 + ε) log n/ log(1/p) for any ε > 0 [30]).
Therefore, the global and local clustering coefficients are well
defined.

In the Gn,p model, we first observe that any �-wedge is
closed if and only if the � − 1 possible edges between the
�-clique and the outside node in the adjacent edge exist to form
an (� + 1)-clique. Each of the � − 1 edges exist independently
with probability p in the Gn,p model, which means that the
higher-order clustering coefficients should scale as p�−1. We
formalize this in the following proposition.

Proposition 2: Let G be a random graph drawn from the
Gn,p model. For constant �,

(1) EG[C�] = p�−1

(2) EG[C�(u) | W�(u) > 0] = p�−1 for any node u

(3) EG[C̄�] = p�−1

Proof: We prove the first part by conditioning on the set of
�-wedges, W�:

E[C�] = EG[EW�
[C� | W�]]

= EG

[
EW�

[
1

|W�|
∑

w∈W�
P[w is closed]

]]
= EG

[
EW�

[
1

|W�|
∑

w∈W�
p�−1

]]
= EG[p�−1]

= p�−1.

As noted above, the second equality is well defined (with high
probability) for small �. The third equality comes from the
fact that any �-wedge is closed if and only if the � − 1 possible
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edges between the �-clique and the outside node in the adjacent
edge exist to form an (� + 1)-clique.

The proof of the second part is essentially the same, except
we condition over the set of possible cases where W�(u) > 0.

Recall that Ṽ is the set of nodes at the center of at least
one �-wedge. To prove the third part, we take the conditional
expectation over Ṽ and use our result from the second part.

The above results say that the global, local, and average
�th-order clustering coefficients decrease exponentially in �. It
turns out that if we also condition on the second-order cluster-
ing coefficient having some fixed value, then the higher-order
clustering coefficients still decay exponentially in � for the
Gn,p model. This will be useful for interpreting the distribution
of local clustering coefficients on real-world networks.

Proposition 3: Let G be a random graph drawn from the
Gn,p model. Then for constant �,

EG[C�(u) | C2(u),W�(u) > 0]

= [
C2(u) − [1 − C2(u)]O

(
1/d2

u

)]�−1 ≈ [C2(u)]�−1.

Proof: Similarly to the proof of Proposition 3, we look at
the conditional expectation over W�(u) > 0:

EG[C�(u) | C2(u),W�(u) > 0]

= EG[EW�(u)>0[C�(u) | C2(u), W�(u)]]

= EG

[
EW�(u)>0

[
1

|W�(u)|
∑

w∈W�(u) P[w closed | C2(u)]
]]

.

Now note that N1(u) has m = C2(u)
(
du

2

)
edges. Knowing that

w ∈ W�(u) accounts for
(
�−1

2

)
of these edges. By symmetry,

the other q = m − (
�−1

2

)
edges appear in any of the remaining

r = (
du

2

) − (
�−1

2

)
pairs of nodes uniformly at random. There are(

r

q

)
ways to place these edges, of which

(
r−�+1
q−�+1

)
would close

the wedge w. Thus,

P[w is closed | C2(u)]

= (r−�+1
q−�+1)
(r

q)
= (r−�+1)!q!

(q−�+1)!r! = (q−�+2)(q−�+3)···q
(r−�+2)(r−�+3)···r .

Now, for any small nonnegative integer k,

q − k

r − k
= C2(u)·(du

2 )−(�−1
2 )−k

(du
2 )−(�−1

2 )−k

= C2(u) − [1 − C2(u)]
[

(�−1
2 )+k

(du
2 )−(�−1

2 )−k

]
= C2(u) − [1 − C2(u)]O

(
1/d2

u

)
(recall that � is constant by assumption, so the big-O notation
is appropriate). The above expression approaches [C2(u)]�−1

when C2(u) → 1 as well as when du → ∞.
Proposition 3 says that even if the second-order local

clustering coefficient is large, the �th-order clustering co-
efficient will still decay exponentially in �, at least in the
limit as du grows large. By examining higher-order clique
closures, this allows us to distinguish between nodes u whose
neighborhoods are “dense but random” (C2(u) is large but
C�(u) ≈ [C2(u)]�−1) or “dense and structured” (C2(u) is large
and C�(u) > [C2(u)]�−1). Only the latter case exhibits higher-
order clustering. We use this in our analysis of real-world
networks in Sec. IV.

FIG. 3. Average higher-order clustering coefficient C̄� as a func-
tion of rewiring probability p in small-world networks for � = 2,3,4
(n = 20 000, k = 5). Proposition 4 shows that the �th-order clustering
coefficient when p = 0 predicts that the clustering should decrease
modestly as � increases.

C. Analysis for the small-world model

We also study higher-order clustering in the small-world
random graph model [3]. The model begins with a ring network
where each node connects to its 2k nearest neighbors. Then,
for each node u and each of the k edges (u,v) with v following
u clockwise in the ring, the edge is rewired to (u,w) with
probability p, where w is chosen uniformly at random.

With no rewiring (p = 0) and k � n, it is known that C̄2 ≈
3/4 [3]. As p increases, the average clustering coefficient C̄2

slightly decreases until a phase transition near p = 0.1, where
C̄2 decays to 0 [3] (also see Fig. 3). Here we generalize these
results for higher-order clustering coefficients.

Proposition 4: In the small-world model without rewiring
(p = 0),

C̄� → (� + 1)/(2�)

for any constant � � 2 as k → ∞ and n → ∞ while 2k < n.
Proof: Applying Eq. (8), it suffices to show that

|K�(u)| = �

(� − 1)!
k�−1 + O(k�−2) (16)

as

C�(u) = � (�+1)k�

�!

(2k − � + 1) �k�−1

(�−1)!

,

which approaches �+1
2�

as k → ∞.
Now we give a derivation of Eq. (16). We first label the 2k

neighbors of u as 1,2, . . . ,2k by their clockwise ordering in
the ring. Since 2k < n, these nodes are unique. Next, define the
span of any �-clique containing u as the difference between the
largest and smallest label of the � − 1 nodes in the clique other
than u. The span s of any �-clique satisfies s � k − 1 since
any node is directly connected with a node of label difference
no greater than k − 1. Also, s � � − 2 since there are � − 1
nodes in an �-clique other than u. For each span s, we can find
2k − 1 − s pairs of (i,j ) such that 1 � i, j � 2k and j − i =
s. Finally, for every such pair (i,j ), there are

(
s−1
�−3

)
choices
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of � − 3 nodes between i and j which will form an �-clique
together with nodes u, i, and j . Therefore,

|K�(u)| = ∑k−1
s=�−2(2k − 1 − s)

(
s−1
�−3

)
= ∑k−1

s=�−2(2k − 1 − s) (s−1)(s−2)···(s−�+3)
(�−3)!

= ∑k−�+2
t=1 (2k + 2 − t − �) t(t+1)···(t+�−4)

(�−3)! .

If we ignore lower-order terms k and note that t = O(k), then
we get

|K�(u)| = ∑k
t=1

[
(2k−t)t�−3

(�−3)! + O(k�−3)
]

= 1
(�−3)!

∑k
t=1(2kt�−3 − t�−2) + O(k�−2).

= 1
(�−3)!

[
2k k�−2

�−2 − k�−1

�−1

]
+ O(k�−2),

= �
(�−1)!k

�−1 + O(k�−2).

Proposition 4 shows that, when p = 0, C̄� decreases as
� increases. When p 	= 0, obtaining a closed-form formula
for the expected value of C̄� remains an open problem. Via
simulation, we observe that C̄� also decreases as � increases.
The intuition is that cliques of larger size are hard to form in
these synthetic networks. Furthermore, we observe the same
behavior as for C̄2 when adjusting the rewiring probability p

(Fig. 3). Regardless of �, the phase transition happens near
p = 0.1. Essentially, once there is enough rewiring, all local
clique structure is lost, and clustering at all orders is lost.
This is partly a consequence of Proposition 1, which says that
C�(u) → 0 as C2(u) → 0 for any �.

IV. EXPERIMENTAL RESULTS ON REAL-WORLD
NETWORKS

We now analyze the higher-order clustering of real-world
networks. We first study how the higher-order global and
average clustering coefficients vary as we increase the or-
der � of the clustering coefficient on a collection of 20
networks from several domains. After, we concentrate on
a few representative networks and compare the higher-
order clustering of real-world networks to null models. We
find that only some networks exhibit higher-order clus-
tering once the traditional clustering coefficient is con-
trolled. Finally, we examine the local clustering of real-world
networks.

A. Higher-order global and average clustering

We compute and analyze the higher-order clustering for
networks from a variety of domains (Table I). We briefly
describe the collection of networks and their categorization
below:

(1) Two synthetic networks—a random instance of an
Erdős-Rényi graph with n = 1000 nodes and edge probability
p = 0.2 and a small-world network with n = 20 000 nodes,
k = 10, and rewiring probability p = 0.1;

(2) Four neural networks—the complete neural systems of
the nematode worms Pristionchus pacificus and Caenorhabdi-
tis elegans as well as the neural connections of the Drosophila
medulla and mouse retina;

(3) Four online social networks—two Facebook friend-
ship networks between students at universities from 2005

TABLE I. Higher-order clustering coefficients on random graph models, neural connections, online social networks, collaboration networks,
human communication, and technological systems. Broadly, networks from the same domain have similar higher-order clustering characteristics.
Since Ṽ� is the set of nodes at the center of at least one �-wedge [see Eq. (6)], |Ṽ�|/|V | is the fraction of nodes at the center of at least one
�-wedge (the higher-order average clustering coefficient C̄� is only measured over those nodes participating in at least one �-wedge).

Network Nodes Edges C2 C3 C4 C̄2 C̄3 C̄4 |Ṽ2|/|V | |Ṽ3|/|V | |Ṽ4|/|V |
Erdős-Rényi [29] 1000 99 831 0.200 0.040 0.008 0.200 0.040 0.008 1.000 1.000 1.000
Small-world [3] 20 000 100 000 0.480 0.359 0.229 0.489 0.350 0.205 1.000 1.000 0.999
P. pacificus [31] 50 141 0.349 0.234 0.166 0.471 0.274 0.141 0.700 0.520 0.400
C. elegans [3] 297 2148 0.181 0.080 0.056 0.308 0.137 0.062 0.949 0.926 0.808
Drosophila-medulla [32] 1781 8911 0.069 0.025 0.014 0.339 0.150 0.062 0.775 0.585 0.417
mouse-retina [33] 1076 90,811 0.400 0.269 0.212 0.593 0.468 0.401 0.996 0.995 0.992
fb-Stanford [34] 11 621 568 330 0.157 0.107 0.116 0.253 0.181 0.157 0.955 0.922 0.877
fb-Cornell [34] 18 660 790 777 0.136 0.106 0.121 0.225 0.169 0.148 0.973 0.951 0.923
Pokec [35] 1 632 803 22 301 964 0.047 0.044 0.046 0.122 0.084 0.061 0.900 0.675 0.508
Orkut [36] 3 072 441 117 185 083 0.041 0.022 0.019 0.170 0.131 0.110 0.978 0.949 0.878
arxiv-HepPh [37] 12 008 118 489 0.659 0.749 0.788 0.698 0.586 0.520 0.875 0.723 0.567
arxiv-AstroPh [37] 18 772 198 050 0.318 0.326 0.359 0.677 0.609 0.561 0.932 0.839 0.740
congress-committees [38] 871 79 886 0.424 0.269 0.218 0.499 0.364 0.320 1.000 1.000 1.000
dblp [39] 317 080 1 049 866 0.306 0.634 0.821 0.732 0.613 0.517 0.864 0.675 0.489
email-Enron-core [40] 148 1356 0.383 0.245 0.192 0.496 0.363 0.277 0.966 0.946 0.946
email-Eu-core [20,37] 1005 16 064 0.267 0.170 0.135 0.450 0.329 0.264 0.887 0.847 0.784
CollegeMsg [41] 1899 13 838 0.057 0.018 0.009 0.138 0.039 0.014 0.793 0.579 0.331
wiki-Talk [42] 2 394 385 4 659 565 0.002 0.011 0.010 0.201 0.081 0.051 0.262 0.077 0.027
oregon2-010526 [43] 11 461 32 730 0.037 0.085 0.097 0.494 0.294 0.300 0.711 0.269 0.121
as-caida-20071105 [43] 26 475 53 381 0.007 0.012 0.015 0.333 0.159 0.134 0.625 0.171 0.060
p2p-Gnutella31 [37,44] 62 586 147 892 0.004 0.003 0.000 0.010 0.001 0.000 0.542 0.067 0.001
as-skitter [43] 1 696 415 11 095 298 0.005 0.007 0.011 0.296 0.126 0.109 0.871 0.633 0.335
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(fb-Stanford, fb-Cornell) and two complete online friendship
networks (Pokec and Orkut);

(4) Four collaboration networks—two coauthorship net-
works constructed from arxiv submission categories (arxiv-
AstroPh and arxiv-HepPh), a coauthorship network con-
structed from dblp, and the cocommittee membership network
of United States congresspersons (congress-committees);

(5) Four human communication networks—two email net-
works (email-Enron-core, email-Eu-core), a Facebook-like
messaging network from a college (CollegeMsg), and the edits
of user talk pages by other users on Wikipedia (wiki-Talk); and

(6) Four technological systems networks—three au-
tonomous systems (oregon2-010526, as-caida-20071105,
as-skitter) and a peer-to-peer connection network (p2p-
Genutella31).

In all cases, we take the edges as undirected, even if the
original network data are directed.

Table I lists the �th-order global and average clustering
coefficients for � = 2,3,4 as well as the fraction of nodes that
are the center of at least one �-wedge (recall that the average
clustering coefficient is the mean only over higher-order local
clustering coefficients of nodes participating in at least one
�-wedge; see Kaiser [45] for a discussion on how this can
affect network analyses). We highlight some important trends
in the raw clustering coefficients, and in the next section, we
focus on higher-order clustering compared to what one gets in
a null model.

Propositions 2 and 4 say that we should expect the higher-
order global and average clustering coefficients to decrease as
we increase the order � for both the Erdős-Rényi and small-
world models, and indeed C̄2 > C̄3 > C̄4 for these networks.
This trend also holds for all of the real-world networks except
oregon2-010526, where C̄4 is slightly larger than C̄3 (but C̄2

is still the largest). Thus, when averaging over nodes, higher-
order cliques are overall less likely to close in both the synthetic
and real-world networks.

The relationship between the higher-order global clustering
coefficient C� and the order � is less uniform over the data
sets. For the three coauthorship networks (arxiv-HepPh, arxiv-
AstroPh, and dblp) and the three autonomous systems networks
(oregon2-010526, as-caida-20071105, and as-skitter), C� in-
creases with �, although the base clustering levels are much
higher for coauthorship networks. This is not simply due to
the presence of cliques—a clique has the same clustering for
any order (Fig. 2, left). Instead, due to core-periphery network
structure [50,51], these data sets may have nodes that serve as
the center of a star and also participate in a clique (Fig. 2, right;
see also Proposition 1). On the other hand, C� decreases with
� for the two email networks and the four neural networks.
Finally, the change in C� need not be monotonic in �. In three
of the four online social networks, C3 < C2 but C4 > C3.

Overall, the trends in the higher-order clustering coefficients
can be different within one of our data-set categories but
tend to be uniform within a particular domain: The change
of C̄� and C� with � is the same for the two email networks
within the communication networks, the three coauthorship
networks within the collaboration networks, and all four neural
networks. These trends hold even if the (classical) second-order
clustering coefficients differ substantially in absolute value.

While the raw clustering values are informative, it is also
useful to compare the clustering to what one expects from null
models. We find in the next section that this reveals additional
insights into our data.

B. Comparison against null models

For one real-world network from each data-set category,
we also measure the higher-order clustering coefficients with
respect to two null models (Table II). First, we compare against
the configuration model (CM) that samples uniformly from
simple graphs with the same degree distribution [46,47]. In
real-world networks, C̄2 is much larger than expected with re-
spect to the CM null model. We find that the same holds for C̄3.

Second, we use a null model that samples graphs preserv-
ing both degree distribution and C̄2. Specifically, these are
samples from an ensemble of exponential graphs where the
Hamiltonian measures the absolute value of the difference
between the original network and the sampled network [48].
Such samples are referred to as maximally random clustered
networks (MRCN) and are sampled with a simulated annealing
procedure [49]. Comparing C̄3 between the real-world and the
null network, we observe different behavior in higher-order
clustering across our data sets. Compared to the MRCN null
model, C. elegans has significantly less than expected higher-
order clustering (in terms of C̄3), the Facebook friendship
and autonomous system networks have significantly more
than expected higher-order clustering, and the coauthorship
and email networks have slightly (but not significantly) more
than expected higher-order clustering (Table II). Put another
way, all real-world networks exhibit clustering in the classical
sense of triadic closure. However, the higher-order clustering
coefficients reveal that the friendship and autonomous systems
networks exhibit significant clustering beyond what is given by
triadic closure. These results suggest the need for models that
directly account for closure in node neighborhoods [52,53].

Our finding about the lack of higher-order clustering in
C. elegans agrees with previous results that 4-cliques are
underexpressed, while open 3-wedges related to cooperative
information propagation are overexpressed [15,54,55]. This
also provides credence for the “three-layer” model of C.
elegans [55]. The observed clustering in the friendship network
is consistent with prior work showing the relative infrequency
of open �-wedges in many Facebook network subgraphs
with respect to a null model accounting for triadic closure
[56]. Coauthorship networks and email networks are both
constructed from “events” that create multiple edges—a paper
with k authors induces a k-clique in the coauthorship graph and
an email sent from one address to k others induces k edges.
This event-driven graph construction creates enough closure
structure so that the average third-order clustering coefficient
is not much larger than random graphs where the classical
second-order clustering coefficient and degree sequence is kept
the same.

We emphasize that simple clique counts are not suffi-
cient to obtain these results. For example, the discrepancy
in the third-order average clustering of C. elegans and the
MRCN null model is not simply due to the presence of 4-
cliques. The original neural network has nearly twice as many
4-cliques (2010) than the samples from the MRCN model
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TABLE II. Average higher-order clustering coefficients for five networks as well as the clustering with respect to two null models: a
configuration model (CM) that samples random graphs with the same degree distribution [46,47], and maximally random clustered networks
(MRCN) that preserve degree distribution as well as C̄2 [48,49]. For the random networks, we report the mean over 100 samples. An asterisk
(∗) denotes when the value in the original network is at least five standard deviations above the mean and a dagger (†) denotes when the value
in the original network is at least five standard deviations below the mean. Although all networks exhibit clustering with respect to CM, only
some of the networks exhibit higher-order clustering when controlling for C̄2 with MRCN.

C. elegans fb-Stanford arxiv-AstroPh email-Enron-core oregon2-010526

Original CM MRCN Original CM MRCN Original CM MRCN Original CM MRCN Original CM MRCN

C̄2 0.31 0.15∗ 0.31 0.25 0.03∗ 0.25 0.68 0.01∗ 0.68 0.50 0.23∗ 0.50 0.49 0.25∗ 0.49
C̄3 0.14 0.04∗ 0.17† 0.18 0.00∗ 0.14∗ 0.61 0.00∗ 0.60 0.36 0.08∗ 0.35 0.29 0.10∗ 0.14∗

(mean 1006.2, standard deviation 73.6), but the third-order
clustering coefficient is larger in MRCN. The reason is that
clustering coefficients normalize clique counts with respect to
opportunities for closure.

Thus far, we have analyzed global and average higher-order
clustering, which both summarize the clustering of the entire
network. In the next section, we look at more localized prop-
erties, namely the distribution of higher-order local clustering
coefficients and the higher-order average clustering coefficient
as a function of node degree.

C. Higher-order local clustering coefficients
and degree dependencies

We now examine more localized clustering properties of our
networks. Figure 4 (left column) plots the joint distribution of
C2(u) and C3(u) for the five networks analyzed in Table II
[along with a linear model for C3(u) in terms of C2(u); see
also Table III], and Fig. 5 (left column) provides the analogous
plots for the Erdős-Rényi and small-world networks. In these
plots, the lower dashed trend line represents the expected
Erdős-Rényi behavior, i.e., the expected clustering if the edges
in the neighborhood of a node were configured randomly, as
formalized in Proposition 3. The upper dashed trend line is the
maximum possible value of C3(u) given C2(u), as given by
Proposition 1.

For many nodes in C. elegans, local clustering is nearly
random [Fig. 4(a), left], i.e., resembles the Erdős-Rényi joint
distribution [Fig. 5(a), left]. In other words, there are many
nodes that lie on the lower trend line. The fitted linear model
of C3(u) in terms of C2(u) further highlights this concept (see
also Table III). Overall, this provides further evidence that C.

TABLE III. Linear regression models of the form ln C3(u) =
m ln C2(u) + b for the plots in the left column of Figs. 4 and 5. The
regression coefficients m and b are listed with the standard error, along
with the R2 values of each model.

Network m b R2

C. elegans 1.424 ± 0.059 −0.318 ± 0.067 0.770
fb-Stanford 1.311 ± 0.005 0.089 ± 0.008 0.879
arxiv-AstroPh 1.146 ± 0.002 −0.014 ± 0.002 0.936
email-Enron-core 1.360 ± 0.037 −0.104 ± 0.030 0.908
oregon2-010526 1.005 ± 0.009 −0.158 ± 0.011 0.886
Erdős-Rényi 2.003 ± 0.021 0.006 ± 0.034 0.899
Small-world 0.886 ± 0.004 −0.424 ± 0.003 0.672

elegans lacks higher-order clustering. In the arxiv coauthorship
network, there are many nodes u with a large value of C2(u)
that have an even larger value of C3(u) near the upper bound of
Eq. (14) [see the inset of Fig. 4(c), left]. This implies that some
nodes appear in both cliques and also as the center of starlike
patterns, as in Fig. 2. On the other hand, only a handful of
nodes in the Facebook friendships, Enron email, and Oregon
autonomous systems networks are close to the upper bound
[insets of Figs. 4(b), 4(d), and 4(e), left]. However, there are
still several nodes in the friendship and autonomous system
networks that have a larger third-order clustering coefficient
than second-order (classical) clustering coefficient.

Figures 4 and 5 (right columns) plot higher-order average
clustering as a function of node degree in the real-world
and synthetic networks. In the Erdős-Rényi, small-world, C.
elegans, and Enron email networks, there is a distinct gap
between the average higher-order clustering coefficients for
nodes of all degrees. Thus, our previous finding that the average
clustering coefficient C̄� decreases with � in these networks is
independent of degree. In the Facebook friendship network,
C2(u) is larger than C3(u) and C4(u) on average for nodes of
all degrees, but C3(u) and C4(u) are roughly the same for nodes
of all degrees, which means that 4-cliques and 5-cliques close
at roughly the same rate, independent of degree, albeit at a
smaller rate than traditional triadic closure [Fig. 4(b), right].
In the coauthorship network, nodes u have roughly the same
C�(u) for � = 2, 3, 4, which means that �-cliques close at
about the same rate, independent of � [Fig. 4(c), right]. In the
Oregon autonomous systems network, we see that, on average,
C4(u) > C3(u) > C2(u) for nodes with large degree [Fig. 4(e),
right]. This explains how the global clustering coefficient
increases with the order, but the average clustering does not,
as observed in Table I.

V. DISCUSSION

We have proposed higher-order clustering coefficients to
study higher-order closure patterns in networks, which general-
izes the widely used clustering coefficient that measures triadic
closure. Our work compliments other recent developments
on the importance of higher-order information in network
navigation [17,57] and on temporal community structure [58];
in contrast, we examine higher-order clique closure and only
implicitly consider time as a motivation for closure. Extending
our ideas to more network models, such as bipartite and
multilayer networks, provides an avenue for future research.
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(a)

(b)

(c)

(d)

(e)

FIG. 4. Left column: Joint distributions of (C2(u), C3(u)) for
(a) C. elegans, (b) friendship, (c) coauthorship, (d) email, and (e)
autonomous systems networks. There is a blue dot for each node u

with C2(u) 	= 0 and C3(u) 	= 0. The red curve is a linear fit of ln C3(u)
in terms of ln C2(u) and an intercept (see Table III). The upper trend
line is the bound in Eq. (14)—the largest possible value of C3(u) given
C2(u). The lower trend line is the expected Erdős-Rényi behavior from
Proposition 3. Left column insets: The insets are enlarged versions
of the figure for the data where both C2(u) and C3(u) are inside
the interval [0.5,1]. Right column: Average second-order (classical),
third-order, and fourth-order clustering coefficient as a function of
node degree.

(a)

(b)

FIG. 5. Analogous plots of Fig. 4 for an instance of (a) Erdős-
Rényi and (b) small-world random graphs (see the caption in Fig. 4
for a more complete explanation of the figure). Left column: Joint
distributions of (C2(u), C3(u)) with a linear fit of the natural logs
of the third-order clustering coefficient in terms of the second-order
(classical) clustering coefficient (see Table III). The insets show
the domain restricted to C2(u) and C3(u) both inside the interval
[0.5,1]. Right column: Average higher-order clustering coefficients
as a function of degree.

Prior efforts in generalizing clustering coefficients have fo-
cused on shortest paths [59], cycle formation [60], and triangle
frequency in k-hop neighborhoods [61,62]. Such approaches
fail to capture closure patterns of cliques, suffer from chal-
lenging computational issues, and are difficult to theoretically
analyze in random graph models more sophisticated than the
Erdős-Rényi model. On the other hand, our higher-order clus-
tering coefficients are simple but effective measurements that
are analyzable and easily computable (we only rely on clique
enumeration, a well-studied algorithmic task). Furthermore,
our methodology provides new insights into the clustering
behavior of several real-world networks and random graph
models, and our theoretical analysis provides intuition for
the way in which higher-order clustering coefficients describe
local clustering in graphs.

Finally, we focused on higher-order clustering coefficients
as a global network measurement and as a node-level mea-
surement. In related work we also show that large higher-order
clustering implies the existence of mesoscale clique-dense
community structure [20].

The web site associated with this paper, which includes
software for computing higher-order clustering coefficients, is
http://snap.stanford.edu/hocc.
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