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ABSTRACT

Dynamic social interaction networks are an important abstrac-
tion to model time-stamped social interactions such as eye contact,
speaking and listening between people. These networks typically
contain informative while subtle patterns that reflect people’s social
characters and relationship, and therefore attract the attentions of a
lot of social scientists and computer scientists. Previous approaches
on extracting those patterns primarily rely on sophisticated expert
knowledge of psychology and social science, and the obtained fea-
tures are often overly task-specific. More generic models based
on representation learning of dynamic networks may be applied,
but the unique properties of social interactions cause severe model
mismatch and degenerate the quality of the obtained representa-
tions. Here we fill this gap by proposing a novel framework, termed
TEmporal network-DIffusion Convolutional networks (TEDIC),
for generic representation learning on dynamic social interaction
networks. We make TEDIC a good fit by designing two compo-
nents: 1) Adopt diffusion of node attributes over a combination
of the original network and its complement to capture long-hop
interactive patterns embedded in the behaviors of people making
or avoiding contact; 2) Leverage temporal convolution networks
with hierarchical set-pooling operation to flexibly extract patterns
from different-length interactions scattered over a long time span.
The design also endows TEDIC with certain self-explaining power.
We evaluate TEDIC over five real datasets for four different social
character prediction tasks including deception detection, domi-
nance identification, nervousness detection and community detec-
tion. TEDIC not only consistently outperforms previous SOTA’s,
but also provides two important pieces of social insight. In ad-
dition, it exhibits favorable societal characteristics by remaining
unbiased to people from different regions. Our project website is:
http://snap.stanford.edu/tedic/.
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1 INTRODUCTION

Social interactions, referring to numerous and complicated actions
among two or more people, have woven themselves into every piece
of daily life [39]. These interactions, such as eye contact, speaking
and listening, physical proximity between people, evolve over time
and can be used to establish dynamic networks, which we term
dynamic social interaction networks later. Dynamic social interac-
tion networks, as a structured way to represent social interactions
over time, have become critical data resources for social scientists
to study the human behavioral patterns and make inferences about
human social characters and relationship [28]. Specifically, where,
when and how people interact with others provide informative cues
for deception detection [2, 12], dominance identification [3, 6], per-
sonality traits characterization [34] and friendship inference [7, 15].

Despite their significance, mining indicative features from dy-
namic social interaction networks introduces great challenges. Such
networks consist of two components that distinguish themselves
from the relationship-based social networks arising typically from
social media: 1) Highly dynamic attributes of individuals when
they make contact, such as facial expressions, gestures and sounds;
2) Complicated and various ways of interactions, such as gazing,
speaking and listening. Indicative features often come from the
subtle interweaving of them and are concealed in a long-term com-
plex interaction background. For instance, a lying person tends to
quickly switch the eye contacts among different people due to low
confidence [37], but such combination of behaviors may appear only
a few times in a long conversation among a large group of people.
As a more concrete example, we visualize in Fig. 1 dynamics of peo-
ple’s behavior sampled from a person-to-person social-interaction
game “RESISTANCE” (one of the datasets used in Sec. 5).

Previous works on these social tasks typically focus on designing
hand-crafted features that are task-specific [2, 3, 6, 12, 34] and rely
on domain knowledge in social science and psychology (e.g., visual
dominance ratio [14], emotions and deception [47]). Consider the
above example about inferring who has lied: Bai et al. [2] have
demonstrated that the temporal distribution of the ranks of “gazing”
probabilities among people is an informative feature. However, this
feature has no obvious connection to one’s friend relationship.

Recent works on representation learning of dynamic networks
seem to be a powerful alternative that allows for a generic extraction
of features with little domain knowledge [29]. However, they have
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Figure 1: Visualization of two people’s (p0 and p1) various behav-
ioral traits in a social-interaction game “RESISTANCE” among 5
people p0-p5. Their eye focuses are used to built up the dynamic net-
work and their facial expressions are used as node attributes. Both
are interleaved and change over time in a highly dynamic fashion.

been mostly evaluated on generic tasks such as link prediction and
are not directly applicable. The mismatch comes from the unique
patterns of dynamic social interaction networks, as shown in Fig. 1:
1) Social interactions such as “looking at” and “speaking to” have
important duration information; 2) Multiple social interactions may
be concurrent and overlapping in time domain. Previous methods
to process streams of interactions typically focus on the starting
point of each interaction but cannot handle concurrent interactions
and their duration information [9, 27, 33, 45, 54].

A way to handle the concurrent and overlapping problems is to
break dynamic networks into snapshots. However, network snap-
shots in our case should be partitioned in high time resolution to
capture the important duration information of social interactions
and the highly dynamic node attributes, which finally leads to a
long sequence (= 1000). Moreover, indicative patterns from subtle
interweaving of highly dynamic node attributes and interactions are
typically scattered in long-time. Both facts make previous methods
on generic dynamic networks fail [20, 21, 32, 41, 42].

Present work. In this paper, we propose a neural network based
model, temporal network-diffusion convolutional networks (TEDIC),
to learn node representations of dynamic social interaction net-
works in a rather general manner, which fit into various node-level
prediction tasks. The first part of TEDIC is network diffusion of
node attributes that naturally captures the interweaving between
highly dynamic node attributes and interactions. Note that graph
diffusion procedure works in some sense similar to graph convolu-
tional networks (GCN) [24] but without using non-linear activation
neurons. This simplification allows tracking the effects of long-hop
interactions and also improves the model’s explaining power. The
second part of TEDIC is a temporal convolutional network (TCN)
accompanied with set pooling to aggregate representations of nodes
over a long time span. Due to the locality of temporal convolution
kernels, TCN is able to extract patterns from interactions with vari-
ous durations as these interactions may appear alternatively across
multiple consecutive snapshots, and set-pooling is useful to collect
subtle patterns scattered over a long-time span. Moreover, TEDIC is
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end-to-end trainable, and therefore provides an opportunity for so-
cial scientists to automatically process dynamic social interactions
and obtain insights from the data simultaneously.

We evaluate TEDIC over four different node-level prediction
tasks, including identification of people’s dominance, nervousness,
lying behavior, as well as underlying community, on five different
real social interaction networks. From the perspective of making
inference, TEDIC significantly outperforms previous baselines that
are either based on feature engineering designed for certain tasks
or on neural networks for generic dynamic networks.

We further analyze TEDIC’s explaining power and broader soci-
etal implication by examining its learned coefficients and hidden
embeddings: 1) We find that direct interactions (e.g. looking, speak-
ing) among individuals may be more informative for dominance and
nervousness detection, while signals of avoiding direct interactions
are strongly informative for deception detection. This observation
coincides with previous findings in psychology via extensive statis-
tical analysis [14, 47]. 2) We also find that difference between the
quantified attributes of one individual and those of his/her inter-
acted neighbors is a stronger signal to indicate his/her dominance
and nervousness, when compared with his/her own attributes. 3)
We additionally show that TEDIC remains least biased to people
from different regions despite its strong classification power on
given tasks.

The paper is organized as follows: Section 2 reviews related
research. Section 3 introduces notations and problem formulation.
Section 4 introduces the TEDIC model. Section 5 evaluates TEDIC
over extensive experiments and shows model interpretation.

2 RELATED WORK

The research related to our problem spans two broad areas.
Methods to Analyze Social Interactions. Many works have been
conducted to analyze social interactions to identify human behav-
iors and relationship. These works commonly adopt extensively sta-
tistical methods to analyze a combination of social interactions such
as speaking and looking [6], physical proximity [7, 15] with individ-
uals’ attributes including facial emotions and action units [2, 12, 13],
voice pitch and energy [6], or combination of multiple types of such
features [3, 15, 22, 34]. Task-specific features are extracted and are
then fed into standard classifiers (e.g. SVM, Random Forest) to make
inference. These engineered features, albeit powerful in their corre-
sponding tasks, often require specific domain knowledge in social
science and psychology theories and thus are less general.
Representation Learning for Dynamic Networks. The success
of representation learning for dynamic social interaction networks
strongly depends on extracting the interweaving of highly dynamic
node attributes and interactions. A few works process a sequence
of interactions between nodes, but they are unable to take dynamic
node attributes [9, 17, 20, 27, 33, 38, 44, 45, 51, 54, 55]. Among
them, it is worth mentioning that [17, 38, 51] explicitly look into
the structural patterns on dynamic networks and provide many
insights. However, they are not well-suited for our prediction tasks
as the patterns does not incorporate dynamics of the attributes.
Works that were claimed to digest dynamic node attributes all
work on networks snapshots [21, 23, 32, 41-43]. [23, 43] study
how to split the network into snapshots based on edge count or
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Figure 2: Temporal Network-Diffusion Convolutional Network (TEDIC). The Graph Diffusion component captures the in-
teraction patterns among people at any given time snapshot; its Set-Temporal Convolution further filters, transforms, and

aggregates important signals over time in a hierarchical manner.

structural maturity. After obtaining the snapshots, existing works
generally follow the framework by first propagating node attributes
of each network snapshot and then aggregating them over time.
The first step adopts either graph convolution networks [24] or
graph attention networks [46]. The non-linearity in propagation
therein prevents the model from learning long-hop interweaving
between node attributes and edges (interactions) and is not good
for model interpretation [52]. The second step uses either variants
of RNNs [21, 32, 42] or attention mechanism [41] to aggregate node
representations, which limits the memory capacity and therefore
cannot process a sequence of typically more than 100 snapshots. On
the contrary, our model is robust to process more than 1000 snap-
shots. Moreover, although these works can process dynamic node
attributes, they have not been evaluated in the settings with highly
dynamic node attributes as those in dynamic social interaction
networks.

3 PROBLEM DEFINITION

In this section, we introduce the notation and problem formulation.

Notation. A static network can be represented as a graph G =
(V,E) where V denotes the set of nodes and E(C V X V) denotes
the set of edges. Let N = |V|. An edge refers to a pair of vertices
(u,v) € E. Networks that we discuss may be directed or undirected.
An undirected network can be viewed as a special case of directed
ones given the condition (#,0) € E & (v,u) € E. In the later
discussion, we implicitly assume G is directed unless specified.
Graph G is associated with adjacency matrix A € RN*N_ G is
assumed to be positive, normalized, and weighted: A,, € (0,1]
if (u,v) € E and otherwise Ay, = 0. The diagonal degree matrix
is defined as D € RN*N whose u-th diagonal component is d;, =
ZUEV Auy.

We use M and M’ to denote feature’s dimensions. Given a multi-
variant multi-dimension time-series {X; };c7 where X; € RN*M,
we define temporal convolution as Y; = X; * Cy = Y ez X;—Cr,
where {C;};¢7 are kernels and C; € RM*M’ " Note that for a finite
length kernel C;, the sum contains finite terms.

Problem Definition. Dynamic social interaction networks orig-
inally consist of streams of interactions with duration. In prac-
tice, researchers leverage sensors to sample snapshots of these
networks in high temporal resolution. Therefore, we directly define
our data structures as dynamic graph snapshots: {G; }1<¢<T Where
Gt = {V;, E+}. Note that, in general, the node set V; could change
over time. However, in our case, V; (denoting participants) is as-
sumed to be fixed, i.e. Vt,V; = V, which comes from the property
of data for social interaction networks of interest: In most cases
network data is collected from sensors pre-allocated among partici-
pants of an experiment, e.g., tracking behaviors of multiple agents
in a game/conference. Increasing the number of sensors during the
experiments is not relevant to the target of the experiment. In con-
trast, the edge set E;, denoting interactions between people could
evolve significantly during the whole time period. In our problem,
the network is associated with dynamic node attributes: {X; }1<¢ <T»
where the row of X; corresponding to node u, X; ;,, denotes intial
attributes of node u.

Our work is to learn the node representations in these networks
to capture important patterns from people’s social interaction be-
haviors. Once the representations are learnt, prediction/inference
on certain tasks can be accomplished by feeding these representa-
tions into task-specific inference blocks. We claim that our approach
can be used for general node-level prediction tasks that require
patterns from dynamic social interaction networks, while specifi-
cally in this work, we consider the following four tasks: deception
detection, dominance identification, nervousness detection and
community detection. Note that the specific inference blocks and
training objectives will be specified in Section 5.

4 PROPOSED MODEL: TEDIC

In this section, we introduce our model, TEmporal network-DIfusion
Convolutional Network (TEDIC). It consists of two main compo-
nents: Network Diffusion of node attributes, and Set-temporal con-
volution-based aggregation over time (Fig. 2) plus a readout layer.
Input to TEDIC is a long sequence of dynamic interaction features
and network snapshots, X; and G;. TEDIC outputs an embedding
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for each person encoding his/her behavioral traits through the in-
teraction events, which can be directly piped to a simple classifier
for prediction. Each component of the model is designed to capture
properties of dynamic social interaction networks on a different
aspect.

4.1 Network Diffusion Component

To learn interactive effects of people for various social tasks via the
network diffusion process, we parameterize the diffusion process by
two categories of parameters with proper physical meanings. The
first category is to distinguish the implications of people making
interactions and avoiding interactions. The second category of
parameters is to characterize the effect of interactions with different
hops over dynamic networks.

Parameters f for making or avoiding interactions. One spe-
ciality of social interaction networks is that the behavior to avoid
interactions could be very informative. For example, deceivers tend
to avoid gazing at others [26], and some deceivers may tend to be
abnormally quiet in front of others [47] due to their low-level self-
confidence. However, different phenomena could happen between
a follower and his leader [48]. So we consider graphs corresponding
to the original interaction networks and their complement graphs
simultaneously. Concretely, for each type of interaction network
with adjacency matrix A, we also consider the corresponding adja-
cency matrix of the complement network A = 117 — A where 117 is
an all-one matrix. Then, we introduce another parameter § € [0, 1]
to merge these two networks to obtain a new adjacency matrix via

A =BA+(1-PA=(28-DA+(1-p11T. (1)

Apparently, this parameter § can have implications: a greater f
suggests making interaction is more informative to a prediction
task, while a smaller f emphasizes that avoiding interaction may be
the key clue. Next, we do graph diffusion of node attributes based
on the random walk matrix W’ = D’~1A’, where D’ is the diagonal
degree matrix of A’.

Parameter I} for different-hop interactions. The model is now
to perform different-step graph diffusion of node attributes based
on the induced random-walk matrix W’. By assigning a group of
learnable parameters {I} }x o, where I} is a diagonal matrix for
the hop k, we consider the transformation of initial node attributes
X; € RN*M for network snapshot t based on network diffusion as

He= Y BT =Y WOk, H” =fX) @
k>0 k>0
where f(-) : RNVM _, RN*M” could be as simple as identity
mapping (M’ = M) or as complex as multi-layer perceptrons (MLP)
that properly transform and normalize initial node attributes. Here,
M’ is the dimension of output channel. T}, € RMXM’ provides the
weights for the k-hop diffusion. The corresponding g-th diagonal
component, denoted by yy 4, is the weight for ¢’s output channel. In
practice, typically only the first several hops could be informative
so we may set an upper bound to the number of hops: 5 ~ 10 steps
provide good enough results in practice.
The Eq. (2) has many implications. Consider the sequence {yx ¢ }x>0
for any q and suppose f is identity mapping. From the perspective
of graph spectral convolution, {yx 4 }x>0 corresponds to weights on
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different levels of the smoothness of the g-th node attributes. More-
over, different fixed formulations of yy , provide different ranks

of nodes: yg 4 « aF corresponds to PageRank [35]; Ykq Rk k!
corresponds to heat-kernel PageRank [8]. Extensive feature engi-
neering shows that different formulations of ranks could be impor-
tant signals to detect deceivers or leaders among groups of peo-
ple [2, 3]. Our formulation based on learnable parameters, connect-
ing to generalized PageRank [30], allows for bigger representation
power to cover multiple prediction tasks. Moreover, for model self-
explanation, as W7 is column stochastic, it will keep the £ -norm
of every column of H (k) unchanged (with non-negative features)
and thus naturally hold normalizing property. Therefore, the value
|Yk,q| and the sign of yi 4 can be naturally interpreted as the effect
of k—hop diffusion of g-th node attribute to the final representation.
Even when f is an MLP, decoupling parameters I} on diffusion and
parameters on pure transformation of node attributes in f(-) keeps
the effect of network diffusion distinguishable, which is useful in
the model self-explanation.

Note that there could be variants of Eq. (2) to further increase
model complexity and representation power. By adding nonlinear
transformation of each step H (k) before letting it propagate, one
may get the model GCN [24]. However, adding non-linearity per
step increases the difficulty for training, which limits the steps of
propagation to 2-3, and could simultaneously decrease the model’s
self-explaining power. As our experiments do not show any im-
provement based on non-linearity, a simpler model is preferred.
Similar gain by removing non-linearity has also been observed in
many recent literatures on graph neural networks [25, 49]. How-
ever, to our best knowledge, we are the first to show the success of
this manner to process dynamic networks. The network diffusion
formula is also relevant to the ChebNet [11] while the ChebNet
was proposed for undirected unweighted graphs and used graph
Laplacians instead of random-walk matrices for weighted graphs
in our setting.

4.2 Set-Temporal Convolution Component

To aggregate node features over time, we propose a method called
Set-TCN (S-TCN) to handle the complex and long-term temporal
social interactions. The input of this block is a sequence of node
features {H; }1<¢ <7 where H; denotes the node features for each
snapshot t obtained via equation (2).

There are two challenges, as aforementioned, in building the
block to aggregate temporal information. First, our model should
be able to handle an extremely long sequence of snapshots. Second,
indicative patterns, such as “switching his/her gaze”, are typically
subtle and scattered randomly and in the whole time span. Their
global orders may not matter so much (e.g. when exactly a person
laughs), but recognition and collection of the local patterns may be
highly important (e.g. who laughs with the person and how many
times do they laugh in total). Our model should also be capable to
deal with such subtleties and complexities of behavior signals.

The S-TCN block is built for this target with two components.
The first component consists of multiple TCN layers to capture
local dynamics. The second component is a set pooling to collect
local patterns randomly scattered within the whole long time space.
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Multi-layer Temporal Convolution. There are L layers of tem-
poral convolutions. Kernels of the I-th temporal convolution layer

can be represented by a sequence {Ct(l) }1<t<w where w is its win-
dow length , which transforms the input H; from Eq. (2) via

Z0 —retu(z™V « ), (ZYgrer = (Hihisr ()

Z0 Z0y), for1<i<L (@)

Zt(l) = max-pool({Z,,,
, where # is the convolution operator defined in Sec. 3. The number
of layers L typically depends on the time scale of interactions we
want to extract patterns from. It is related to the receptive field
of convolution networks (See Fig. 3)). The success of TCN in our
setting comes from its clear and flexible receptive fields. If the size
of max-pooling kernel is two as used in Eq. 4, then neurons in the
last (L-th) convolution layer can perceive the signals with length
2L The size of receptive field is decided by two important points:
(1) Signal Denoising. Convolution kernels are widely known for
their capability to function as low-pass filters. By stacking different
numbers of convolution layers, we can explicitly tune the capability
of the network for signal smoothing; (2) Temporal feature ex-
traction from well-defined "locality". By tuning the number of
layers, one can actively search for the optimal receptive field length
to gather meaningful features. Such length is also an important
reference for us to understand individuals’ interaction.

Figure 3: Receptive field

[ | Layer [ + 2
/| of temporal convolution:
The interaction happened
s s Laverl+1 at the two blue timestamps

| ‘ in layer [ is captured by
g the blue timestamps in
layers [ + 1 and / + 2 through
m convolution operation.

- b (- - - Layer |

Given a proper depth of TCN (L € [2,4]), to obtain a proper size
of receptive field, the length of the final layer could still be long
(> 50) because of the original long time series (T = 1000). Thus,
next we leverage set pooling to extract scattered local patterns.

Set Pooling. As opposed to online social networks that often show
seasonal patterns, there are seldom periodical patterns in the of-
fline social interaction networks we study. Consider eye contact
in conversation/meeting among a group of people. Informative
patterns of interactive behaviors of people are usually randomly
scattered in the long time span. Therefore, with the local patterns
captured by TCN, we use set pooling over the obtained sequence
{Zt(L) }<r<T@ to extract messages scattered within this long se-
quence. We observe that the following is generally effective across
different applications:

L
Zmax = max-pooly ; 1) (z), z;= Zt( ) (5)
Zout = mean-pool; ., .p(1) (ReLU(Z;©1 + Zmax®2))  (6)

First, we impose the max pooling Eq.(5) on {Zt(L) H<r<T@ to em-
phasize the critical local patterns; Then, we linearly merge the out-
put of max pooling into each Zt(L) to let each Zt(L) capture global
information; Finally, after a simple ReLU activation, we obtain the
output via mean pooling.
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Note that the max pooling captures the essence of randomly
scattered patterns while the second step based on linear combina-
tion and the mean pooling is found out to be useful to improve
the robustness of feature aggregation. Note that this set-pooling
technique properly tailors Deep Sets [53] for our setting.

4.3 Readout Layer

Up to Eq.(6) we derive for each person a representation that encodes
his/her behavioral patterns throughout the interaction. The pur-
pose of appending an additional readout layer is to further model
the process where the final prediction for each person is made by
explicitly considering all people’s representations in the interac-
tion event. In other words, the probability of each person being
our target of interest should be conditioned on both the person’s
representation and the whole interaction context which involves
all people’s representations. Therefore, we use the readout layer:

Zéut = Zéut®3 +mean—poollsjsN(Z£ut)®4, V1<i<N, (7)
where Zéut is the i-th row of Zy,;; and O3, ©4 are learnable weights.

The second part of Eq. (7) models the whole interaction context.

5 EXPERIMENTS

Our proposed model is evaluated over five datasets on four node-
level classification social tasks: detecting dominant, deceptive (ly-
ing), and nervous people, as well as people’s underlying community.
Table 1 summarizes the task settings and dataset statistics. We will
refer back to this table as we walk through the experiment settings
in Sec. 5.1. Also, since Task 5 holds different properties compared
to Tasks 1 ~ 4 while is a common task to evaluate representation
learning of dynamic networks, we postpone its introduction and
analysis to Sec. 5.5.

5.1 Experimental Setup

Raw data & Preprocessing. The raw data of datasets 1-4 is a
collection of videos. Each video records a group conversation that
ranges from 5 to 40 minutes and contains frontal views of each
individual in the group. The preprocessing of these videos involves
two steps: feature extraction and time coarsening.

To extract numerical behavioral features of people in each video,
we employ several vision-based and audio-based techniques fol-
lowing a similar pipeline of [3]. The extracted features cover many
channels people use to convey messages. We briefly summarize
them here: I. Emotion: intensity of eight emotions e.g. happiness,
anger, calm, etc. and two facial traits (smile, open eyes), provided
by Amazon Rekognition; II. FAU: intensity of 17 facial action units
extracted by OpenFace [5]; III. MFCC: voice features widely used
in audio analysis [10]; IV. Speak Prob.: probability that a person is
speaking estimated from lip movement [4]; V. Gazing Prob.: proba-
bility that person i looks at person j estimated from [4]. Note that
gazing from person i to himself (j = i) means that the person looks
at his own camera in the front. The sum of each person i’s Gazing
Prob. towards all targets is 1. These features are extracted every
1/3 second from videos. We use Features I ~ IV as our dynamic
node features, and use Feature V to construct a densely connected
dynamic interaction network. In the network, the nodes are the
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No. Task Dataset Classification Networks Avg. Time Steps®  Group Size Interactions’
1 Dominance (R) RESISTANCE-D multiclass 956 2,514 5~38 4.007 x 10°
2 Dominance (E) ELEA binary 27 2,545 3~4 6.474 x 10°
3 Deception RESISTANCE-S binary 2,157 2,258 5~8 2.439 x 107
4 Nervousness  RESISTANCE-N multiclass 1,097 2,528 5~8 4.910 x 107
5 Community CIAW multiclass 1 20 92 2.149 x 10*

Table 1: Statistics of the dynamic network datasets. : The time steps are before coarsening (with time granularity A = 0.33s).

1: We count all the interactions with gazing probability > 0.5.

participants and the dynamic edges are weighted by the gazing
probabilities that participants look at each other over time.

With the extracted features, the time coarsening process deals
with another critical aspect of our interaction sequences: the time
resolution. In this step, we smooth both the node attributes and the
edge weights of the snapshot sequence by taking the mean value of
each feature dimension every A seconds along the time axis. A is a
hyperparameter having been extensively tuned for both TEDIC and
all baselines as different models show different sensitivity to the
time granularity. We will provide an in-depth empirical analysis on
the values of different A’s in Sec. 5.2.

Dataset: RESISTANCE-D, -S, -N. These three datasets record peo-
ple’s performance in a role-playing party game called the Resistance:
Avalon [16]. Each game has 5 to 8 players secretly split into two
rivaling teams ("spy" and "not spy") before the game starts. In order
to win, people need to collaborate with each other, argue persua-
sively, avoid appearing nervous, and even extensively lie if they
are assigned a "spy" role. The three datasets share about 50% videos
in common. The rest differs due to several practical constraints to
collect labels.

Labels for RESISTANCE-D and RESISTANCE-N are generated by
referencing surveys taken by all participants after each game. The
surveys take the form of questionnaires, asking each participant to
rate the dominance and nervousness levels for each other. Based on
these scores, we rank all the people in each game and use the ranks
as ground truth. Since the tasks on these two datasets (i.e. Tasks
1 & 4) is to identify the most outstanding person from the group
(the most dominant person, the most nervous person), we consider
them as a multiclass classification problem, where the number of
classes is the number of players.

Labels for RESISTANCE-S, which are all people’s identity of each
game (i.e. Spy or not), are pre-given by the dataset. We know from
the game’s setting that spies have to keep lying and thus regard
those identities as the ground truth labels for deception detection
(i.e. Task 3). Since there can be more than one spy in each game, we
regard this task as a binary classification problem on each person.

Dataset: ELEA. The dataset [40] is a widely used public bench-
mark for modeling and detecting people’s dominance [3]. In each
video, 3-4 participants performed a "winter survival task" by having
collaborative discussions. External annotators watch game videos
and assign a dominance score for each player. Then, the generated
dominance labels indicate a slightly different meaning: whether a
person is more dominant in the group instead of the most dominant.
This is done by thresholding dominance scores with the median

dominance score and by assigning binary labels accordingly. The
subtle difference is in place to follow the protocols of most previous
works such as [1, 3]. This provides another angle of evaluation
compared to most dominant person prediction in RESISTANCE-D.
We treat the task on ELEA (i.e. Task 2) as a person-wise binary
classification task.

Baselines. Our framework is compared with two groups of base-
lines. The first group are task-specific baselines which were pro-
posed uniquely for each task by integrating domain knowledge
into handcrafted features. The second group are generic baselines
originally proposed to model generic dynamic network structures.
We briefly introduce them here.

For task-specific baselines, we select for each type of task a
handful of previous methods to compare with:

Dominance Detection. MKL [6] is a method based on hand-
crafted features like voice pitch and speaking rate. GDP [3] is a
method relying on a special kind of handcrafted feature called
DomRank, with two versions: one using random forest classifier
(GDP-RF), and the other using multi-layer perceptron classifier
(GDP-MLP). DELF [3] is a method also reported in the same work
as GDP, and uses DomRank in a slightly differently way. FacialCues
[19] is a method leveraging the facial action units from [5].

Deception Detection. DDV [50] is a method combining hand-
crafted micro facial expression with NLP features. TGCN-L [31] is
a method based on gazing probabilities. LiarRank [2] is based on all
the features we used but aggregates them in a way so that several
pieces of their domain knowledge get integrated.

Nervousness Detection. This is a new task which, to our best
knowledge, few methods were proposed in a similar problem set-
ting. Among all the previously introduced baselines, we think the
LiarRank and FacialCues are two baselines that will most possi-
bly work to help detect people’s nervousness. Therefore, they also
become the baselines for this task.

For generic baselines, the SOTA methods that claim to handle
dynamic networks well are primarily based on various architectures
of temporal GNNs, among which we select three most representa-
tive ones to evaluate across all tasks: CD-GCN [32] is one of the
latest methods on dynamic graph classification tasks. It combines a
skip-connected GCN with a returning sequence LSTM. EvolveGCN
[36] is a latest method on dynamic network sequence modeling
tasks, especially for link prediction and link type classification. It
uses a recurrent module to update the projection weight of a GCN
module. GCRN [42] is another method for modeling dynamic net-
work sequence constructed from images and point clouds, using



TEDIC: Neural Modeling of Behavioral Patterns
in Dynamic Social Interaction Networks

a convolutional module to update the internal weights of a LSTM
module that deals with sequential node features.

To ensure fair comparison, all baselines share with our proposed
model the same readout layer and loss function.

Training and Evaluation. We randomly partition our data into K
folds, reserving 1/K for testing and the rest for training. Following
[2, 3], we use K = 10 for all RESISTENCE datasets, and K = 27
for ELEA. To compute the logits, we add a single-layer NN plus a
sigmoid or softmax nonlinearity on top of the readout layer (see
Section 4.3). We use the cross entropy loss and use Adam to opti-
mize all the models. To evaluate our method as well as baselines,
Mean Accuracy over the K folds is reported. There are several hy-
perparameters related to the tuning process, including the time
resolution A in data preprocessing, the number of layers for set-
temporal pooling, etc. All hyperparameters, both for our model
and all baselines (except DDV whose code is not available), are ex-
tensively tuned and the best performance is reported. Please refer
to the supplementary material for the detailed search ranges of
hyperparameters.

5.2 Experimental Results

Table 2 compares the performance all models on Tasks 1 ~ 4. Here
for brevity we only report the top 2 results of our task-specific
baselines, and leave the complete evaluation table to the supplement.
From the comparison, we observe that TEDIC consistently shows
high performance across all the tasks: it significantly outperforms
the strongest baselines in Tasks 2 ~ 4 and also achieves better
result on Tasks 1. Interestingly, we also see that our model has most
statistically significant gain in most challenging Tasks 3, 4 . Both are
scenarios where the interacting participants purposely conceal the
indicative signals of their labels because they do not want others to
know that they are lying or nervous We attribute such success to
the fact that TEDIC effectively captures the temporal cues. While
almost all the baselines come with proper graph convolution or
careful feature engineering work, their ways to process temporal
information are insufficient by simply using mean pooling (TGCN
[31]), Fisher Vector (FacialCues [19]), histogram encoding (DELF
[3]), or many-to-one LSTM (GCRN [42]). In particular, the generic
baseline’s failure on Tasks 1 & 4 implies the lack of robustness
with temporal sequence modeling techniques based on recurrent
structures.

Ablation study. We further demonstrate the usefulness of each TE-
DIC building block by conducting ablation study on RESISTANCE-
D. Results are shown in Table 3. In the table, Ab. 2 ~3 further verify
RNN’s insufficiency on handling both extremely long time sequence
and weak local dynamics. Interestingly, the simple mean pooling
can outperform RNNs. Ab. 4 ~ 8 focus on graph-level techniques by
replacing the network diffusion module. Ab. 4 shows the importance
of using network for prediction. Ab. 5 ~ 8 indicates the usability
of GCN despite its serious decay because of over-smoothing when
going deep. In contrast, our network diffusion can propagate as
long as 10 hops without significant performance decay.
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Effect of Time Resolution. The time resolution of input interac-
tion sequence is a hyperparameter that controls the level of tempo-
ral smoothing in preprocessing stage. Data with high time resolu-
tion betters the opportunity to capture subtle short-time interaction
patterns while introducing more noise. In that regard, we attribute
the failure of RNN-based baselines [32, 36, 42] to their sensitivity
to such noise. To validate this understanding, we conduct further
experiments by adjusting the original time resolution A = 0.33s
that is the highest time resolution to collect the data. Specifically,
we averaged input feature sequence and edge weights for every
few seconds (A = 1s, 3s, 15s, 60s) to change the time resolution.

Fig.4 plots the performance of our model and the generic base-
lines on all datasets. The competing effect previously mentioned
is clearly demonstrated by the trend of the lines: the accuracy of
each method usually peaks at a certain time resolution and drops
sideways. Also note that on three out of the four datasets our
method’s performance peaks with high time resolution compared
with baselines. This indicates that our model does well in extracting
knowledge from more detailed and subtle behavioral patterns, while
also staying robust to the adverse effect introduced by varying the
sequence lengths and noise levels.
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Figure 4: Accuracy as a function of time resolution of the
interaction sequence.

5.3 Model Interpretation

The linear dependence on the parameters ff and {I} } in network dif-
fusion provides certain self-explaining power that further induces
some social insights.

Interpretation I: Balancing Weight f. Recall that § (Eq. ) is the
learnable parameter that directly controls the relative importance
of proactive interaction versus avoidance of interaction. Fig. 5 dis-
plays how the f§ converges during the training (initialized to 0.5,
i.e. neutral). For each task we ran multiple times by introducing
small perturbation to s initialization. The figure shows that the
parameter exhibits very different convergence behavior across dif-
ferent tasks. For the deception detection task, f significantly drops
to around 0.2, which indicates that avoidance of interaction may



WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Yanbang Wang®, Pan Li*, Chongyang Bai, and Jure Leskovec

Task Ab.  Replacement Accuracy
Method Dominance (R) Dominance (E) Deception  Nervousness

etho 1 Original 0.923£0.009
Task- Top-1 Method 0.918+0.013 0.769+0.019 0.668+0.021  0.733+0.022 2 S-TCN — LSTM 0.758+0.009
specific ~ Top-2 Method 0.887+0.015 0.677+N/A 0.638+0.016  0.729+0.015 3 S-TCN — Mean Pool  0.842+0.023
CD-GCN[32] 0.6870.042 0.794+0.022 0.673+0.018  0.534:0.084 4  Diff. — None 0.829+0.019
Generic ~ GCRN[42] 0.587+0.096 0.795+0.032 0.643+0.045  0.336:+0.104 5  Diff. »> GCN-1Layer 0.844+0.020
EvolveGCN[36] 0.6020.061 0.739+0.077 0.623+0.042  0.3970.099 6  Diff. > GCN-2Layer  0.889+0.015
Proposed TEDIC 0.923+0.009 0.815+0.019 0.689+0.012  0.769+0.023 7 Diff. — GCN-4 Layer  0.784+0.026
Table 2: Accuracy of detecting dominance, deception and nervousness. Mean 9  Freeze f=1 0.889:+0.014
Accuracy * 95% confidence interval is reported. Table 3: Ablation study on Task 1.
be much more important than contacts to detect deception. Inter- b Node In-degree 10 Self-loop Degree

0s{ | (of Gazing Network) 08 (of Gazing Network)

estingly, this phenomenon coincides with findings from a psycho-
logical study [37] on eye movement of people in various contexts.
Moreover, for the dominance identification task dominant, the con-
vergence to a large f implies that people are more easily identified
with their aggressive way of reaching out to others. For the ner-
vousness detection, there seems to be no dominating values of f.
Analysis of f indeed provides some information related to people’s
social status and their willingness of making social interactions.
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Figure 5: Different evolution behaviors of § during training,
95% confidence intervals shaded. Trained on RESISTANCE-
D,-S,-N respectively.

Interpretation II: Diffusion Weights {I} }. Recall from Eq. 2 that
{Tk Yo<k <K is a sequence of diagonal matrices where I} € RM'xM’
contains the weights corresponding to M’ features’ k-hop diffu-
sion. After training the model, we would obtain K + 1 diffusion
weights for each of the M’ features by taking the diagonal of each T}.
Analyzing these weights provides insights of how the interaction
network helps shape the original features during the diffusion. Fig.6
shows the weights for four of the features (diffusion steps K = 10)
when the model is trained for the nervousness detection task. The
diffusion weights have been normalized such that the 0-hop weight
is 1. First, we observe that the 0-hop weight is significantly the
largest, meaning that the original node features are very important
to prediction. Therefore, the role of graph diffusion in this task
can be roughly regarded as a fine-tuning process over the original
features. Second, a clear contrast between the top two features is
observed. Both of them can propagate far via the interactions, the
way diffusion modifies the original features are different (I, < 0 for
node in-degree v.s. I} > 0 for node self-loop degree ). We attribute
such distinction to different implications of those two features: The

1" -02 _02
k 0 2 4 6 8 10 0 2 4 6 8 10
10 . 1.0 .
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0.6 0.6
0.4 0.4
02 0.2
0.0
P
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-0.2
o 2 4 6 8 10 o 2 4 3 8 10

Figure 6: Diffusion weights of four features for the nervous-
ness detection task (95% confidence interval shaded).

self-loop-degree of a node can be interpreted as the probability
that the person looked at his/her own camera at the corresponding
moment. Person with this behavior patterns tend to be more intro-
verted and preservative, and may affect the conversation and make
other people talkless as well. Therefore, if there is one person that
looks frequently at his own computer, other people may appear a
bit nervous to our algorithm as well. In contrast, the in-degree of
anode can be interpreted as the attention that one received from
other people at the moment. Those “other people” may therefore
appear less nervousness. Finally, the "smile" and "happy" emotions
seem to be able to diffuse two steps while not beyond: If a person
smiles, the “smile” may tell something about the nervousness of
the person itself; meanwhile, the likelihood of the nervousness of
other people, who indirectly interact with the person through long
“gaze chains”, is barely affected.

5.4 TFairness of the Model

Given our task’s nature, we paid special attention to TEDIC’s soci-
etal implications. We hope to ensure that it does not discriminate
against people from certain communities. People involved in this
study can be roughly identified into four communities based on
the regions where the videos are recorded: North America, Africa,
Middle East Asia and Far East Asia. In particular, we examine two
things: 1) Whether our model is able to distinguish people’s ethnic
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© North American African

Middle East Asian e Far East Asian

Input Layer (acc=0.436) Graph Diffusion Layer (acc=0.468) S-TCN Layer (acc=0.484)
Figure 7: Projected embeddings output by different layers of

our model with the corresponding regional identities.

N. American  African  Mid. East Asian  Far East Asian
28.6+2.1 27.1+2.2 28.5+2.4 26.6+2.5

Table 4: Percentage of people predicted lying by our model.

Identity
%Lying Pred.

or cultural background; 2) How much bias our model may intro-
duce to the decision process. For this case study we focus on Task
3 (deception detection) because it is more ethically sensitive and
also the task that we have most complete regional identity labels
of people.

We investigate the first question by visualizing the learned hid-
den embeddings of each person, which are extracted from three
positions of our model: the input layer, the Graph Diffusion layer,
and the S-TCN layer. Fig. 7 plots those embeddings projected into
the low-dimensional space. Here, the color of one dot encodes one’s
corresponding regional identity. To quantify the level of mixing
identities, we use all those embeddings as input features and run
a logistic classifier to check how accurate those embeddings can
be used to identify one’s region. We see from both the plot and the
numbers that the embeddings are well mixed together and the clas-
sification accuracy remains almost unchanged through our model.
This implies that our framework collects very limited amount of
regional information, which lowers the risk of it being biased.

To answer the second question, we summarize the proportions
of people from different places that our model predicts to be lying.
Table 4 shows the average percentages and their 95% confidence
intervals. Statistically we can also conclude that no significant clue
(i.e. p < 0.05) is found with our model being discriminatory towards
people with different regional identities.

5.5 General Applicability

In the end, we want to demonstrate
that TEDIC is applicable to a wider

Method Accuracy

CD-GCN 0.81920.021 range of social interaction networks.

GCRN 0.601+0.035 Previous experiments have shown

EvolveGCN  0.912+0.013 its success to process networks with

TEDIC 0.929+0.011 high-frequent interactions spanned
Table 5: Performance in a long-time range. Here we further
on CIAW. investigate how TEDIC works when

the dynamics is less vibrant and the
time range is relatively short, for which we conduct evaluation
over another dataset CIAW [18]. CIAW is a dynamic network built
upon 92 people’s timestamped proximities (of up to 1.2 meters) in
a workplace over 20 days. Our goal is to infer one’s department
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identity based on the dynamic network. This evaluation setting
differs from our main setting in several aspects: The network is
significantly less dynamic with much less snapshots (Table 1); It
also has a different instantiation of "social interaction" defined
by physical proximity instead. More details of this dataset and
experiment settings are left to our supplementary materials. We
compare our model with the generic baselines and obtain the results
in Table 5. We observe that our model can still perform well in such
a very different scenario, though the accuracy gain to the strongest
baseline is comparatively marginal. We attribute the consistent
performance of our model to the high robustness of the S-TCN
block to sequences with various length.

Our method can also be applied to other real-world dynamic
systems with similar properties as the social interaction networks.
For example, the financial network among traders and companies
in the stock market are usually high-frequent with strong local
dynamic patterns and interweaving influence among nodes. Our
Graph Diffusion and S-TCN modules can be easily adapted for
node prediction tasks over such networks such as fraudulence
detection. Traffic networks also have high-frequent traffic dynamics
and complex relationships among traffic nodes. Therefore, TEDIC
may be used to forecast the conditions of traffic nodes such as next-
day flow volume and/or congestion level. In computing systems,
communications between different softwares also share similar
properties. Therefore, we can adapt TEDIC help with the malware
detection task in software communication networks.

6 CONCLUSION

In this work, we introduce TEDIC as a new neural-network-based

model particularly designed to extract people’s behavioral patterns

from dynamic social interactions via a light-feature-engineering

manner. Benefiting from its well-coordinated building blocks, TE-
DIC not only achieves SOTA performance to identify various indi-
viduals’ social characteristics, but also enables certain self-explaining
power to yield in-depth understanding of people’s behaviors used

in their social interaction. Experimental results also demonstrate

the fairness of TEDIC when it processes the patterns of people

from different regions. Finally, we would like to claim that TEDIC’s

broader societal implications can never be over-emphasized: Fur-
ther investigation into its reliability, fairness and generality could

inspire a series of meaningful studies in the future.
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A DATASET DETAILS

RESISTANCE-D, -S, -N. These three dataset record people’s performance
in a role-playing party game called the Resistance: Avalon. Each game has
5 to 8 players secretly split into two rivaling teams before the game starts:
the resistance team ("good" people, Team A, accounting for about 70%) and
the spy team ("bad" people, Team B, the rest 30%). Team B know everyone’s
real identity but Team A do not. Both teams’ goal is to beat each other in
the “missions” in the form of discussion and voting. This process involves
frequent deception behavior (presumably only from Team B) and argument,
query and persuasion (from all parties). To persuade others, people often
need to be dominant and avoid appearing nervous, The three dataset share
about 50% videos in common. For the rest they each differ slightly because
of several practical constraints to collect labels.

Labels for RESISTANCE-D, RESISTANCE-N are generated by referencing
surveys taken by all participants after each game. The surveys take the
form of questionnaires, asking each participant to rate the dominance and
nervousness level of all the other people. We treat the median and the mean
value of each person’s scores rated by others as the “ground truth scores”
for that person. The person with highest “ground truth scores” in a group is
regarded as the most dominant / nervous one. Specifically, we first compare
the median scores. Ties are broken by further comparing the mean score.
Since the tasks on these two dataset (i.e. Task 1 & 4) is to identify one
most outstanding person from a group, we consider them as a multiclass
classification problem.

Labels for RESISTANCE-S, which are all people’s identity of each game
(i.e. spy or not), are pre-given by the dataset. By the game’s setting, it is
presumable that all spies are lying throughout the game and the rest are not.
Since there can be more than one spies in each game, we treat the task on
this dataset (i.e. Task 3) as a binary classification problem. We take K = 10
for K-fold validation to evaluate our model.

ELEA ELEA [40] is a widely used public benchmark for modeling and
detecting personal traits such as dominance [3]. In each video, 3-4 partici-
pants collaboratively performed a "winter survival task" by having peaceful
discussions. We perform only dominance detection task on the dataset as
other types of labels are unavailable. The dataset can be downloaded from
https://www.idiap.ch/dataset/elea.

Following the protocols of [1, 3], labels for ELEA are generated in a
slightly different way than RESISTANCE. First, the "perceived dominance
score" (PDS) is used as the ground truth. These are the scores rated for each
participant by the game organizers who hosted and monitored the game.
Second, based on the PDS, binary labels are assigned by thresholding each
group of interacting people with their group’s PDS median. In other words,
people that receive relatively high PDS would be marked as being dominant
with label 1, and the rest with label 0. Because of these, we regard task
performed on ELEA (i.e. Task 2) as a binary classification task. This differs
from Task 1 and provides a new angle of evaluation. Like [1, 3], we use
leave-one-out validation to validate our model.
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CIAW The Contacts in a Workplace (CIAW) dataset contains the temporal
network of contacts between individuals measured in an office building in
France during the 10 work days from June 24 to July 3, 2013. Participants
wear a body sensor that detects other sensors within 1.5 meters. A times-
tamped contact would be recorded if the proximity is maintained for more
than 20 seconds. Each participant belongs to one of the five departments,
which we regard as the "community” ground truth. The goal is to detect peo-
ple’s community by examining their interactions during that period of time.
It can be downloaded from http://www.sociopatterns.org/datasets/contacts-
in-a-workplace/

The contact records were split into 20 time intervals, each covering about
half a day. Multiple contacts within one interval lead to edges with higher
weight. Since the contact are mutual, undirected graphs were constructed.
In terms of node-level features, we stick with [2]’s features which are
essentially node embeddings generated by running DeepWalk [3] on each
graph snapshot.

Since no previous work was done on this dataset, we adapt our generic
baselines for comparison: CD-GCN, EvolveGCN, and GCRN. Since there is
only one single dynamic network constructed upon the 92 people’s interac-
tion, in our evaluation process the train-test split is no longer conduct across
the complete dynamic networks but across nodes (i.e. people) within the
single dynamic network. We take K = 10 for K-fold validation to evaluate
our model.

B HYPERPARAMETERS TUNING

In this section, we provide additional details of the hyperparameter values
or search range to tune our model and baselines.

B.1 TEDIC (proposed)

time resolution A: 0.33s, 1s, 3s, 15s, 60s; batch size: 32; learning rate: le-4;
dropout: 0.1, 0.3, 0.5, 0.7; L2 regularization: 0, 1e-4; graph diffusion steps k:
2, 5, 10; graph diffusion features: 32, 64; S-TCN layers: 2, 3, 4; S-TCN kernel
window size: 3; S-TCN features: 32, 64

B.2 Generic Baselines

CD-GCN: graph convolution features: 32, 64; LSTM hidden features: 32, 64;
Dropout: 0, 0.1, 0.3;

EvolveGCN: graph convolution features: 32, 64; GRU layers: 1, 2; Dropout:
0, 0.1, 0.3;

GCRN: "Graph CNN" features: 32, 64; LSTM features: 32, 64; Dropout: 0,
0.1, 0.3;

B.3 Task-specific Baselines

Most of the task-specific baselines have relatively limited number of hy-
perparameters, the majority of which were chosen for some good reason(s)
based on expert knowledge. Therefore, we stick exactly to the default set-
tings and hyperparameter search range for most of the task-sepecific base-
lines, including GDP (3], DELF [3], MKL [6], TGCN-L [31], and LiarRank
[2].

There are two exceptions where we made slight adaptation to our base-
lines: (1) For DDV [50], since our data does not contain transcripts from
people, we remove this modality from the "late fusion" stage in [50]. We
did not have the micro-expressions used in [50] either, so we replace these
features with the Facial Action Units extracted by OpenFace [5]. (2) For
FacialCues [19], we use a Random Forest with 50 trees on the features
extracted from [19].

C FULL PERFORMANCE TABLE
See Tab. 6.
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Task Dominance (R) Dominance (E) Deception Nervousness
Group
GDP-MLP [3] 0.918 GDP-MLP 0.800 DDV [50] 0.632 | FacialCues 0.733
Task-specific GDP-RF [3] 0.848 | GDP-RF 0.730 | LiarRank [2] 0.668 | LiarRank 0.729
Basclines DELF [3] 0.887 | DELF 0769 | TGCN-L[31] 0550 | - -
MKL [6] 0.879 | MKL 0677 | - - - -
FacialCues [19]  0.746 | FacialCues  0.702 | - - - -
Generic CD-GCN([32] 0.687 | CD-GCN 0.794 | CD-GCN 0.673 | CD-GCN 0.534
Baselines GCRN [42] 0.587 GCRN 0.795 GCRN 0.643 GCRN 0.336
EvolveGCN [36] 0.602 | EvolveGCN  0.739 | EvolveGCN 0.623 | EvolveGCN  0.397
Proposed TEDIC 0.923 | TEDIC 0.815 | TEDIC 0.689 | TEDIC 0.769

Table 6: Full performance table.
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Figure 8: Performance under different level of noise on
CIAW.
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Figure 9: CPU Wall time to train one epoch when different
number of snapshots are used. The experiment is run on
RESISTENCE-S.

D MORE EXPERIMENT RESULTS
D.1 Robustness

Interaction networks built on data collected from sensors tend to contain
noise. For example, in CIAW an interaction may be missed or mistakenly
recorded by proximity sensors. We further investigate our TEDIC’s robust-
ness to such noise. The general procedure is that we randomly perturb the
network structure up to a certain level and check how the performance gets
affected. We use |E| to denote the total number of interactions (edges) in the

whole network. The noise rate is denoted as €. A positive € means that € |E|
edges are randomly added to the network. A negative € means that €|E|
edges are randomly removed from the existing edges. In our experiments
we consider up to 5% of the noise rate, i.e. € < 5%.

Figure 8 shows the performance curve against different €’s. We can see
the mistakenly recorded edges have relatively more impact on the per-
formance than the missing edges. However, even at 5% noise level, our
framework still outperforms the previous SOTA of CD-GCN on the original
graph (Tab. 5). We attribute such robustness to the design of TEDIC, which
naturally helps denoise the features: Our graph diffusion, temporal con-
volution, and set pooling functions are all smoothing operations reducing
high-frequent signal components.

D.2 Scalability

We further report the empirical wall time used by TEDIC when it is trained
on networks with different number snapshots on average. In this experiment,
the number of snapshots on average is changed by setting the time resolution
A to different values. We run the experiment on RESISTENCE-S. Fig. 9 shows
the result. We see that the time per epoch is within very manageable range
even when we deal with networks whose number of snapshots is in the
magnitude of thousand. In principle, the time per epoch is linear against
the number of snapshots. However, the usage of TCN in TEDIC allows our
method to speed up by parallelizing the convolution in temporal dimension.
This is an advantage over RNN-based methods such as EvolveGCN or CD-
GCN, which have to be executed in sequential order.

The experiments were carried out on a Ubuntu 16.04 server with Xeon
Gold 6148 2.4 GHz 40-core CPU, Nvidia 2080 Ti RTX 11GB GPU, and 768
GB memory.
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