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ABSTRACT
In a modern recommender system, it is important to understand
how products relate to each other. For example, while a user is
looking for mobile phones, it might make sense to recommend
other phones, but once they buy a phone, we might instead want
to recommend batteries, cases, or chargers. These two types of rec-
ommendations are referred to as substitutes and complements: sub-
stitutes are products that can be purchased instead of each other,
while complements are products that can be purchased in addition
to each other.

Here we develop a method to infer networks of substitutable
and complementary products. We formulate this as a supervised
link prediction task, where we learn the semantics of substitutes
and complements from data associated with products. The primary
source of data we use is the text of product reviews, though our
method also makes use of features such as ratings, specifications,
prices, and brands. Methodologically, we build topic models that
are trained to automatically discover topics from text that are suc-
cessful at predicting and explaining such relationships. Experimen-
tally, we evaluate our system on the Amazon product catalog, a
large dataset consisting of 9 million products, 237 million links,
and 144 million reviews.

1. INTRODUCTION
Recommender systems are ubiquitous in applications ranging

from e-commerce to social media, video, and online news plat-
forms. Such systems help users to navigate a huge selection of
items with unprecedented opportunities to meet a variety of special
needs and user tastes. Making sense of a large number of products
and driving users to new and previously unknown items is key to
enhancing user experience and satisfaction [2, 14, 15].

While most recommender systems focus on analyzing patterns of
interest in products to provide personalized recommendations [14,
30, 34, 36], another important problem is to understand relation-
ships between products, in order to surface recommendations that
are relevant to a given context [17, 35]. For example, when a user
in an online store is examining t-shirts she should receive recom-
mendations for similar t-shirts, or otherwise jeans, sweatshirts, and
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socks, rather than (say) a movie even though she may very well be
interested in it. From these relationships we can construct a product
graph, where nodes represent products, and edges represent var-
ious types of product relationships. Such product graphs facilitate
many important applications: Navigation between related products,
discovery of new and previously unknown products, identification
of interesting product combinations, and generation of better and
more context-relevant recommendations.

Despite the importance of understanding relationships between
products there are several interesting questions that make the prob-
lem of building product graphs challenging: What are the common
types of relationships we might want to discover? What data will
allow us to reliably discover relationships between products? How
do we model the semantics of why certain products are related?—
For example, the semantics of why a given t-shirt might be related
to a particular pair of jeans are intricate and can only be captured
by a highly flexible model. And finally, how do we scale-up our
methods to handle graphs of millions of products and hundreds of
millions of relations?

Inferring networks of product relationships. Here we are inter-
ested in inferring networks of relationships between millions of
products. Even though our method can be used to learn any type
of relationship, we focus on identifying two types of links between
products: substitutes and complements [21]. Substitutable products
are those that are interchangeable—such as one t-shirt for another,
while complementary products are those that might be purchased
together, such as a t-shirt and jeans.

We design a system titled Sceptre (Substitute and Complemen-
tary Edges between Products from Topics in Reviews), that is ca-
pable of modeling and predicting relationships between products
from the text of their reviews and descriptions. At its core, Sceptre
combines topic modeling and supervised link prediction, by identi-
fying topics in text that are useful as features for predicting links be-
tween products. Our model also handles additional features such as
brand, price, and rating information, product category information,
and allows us to predict multiple types of relations (e.g. substitutes
and complements) simultaneously. Moreover, Sceptre harnesses the
fact that products are arranged in a category hierarchy and allows
us to extend this hierarchy to discover ‘micro-categories’—fine-
grained categories of closely related products.

An example of the output of Sceptre is shown in Figure 1. Here,
given a query item (a hiking boot), our system identifies a ranked
list of potential substitutes (other hiking boots), and complements
(heavy-duty socks, shoe polish, etc.).

We train Sceptre on a large corpus of 9 million products from
Amazon, with 237 million connections derived from browsing and
co-purchasing data. We evaluate Sceptre in terms of its accuracy at
link prediction and ranking, where we find it to be significantly
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Figure 1: Sceptre learns the concept of substitute and complement
goods from product information (descriptions, reviews, etc.). Given
a query item, Sceptre allows us to generate substitute and comple-
mentary recommendations as shown above.

more accurate than alternatives. We also use Sceptre to build a
product graph, where for every product we recommend a list of the
most related complementary and substitutable products. Finally, we
show that Sceptre can be applied in ‘cold-start’ settings, by using
other sources of text when reviews are unavailable. Overall, we find
that the most useful source of information to identify substitutes
and complements is the text associated with each product (i.e., re-
views, descriptions, and specifications), from which we are able to
uncover the key features and relationships between products, and
also to explain these relationships through textual signals.

We envision several applications of the product graphs produced
by our system. Our system can help users to navigate, explore and
discover new and previously unknown products. Or, it can be used
to identify interesting product combinations, e.g. we can recom-
mend outfits by matching a shirt with complementary trousers and a
jacket. And, our system can be used as a candidate-generation step
in providing better and more context-relevant recommendations.

2. RELATED WORK
The basic task of a recommender system is to suggest relevant

items to users, based on their opinions, context, and behavior. One
component of this task is that of estimating users’ ratings or rank-
ings of products [14], e.g. by matrix factorization [15] or collabo-
rative filtering [17]. Our goal here is related but complementary to
rating estimation as we aim to discover relations between products.

In principle the types of relationships in which we are inter-
ested can be mined from behavioral data, such as browsing and
co-purchasing logs. For example, Amazon allows users to navigate
between products through links such as ‘users who bought X also
bought Y’ and ‘users who viewed X also viewed Y’ [17]. Such a
‘co-counting’ solution, while simple, has a few shortcomings, for

example it may produce noisy recommendations for infrequently-
purchased products, and has limited ability to explain the recom-
mendations it provides. More sophisticated solutions have been pro-
posed that make use of browsing and co-purchasing data (e.g. [35]),
but in contrast to such ‘behavioral-based’ solutions our goal is to
learn the semantics of ‘what makes products related?’ in order to
generate new links, adapt to different notions of relatedness, and to
understand and explain the features that cause humans to consider
products to be related.

Topic models are a fundamental building block of text modeling
[3, 4, 5] and form the cornerstone of our model. A variety of works
have used topic models within recommender systems (e.g. [6, 10,
11, 22, 23, 28, 31, 32]), though generally with the goal of predict-
ing user ratings (or opinions) rather than learning relationships be-
tween products as we do here. More specifically, our work builds on
topic models for networks: Block-LDA [1], topic-link LDA [18],
and relational topic models [7] all attempt to identify topics that
explain the links in document networks. A promising line of work
uses such ideas to model social and citation networks [8, 33, 34].
However, these methods have trouble scaling to large networks,
while Sceptre scales to corpora with millions of documents (prod-
ucts) and hundreds of millions of links.

Last, a related branch of work aims to enhance e-commerce us-
ing browsing data. For example, [12] aims to forecast commercial
intent based on query logs; and in [26] the authors use query data
to identify attributes that are important to users in order to surface
recommendations. While different in terms of the data and problem
setting, such works are similar in that they uncover relationships
from large sources of weakly-structured data.

3. THE SCEPTRE MODEL
In the following we build Sceptre gradually, but in such a way

that at each step we are specifying a usable model. We highlight the
differences between successive iterations of our model in blue. We
do this to emphasize the fact that while Sceptre makes use of sev-
eral interacting components, each of these components brings an
additional modeling aspect into the framework. Table 1 describes
the notation we use throughout the paper.

3.1 High-level Overview
We first present a high-level, conceptual view of Sceptre, to ex-

plain the intuition behind the model before we fully specify it.

Topic Models. We use topic models [4] to discover topics from
product reviews and other sources of text. Conceptually, this means
that the text from millions of products can be clustered into a small
number of dimensions, so that each product i (and its text) can be
represented by a topic vector θi encoding the extent to which re-
views/descriptions of a given product discuss each of the topics.

Link Prediction. Topic models allow us to represent each product
i by a vector θi. On top of this we can have a statistical model
to predict properties about products. In our case, we use logis-
tic regression to make predictions about pairs of items, using fea-
tures that combine the topics of two products θi and θj simulta-
neously. The classification task we are interested in is: does a re-
lationship exist between i and j? Using pairwise features of the
products, e.g. ψ(i, j) = θj − θi, we build logistic classifiers such
that 〈β, ψ(i, j)〉 takes a positive value if i and j are connected by an
edge. We further develop this model so that predicting the presence
of an edge and the direction of an edge are treated as two separate
tasks, to account for asymmetries and to help with interpretability.

Importantly, it should be noted that we do not train topic mod-
els and then perform link prediction, but rather we define a joint



objective such that we discover topics that are informative for our
link prediction task. In this way our model uncovers topics that are
good at ‘explaining’ the relationships between products.

Micro-Categories. An additional goal of Sceptre is to be able to
discover micro-categories of closely related products. We achieve
this by using sparse representations of very high dimensional topic
vectors for each product. We make use of explicit product hier-
archies (such as the category tree available from Amazon), where
each node of the hierarchy has a small number of topics associ-
ated with it. The hierarchical nature of the category tree means that
topics associated with top-level nodes are general and broad, while
topics associated with leaf categories focus on differentiating be-
tween subtle product features, which can be interpreted as micro-
categories (e.g. different styles of running shoes).

Product graph. Finally, we have a supervised learning framework
to predict relationships between products. Discovering substitutes
and complements then depends on the choices of graph we use
to train the model, for which we collect several graphs of related
products from Amazon. For example, a co-purchasing graph such
as ‘users frequently purchased a and b together’ encodes some no-
tion of complements, whereas a graph such as ‘users who viewed a
eventually purchased b’ captures the notion of substitutes. Thus, for
every product, we predict a list of complementary and substitutable
products and collect them into a giant network of related products.

3.2 Detailed Technical Description

3.2.1 Background: Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA, [4]) uncovers latent structure

in document corpora. For the moment, ‘documents’ shall be the
set of reviews associated with a particular product. LDA associates
each document in a corpus d ∈ T with a K-dimensional topic dis-
tribution θd (a stochastic vector, i.e.,

∑
k θd,k = 1), which encodes

the fraction of words in d that discuss each of theK topics. That is,
words in the document d discuss topic k with probability θd,k.

Each topic k also has an associated word distribution, φk, which
encodes the probability that a particular word is used for that topic.
Finally, the topic distributions themselves (θd) are assumed to be
drawn from a Dirichlet prior.

The final model includes word distributions for each topic φk,
topic distributions for each document θd, and topic assignments
for each word zd,j . Parameters Φ = {θ, φ} and topic assignments
z are traditionally updated via sampling [4]. The likelihood of a
particular text corpus T (given the word distribution φ, topics θ,
and topic assignments for each word z) is then

p(T |θ, φ, z) =
∏
d∈T

Nd∏
j=1

θzd,j · φzd,j ,wd,j , (1)

where we are multiplying over all documents in the corpus, and all
words in each document. The two terms in the product are the like-
lihood of seeing these particular topics (θzd,j ), and the likelihood
of seeing these particular words for this topic (φzd,j ,wd,j ).

3.2.2 Link Prediction with Topic Models
‘Supervised Topic Models’ [3] allow topics to be discovered that

are predictive of an output variable associated with each document.
We propose a variant of a supervised topic model that identifies
topics that are useful as features for link prediction. We choose an
approach based on logistic regression because (1) It can be scaled to
millions of documents/products by hundreds of millions of edges,
and (2) It can be adapted to incorporate both latent features (top-

Symbol Description

di document associated with an item (product) i
T document corpus
K number of topics
θi K-dimensional topic distribution for item i
φk word distribution for topic k
wd,j j th word of document d
zd,j topic of the j th word document d
Nd number of words in document d
F (x) logistic (sigmoid) function, 1/(1 + e−x)
Eg observed edges in graph g
ψ(i, j) pairwise (undirected) features for items i and j
ϕ(i, j) pairwise (directed) features for items i and j
β logistic weights associated with ψ(i, j)
η logistic weights associated with ϕ(i, j)

Table 1: Notation.

ics) and manifest features (such as brand, price, and rating infor-
mation), as well as arbitrary transformations and combinations of
these features. Our goal here is to predict links, that is labels at the
level of pairs of products. In particular, we want to train logistic
classifiers that for each pair of products (i, j) predicts whether they
are related (yi,j = 1) or not (yi,j = 0). For now we will consider
the case where we are predicting just a single type of relationship
and we will later generalize the model to predict multiple types of
relationships (substitutes and complements) simultaneously.

We want the topics associated with each product to be ‘useful’
for logistic regression in the sense that we are able to learn a logistic
regressor parametrized by β that predicts yi,j , using the topics θi
and θj as features. That is, we want the logistic function

Fβ(θd) = σ(〈β, ψθ(i, j)〉) (2)

to match yi,j as closely as possible, where ψθ(i, j) is a pairwise
feature vector describing the two products. We then aim to design
features that encode the similarity between the two products (doc-
uments). The specific choice we adopt is

ψθ(i, j) = (1, θi,1 · θj,1, θi,2 · θj,2, . . . , θi,K · θj,K). (3)

Intuitively, by defining our features to be the elementwise product
between θi and θj , we are saying that products with similar topic
vectors are likely to be linked. The logistic vector β then determines
which topic memberships should should be similar (or dissimilar)
in order for the products to be related.

Our goal then is to simultaneously optimize both topic distribu-
tions θd and logistic parameters β to maximize the joint likelihood
of topic memberships and relationships in the product graph:

L(y, T |β, θ, φ, z) =

corpus likelihood︷ ︸︸ ︷∏
d∈T

Nd∏
j=1

θzd,jφzd,j ,wd,j∏
(i,j)∈E

Fβ(ψθ(i, j))
∏

(i,j)∈Ē

(1− Fβ(ψθ(i, j)))

︸ ︷︷ ︸
logistic likelihood of the observed graph

. (4)

This expression says that the review corpus should have high like-
lihood according to a topic model, but also that those topics should
be useful as predictors in a logistic regressor that uses their similar-
ity as features. In this way, we will intuitively discover topics that
correspond to some concept of document ‘relatedness’.



This idea of jointly training topic and regression models is closely
related to the model of [22], where topics were discovered that
are useful as parameters in a latent-factor recommender system.
Roughly, in the model of [22], a user would give a high rating to a
product if their latent user parameters were similar to the topics dis-
covered from reviews of that item; topics were then identified that
were good at predicting users’ ratings of items. The basic model of
(eq. 4) is similar in the sense that we are coupling parameters θ and
β in a joint likelihood in order to predict the output variable y.

Directed vs. Undirected Graphs. So far we have shown how to
train topic models to predict links between products. However, the
feature vector of (eq. 3) is symmetric (ψθ(i, j) = ψθ(j, i)), mean-
ing that it is only useful for predicting undirected relationships.
However, none of the relationships we want to predict are neces-
sarily symmetric. For example y may be a good substitute for x if
y is a similar product that is cheaper and better rated, but in this case
x would be a poor substitute for y. Or, while a replacement battery
may be a good complement for a laptop, recommending a laptop
to a user already purchasing a battery makes little sense. Thus we
ought to account for such asymmetries in our model.

We model such asymmetries by first predicting whether two prod-
ucts are related, and then predicting in which direction the relation
flows. That is, we predict

p(a has an edge toward b) =

p(a is related to b)×p(edge flows from a to b | a is related to b),

which we denote

p((a, b) ∈ E) = p(a↔ b)︸ ︷︷ ︸
‘are they related?’

‘does the edge flow in this direction?’︷ ︸︸ ︷
p(a→ b|a↔ b), (5)

where relations (a, b) ∈ E are now ordered pairs (that may exist
in both directions). We model relations in this way since we ex-
pect different types of language or features to be useful for the two
tasks—relatedness is a function of what two products have in com-
mon, whereas the direction the link flows is a function of how the
products differ. Indeed, in practice we find that the second predic-
tor p(a → b|a ↔ b) tends to pick up qualitative language that
explains why one product is ‘better than’ another, while the first
tends to focus on high-level category specific topics. Our objective
now becomes

L(y, T |β, η, θ, φ, z) =

positive relations (F↔) and their direction of flow (F→)︷ ︸︸ ︷∏
(i,j)∈E

F↔β (ψθ(i, j))F
→
η (ϕθ(i, j))(1− F→η (ϕθ(j, i)))

∏
(i,j)∈Ē

(1− F↔β (ψθ(i, j)))

︸ ︷︷ ︸
non-relations

∏
d∈T

Nd∏
j=1

θzd,jφzd,j ,wd,j︸ ︷︷ ︸
corpus likelihood

. (6)

Here F↔ is the same as in the previous section, though we have
added F→η (ϕθ(i, j)) to predict edge directedness; this includes an
additional logistic parameter vector η, as well as an additional fea-
ture vector ϕθ(i, j). The specific feature vector we use is

ϕθ(i, j) = (1, θj,1 − θi,1, . . . , θj,K − θi,K), (7)

i.e. the direction in which an edge flows between two items is a
function of the difference between their topic vectors.

Incorporating Other Types of Features. We can easily incorpo-
rate manifest features into our logistic regressors, which simply be-
come additional dimensions in ϕθ(i, j). We include the difference
in price, difference in average (star-) rating, and an indicator that
takes the value 1 if the items were manufactured by different com-
panies, allowing the model to capture the fact that users may nav-
igate towards (or away from) cheaper products, better rated prod-
ucts, or products from a certain brand.

Our entire model ultimately captures the following simple intu-
ition: (1) Users navigate between related products, which should
have similar topics (“what do a and b have in common?”), and (2)
The direction in which users navigate should be related to the dif-
ference between topics (“what does b have that a doesn’t?”). Ulti-
mately, all of the above machinery has been designed to discover
topics and predictors that capture this intuition.

Learning Multiple Graphs. Next we must generalize our approach
to simultaneously learn multiple types of relationships. In our case
we wish to discover a graph of products that users might purchase
instead (substitute products), as well as a graph of products users
might purchase in addition (complementary products). Naturally,
one could train models independently for each type of relationship.
But then one would have two sets of topics, and two predictors that
could be used to predict links in each graph.

Instead we decide to extend the model from the previous section
so that it can predict multiple types of relations simultaneously. We
do this by discovering a single set of topics that work well with mul-
tiple logistic predictors. This is a small change from the previous
model of (eq. 6):

L(y, T |β, η, θ, φ, z) =

corpus likelihood︷ ︸︸ ︷∏
d∈T

Nd∏
j=1

θzd,jφzd,j ,wd,j

∏
g∈G

{ ∏
(i,j)∈Eg

F↔βg (ψθ(i, j))F
→
ηg (ϕθ(i, j))(1− F→ηg (ϕθ(i, j)))

∏
(i,j)∈Ēg

(1− F↔βg (ψθ(i, j)))

}
.

︸ ︷︷ ︸
accuracy of the predictors βg and ηg for the graph g

(8)

where each graph g ∈ G contains all relations of a particular type.
Note that we learn separate predictors βg and ηg for each graph

g, but we learn a single set of topics (θ) and features (ψ and ϕ)
that work well for all graphs simultaneously. We adopt this ap-
proach because it provides a larger training set that is more robust to
overfitting compared to training two models separately. Moreover
it means that both logistic regressors operate in the same feature
space; this means that by carefully constructing our labeled train-
ing set (to be described in the following section), we can train the
model not only to predict substitute and complementary relation-
ships, but also to differentiate between the two, by training it to
identify substitutes as non-complements and vice versa.

3.2.3 Sparse Topics via Product Hierarchies
Our goal is to learn topic models on corpora with millions of

products and hundreds of topics. However, training models with
hundreds of topics per product is not practical, nor is it realistic
from a modeling perspective. Rather, each product should draw
from a small number of topics, which can be encoded using a sparse
representation [13]. To achieve this we enforce sparsity through a
specific type of hierarchical topic representation that makes use of



Figure 3: A demonstration of our topic hierarchy. A product (left) is shown with its associated topics (right). (a) the category tree (b) the topic
vector (c) the product’s ground-truth category. The product’s position in the category tree is highlighted in red, and the set of topics that are
‘activated’ is highlighted in gray.
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Figure 2: Part of the product hierarchy for Amazon Electronics
products (the complete tree, even for Electronics alone, is too large
to include here).

an explicit category tree, such as the one available from Amazon.
An example of the product hierarchy we obtain from Amazon is

shown in Figure 2. The category of each product is a node in this
tree (though not necessarily a leaf node); some products may also
belong to multiple categories simultaneously.

We build our topic representation using the following scheme:
First, each product is represented by a path, or more simply a set
of nodes, in the category tree. For products belonging to multiple
categories, we take the union of those paths. Second, each topic is
associated with a particular node in the category tree. Every time
we observe, say, a thousand instances of a node, we associate an
additional topic with that node, up to some maximum. In this way
we have many topics associated with popular categories (like ‘Elec-
tronics’) and fewer topics associated with more obscure categories.
Third, we use a sparse representation for each product’s topic vec-
tor. Specifically, if a product occupies a particular path in the cate-
gory tree, then it can only draw words from topics associated with
nodes in that path. In this way, even though our model may have
hundreds of topics, only around 10-20 of these will be ‘active’ for
any particular product. This is not only necessary from a scalability
standpoint, but it also helps the model quickly converge to mean-
ingful topic representations.

This process is depicted in Figure 3. Here a product like a lap-
top charger draws from ‘generic’ topics that apply to all electronics
products, as well as topics that are specific to laptops or chargers;
but it cannot draw from topics that are specific to mobile phones or

laptop cases (for example). Thus all products have some high-level
categories in common, but are also assumed to use their own unique
sub-category specific language. Then, at the lowest level, each leaf
node in the category tree is associated with multiple topics; thus we
might learn several ‘microcategories’ of laptop chargers, e.g. for
different laptop types, price points, or brands. We present some ex-
amples of the types of microcategory we discover in Section 4.6.

3.3 Optimization and Training
Optimizing an objective such as the one in (eq. 8) is a difficult

task, for instance it is certainly non-convex.1 We solve it using the
following EM-like procedure, in which we alternate between op-
timizing the model parameters Θ = (β, η, θ, φ) and topic assign-
ments (latent variables) z:

update Θ(t) = argmax
Θ

l(y, T |β, η, θ, φ, z(t−1)) (9)

sample z(t)
d,j with probability p(z(t)

d,j = k) = θd,kφ
(t)
k,wd,j

, (10)

where l(y, T |β, η, θ, φ, z) is the log-likelihood from (eq. 8). To
generate initial values for Θ and z we initialize continuous param-
eters and topics uniformly at random (continuous parameters are
sampled from [0, 1)).

In the first step (eq. 9), topic assignments for each word (z) are
fixed. We fit the remaining terms, β, η, θ, and φ, by gradient ascent.
We use the Hybrid LBFGS solver of [19], a quasi-Newton method
for non-linear optimization of problems with many variables [25].
Computing the partial derivatives themselves, while computation-
ally expensive, is naïvely parallelizable over edges in E and docu-
ments (i.e., products) in T .

The second step iterates through all products d and all word po-
sitions j and updates topic assignments. As with LDA, we assign
each word to a topic (an integer between 1 and K) randomly, with
probability proportional to the likelihood of that topic occurring
with that word. The expression θd,kφk,wd,j is the probability of the
topic k for the product d (θd,k), multiplied by the probability of the
word at position j (wd,j) being used in topic k (φk,wd,j ).

4. EXPERIMENTS
Next we evaluate Sceptre. We first describe the data as well as

the baselines and then proceed with experimental results.

4.1 Data
We use data crawled from Amazon.com, whose characteristics

are shown in Table 2. This data was collected by performing a
breadth-first search on the user-product-review graph until termina-
tion, meaning that it is a fairly comprehensive collection of English-
language product data. We split the full dataset into top-level cate-
gories, e.g. Books, Movies, Music. We do this mainly for practical
reasons, as it allows each model and dataset to fit in memory on a
1It is smooth, and multiple local minima can be found by permuting
the order of topics and logistic parameters.



Category Users Items Reviews Edges

Men’s Clothing 1.25M 371K 8.20M 8.22M
Women’s Clothing 1.82M 838K 14.5M 17.5M
Music 1.13M 557K 6.40M 7.98M
Movies 2.11M 208K 6.17M 4.96M
Electronics 4.25M 498K 11.4M 7.87M
Books 8.20M 2.37M 25.9M 50.0M

All 21.0M 9.35M 144M 237M

Table 2: Dataset statistics for a selection of categories on Amazon.

single machine (requiring around 64GB RAM and 2-3 days to run
our largest experiment). Note that splitting the data in this way has
little impact on performance, as there are few links that cross top-
level categories, and the hierarchical nature of our model means
that few parameters are shared across categories.

To obtain ground-truth for pairs of substitutable and complemen-
tary products we also crawl graphs of four types from Amazon:

1. ‘Users who viewed x also viewed y’; 91M edges.
2. ‘Users who viewed x eventually bought y’; 8.18M edges.
3. ‘Users who bought x also bought y’; 133M edges.
4. ‘Users frequently bought x and y together’; 4.6M edges.

We refer to edges of type 1 and 2 as substitutes and edges of type
3 or 4 as complements, though we focus on ‘also viewed’ and ‘also
bought’ links in our experiments, since these form the vast major-
ity of the dataset. Note the minor differences between certain edge
types, e.g. edges of type 4 indicate that two items were purchased
as part of a single basket, rather than across sessions.

4.2 Experimental Setting
We split our training data (E and Ē) into 80% training, 10% val-

idation, 10% test, discarding products with fewer than 20 reviews.
In all cases we report the error on the test set. The iterative fitting
process described in (eqs. 9 and 10) continues until no further im-
provement is gained on the validation set.

Sampling Non-Edges. Since it is impractical to train on all pairs
of non-links, we start by building a balanced dataset by sampling
as many non-links as there are links (i.e., |E| = |Ē |).

However, we must be careful about how non-links (i.e., negative
examples) are sampled. Sampling random pairs of unrelated prod-
ucts makes negative examples very ‘easy’ to classify; rather, since
we want the model to be able to differentiate between edge types,
we treat substitute links as negative examples of complementary
edges and vice versa. Thus, we explicitly train the model to iden-
tify substitutes as non-complements and vice versa (in addition to a
random sample of non-edges). This does not make prediction ‘eas-
ier’, but it helps the model to learn a better separation between the
two edge types, by explicitly training it to learn distinct notions of
the two concepts.

In the following, we consider both link prediction and ranking
tasks: (1) to estimate for a pair of products whether they are related,
and (2) for a given query, rank those items that are most likely to
be related. We first describe the baselines we compare against.

4.3 Baselines
Random. Link probabilities Fβ and Fη are replaced with random
numbers between 0 and 1. Note that since both predictors have to
‘fire’ to predict a relation, random classification identifies 75% of
directed edges as non-links; imbalance in the number of positive
vs. negative relations of each type (due to our sampling procedure

described above) explains why the performance of random classi-
fication is slightly different across experiments.

LDA + logistic regression (LDA). Rather than training topic mod-
els and logistic parameters simultaneously, this baseline first trains
a topic model and then trains logistic classifiers on the pre-trained
topics. This baseline assesses our claim that Sceptre learns topics
that are ‘good as’ features for edge prediction, by comparing it to a
model whose topics were not trained specifically for this purpose.
We used Vowpal Wabbit to pre-train the topic model, and fit models
with K = 100 topics for each Amazon category.

We also experimented with a baseline in which features were de-
fined over words rather than topics. That is, topics θi for each prod-
uct are replaced by TF-IDF scores for words in its reviews [20].
Logistic parameters β and η are then trained to determine which
tf-idf-weighted words are good at predicting the presence or ab-
sence of edges. This baseline was uniformly weaker than our other
baselines, so we shall not discuss its performance further.

Category-Tree (CT). Since we make use of Amazon’s category
tree when building our model, it is worth questioning the extent to
which the performance of our model owes to our decision to use
this source of data. For this baseline, we compute the co-counts be-
tween categories c1 → c2 that are observed in our training data.
Then we predict that an edge exists if it is among the 50th per-
centile of most commonly co-occurring categories. In other words
this baseline ‘lifts’ links to the level of categories rather than indi-
vidual products.2

Item-to-Item Collaborative Filtering (CF). In 2003 Amazon re-
ported that their own recommendation solution was a collaborative-
filtering approach, that identified items that had been browsed or
purchased by similar sets of users [17]. This baseline follows the
same procedure, though in lieu of actual browsing or purchasing
data we consider sets of users who have reviewed each item. We
then proceed by computing for each pair of products a and b the co-
sine similarity between the set of users who reviewed a and the set
of users who reviewed b. Sorting by similarity generates a ranked
list of recommendations for each product. Since this method is not
probabilistic we only report its performance at ranking tasks.

4.4 Link Prediction and Ranking
Link Prediction. Our first goal is to predict for a given pair of
products (a, b), and a graph type g, whether there is a link from a
to b in Eg . We optimize exactly the objective in (eq. 8). Note that a
prediction is correct when
• for each test edge (in each graph): a→ b,
F↔θ (ψ(a, b), β) > 0 and F→θ (ϕ(a, b), η) > 0
• for each non-edge a 6→ b,
F↔θ (ψ(a, b), β) ≤ 0 or F→θ (ϕ(a, b), η) ≤ 0,

in other words the model must correctly predict both that the link
exists and its direction.

Results are shown in Table 3 for each of the datasets in Table
2. We also show results from ‘Baby’ clothes, to demonstrate that
performance does not degrade significantly on a (relatively) smaller
dataset (43k products). ‘Substitute’ links were unavailable for the
vast majority of products from Music and Movies in our crawl, so
results are not shown. We summarize the main findings from this
table as follows:

1. Sceptre is able to accurately predict both substitute and com-
plement links across all product categories, with performance

2We experimented with several variations on this theme, and this
approach yielded the best performance.



being especially accurate for clothing and electronics prod-
ucts. Accuracy is between 85.57-96.76% for the binary pre-
diction tasks we considered.

2. Prediction of ‘substitute’ links is uniformly more accurate
than ‘complement’ links for all methods, both in absolute
(left two columns) and relative (right two columns) terms.
This matches our intuition that substitute links should be
‘easier’ to predict, as they essentially correspond to some no-
tion of similarity, whereas the semantics of complements are
more subtle.

3. The performance of the baselines is variable. For substitute
links, our LDA baseline obtains reasonable performance on
Books and Electronics, whereas the Category Tree (CT) base-
line is better for Clothing. In fact, the CT baseline performs
surprisingly well at predicting substitute links, for the simple
reason that substitutable products often belong to the same
category as each other.

4. None of the baselines yield satisfactory performance when
predicting complement links. Thus we conclude that neither
the topics uncovered by a regular topic model, nor the cate-
gory tree alone are capable of capturing the subtle notions of
what makes items complementary.

Ultimately we conclude that each of the parts of Sceptre contribute
to its accurate performance. Category information is helpful, but
alone is not useful to predict complements; and simultaneous train-
ing of topic models and link prediction is necessary to learn useful
topic representations.

Ranking. In many applications distinguishing links from non-links
is not enough as for each product we would like to recommend a
limited number of substitutes and complements. Thus, it is impor-
tant that relevant items (i.e., relevant relations) are ranked higher
than irrelevant ones, regardless of the likelihood that the model as-
signs to each recommendation.

A standard measure to evaluate ranking methods is the preci-
sion@k. Given a set of recommended relations of a given type rec,
and a set of known-relevant products rel (i.e., ground-truth links)
the precision is defined as

precision = |rel ∩ rec|/|rec|, (11)

i.e., the fraction of recommended relations that were relevant. The
precision@k is then the precision obtained given a fixed budget,
i.e., when |rec| = k. This is relevant when only a small number of
recommendations can be surfaced to the user, where it is important
that relevant products appear amongst the first few suggestions.

Figure 4 reports the precision@k on Men’s and Women’s cloth-
ing. Note that we naturally discard candidate links that appeared
during training. This leaves only a small number of relevant prod-
ucts for each query item in the corpus—the random baseline (which
up to noise should be flat) has precision around 5× 10−5, indicat-
ing that only around 5 in 100,000 products are labeled as ‘relevant’
in this experiment. This, in addition to the fact that many relevant
items may not be labeled as such (there are presumably thousands
of pairs of substitutable pants in our corpus, but only 30 or so are
recommended for each product) highlights the incredible difficulty
of obtaining high precision scores for this task.

Overall, collaborative filtering is one to two orders-of-magnitude
more accurate than random rankings, while Sceptre is an order of
magnitude more accurate again (our LDA and TF-IDF baselines
were less accurate than collaborative filtering and are not shown).3

3Note that collaborative filtering is done here at the level of re-
viewed products, which is naturally much sparser than the purchase
and browsing data used to produce the ground-truth.

Accuracy Error reduction
vs. random

Category Method Subst. Compl. Subst. Compl.

Men’s
Clothing

Random 60.27% 57.70% 0.0% 0.0%
LDA 70.62% 65.95% 26.05% 19.50%

CT 78.69% 61.06% 46.38% 7.946%
Sceptre 96.69% 94.06% 91.67% 85.97%

Women’s
Clothing

Random 60.35% 56.67% 0.0% 0.0%
LDA 70.70% 64.80% 26.11% 18.75%

CT 81.05% 69.08% 52.21% 28.63%
Sceptre 95.87% 94.14% 89.59% 86.47%

Music

Random - 50.18% - 0.0%
LDA - 52.39% - 4.428%

CT - 57.02% - 13.71%
Sceptre - 90.43% - 80.78%

Movies

Random - 51.22% - 0.0%
LDA - 54.26% - 6.235%

CT - 66.34% - 30.99%
Sceptre - 85.57% - 70.42%

Electronics

Random 69.98% 55.67% 0.0% 0.0%
LDA 89.90% 61.90% 66.35% 14.06%

CT 87.26% 60.18% 57.57% 10.17%
Sceptre 95.70% 88.80% 85.69% 74.74%

Books

Random 69.93% 55.35% 0.0% 0.0%
LDA 89.91% 60.59% 66.47% 11.75%

CT 87.80% 66.28% 59.42% 24.49%
Sceptre 93.76% 89.86% 79.25% 77.29%

Baby
Clothes

random 62.93% 52.47% 0.0% 0.0%
LDA 75.86% 54.73% 34.89% 4.75%

CT 79.31% 64.56% 44.18% 25.43%
Sceptre 92.18% 93.65% 78.91% 86.65%

Average Sceptre 94.83% 90.23% 85.02% 80.33%

Table 3: Link prediction accuracy for substitute and complement
links (the former are not available for the majority of Music/Movies
products in our dataset). Absolute performance is shown at left,
reduction in error vs. random classification at right.

Examples of recommendations generated by Sceptre are shown
in Figure 6.

4.5 Cold-Start Prediction without Reviews
Although it is promising that we are able to recommend substi-

tutes and complements from the text of product reviews, an obvious
question remains as to what can be done for new products, that do
not yet have any reviews associated with them, known as the ‘cold-
start’ problem in recommender systems [16, 24, 27, 30, 36]. To
address this problem, we note that Sceptre merely requires that we
have some source of text associated with each linked item in order
to learn a model of which products are likely to be related.

To evaluate the possibility of using sources of text other than re-
views, we collected descriptive text about each item in our Amazon
Books catalog, including blurbs, ‘about the author’ snippets, and
editorial reviews. We also collected manufacturer’s descriptions for
a subset of our Electronics data. Training on these sources of data,
Sceptre obtained accuracies between 91.28% and 93.67% at pre-
dicting substitutes and complements (see Table 4). This result im-
plies that training is possible on diverse sources of text beyond just



Accuracy Error reduction
vs. random

Category Subst. Compl. Subst. Compl.

Electronics 91.28% 93.22% 70.95% 84.71%
Books 96.76% 93.67% 89.22% 85.81%

Table 4: Link prediction accuracy using cold-start data (manufac-
turer’s and editorial descriptions).
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Figure 4: Precision@k for Women’s and Men’s clothing.

product reviews, and that Sceptre can be applied in cold-start set-
tings, even when no reviews are available.4

4.6 Topic Analysis
Next we analyze the types of topics discovered by Sceptre. As

we recall from Section 3.2.3, each topic is associated with a node
in Amazon’s category tree. But, just as a high-level category such
as clothing can naturally be separated into finer-grained categories
like socks, shoes, hats, pants, dresses (etc.), we hope that Sceptre
will discover even subtler groupings of products that are not imme-
diately obvious from the hand-labeled category hierarchy.

Table 5 shows some of the topics discovered by Sceptre, on two
Amazon categories: Electronics and Men’s Clothing. We pruned
our dictionary by using adjectives, nouns, and adjective-noun pairs
(as determined by WordNet [9]), as well as any words appearing in
the ‘brand’ field of our crawled data. For visualization we compute
the 10 highest-weight words from all topics, after first subtracting a
‘background’ topic containing the average weight across all topics.
That is for each topic k we report the 10 highest values of

φk −
1

K

∑
k′

φk′ .︸ ︷︷ ︸
background word distribution

(12)

By doing so, stopwords and other language common to all topics
appears only in the background distribution.

4Note that this is not directly comparable to review-based results
since different subsets of our corpus have reviews vs. descriptions.
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Figure 5: Results of our user study. Users were asked to select
which recommendations (ours or Amazon’s) were preferable sub-
stitutes/complements (users could also select neither or both).

The topics we obtain are closely aligned with categories from
Amazon (e.g. electronics topic e111, or clothing topic c110), though
this is to be expected since our topic model is built on top of an ex-
plicit hierarchy as in Figure 3. However, we note that finer-grained
‘microcategories’ are discovered that are not explicitly present in
the hierarchy, e.g. high-end headphones are distinguished from che-
aper models (e89 and e99), and running shoes are distinguished
based on distinct running styles (c133, c134, and c156).

We also note that brand words predominate in several topics,
e.g. high-end headphones can be identified by words like ‘Sennhei-
ser’, ‘AKG’ etc. (e89), and high-end t-shirts can be identified by
words like ‘Ralph Lauren’ and ‘Geoffrey Beene’ (c52). At the ex-
treme end, a single product may have its own topic, e.g. the popular
‘three-wolf moon’ shirt (c49), whose reviews have already inspired
academic discussion [29]. Here the product’s high popularity and
unique word distribution means that dedicating it an entire topic
substantially increases the corpus likelihood in (eq. 8). Note that
we only show a fraction of the full set of topics discovered by our
model; other common camera brands (etc.) are covered among the
large range of topics not shown here.

Finally, while some topics are highly specific, like those referring
to individual products or brands, others are more generic, such as
clothing topics c9 and c24. Such topics tend to appear toward the
top of the category hierarchy (see Fig. 3), for example the topic c9
is associated with the ‘Clothing’ node, whereas c24 is associated
with its child, ‘Clothing: Men’, of which all other topics in Table
5 are descendants. Intuitively, these are much like ‘background’
distributions, containing words that are relevant to the majority of
clothing products, like durability, fit, warmth, color, packaging, etc.

4.7 User Study
Finally we perform a user study to evaluate the quality of the rec-

ommendations produced by Sceptre. Naturally we would not expect
that a fully-supervised algorithm would produce predictions that
were somehow ‘better’ than the ground-truth used to train it. How-
ever, we hope Sceptre may correct for some noise in the ground-
truth, since while users may often buy multiple pairs of jeans to-
gether (for example) we are explicitly training the system to iden-
tify complementary items that would not be substitutable.

We used Mechanical Turk to compare Sceptre’s recommenda-
tions to Amazon’s ‘also viewed’ and ‘also bought’ suggestions, for
a random sample of 200 Clothing items. Human judges identified
which recommendations they felt were acceptable substitutes and
complements (surfaced in a random order without labels; a screen-
shot is shown in Fig. 6d). Judges evaluated the top recommenda-
tion, and top-5 recommendations separately, yielding results shown
in Figure 5.

We see here that Amazon’s ‘also viewed’ links generate prefer-
able substitutes, indicating that large volumes of browsing data
yield acceptable substitute relationships with relatively little noise.
On the other hand, Sceptre’s complement links are overwhelmingly



Electronics
e111 e92 e75 e79 e78 e50 e69 e85 e96 e89 e99

cameras portable speakers cases Samsung
cases

heavy-duty
cases

styli batteries portable radios car radios high-end
headphones

budget
headphones

camera little speaker leather Galaxy Otterbox pen batteries radio radio bass bass
zoom bose case elastic Defender tip battery weather Pioneer Sennheiser Skullcandy

pictures portable speaker soft magnets protection Bamboo charged crank factory Bose sound
Kodak small speaker Roocase Samsung bulky Wacom rechargeable solar Metra Shure bud
Canon sound velcro leather kids styli oem Eton Ford Beats outside noise
flash iHome closed closed shell gloves Sanyo Baofeng dash Koss another pair

digital bass material auto Survivor Friendly Swede Lenmar radio reception Honda Akg comfortable
optical wireless speaker snug closing protected pencil alkaline miles Jeep music gym
taken great speaker protection elastic strap safe capacitive Energizer fm wiring classical Beats

picture mini speaker standing cover protective precise full charge alert deck Klipsch head

Men’s clothing
c44 c107 c75 c49 c52 c110 c156 c134 c133 c24 c9

dress shirts dress shoes dress pants three-wolf
shirt

polo shirts boots minimalist
running

athletic
running sports shoes generic

clothing
generic
clothing

sleeves leather expandable wolf Polo Bates running Balance court dry same
arms sole expandable waist moon Lauren Red Wing trail New play cold durable
neck dress Dockers three Ralph leather barefoot wide Nike working store

shoulders brown iron power Beene good boot Altra running running shoe short different
dress shirt dress shoe khaki trailer nice shirt casual boot running shoe series running hot two

dress polish stretch waist hair Geoffrey dress boot minimalist feet games weather brand
jacket brown pair hidden man great shirt right boot zero drop usa light shoe tight comfort

long sleeve toe ironed short-sleeve quality shirt motorcycle road cross training great shoe cool fine
iron looking shoe dress pant magic white shirt Wings glove athletic shoe support down tight

tucked formal elastic waist powerful fitted shirt Rangers run cross miles regular another pair

Table 5: A selection of topics from Electronics and Men’s Clothing along with our labels for each topic. Top 10 words/bigrams from each
topic are shown after subtracting the background distribution. Capital letters denote brand names (Bamboo, Wacom, Red Wing, etc.).

preferred, suggesting that our decision to model complements as
non-substitutes qualitatively improves performance.

5. BUILDING THE PRODUCT GRAPH
Having produced ranked lists of recommended relationships, our

final task is to surface these recommendations to a potential user of
our system in a meaningful way.

While conceptually simple, comparing all products against all
others quickly becomes impractical in a corpus with millions of
products. Our goal here is to rank all links, and surface those which
have the highest likelihood under the model. That is, for each graph
type g we would like to recommend

recg(i) = argmax
S∈(T \{i})R

∑
j∈S

F↔βg (ψθ(i, j))F
→
ηg (ϕθ(i, j)), (13)

where S ∈ (T \ {i})R is a set of R products other than i itself.
While computing the score for a single candidate edge is very

fast (O(K) operations), on a dataset with millions of products this
already results in an unacceptable delay when ranking all possible
recommendations. Similar to [17] we implemented two modifica-
tions that make this enumeration procedure feasible (on the order of
a few milliseconds). The first is to ignore obscure products by limit-
ing the search space by some popularity threshold; we consider the
hundred-thousand most popular products per-category when gener-
ating new recommendations. The second is to cull the search space
using the category tree explicitly; e.g. when browsing for running
shoes we can ignore, say, camera equipment and limit our search to
clothing and shoes. Specifically, we only consider items belonging
to the same category, its parent category, its child categories, and
its sibling categories (in other words, its ‘immediate family’). It is
very rare that the top-ranked recommendations belong to distant
categories, so this has minimal impact on performance.

Another issue is that of adding new products to the system. Nat-
urally, it is not feasible to re-train the system every time a new
product is added. However, this is thankfully not necessary, as the
introduction of a small number of products will not fundamentally
change the word distribution φ. Thus it is simply a matter of esti-
mating the product’s topic distribution under the existing model, as
can be done using LDA [4].

When assembling our user interface (see Figs. 1 and 6) we use
the discovered topics from Section 4.6 to ‘explain’ recommenda-
tions to users, by selecting sentences whose language best explains
why the recommended product was predicted. Specifically, we high-
light sentences whose words yield the largest response to F→ηg .

Reproducing Sceptre. All data and code used in this paper, as well
as the interface from Figure 6 is available on the first author’s web-
page: http://cseweb.ucsd.edu/~jmcauley/.

6. CONCLUSION
A useful recommender system must produce recommendations

that not only match our preferences, but which are also relevant to
our current topic of interest. For a user browsing a particular prod-
uct, two useful notions of relevant recommendations include sub-
stitutes and complements: products that can be purchased instead of
each other, and products that can be purchased in addition to each
other. In this paper, our goal has been to learn these concepts from
product features, especially from the text of their reviews.

We have presented Sceptre, a model for predicting and under-
standing relationships between linked products. We have applied
this to the problem of identifying substitutable and complementary
products on a large collection of Amazon data, including 144 mil-
lion reviews and 237 million ground-truth relationships based on
browsing and co-purchasing logs.



(a) Men’s clothing (b) Women’s clothing (c) Electronics (d) mturk interface

Figure 6: (a,b,c) Examples of recommendations produced by Sceptre; the top of each subfigure shows the query product, the left column
shows substitutes recommended by Sceptre, and the right column shows complements. (d) Interface used to evaluate Sceptre on Mechanical
Turk; Turkers are shown lists of items suggested by Amazon (i.e., the ground-truth) and Sceptre and must identify which lists they prefer.
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