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Deceased public figures are often said to live on in collective
memory. We quantify this phenomenon by tracking mentions of
2,362 public figures in English-language online news and social
media (Twitter) 1 y before and after death. We measure the sharp
spike and rapid decay of attention following death and model col-
lective memory as a composition of communicative and cultural
memory. Clustering reveals four patterns of postmortem memory,
and regression analysis shows that boosts in media attention are
largest for premortem popular anglophones who died a young,
unnatural death; that long-term boosts are smallest for leaders
and largest for artists; and that, while both the news and Twitter
are triggered by young and unnatural deaths, the news addition-
ally curates collective memory when old persons or leaders die.
Overall, we illuminate the age-old question of who is remem-
bered by society, and the distinct roles of news and social media
in collective memory formation.

computational social science | collective memory | news and social media
analysis | forgetting

Being remembered after death has been an important con-
cern for humans throughout history (1), and conversely,

many cultures have considered damnatio memoriae—being pur-
posefully erased from the public’s memory—one of the most
severe punishments conceivable (2). To reason about the pro-
cesses by which groups and societies remember and forget, the
French philosopher and sociologist Maurice Halbwachs intro-
duced the concept of collective memory in 1925 (3), which has
since been a subject of study in numerous disciplines, including
anthropology, ethnography, philosophy, history, psychology, and
sociology, and which gave rise to the new discipline of memory
studies (4). Over the decades, collective memory has moved from
being a purely theoretical construct to becoming a practical phe-
nomenon that can be studied empirically (5), e.g., in order to
quantify to what extent US presidents are remembered across
generations (6) or how World War II is remembered across
countries (7).

Whereas oral tradition formed the basis for collective mem-
ory in early human history, today the media play a key role
in determining what and who is remembered, and how (8–
11). Researchers have studied the role of numerous media in
constructing the postmortem memory of deceased public fig-
ures. A large body of work has investigated the journalistic
format of the obituary (12–16), which captures how persons
are remembered around the time of their death (14). Tak-
ing a more long-term perspective, other work has considered
how deceased public figures are remembered in the media
over the course of years and decades (17–21). As ever more
aspects of life are shifting to the online sphere, the Web is also
gaining importance as a global memory place (22), which has
led researchers to study, e.g., how social media users (23–27)
and Wikipedia editors (28) react to the death of public fig-
ures. In the context of social media, the detailed analysis of
highly visible individual cases, such as Princess Diana (24), pop
star Michael Jackson (25, 26), or race car driver Dale Earn-
hardt (27), has revealed how people experience and overcome

the collective trauma that can ensue following the death of
celebrities.

Although such studies of individuals have led to deep insights
at a fine level of temporal granularity, they lack breadth by
excluding all but some of the very most prominent public figures.
What is largely absent from the literature is a general under-
standing of patterns of postmortem memory in the media that
goes beyond single public figures.

To bridge this gap, we draw inspiration from a body of related
work that has studied the temporal evolution of collective mem-
ory using large-scale datasets—although, unlike our work, not
with a focus on the immediate postmortem period of public fig-
ures. For instance, van de Rijt et al. (20) tracked thousands
of person names in news articles, finding that famous people
tend to be covered by the news persistently over decades. In
a similar analysis, Cook et al. (19) further showed that the
duration of fame had not decreased over the course of the
last century. Beyond news corpora, the online encyclopedia
Wikipedia has become a prime resource for the data-driven
study of collective memory. Researchers have leveraged the tex-
tual content of Wikipedia articles (29), as well as logs of both
editing (30) and viewing (31, 32), as proxies for the collective
memory of traumatic events such as terrorist attacks or air-
plane crashes. Jatowt et al. (33) characterized the coverage and
popularity of historical figures in Wikipedia, observing vastly
increased page-view counts for people from the 15th and 16th
centuries, a fact that Jara-Figueroa et al. (34) later attributed
to the invention of the printing press. In addition to news and
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encyclopedic articles, books (35–37) and social media (38, 39)
have also emerged as important assets for studying collective
memory.

Whereas the above works are primarily descriptive in nature,
researchers have also developed mathematical models of the
growth and decay of collective memory. Notably, as part of a
rich literature on the evolution of performance, fame, and suc-
cess in the arts and sciences (40–45), Candia et al. (46) analyzed
thousands of papers, patents, songs, movies, and athletes, show-
ing that the decay of the intensity of collective memory can be
well described by a biexponential function that captures two
aspects of collective memory: communicative memory, which is
“sustained by the oral transmission of information,” and cul-
tural memory, which is “sustained by the physical recording of
information” (46).

We extend this literature by studying how the coverage of
thousands of public figures in news and social media evolved
during the year following their death. Our approach combines
the Freebase knowledge base (47)—a comprehensive reposi-
tory containing records for over 3 million public figures—with
an extensive corpus of online news and social media compiled
via the online media aggregation service Spinn3r (48), which
comprises, for each day, hundreds of thousands of news arti-
cles from a complete set of all 6,608 English-language Web
domains indexed by Google News and tens of millions of
social media posts from Twitter, amounting to about one-
third of full English Twitter (details in Materials and Methods;
number of documents per day in SI Appendix, Fig. 1). The
population of study consists of 2,362 public figures who died
between 2009 and 2014 and received at least a minimum amount
of premortem coverage both in the news and on Twitter. For
each person, we tracked the daily frequency with which they
were mentioned in the two media during the year before and
the year after death, and operationalize postmortem mem-
ory via the resulting time series of mention frequency. (For
details about data and preprocessing, see Materials and Meth-
ods.) Analyzing the mention time series allowed us to quan-
tify the extreme spike and rapid decay of attention that tend
to follow the death of public figures, a pattern well captured
by a power law shifted by a constant additive offset. A clus-
ter analysis of mention time series revealed four prototypical
patterns of postmortem memory (“blip,” “silence,” “rise,” and
“decline”), and a regression analysis shed light on the bio-
graphic correlates of postmortem memory and on systematic
differences between postmortem memory in mainstream news
vs. social media. We conclude that the prototypical persona
with the largest postmortem boost in English-language media
attention can be described as an anglophone who was already
well known before death and died a young, unnatural death.
Long-term attention boosts are on average smallest for lead-
ers and largest for artists. Finally, while both the mainstream
news and Twitter are triggered by young and unnatural deaths,
the mainstream news—but not Twitter—appears to also assume
an additional role as stewards of collective memory when an
old person or an accomplished leader dies. Overall, the present
work helps illuminate an age-old question: Who is remembered
by society?

Results
We strive to characterize the patterns by which postmortem
memory evolves during the year immediately following the death
of public figures. When considering this time frame, prior work
has primarily taken a qualitative stance, asking how, linguisti-
cally, the mainstream and social media speak about small sets
of deceased people (15, 16, 23–27). In contrast, enabled by a
comprehensive corpus of news and social media posts, we take
a quantitative stance, asking about whom the media speak how
much after death.

At the core of our analysis are time series of mention fre-
quency. A person i ’s “raw mention time series” specifies, for each
day t relative to i ’s day of death (t =0), the base-10 logarithm of
the fraction Si(t) of documents in which person i was mentioned,
out of all documents published on day t . To reduce noise, we also
generated “smoothed mention time series” using a variable span
smoother based on local linear fits (49). For each person, sep-
arate time series were computed for the news and for Twitter
(examples in Fig. 1; additional details about mention time series
construction in Materials and Methods).

The Shape of Postmortem Memory: Communicative and Cultural
Memory. Averaging the 2,362 raw mention time series (Fig. 2)
exposes a sharp spike in the interest in public figures in the imme-
diate wake of their death (on days 0 and 1), followed by a steep
drop up until around day 30, where the curves elbow into a long,
much flatter phase, which is only slightly disrupted by a small sec-
ondary spike on day 365 after death. The main spike is so strong
that, without logarithmically transforming the fractions Si(t) of
mentioning documents, no interesting information besides the
dominant main spike would be visually discernible.

In a model that is conceptually similar to Candia et al.’s
biexponential model (46), we decompose the postmortem col-
lective memory S(t) into a sum of two components, S(t)=
u(t)+ v(t), where u(t) captures “communicative memory,”
and v(t), “cultural memory” (see Introduction). Communica-
tive memory is modeled as a decaying power law, i.e., u(t)=
at−b ,∗ whereas cultural memory is modeled as constant dur-
ing the time frame considered here (400 d after death), i.e.,
v(t)= c. We refer to this model as a “shifted power law.”
It fits the empirical average mention time series (R2 =0.99;
details on model fitting in Materials and Methods) significantly
better than any of eight alternative models from the litera-
ture (46, 50, 51) (details in SI Appendix, Fig. 2), including the
biexponential model (46). The best shifted power law fit is
shown as a black line in Fig. 2; the communicative and cultural
memory components are plotted separately in green and red,
respectively.

The fitted decay parameter of communicative memory is
similar for the news (b=1.34) and for Twitter (b=1.54). Com-
municative memory starts high on day t =1, but drops below
cultural memory quickly, after 14 and 18 d in the news and on
Twitter, respectively, and accounts for only 25% of total collec-
tive memory after 31 and 36 d, respectively, which constitutes an
inflection point where communicative memory levels off strongly
(SI Appendix, Fig. 3). Moreover, even though no premortem
data were used in fitting the model, the constant cultural mem-
ory c closely approximates the average premortem fraction of
mentioning documents in both media (cf. Fig. 2).

This suggests that, on average, public figures build up a certain
baseline amount of (cultural) memory during their lifetime, on
top of which a burst of quickly fading communicative memory
is layered in the wake of death. Note that, although collective
memory rapidly reverts to the premortem level when averaging
over all people, it need not be so for individual people, as we
shall see below (Fig. 3B).

Further evidence in support of two distinct memory modes
comes from the fact that the average length of documents that
mention a public figure dropped sharply with death (possibly
due to brief death notes and obituaries) and reached the pre-
mortem level again after about 30 d (SI Appendix, Fig. 4), i.e.,
around the inflection point where communicative memory levels
off according to the fitted model.

*With u(t) = at−b, we have du(t)/dt =−(b/t) u(t), so the forgetting rate b/t (fraction
of memory lost at time t) decreases over time, in line with what is suggested by the
psychological literature (50).
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Fig. 1. Examples of mention time series for four deceased public figures, as observed (A) in the news and (B) on Twitter. In mention time series, the x axis
specifies the number of days since death, and the y axis, the base-10 logarithm of the fraction of documents in which the person was mentioned that day,
out of all documents published that day. Light circles correspond to raw mention time series, and dark curves, to their smoothed versions.

We hence divide the postmortem period into two phases:
short-term (days 0 through 29) and long-term (days 30 through
360). Based on this distinction, in order to reason about the
shape of mention time series, we summarize each time series by
four characteristic numbers (depicted graphically in Fig. 3A):

1. Premortem mean: arithmetic mean of days 360 through 30
before death.

2. Short-term boost: maximum of days 0 through 29 after death,
minus the premortem mean.

3. Long-term boost: arithmetic mean of days 30 through 360
after death, minus the premortem mean.

4. Halving time: number of days required to accumulate half
of the total area between the postmortem curve (includ-
ing the day of death) and the minimum postmortem
value.
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Fig. 2. Average mention time series, obtained via the arithmetic mean of the individual raw mention time series of the 2,362 people included in the study,
(A) in the news and (B) on Twitter (see Fig. 1 for examples of individual mention time series). On average, the mention frequency of deceased public figures
spikes by about 9,400% in the news, and by about 28,000% on Twitter, when they die, and fades quickly thereafter, with a minor secondary spike on the
death anniversary. We also plot the best fit of the shifted power law model (black), which decomposes the total collective memory S(t) = u(t) + v(t) on day
t into a sum of communicative memory u(t) = at−b (green) and cultural memory v(t) = c (red). Insets show the same data and fits on logarithmic x axes.
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Fig. 3. Cluster analysis of mention time series. (A) From each mention time series, we extract four characteristic numbers: premortem mean, short-term
boost, long-term boost, and halving time. In the resulting four-dimensional space, time series are clustered using the k-means algorithm. According to the
average silhouette criterion, the optimal number of clusters is k = 4 both in the news and on Twitter. (B) Nearly identical clusters (C1 through C4) emerge
independently in the news and on Twitter, in terms of both cluster centroids and cluster sizes. Cluster centroids are depicted as bar charts in the right (news)
and bottom (Twitter) margins; average mention time series for each cluster, in the left (news) and top (Twitter) margins. As captured by the confusion
matrix, whose diagonal entries are much larger than under a null model that assumes the two media to be independent, a given person tends to fall into
the corresponding clusters in the two media.

All characteristics were computed on the smoothed time
series, with the exception of the maximum used in the short-
term boost, which was computed on the raw time series. The 29
d immediately before death were excluded from the premortem
mean in an effort to exclude a potential rise in interest in peo-
ple whose impending death might have been anticipated, e.g.,
due to illness. Since the time series capture logarithmic men-
tion frequencies, the (arithmetic) premortem mean corresponds
to the logarithm of the geometric mean mention frequency, and
the short- and long-term boosts, to the logarithm of the multi-
plicative increase over the premortem geometric mean mention
frequency.

Magnitude of Short- and Long-Term Boosts. Aggregating the short-
term boost over all public figures allows us to quantify the
sharp spike immediately after death observed in Fig. 2. The
median short-term boost was 1.98 (95% CI [1.90, 2.03]) in the
news, and 2.45 (95% CI [2.37, 2.50]) on Twitter. (All curve char-
acteristics are summarized in SI Appendix, Table 2 and Fig.
5.) The boost was significantly stronger on Twitter (Wilcoxon’s
signed-rank test: W =477 893, two-sided P < 10−15), where it
approximately corresponded to a 28,000% increase on the linear
scale (102.45≈ 281), compared to a 9,400% increase in the news
(101.98≈ 95).

After the immediate spike, media interest tended to fade
quickly. In the news, no important long-term boost was observed
(median 0.000545, 95% CI [−0.000908, 0.00171]), whereas
on Twitter, we measured a significantly larger (Wilcoxon’s
signed-rank test: W =881 590, two-sided P < 10−15) long-
term boost of 0.0160 in the median (95% CI [0.0133, 0.0175]),
translating to a 3.8% increase on the linear scale
(100.016≈ 1.038).

Cluster Analysis of Mention Time Series. Mention time series
expose a great variety of curve shapes, a glimpse of which is
given by the examples of Fig. 1. We hypothesized that, despite
their diversity, mention time series could be grouped into distinct
classes, a hypothesis that we explored in a cluster analysis. Time
series were represented by their four characteristic numbers
(premortem mean, short-term boost, long-term boost, halving
time) in z -score-standardized form and clustered using the k -
means algorithm. A separate clustering was performed for the
news and for Twitter. Evaluating all numbers of clusters k ∈
{2, . . . , 30} via the average silhouette criterion (52) revealed a
clear optimum for k =4 clusters for both the news and Twitter
(SI Appendix, Fig. 7).

The cluster centroids are visualized in the right and bottom
margins of Fig. 3B; the right margin shows the centroids for the
news, the bottom margin, for Twitter. Moreover, we plot the
average smoothed mention time series for each cluster in the left
(news) and top (Twitter) margins. (An overlay of all time series
per cluster is plotted in SI Appendix, Fig. 8) Strikingly, although
the clustering was performed independently for the news and
for Twitter, respectively, the centroids that emerged—as well as
the number of data points in each cluster—are nearly identical.
The resulting clusters, which we name C1 through C4 in order of
decreasing size, can be described as follows:

C1 (“blip”): Average mention frequency pre- as well as post-
mortem, with a short-term boost of average magnitude in
between (62% of people in the news; 59% on Twitter).

C2 (“silence”): Average mention frequency pre- as well as post-
mortem, with a faint short-term boost of below-average
magnitude in between (28% in the news; 26% on Twitter).
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C3 (“rise”): High premortem mention frequency, large short-
term boost, followed by an extreme long-term boost (7% in
the news; 11% on Twitter).

C4 (“decline”): Extreme premortem mention frequency, above-
average short-term boost, followed by a below-average long-
term boost (3% in the news; 4% on Twitter).

In both media, over half of the people (59–62%) fall into clus-
ter C1; their time series resemble the overall average (Fig. 2),
with a brief spike after death and a quick drop to the—usually
low—premortem level. About half of the remaining people (26–
28%) fall into cluster C2; their time series are similar to those
of C1, with the difference that the death of people in C2 went
largely unnoticed. About half of the people outside of C1 and
C2 (7–11%) fall into C3, which mostly contains people who were
popular already before death and experienced a large boost in
attention in both the short and the long term. The final clus-
ter, C4, is composed of a tiny elite (3–4%) of people of an
extreme premortem popularity that tended to fade postmortem.
The long-term decrease was considerably stronger in the news
than on Twitter in this cluster.

Not only do nearly identical clusters of nearly identical size
emerge in the news as on Twitter; a given person also tends to
fall into the corresponding clusters in the two media, as captured
by the cluster confusion matrix (Fig. 3B), which counts, for all
i , j ∈{1, 2, 3, 4}, the number of people falling into news cluster
i and Twitter cluster j . Using Pearson’s χ2 test, we reject the
null hypothesis under which cluster membership is assumed to be
independent in the news vs. Twitter, given the empirical marginal
cluster sizes (χ2 =11739, P < 10−5). In particular, all diagonal
entries of the confusion matrix are strongly overrepresented,†

whereas all but two off-diagonal entries are underrepresented,
and “C3 in news, C4 on Twitter” is the only off-diagonal entry
to be significantly overrepresented (one-sample proportions test
with continuity correction: χ2 =135,P < 10−15).

Biographic Correlates of Postmortem Memory. Next, we aim to
understand what premortem properties of a person are associ-
ated with their postmortem mention frequency. A naive corre-
lational analysis would not suffice for this purpose, as personal
properties are correlated with one another; e.g., leaders (politi-
cians, CEOs, etc.) in the dataset are more likely to have died
old and of a natural death, and are more likely to be men,
compared to artists. In order to disentangle such correlations,
we performed a regression analysis. We fitted linear regression
models for two outcomes:
1. short-term boost,
2. long-term boost,
and with six predictors in either case:
1. premortem mean mention frequency,
2. age at death (factor with eight levels: 20–29, 30–39, . . .,

90–99),
3. manner of death (factor with two levels: natural, unnatural),
4. notability type (factor with six levels, specifying a profession or

role for which the person was most known: arts, sports, lead-
ership [including politicians, business/organization leaders,
religious leaders, military, etc.], known for death [including
disaster victims], general fame, academia/engineering),

5. language (factor with three levels: anglophone, non-anglo-
phone, unknown), and

6. gender (factor with two levels: female, male).

†The empirical trace (the sum of diagonal elements) is 1,727. Under the null hypothesis,
the expected trace would be 1,059. Given the marginal constraints, the minimum and
maximum traces that could possibly be attained are 505 and 2,236, respectively (deter-
mined via linear programming). That is, the empirical trace attains 71% of the range
between the minimum and the maximum, whereas the null model attains only 32%.

Out of all 2,362 people, the regression analysis only included
the 870 people for whom all factors took one of the above-
defined levels (details on definition of biographic features in
Materials and Methods; distribution summarized in SI Appendix,
Table 1). All factor variables were dummy-coded as binary indi-
cators. The premortem mean was first rank-transformed and
then linearly scaled and shifted to the interval [−0.5, 0.5]. Addi-
tionally, 70–79 y (which contains the mean and median age at
death) was chosen as the default age level, and the most fre-
quent level was chosen as the default for all other factors, such
that the regression intercept captures the average outcome for
a “baseline persona” representing male anglophone artists of
median premortem popularity who died a natural death at age
70–79. With the above, a coefficient β for a binary predictor cor-
responds to an additive boost increase of β with respect to the
baseline persona, or—since boosts are base-10 logarithms (of
postmortem-to-premortem ratios of mention frequencies)—to a
multiplicative postmortem-to-premortem ratio increase of 10β .
A separate regression model was fitted for each combination
of medium (news or Twitter) and outcome (short- or long-term
boost), for a total of four models.

The model coefficients (summarized in Table 1) paint a
largely consistent picture for the news vs. Twitter. We observe
that, in both media, ceteris paribus, both the short- and the
long-term boost were larger for people who died an unnatu-
ral death, for people with an anglophone background, and for
people who were already popular premortem. No significant
gender variation was detected, with the exception of the long-
term boost in the news, which was slightly larger for women.
The only significant notability type was leadership, whose long-
term boost was smaller than that of the baseline (arts) in both
media.

The dependence of short- and long-term boosts on the age
at death is displayed visually in Fig. 4 A and B. In order to
determine whether the above finding that attention increased
more for people who died an unnatural death holds across
age brackets, the plots are based on a slightly modified model
with an additional “age by manner of death” interaction term.
This allows us to estimate the average postmortem attention
boost attained by each age bracket separately for people who
died natural vs. unnatural deaths (as before, the estimates are
for male anglophone artists of median premortem popularity).
Inspecting the curves of Fig. 4 A and B, we make two observa-
tions. First, across age brackets, people who died an unnatural
death received larger boosts, both short- and long-term, and
both in the news and on Twitter. Second, the curves have a
nonmonotonic U-shape for the news (Fig. 4A), but are monoton-
ically decreasing for Twitter (Fig. 4B); i.e., the news increased
attention most for those who died either very young or very
old, whereas Twitter increased attention more the younger the
deceased.

News vs. Twitter. The above analyses were done separately for
the news and Twitter. In order to understand how postmortem
memory of the same person differed between the two media,
we conducted a pairwise analysis. We again fitted linear regres-
sion models with the same predictors as above, but this time
with outcomes defined by the news-minus-Twitter difference in
short- and long-term boosts. Accordingly, the rank-transformed
and scaled premortem mean predictor was replaced with the
news-minus-Twitter difference in rank-transformed and scaled
premortem means. Given this setup, large positive coefficients
mark groups of people who received particularly strong boosts
in the news compared to Twitter, and large negative coefficients
mark groups of people who received particularly strong boosts
on Twitter compared to the news.

The model coefficients (summarized in Table 2) reveal that
those who died an unnatural death, as well as leaders, received
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Table 1. Linear regression models of short- and long-term boosts in news and Twitter

Short-term boost Short-term boost Long-term boost Long-term boost
(news) (Twitter) (news) (Twitter)

(Intercept) 2.322 (0.063)*** 2.670 (0.067)*** 0.088 (0.014)*** 0.095 (0.015)***
Premortem mean (relative rank) 0.804 (0.093)*** 0.948 (0.100)*** 0.031 (0.020) 0.086 (0.022)***
Manner of death: unnatural 0.618 (0.095)*** 0.282 (0.100)** 0.097 (0.021)*** 0.106 (0.022)***
Language: non-anglophone −0.316 (0.074)*** −0.116 (0.078) −0.061 (0.016)*** −0.037 (0.017)*
Language: unknown −0.446 (0.086)*** −0.325 (0.091)*** −0.079 (0.019)*** −0.081 (0.020)***
Gender: female 0.083 (0.072) −0.034 (0.076) 0.034 (0.016)* 0.006 (0.017)
Notability type: academia/engineering 0.181 (0.197) 0.340 (0.208) −0.032 (0.043) 0.023 (0.046)
Notability type: general fame 0.070 (0.124) 0.132 (0.131) −0.010 (0.027) −0.008 (0.029)
Notability type: known for death −0.107 (0.099) −0.088 (0.106) −0.021 (0.022) 0.008 (0.023)
Notability type: leadership 0.152 (0.083) 0.113 (0.087) −0.058 (0.018)** −0.040 (0.019)*
Notability type: sports 0.049 (0.083) 0.072 (0.088) −0.034 (0.018) −0.034 (0.020)
Age: 20–29 0.162 (0.170) 0.718 (0.180)*** 0.060 (0.037) 0.192 (0.040)***
Age: 30–39 0.400 (0.167)* 0.649 (0.177)*** 0.028 (0.037) 0.118 (0.039)**
Age: 40–49 −0.046 (0.126) 0.351 (0.133)** −0.001 (0.028) 0.100 (0.030)***
Age: 50–59 −0.075 (0.099) 0.181 (0.104) −0.058 (0.022)** −0.024 (0.023)
Age: 60–69 −0.109 (0.082) 0.130 (0.086) −0.050 (0.018)** −0.025 (0.019)
Age: 80–89 0.022 (0.078) 0.021 (0.082) −0.018 (0.017) −0.013 (0.018)
Age: 90–99 0.174 (0.098) 0.034 (0.103) −0.011 (0.021) −0.024 (0.023)
R2 0.213 0.192 0.123 0.178
Adj. R2 0.197 0.176 0.106 0.161
No. obs. 870 870 870 870
RMSE 0.772 0.815 0.169 0.181

SEs of coefficients are in parentheses. ***P < 0.001, **P < 0.01, and *P < 0.05.

particularly large short-term attention boosts in the news com-
pared to Twitter. Conversely, premortem popular people and
those with a non-anglophone background received particularly
large short-term attention boosts on Twitter compared to the
news, the latter possibly because English is the most globally
connected language (53), such that Twitter posts, even though
all written in English, stemmed from a more geographically and
culturally diverse set of writers than news articles, which orig-
inated exclusively from anglophone outlets by design. Other
than leaders, no further notability type was significantly associ-
ated with either outcome, and no significant gender variation
was observed. Finally, the age dependence is visualized in Fig.
4C, which shows that, the older a person, the larger the news-
minus-Twitter difference in boosts, confirming that news media
favored older people more than Twitter did, both short- and
long-term.

Discussion
Our analysis of mention frequencies over time revealed that,
for the majority of public figures, a sharp pulse of media atten-
tion immediately followed death, whereby mention frequency
increased by 9,400% in the news, and by 28,000% on Twitter,
in the median. The average mention frequency then declined
sharply, with an inflection point around 1 mo after death, from
where on it decayed more slowly, eventually converging toward
the premortem level. These two stages are consistent with a
model that posits two components of collective memory: a con-
stant baseline level of cultural memory built up during life, and
an added layer of communicative memory that is sparked by
death and usually decays in a matter of days according to a power
law. A cluster analysis of the mention time series revealed a set
of four prototypical memory patterns (“blip,” “silence,” “rise,”
and “decline”). The same set of patterns emerged independently
in the news and on Twitter, and the same person tended to fall
into the same cluster across the two media.

In our regression analysis of biographic correlates of post-
mortem memory, out of all notability types (arts, sports, lead-
ership, known for death, general fame, academia/engineering),

only leadership (politicians, business leaders, etc.) stood out
significantly, being associated with a particularly low boost in
long-term memory (Table 1). One might wonder if this fact could
simply be explained by a regression to the mean, since leaders
had the highest premortem mention frequencies in the news (SI
Appendix, Fig. 6A). Note, however, that on Twitter, too, leaders
saw the lowest long-term boosts, despite the fact that, on Twitter,
it is artists—not leaders—who had the highest premortem men-
tion frequencies (SI Appendix, Fig. 6B). We thus consider a
regression to the mean an unlikely explanation for the low long-
term boosts of leaders, as it could not simultaneously explain the
situation in both media. Rather, we speculate that the lives and
legacies of people of different notability types might differ sys-
tematically. Considering that nearly all (8 out of 10) long-term
boost coefficients for notability types are negative in Table 1 (and
none are significantly positive), the distinction to be made is in
fact not that between leadership and the rest, but rather that
between arts (the default notability type) and the rest. Based
on this observation, we hypothesize that artists remain more
present in the collective memory because they not only tend to be
active performers during their lifetime, but also frequently leave
a legacy of artwork that can long survive them, whereas lead-
ers, athletes, etc., are noteworthy primarily for the actions they
take during their lifetime, and are of much decreased interest to
the media once they cannot take action anymore—an effect that
seems to be most pronounced for leaders.‡

The low coefficients of determination (adjusted R2) of the lin-
ear regression models, ranging from 0.106 to 0.197 (Table 1),
serve as a testimony of the richness of human lives and legacies,
which cannot be captured by statistical models relying on just a
few biographic variables. Given the inherent unpredictability of

‡ In terms of interesting exceptions to this rule, certain leaders saw large long-term
boosts in the news (e.g., Zimbabwean military Solomon Mujuru, who died in a fire
in circumstances considered suspicious by some), on Twitter (e.g., World War II veter-
ans Richard Winters and Maurice Brown), or in both media (e.g., entrepreneur and
activist Aaron Swartz, suicide at age 26; Governor of Punjab Salman Taseer, assassinated
at age 66).

6 of 9 | PNAS
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Fig. 4. Dependence of postmortem mention frequency on age at death for (A) the news and (B) Twitter, in terms of short-term (Top) and long-term
(Bottom) boost, defined as the base-10 logarithm of the postmortem-to-premortem ratio of fractions of mentioning documents. Results were obtained
via linear regression models that controlled for premortem mean, notability type, language, and gender. (C) Per-person news-minus-Twitter difference in
short-term (Top) and long-term (Bottom) boosts. Error bars capture 95% CIs (approximated as±2 SEs). These plots show that unnatural deaths lead to larger
attention boosts across age brackets, both short- and long-term; that the news increases attention most for those who die very young or very old, whereas
Twitter increases attention more the younger the deceased person; and that the difference between attention boosts in news vs. Twitter is larger for those
who die older (short- and long-term) and for those who die an unnatural death, across age brackets (short-term).

social systems (54, 55), this would be unlikely to change even if
more biographic variables and more data points became avail-
able, and if more complex statistical models were to be used.
We emphasize, however, that despite the inherent limits of pre-
dictability all model fits were highly significant (p< 10−15 for the
F -statistics of all models of Table 1; cf. Regression modeling in SI
Appendix). Also, and most importantly, the effects were not only
significant, but also large. As mentioned, a coefficient β for a
binary predictor corresponds to a multiplicative increase of 10β

in the postmortem-to-premortem ratio of mention frequencies,
compared to the baseline persona, a male anglophone artist of
median premortem popularity who died a natural death at age
70–79. For example, ceteris paribus, an unnatural death quadru-
pled (100.618≈ 4.15) the short-term postmortem-to-premortem
mention-frequency ratio in the news, and nearly doubled it
(100.282≈ 1.92) on Twitter. The effect of age at death was also
large. For instance, on Twitter, ceteris paribus, the short-term
postmortem-to-premortem mention-frequency ratio for the 30–
39 age bracket was twice that of the neighboring, 40–49 age
bracket (100.649−0.351≈ 1.99); and that of the youngest age
bracket was nearly five times that of the oldest age bracket
(100.718−0.034≈ 4.83).

One of the key contributions of this study is the compari-
son between mainstream news and Twitter—a prominent social
media platform—on a fixed set of attention subjects, thus extend-
ing a rich literature on the interplay between the two media (56–
59). Despite the striking similarity of prototypical mention time
series emerging from the cluster analysis (Fig. 3), the regression
analysis revealed several noteworthy differences between post-
mortem memory in the news vs. Twitter. First, whereas on Twitter
the postmortem boost was monotonically and negatively associ-
ated with age at death (Fig. 4B), we observed a nonmonotonic
U-shaped relationship in the news (Fig. 4A), which provided the
largest postmortem boost to both those who died very young and
to those who died very old, an effect that even held for a fixed
person (Fig. 4C). Second, the increased short-term boost asso-
ciated with unnatural deaths was even more pronounced in the
news than on Twitter (Table 2), across age groups (Fig. 4C). Third,

leaders were boosted more by the news than by Twitter, both
short- and long-term (Table 2). Taken together, these findings
could be interpreted as the result of two simultaneous roles played
by mainstream news media: On the one hand, as heralds catering
to the public curiosity stirred by a young or unnatural death; on
the other hand, as stewards of collective memory when an old per-
son or an accomplished leader dies after a life of achievement.
On the contrary, the extent to which Twitter plays both roles is
weaker: On the one hand, unnatural deaths were followed by a less
pronounced short-term boost on Twitter than in the news; on the
other hand, Twitter users paid less attention when an old public
figure or a leader died.

The present study showed that even the simple counting
of mentions yields nuanced insights into who is remembered
after death. Future studies may go further by also asking how
deceased public figures are remembered, by studying how the
language, tone, and attitude toward them change in the wake
of death. By considering a diverse set of thousands of public
figures such as ours, future work will be able to quantify, e.g.,
to what extent news and social media abide by the old Latin
adage “De mortuis nihil nisi bonum” (“Of the dead, speak no
evil”). The analysis could be further enriched by going beyond
the coarse biographic categories considered here and leveraging
manually curated repositories of more fine-grained informa-
tion about public figures (60). We also emphasize that media
attention cannot capture all aspects of collective memory, so
we encourage researchers to apply our methodology to further
measures of popularity, in particular those capturing the con-
sumption, rather than production, of content, including songs,
movies, books, Wikipedia articles, etc.

Finally, this study started from an elite of people consid-
ered worthy of being included in the Freebase knowledge base
(which roughly equals the set of people with a Wikipedia article).
This notability bias was further increased by discarding people
whose premortem mention frequency was too low in the news
or on Twitter (Materials and Methods), a restriction necessary
in order to compare the coverage of a fixed person across the
two media. Since the bar for being mentioned in the news (61)

West et al.
Postmortem memory of public figures in news and social media

PNAS | 7 of 9
https://doi.org/10.1073/pnas.2106152118

D
ow

nl
oa

de
d 

at
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 o

n 
S

ep
te

m
be

r 
20

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106152118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106152118/-/DCSupplemental
https://doi.org/10.1073/pnas.2106152118


Table 2. Linear regression models of news-minus-Twitter
difference in short- and long-term boosts

Short-term Long-term
boost boost

(Intercept) −0.427 (0.047)*** −0.015 (0.014)
Premortem mean

(relative-rank diff.) −0.212 (0.083)* −0.034 (0.025)
Manner of death: unnatural 0.348 (0.070)*** −0.008 (0.021)
Language: non-anglophone −0.219 (0.054)*** −0.023 (0.017)
Language: unknown −0.052 (0.063) 0.012 (0.019)
Gender: female 0.091 (0.053) 0.029 (0.016)
Notability type:

academia/engineering −0.048 (0.146) −0.046 (0.044)
Notability type: general fame −0.016 (0.092) 0.002 (0.028)
Notability type: known

for death 0.105 (0.074) −0.015 (0.022)
Notability type: leadership 0.200 (0.062)** −0.006 (0.019)
Notability type: sports 0.059 (0.062) 0.009 (0.019)
Age: 20–29 −0.577 (0.126)*** −0.135 (0.038)***
Age: 30–39 −0.235 (0.124) −0.089 (0.038)*
Age: 40–49 −0.374 (0.093)*** −0.101 (0.028)***
Age: 50–59 −0.204 (0.073)** −0.029 (0.022)
Age: 60–69 −0.175 (0.061)** −0.021 (0.018)
Age: 80–89 0.014 (0.058) −0.006 (0.018)
Age: 90–99 0.164 (0.072)* 0.015 (0.022)
R2 0.101 0.052
Adj. R2 0.083 0.034
No. obs. 870 870
RMSE 0.571 0.174

SEs of coefficients are in parentheses. ***P < 0.001, **P < 0.01, and
*P < 0.05.

as well as for being included in Freebase and Wikipedia (62)
is higher for women than for men, the women included in the
study are likely to be more inherently noteworthy than the men
included. This might in turn affect our estimate of the associa-
tion of gender with postmortem memory: Although we identified
only small and mostly insignificant effects, it is conceivable that
different effects might appear if the inherent noteworthiness
was equalized across genders in the dataset by lowering the bar
for inclusion for women or raising it for men—an important
methodological challenge.

Going forward, researchers should also strive to remove the
bar for inclusion in a study of postmortem memory altogether,
by moving from a noteworthy elite of public figures to a repre-
sentative set of regular people. With the widespread adoption of
social media, we may, for the first time in history, not only ask,
but also answer, who is remembered after they die.

Materials and Methods
News and Twitter Corpora. We compiled a large corpus of media coverage
via the online media aggregation service Spinn3r, which provides “social
media, weblogs, news, video, and live web content” (48). We had full access
to the Spinn3r data stream and collected a complete copy over the course of
more than 5 y (June 2009 to September 2014) via the Spinn3r API, for a total
of around 40 terabytes of data. Besides the main text content, documents
consist of a title, a URL, and a publication date.

Twitter posts (tweets) were easy to recognize automatically in the Spinn3r
data, whereas news articles were not explicitly labeled as such. In order
to identify news articles, we started from a comprehensive list of all
151K online news articles about Osama bin Laden’s killing (May 2, 2011)
indexed by Google News (63). Assuming that every relevant news outlet
had reported on bin Laden’s death, we labeled as news articles all docu-
ments in the Spinn3r crawl that were published on one of the 6,608 Web
domains that also published an English news article about bin Laden’s death
according to the Google News list.

We included in our analysis all English-language news articles and tweets
collected between June 11, 2009, and September 30, 2014. The resulting

corpus comprises, for each day, hundreds of thousands of news articles and
tens of millions of tweets (SI Appendix, Fig. 1).

Although Spinn3r does not publicly disclose its data collection strategy,
we assess the corpus as highly comprehensive (SI Appendix, Table 3).

Detecting People Mentions. In order to construct mention time series (Fig.
1), we had to identify documents that contain the names of dead pub-
lic figures. This is not a trivial task, since names may be ambiguous. Entity
disambiguation is a well-studied task, but unfortunately natural language
processing–based methods were too resource-intensive for our 40-terabyte
corpus, so we resorted to a simpler method: in addition to fully unambigu-
ous names and aliases (henceforth simply “names”) belonging to a single
entity, we identified a set of mostly unambiguous names, which refer to the
same entity at least 90% of the time in English Wikipedia, and we mapped
each mention of such a name in the Spinn3r corpus to the entity it most
frequently referred to in Wikipedia (people without any highly unambigu-
ous name were excluded). For Twitter, we considered a tweet to mention
a given person if the tweet mentioned at least one full name of the per-
son. For the news, we additionally required at least one additional mention
of the person (via a full name or a token-based prefix or suffix of a full
name), in order to reduce spurious mentions (e.g., when the person was
merely mentioned in a link to another article, rather than in the core article
content).

Inclusion Criteria. In order to compile a set of dead public figures, we started
from the 33,340 people listed in the September 28, 2014, version of the
Freebase knowledge base as having died during the period spanned by
our media corpus (June 11, 2009, to September 30, 2014). On 86 out of
these 1,936 d, Spinn3r failed to provide data due to technical problems. We
excluded people for whom the 100 d immediately following death included
at least one of the 86 missing days (in order to obtain better estimates of
short- and long-term boosts), who died within less than 360 d of the cor-
pus boundary dates (in order to compute premortem means and long-term
boosts in the same way for everyone), who were mentioned on fewer than
5 d in either of the news or Twitter during the 360 d before death (in order
to avoid extremely noisy premortem means), or whose names on English
Wikipedia contained parentheses, e.g., “John Spence (Trinidad politician)”
(as such names are unlikely to be used in prose). These criteria reduced the
set of people from 33,340 to 2,362.

Biographic Features. Each public figure was described by the following
biographic features, extracted or computed from Freebase: age at death,
gender, manner of death (natural or unnatural, inferred from the more
detailed cause of death; cf. Taxonomy of causes of death in SI Appendix),
language (“anglophone” for citizens of the United States, Canada, the
United Kingdom, Ireland, Australia, New Zealand, or South Africa; “non-
anglophone” for citizens of other countries; “unknown” for people with
no nationality listed in Freebase), and notability type (a profession or role
for which the person was most known, e.g., “singer” for Whitney Houston;
manually grouped into six classes: arts, sports, leadership, known for death,
general fame, academia/engineering; cf. Taxonomy of notability types in SI
Appendix). The distribution of these features is summarized in SI Appendix,
Table 1 for all public figures, for the people included in the study, and for
the subset retained for the regression analysis.

Mention Time Series. To avoid taking logarithms of zero when constructing
mention time series, a constant value of ε was added to each indi-
vidual time series before taking logarithms, where ε was the minimum
nonzero value across all individual time series (but note that the raw
time series of Fig. 1 were drawn without adding ε). Separate values of
ε were computed for the news and for Twitter. When smoothing time
series via the variable span smoother (49), we considered the pre- and
postmortem periods separately, in order to not smooth out the spike
that usually immediately followed death. Missing days were interpolated
linearly.

Model Fitting. In order to fit the shifted power law model to the data, we
operate on the logarithmic scale, by finding the nonlinear least-squares
estimates:

arg mina,b,c

400∑
t=1

(
〈log Si(t)〉− log

(
at−b

+ c
))2

, [1]

where 〈log Si(t)〉 is the arithmetic mean of the empirically measured log Si(t)
over all persons i. The following optimal parameters were obtained:
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News: a = 5.58× 10−5, b = 1.34, c = 1.75× 10−6 [2]

Twitter: a = 1.90× 10−6, b = 1.54, c = 2.35× 10−8 [3]

Data and Code Availability. All analysis code, as well as mention frequency
data and supplementary data, are publicly available on GitHub (64).

ACKNOWLEDGMENTS. R.W. was partly supported by Swiss National Science
Foundation grant 200021 185043, Collaborative Research on Science and
Society (CROSS), and gifts from Google, Facebook, and Microsoft. J.L. is
a Chan Zuckerberg Biohub investigator and was partly supported by NSF
grants OAC-1835598, OAC-1934578, CCF-1918940, and IIS-2030477; Stanford
Data Initiative; and Chan Zuckerberg Biohub. We thank Janice Lan for help
with taxonomy construction, Spinn3r for data access, and Ahmad Abu-Akel,
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