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ABSTRACT

The question of citation behavior has always intrigued scientists
from various disciplines. While general citation patterns have been
widely studied in the literature we develop the notion of citation
projection graphs by investigating the citations among the publi-
cations that a given paper cites. We investigate how patterns of
citations vary between various scientific disciplines and how such
patterns reflect the scientific impact of the paper. We find that id-
iosyncratic citation patterns are characteristic for low impact pa-
pers; while narrow, discipline-focused citation patterns are com-
mon for medium impact papers. Our results show that crossing-
community, or bridging citation patters are high risk and high re-
ward since such patterns are characteristic for both low and high
impact papers. Last, we observe that recently citation networks are
trending toward more bridging and interdisciplinary forms.

Categories and Subject Descriptors

H.3.7 [Information Storage and Retrieval]: Digital Libraries;
H.4.0 [Information Systems Applications]: General

General Terms

Experimentation, Measurement.
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1. INTRODUCTION

When writing a research article, authors usually (though not al-
ways [22]) read and cite research they regard salient to the topic
and approach being presented. While it is true that multiple fac-
tors determine which references get made (e.g., disciplinary norms,
strategic placement, etc. [1]), it is undeniable that the way cita-
tions are used can influence how well an article is received [14].
The selection of references situates a paper in a broader commu-
nity of research and shapes readers’ perception of it. Some articles
cite narrowly in a single vein of well-defined research, others cite
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widely and idiosyncratically, and yet others span multiple coherent
veins of work. The question this raises is how the pattern in which
citations are presented influences how well an article is received.

To a great extent the patterns of citations may be a function of
discipline. There are distinct norms of referencing within the hard
sciences and social sciences. As such, these norms represent dis-
tinct contexts of citing. In effect, the effectiveness of citation strate-
gies likely depends on the scholarly domain in which the article is
situated. As we show in this paper, each strategy of citation (spe-
cific to an article) has different returns on citation impact. An arti-
cle whose citations span research communities may have the great-
est returns of recognition in a field where segmented communities
exist (juxtaposition with context). Or it may be that segmented
communities require articles to reference only the relevant narrow
community (alignment with context).

The field of scientometrics has long studied the impact of publi-
cations by applying bibliometrics to citation networks [9, 19]. As
early as in the 1960s, de Solla Price first developed models to ex-
plain the heavy tailed distribution in the citations an individual pub-
lication receives [8]. The recent emergence of large-scale citation
data has enabled the study of information flows between different
areas in science [2, 3]. There are previous studies that show how
different citation choices correspond to different citation impact
[20, 21]. The focus of the citation features of these studies is on
the global citation network distance between the disciplines of the
cited and citing papers.

In many social networks, the performance of individuals is tied to
their local positions in their social networks [6]. For example, there
is a longstanding debate about the optimal network structure for the
individuals’ performance [13]. On the one hand, being clustered
within tightly-knit communities benefits from fostering trust, facil-
itating the enforcement of social norms and common culture [7,
13]. On the other hand, networks with rich structural holes and
weak ties are able to access heterogenous ideas and information
more easily [6, 11]. These features give an advantage to individuals
who can connect distant parts of the network and get access to more
diverse information and ideas. Such notions that the network posi-
tion of a node is an indicator of the node’s quality or performance
also extend to web graphs and information networks. For example,
algorithms for finding high quality web search results, like PageR-
ank [4] or Hubs and Authorities [12], rely heavily on the structure
of the underlying web graph and the “location” of the node in this
giant citation network of webpages. Moreover, the local structure
of the web graph helps determine the overall quality of web search
results and even predict users’ searching behaviors [16].

In this work, we build on the above intuitions, which were de-
veloped in the context of a web graph, and extend them to citation
networks. We focus on the local graph structure of the citation net-



work by investigating how patterns of citations vary between the
scientific disciplines and how such patterns reflect the impact of
the paper. We investigate the citations among the papers a chosen
paper cites by defining citation projection graphs. Citation pro-
jection graphs not only examine the papers a paper refers to but
also the citations among the referred papers. We use the graphical
features of the citation subgraphs induced by cited publications and
examine how scholarly publications draw previous information and
knowledge together in different areas, as well as how this behavior
correlates with the subsequent impact of the publications.

Our main finding is that there are significant differences in how
high, low and medium impact papers position their citations. Whereas
medium impact papers tend to cluster their citations in a narrow,
well defined and connected field, the citation networks of both low
and high impact publications cite a very diverse set of sources and
refer to publications in various scientific communities. In this re-
spect, high and low impact publications are similar. However, pub-
lications that are able to find bridges and connections between these
scientific communities tend to be high impact, while publications
that cite more idiosyncratically tend to be low impact. Our study
indicates the high risk and high return of citing across communities
in natural science and social science. We also find that disciplinary
contexts and citation norms differ in different areas. For example,
computer science behaves differently, as high impact papers there
tend to have very focused citation networks mostly referring to pa-
pers from a narrow community. However, analyses of temporal
trends of citation behaviors reveal that both natural and computer
science are getting more interdisciplinary over time as the citation
networks are getting more diverse and papers from multiple com-
munities are cited.

The rest of the paper is organized as follows. In Section 2, we
define the problem, introduce citation projection graphs, and give
a description of the data sets we use. In Section 3, we examine
the properties of the citation projection graphs in three different
major areas: computer science, natural science, and social science.
In Section 4, the properties of citation projection graphs are com-
pared with random graphs of same degree sequences. In Section 5,
we study the correlations between the features of citation projec-
tion graphs and the impact of publications. Finally, the properties
of citation projection graphs changing over time are studied in Sec-
tion 6. In Section 7, we conclude our work, and discuss the findings
and directions for future work.

2. APPROACH AND DATASETS

Next we present the methodology of citation projection graphs
that are employed in the study and describe the citation network
datasets.

2.1 Citation networks

Citation networks are networks of documents and the references
among them. In this work, we focus on citation networks of schol-
arly publications, in which the nodes are publications and the di-
rected edges are links from the citing to the cited papers. Infor-
mation flows can then be interpreted as the scientific ideas and
knowledge transmitted from one publication to another indicted
by citation relationships. Two significant features of citation net-
works make them different from most other social or information
networks: first, citation networks are directed graphs that are al-
most acyclic (this stems from the simple fact that only in rare case
does a published work cite a future publication); second, in the evo-
lution of citation networks, only new nodes and edges are added,
while none are removed [15, 17]. These two features guarantee that

Figure 1: The citation project graphs GG, and G0 of publi-
cation vg. The red square node is the publication vy, and the
blue circle nodes represent publications cited by vo. G, is the
induced subgraph on the blue circle nodes (solid edges) and
represents references between the papers cited by vo. Gpo is
composed of GG}, together with the red square node v, and the
dashed edges.

the subgraph induced by cited publications is fixed when a piece of
work gets published.

2.2 Citation projection graphs

In order to study the features of the citation behavior of publi-
cations, we study the properties of publication citation projection
graphs. Intuitively, we take all the papers a given article cites,
“project” them on the underlying citation graph and then extract
a subgraph of citations among all the cited papers. This way we
are able to capture both the cited papers and the relationships (i.e.,
citations) among them. More precisely, we define two types of ci-
tation projection graphs associated with a publication vg. First is
the subgraph G, that is induced by the papers cited by vo, and
the second is the subgraph G that is induced by the cited papers
together with vy itself. Figure 1 shows an example of a citation pro-
jection graph of a paper vo represented by a square node. We take
all the references of vg represented by circular nodes and extract
them from the citation graph together with the citations among the
circular nodes (represented by bold directed links).

Using the projections graphs we then define a set of network
metrics that describe and characterize the structure of the network
created by the references between papers that vg refers to. To give
some idea about what classes of projection graphs we aim to dis-
tinguish, we show in Figure 2 schematic representations of three
prototypical classes of citation projection networks. Figure 2(a)
shows a citation projection network G, of an idiosyncratic paper
that creates “random” references across various disciplines. This
creates a citation projection that is sparsely connected. Figure 2(b)
illustrates a network of a within-community citer, where most of
the references of a paper focus on a narrow fields or a set of pa-
pers that are very well connected among themselves. Thus we ex-
pect citation projection networks of such papers to contain a large,
densely connected component with many citations among the pa-
pers. Figure 2(c) shows an example of a brokerage citer, where
different clusters of papers that intuitively correspond to different
scientific disciplines or communities are cited but connections be-
tween these fields are also identified. Such projection networks are
characterized by high betweenness nodes and medium link density.

Our aim now is to define a set of network metrics or statistics
that will be able to compare and distinguish between the three pro-
totypical classes of the above citation projection networks. For ev-
ery publication vg, we use six metrics (M1-M6) to characterize the
features of the sub-graphs induced by the cited publications. The
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(a) An idiosyncratic citer

(b) A within-community citer

(c) A brokerage citer

Figure 2: The schematic representation of three prototypical
types of citation projection graphs G,,.

first four metrics are with regard to the projection graph G, and
the last two are with regard to the projection graph G po:

e (M1) Graph density: D = %, where V' are the
set of nodes and E are the set of edges in the citation pro-
jection subgraph G,. Intuitively, we expect papers that cite
within-community (Figure 2(b)) to have densest projection
networks, while idiosyncratic citers (Figure 2(a)) would have

the lowest.

e (M2) Clustering coefficient: the average fraction of closed
triangles between the connected triples of nodes in G. Av-
erage clustering coefficient C' = ﬁ >, C(vi), where for
every node v; € V' we compute:

number of closed triads connected to v;
number of triples of vertices centered on v;

C(Uz) =

This metric captures the degree of cohesiveness in the net-
work and aims to identify citation projection networks with
many “friend-of-a-friend” connections. Denser networks will
generally have higher clustering coefficient; however, the lo-
cality of the edges also plays an important role in the cluster-
ing coefficient.

(M3) Connectivity: fraction of nodes in the largest (weakly)
connected component of G,. We expect networks of highly
focused papers with a highly specific and narrow set of refer-
ences (Figure 2(b)) to have a relatively large maximum con-
nected component. Similarly, papers that cite across disci-
plines but find connections between them (Figure 2(c)) also
have a large connected component.

e (M4) Maximum betweenness: the highest betweenness of
nodes in G. The betweenness of a node v; € V in G, is
the centrality measure of the fraction of all shortest paths that

pass through v; in the graph:
B(v) =Y gjx(vi)/ g5k

i<k
where g, is the number of shortest paths linking nodes v;
and vg, and g, (v;) is the subset of those paths that pass
node v;. Using maximum betweenness we will be able to
separate the idiosyncratic and within-community citers from
the brokerage citers. For brokerage citers the papers that link
separate clusters will have high betweenness since they act
as connectors between the disciplines, while idiosyncratic
and within-community citers will not have high maximum
betweenness for two reasons: for within-community citers
there exist many different equivalent shortest paths between
pairs of nodes and thus no node will have a particularly high
betweenness; similarly, for idiosyncratic citers there are sim-
ply no edges to connect different nodes and thus maximum
node betweenness will be naturally small.

e (MS5) Betweenness of vg: the betweenness centrality of vg
in the citation projection graph Gpo. This is computational
the same as (M4) but now the graph is different as we also
include node v in the projection graphs. Intuitively, the be-
tweenness of vg captures how good the connector vy itself
is. For example, for networks like Figure 2(a) betweenness
of vy is very high as every circular node in the network also
connects to vo and thus the majority of shortest paths will
pass through vg. On the contrary, for networks such as Fig-
ure 2(b) and (c) the betweenness of vy will be lower since
between many pairs of nodes in the network there already
exist relatively short paths.

e (M6) Network constraint of vy: the network constraint of
vp in Gpo measures the extent to which an individual node’s
interaction with others is concentrated in a single group of
interconnected neighbors [5]:

NC(vi) = 3O (p(i, k)p(k, §))?)
J#i ke

where p(ij) = e(i,5)/ >, e(i, k), and e(3, §) is the weight
on the edge connecting v; and v;. The network constraint
varies with three network dimensions: size, density and hi-
erarchy. A node that is well embedded into the citation net-
work (for example as in Figure 2(b)) will have high network
constraint while nodes that act as bridges or brokers between
fields and disciplines (Figure 2(a),(c)) will have low network
constraint.

To summarize, the six metrics we use in this study are able to
capture the following three major aspects of paper citation projec-
tion networks: (1) The extent to which citations are focused and
clustered regions of dense citation (M1, M2); (2) Random or id-
iosyncratic citations (M3, M4); (3) Citations that bridge groups
(M5, M6).

2.3 Dataset description

We use the ACM (Association for Computing Machinery) and
JSTOR (Journal Store) datasets in this study. In the ACM data set,
there are 613,444 conference and journal papers, most of which
concern computer science. There are about 346,000 citations among
them. While computer science is a diverse field, the references in
the ACM corpus are specific to the general domain of Computer
Science and under-represents linkages across disciplines. For this
reason, we also employ the JSTOR corpus which has references
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Figure 3: Properties of Citation Projection Graphs of publications in natural science (green squares), social science (red diamonds)
and computer science (blue triangles). Natural science publications have more cohesive and focused citations networks than papers

from computer science or social science.

that span multiple disciplines. JSTOR has 878,841 research arti-
cles in 1108 journals, classified into 47 disciplines according to
their venues, roughly corresponding to 3 sets: 435,425 in natural
science, 290,703 in social science and 86,410 in arts & humanities.
The rest of 66,303 research articles are on the boundary (belong to
more than one major sets). There are 6,585,136 citations in total.
These citations, limited to the cases where both the citing and cited
articles are in the dataset, are a subset of the 23,451,235 citations
made by all the articles.

In the following analyses, we compute the values of the prop-
erties of citation projection graphs of every publication that cited
more than 10 other papers in the dataset. In this way, the publi-
cations that are not well represented in the data set are eliminated.
After this screening, 49,290 research articles remain in natural sci-
ence, 40,531 research articles in social science, and 11,565 articles
in ACM. We do not analyze humanities articles in JSTOR because
that subset of articles is very small and prone to measurement er-
rors.

3. CITATION PROJECTION GRAPHS IN
DIFFERENT AREAS OF SCIENCE

We begin by comparing properties of citation projection graphs
across the three disciplines of science. In particular, we focus on
computer science, natural science and social science. We investi-
gate how publications in various areas of science are situated in the
citation networks when they got published.

To gain insights into the above question we adopt the follow-
ing methodology: for every category we take all the papers and

for each of them we create its citation projection graphs G}, and
Gpo and compute the six network metrics M1-M6 defined in Sec-
tion 2.2. These metrics characterize the shape of the citation pro-
jection network. For each metric we create a normalized histogram
and by comparing these histograms across the disciplines we gain
insight into disciplinary norms and strategic placement of papers in
the area.

Figure 3 gives normalized histograms of the six metrics that
characterize the shape of citation projection networks. Each plot
has three curves, one for each area of science. The rest of the pa-
per will use consistent color coding. Computer science is always
denoted by blue lines with triangles, natural science is denoted by
green lines with squares and social science is by red lines with dia-
monds.

In general, various network metrics seem quite consistent across
the areas of science. For example, network density (Figure 3(a)),
maximum betweenness (Figure 3(d)) and also betweenness of vg
(Figure 3(e)) are similar between the scientific disciplines. How-
ever, the metrics also reveal some important differences in the struc-
ture of citation projection networks. For example, citation networks
in natural science are generally more focused. This is revealed
by higher clustering coefficient (Figure 3(b)), bigger largest con-
nected component (Figure 3(c)) and larger network constraint (Fig-
ure 3(f)). This means that in general natural science papers tend to
create citation networks that are somewhat focused on a narrow
subdiscipline and thus the network contains a relatively large com-
ponent with many local closed triangles. This is further supported
by the larger network constraint of vg.

On the other hand, properties of social science and computer
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Figure 4: Properties of citation projection graphs in natural science (green), social science (red) and computer science (blue) com-
pared with random graphs with same degree sequences. Solid lines represent properties of real citation projection networks, while
dashed lines represent their randomized counterparts. Note that real citation projection networks are much more connected and
clustered, which suggests the importance of social capital in a sub-field. ¢-tests show that all the differences are statistically significant.

science citation networks are much more similar. While cluster-
ing of computer science publications seems to be the smallest, the
network constraint of computer science citation networks is also
smaller than that of natural science. This indicates that computer
science, and to some extent social science papers in general, have
more diverse citation projection networks, where they cite a wide
range of papers that then do not refer to one another.

These results are interesting, as one would expect computer sci-
ence to more closely resemble natural science than social science.
Also the publication norms and standards intuitively seem more
aligned with natural than social science. However, these results
suggest that it is the narrow focus of natural science citation projec-
tion networks that makes them different from computer and social
sciences. This seems to suggest that natural science is very special-
ized and separated into many small sub-fields where most citations
are among the papers between a particular subfield.

These observed differences between disciplines of science raise
the interesting question of how “random” the citation projection
networks are. We would like to know how much of the variability
in the network metrics is due to diversity between the subfields of

a discipline and how much is simply due to randomness. This is
exactly what we investigate next.

4. CITATION PROJECTION GRAPHS YVS.
RANDOM GRAPHS

As motivated above we now compare real citation projection
graphs with their “random” counterparts. This approach will give
us insights into how real citation projection networks differ from
random ones. Are citation projection graphs more random or more
clustered? Are publications more likely to be bridges and structural
holes or more likely to be situated within communities? In order to
answer these questions we adopt the following approach.

For every citation projection graph G, we construct a random
graph G, with the same in- and out-degree sequence as those of
Gp. This means that every GG, now has a corresponding graph G,
with the same number of nodes and same number of edges, and
each node also has the same degree (the same number of citations)
as in the original G,,. This means that the density and the degree
sequence of G, are exactly the same as those of GG),. As in the
previous section we characterize each G, and GG, with the 5 metrics
(we skip Density (M1) as it remains unchanged between G}, and
G). We then plot the normalized histograms of values and plot

the corresponding curves in Figure 4. We show the distributions
of clustering coefficient, largest connected component, maximum
betweenness, betweenness of vg, and constraint of vy in citation
projection graphs and their corresponding random graphs.

Comparing plots in Figure 4, we see that real citation projection



networks G, differ from their corresponding randomized counter-
parts GG, in a very consistent manner. Publications in all three
fields tend to cite previous work of better connectivity (i.e., larger
connected component) and in more clustered communities (i.e.,
higher clustering coefficient). Figure 4 also shows that the ran-
dom graphs tend to have slightly larger maximum betweenness.
Finally, by comparing the distribution of betweenness and network
constraint of vy, we see that publications in all these three areas
tend to have slightly lower betweenness and higher network con-
straint than what is expected to be in random graphs. All these facts
together suggest that scientific works are usually built upon previ-
ous published work of closed, dense and cohesive communities.
The differences are especially striking in the size of a largest con-
nected component and clustering coefficient, which suggests that
in real citation networks even inside large connected components
there are small densely connected sets of papers.

These results as a whole align nicely with social science argu-
ments which suggest that forming links within tightly connected
communities helps to increase one’s social capital and consequently
one’s performance. As one is able to give rise to a sense of belong-
ing, this enables the creation of a common culture, and enforces
social norms [18]. By studying the citation projection graphs of
scientific publications, we see that this tendency consistently holds
for scholarly works in most areas in science.

S. CITATION PROJECTION GRAPHS AND
PUBLICATION IMPACT

Scholarly fields differ, and different disciplinary norms and ci-
tation standards give rise to diverse citation projection networks.
These norms or styles of citation, in turn, act as contexts within
which an article is received and recognized. The question is, do
high impact articles conform to disciplinary norms of citation struc-
tures or are there certain styles of citation which generate higher
impact in spite of these contextual differences? In this section we
explore the relation between impact and citation patterns within
each discipline.

5.1 Impact of publications

There are several different ways of assigning an impact to a pa-
per. The most straightforward way is simply to count the total num-
ber of citations a paper received. However, this is not a good mea-
sure for two reasons. First, older papers generally have more time
to accumulate citations and thus the older the paper is the more
“impact” it has. The second reason is more subtle. As science
changes and evolves, the disciplinary norms, publishing standards
and citation patterns also change. Some fields publish very regu-
larly and have long lists of references, while other fields publish
rarely and have shorter reference lists. Moreover the scientific out-
put also varies from year to year. We would like to have a measure
of impact that will account for all these factors and allow us to ob-
jectively compare different scientific disciplines.

We define the impact [24] of a publication p as the number of
citations it receives normalized by the average number of citations
of all other publications published in the same year and same area
as p:

c

]p -7

1

177 2jep G
where ¢, is the number of citations publication p receives, P is the
set of publications that appeared in the same year and same area
as p. This measure allows us to make a fair comparison between
articles that may not yet have finished accumulating citations due to

their recency and to account for differences in size and publication
cycle for different disciplines [23]. In Section 2.3, we stated that all
the citations we use in this study are within the datasets. Although
this could skew the observed raw citation counts toward disciplines
that are better represented within each dataset, the normalization
by discipline helps to mitigate such biases.

5.2 Graph patterns vs. impact

Having defined a measure of publication impact we are now able
to correlate the impact of the publication with the structure of the
citation projection network. We are interested in whether publica-
tions of different impacts also exhibit differences in their citation
projection networks.

In Figure 5 we plot how a particular property of a citation projec-
tion network varies with the impact of the publication. Note that the
variances of the network property values are very large and highly
skewed. In order to gain a fair comparison, we plot the median of
the network property value for each value of impact.

Several interesting observations can be made here. In Figure 5(a),
we see that publications in natural science have the most dense ci-
tation projection graphs, which supports the findings of previous
sections. Moreover, we also notice the difference between natu-
ral and social science networks and computer science networks.
In computer science, high impact publications are characterized
by relatively dense citation projection networks, while low impact
publications cite very idiosyncratically and thus have less dense ci-
tation networks. For publications in natural and social sciences,
Figure 5(a) suggests that medium impact publications have rela-
tively dense networks, while low and high impact publications have
sparser citation networks.

Figure 5(b) indicates that publications with different impact in
natural science and social science have projection citation graphs of
about the same clustering level, while for publications in computer
science the clustering level increases as the impact increases. This
further suggests that highly cited works in computer science tend
to have focused citation networks with a large, densely connected
component and lots of local clustering.

In terms of the size of the largest connected component and the
maximum betweenness in the network (Figures 5(c) and (d)) we see
similar trends across all three disciplines. High impact publications
tend to have more nodes in the largest connected component and
better connectivity in terms of the maximum betweenness. This
suggests that high impact publications in all three areas are more
likely to cite bridges across reference communities. These trends
are consistent across the natural, social and computer sciences and
are especially pronounced for natural and computer science publi-
cations while they are weaker in social science.

Figure 5(e) shows a very interesting trend. Betweenness of vg
basically measures what fraction of shortest paths between cited
papers pass through vg. If a paper cites idiosyncratically then vg
will have very high betweenness as the only way to get from one
cited paper to another is through vo. We observe that this is the
case. Low impact publications cite very idiosyncratically and thus
they have very high betweenness in their citation projection net-
work. In social science the trend then stabilizes, which suggests
that medium and high impact publications have about the same be-
tweenness. Consistent with our previous findings high impact pub-
lications in computer science have very low betweenness in their
citation projection graph. This means that shortest paths between
cited publications pass directly through the projection graph rather
than to go through vo.

Last, the shape of the network constraint curve (Figure 5(f)) re-
sembles the patterns of the network density measure (Figure 5(a)).
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Figure 5: The median value of a network metric characterizing the citation projection graphs as a function of the publication impact.
The blue curves with triangles represent publications in computer science, green curves with squares represent natural science, and

red curves with diamonds are the publications in social science.

Publications in natural science have the highest network constraint,
and such constraint is relatively low for both low and high im-
pact papers. Publications in social science share a similar trend,
although the constraint is much lower. However, publications in
computer science have even lower network constraint. Again note
that except in computer science, high and low impact publications
have similar median value of network constraint, while in computer
science the higher impact publications are more embedded into a
small, densely connected community.

We see that the left-most points in about half of the curves in
Figure 5 ((a), (e), (f)) behave somewhat differently from the re-
maining points. This is because the initial points include lots of
zero-impact publications — publications that are never cited after
being published. This is consistent with the observation in [20],
which shows that zero-impact publications have properties distinct
from other publications. Usually 20% - 30% of all publications
have no subsequent citations in the datasets, so the properties of
these publications affect observations in the entire citation network.

All in all we note that publications in computer science, natural
science and social science are likely to have dense, well-connected
citation projection graphs. We also see that the impact of publi-
cations in computer science is linearly correlated with most of the
properties, such as the graph density, clustering coefficient, con-
nectivity and betweenness; while publications in other areas do not
have this trend.

These experiments raise a very interesting question. It seems
that medium impact publications cite in a focused manner, with
most citations going to within-community papers (e.g., as in Fig-
ure 2(b)), while high and low impact publications seem to create

networks of lower density and lower network constraint, which
suggests that their projection networks look more like the examples
in Figure 2(a) and (c). Next we focus on exactly this question and
further examine the differences in the citation projection networks
between high and low impact publications.

5.3 Citation patterns of high and low impact
publications

In Section 4 we saw that publications tend to situate themselves
in more coherent environments. However, in Section 5.2 we also
saw that properties of citation projection networks vary consid-
erably between publications of high and low impact. Somewhat
surprisingly we saw that high and low impact publications tend to
have more similar projection networks, while projection networks
of medium impact publications are different. In this part we inves-
tigate this observation in greater details by further comparing the
properties of citation projection graphs of publications with difter-
ent impact levels. We use statistical hypothesis testing to gain fur-
ther insights into the differences in citation patterns between low
and high impact publications.

First we divide the publications into three separate groups: high,
medium and low impact publications. For each discipline we select
the top 10% of publications with the highest impact and consider
them “high impact publications”; the bottom 25% of publications
with the lowest impact are considered “low impact publications”;
the rest are considered to be “average.” Note that most of the low
impact publications (more than 90%) have zero-impact.

Table 1 gives the average value of each of the six citation pro-
jection network metrics of publications in the three scientific disci-



Table 1: Average citation projection network statistics for the high, medium and low impact publications for the three areas of
science: computer science (CS), natural science (NS) and social science (SS). Columns 3-5 show mean values of the properties, and
columns 6-8 give the p-values of the statistical significance in the means of the two distributions as calculated by ¢-tests. The highest
values of Density, Clustering Coefficient, Connectivity, Maximum Betweenness, and Network Constraint are highlighted, and the
lowest values of Betweenness are highlighted. Note the consistency between natural and social science, whereas computer science

seems to be a small outlier.

| Feature | Area [ High | Mid | Low [ Highvs.Mid | Midvs. Low | Highvs. Low |
Density CS 0.132 0.117 0.094 9.44e-08 <2.2e-16 <2.2e-16
(M1) NS 0.139 0.150 0.114 3.52e-15 <2.2e-16 <2.2e-16
SS 0.116 0.122 0.102 2.07e-05 <2.2e-16 <2.2e-16
Clustering CS 0.298 0.259 0.217 4.27e-07 4.18e-14 <2.2e-16
Coefficient NS 0.333 0.344 0.305 0.002 <2.2e-16 8.17e-14
M2) SS 0.284 0.292 0.267 0.039 <2.2e-16 3.96e-05
Connectivity CS 0.579 0.520 0.432 1.82e-13 <2.2e-16 <2.2e-16
M3) NS 0.628 0.597 0.498 7.58e-16 <2.2e-16 <2.2e-16
SS 0.564 0.541 0.472 2.95e-07 <2.2e-16 <2.2e-16
Maximum CS 0.175 0.153 0.112 5.51e-06 <2.2e-16 <2.2e-16
Betweenness NS 0.187 0.173 0.130 1.39e-09 <2.2e-16 <2.2e-16
(M4) SS 0.159 0.152 0.123 0.003 <2.2e-16 <2.2e-16
Betweenness CS 0.778 0.806 0.849 4.51e-08 <2.2e-16 <2.2e-16
of vg NS 0.763 0.760 0.820 0.168 <2.2e-16 <2.2e-16
(M5) SS 0.802 0.801 0.837 0.703 < 2.2e-16 < 2.2e-16
Constraint CS 0.159 0.156 0.146 0.026 6.14e-14 7.42e-12
of vg NS 0.171 0.192 0.165 <2.2e-16 <2.2e-16 1.07¢-06
(M6) SS 0.150 0.162 0.151 <2.2e-16 <2.2e-16 0.299

plines. We also show the p-values of the ¢-tests to test whether the
mean values of network statistics between high, low and medium
impact publications are significantly different.

Overall, and similar to what we have seen in Figure 5, we find
that computer science behaves somewhat differently from natural
and social sciences, where the differences between high, low and
medium impact papers are very consistent. Thus we first describe
the structure of citation networks of papers in social and natural
sciences and defer the discussion of computer science for later.

First, note that high impact publications have the highest values
of connectivity (M3) and maximum betweenness (M4). In all other
metrics it is the medium impact publications that have the highest
values in the network statistics. This means that in natural and
social science it is the medium impact publications that have dense,
highly clustered networks with low betweenness and high network
constraint of vg. This suggests that medium impact publication in
these two areas cite in a very focused and narrow way similar to the
illustrative example in Figure 2(b).

Second, note that high and low impact publications have cita-
tion networks that are not as dense and clustered as medium impact
publications. However, we see that high impact publications have
the highest connectivity (M3) and maximum betweenness (M4).
In contrast, low impact publications have the lowest connectivity
(M3) and the highest betweenness of vo (MS5), which means that
shortest paths between the nodes in G travel through vo. This
suggests that while low and high impact publications tend to both
cite a very wide range of sources from different areas and com-
munities, citation graphs of low impact publications are very dis-
connected (as for example in Figure 2(a)), which indicates idiosyn-
cratic citation behavior. High impact papers also cite a very wide
range of papers from a number of communities but they do so in
a way that bridges connected areas (high values of M3 and M4).
Thus, high impact papers have citation projection graphs that are
well connected (high M3) but relatively sparse (medium M1) (sim-

ilar to the example in Figure 2(c)). This suggests that a high impact
paper in natural science or social science is more likely to be an in-
terdisciplinary paper that explores connections between dense but
distant fields.

In computer science, the high impact papers have the smallest
betweenness of vg (MS5) and highest network density (M1), clus-
tering coefficient (M2), connectivity (M3), maximum betweenness
(M3), and network constraint (M6). This means that high im-
pact computer science papers tend to cite publications within single
dense communities, which, in turn, suggests that high impact com-
puter science papers tend to be specific and somewhat focused on
a single discipline or community inside the larger area of computer
science.

All in all we find that high impact publications in natural science
and social science tend to be bridges linking cited publications in
different clusters of communities together. Although low impact
papers also tend to be bridges between areas, citation sub-graphs
of high impact papers are better structured (e.g., have higher con-
nectivity and clustering coefficient). This indicates the high risk
and high return of citing across communities in natural science and
social science [20]. However, for the high impact papers the cross
community citing is so that there still exists some connection be-
tween the communities.

Interestingly, computer science does not seem to follow this pat-
tern. High impact papers in computer science have citation net-
works that are very focused and do less cross disciplinary citing.

6. CITATION PATTERNS OVER TIME

In order to gain more insights into the trends in scientific disci-
plines we analyze how citation practices in various scientific dis-
ciplines change over time. We investigate how the properties of
citation projection graphs change over time. We divide the pub-
lications in natural science into two groups: one includes 15,157
publications from 1900 to 1990, and the other has 14,594 publica-
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Figure 6: Citation projection graphs for old and new publications. Notice how science is becoming more interdisciplinary as newer
papers have lower connectivity and significantly smaller network constraint. t-tests show that all the differences are statistically

significant.

tions from 2000 to 2008. Similarly, for publications in computer
science, the group of old publications consists of 6,245 publica-
tions from 1920 to 1995, and the group of recent publications is of
5,319 publications from 1996 to 2005. We now compare the cita-
tion projection networks across these two populations of “old” and
“recent” papers.

Figure 6 superimposes the properties of citation projection graphs

for “old” and “recent” papers in natural science and in computer
science. We observe very interesting trends. For natural science
there is a clear trend of increasing interdisciplinarity of publica-
tions, as more recent publications have significantly lower connec-
tivity, lower network constraint and higher betweenness of vg. All
these suggest that in natural science recent papers tend to cite a
more diverse set of papers. Trends seem to be similar in computer



science, however less pronounced. This is due to the fact that the
age differences between old and recent papers in the ACM data are
small, as most papers in the ACM data appear after 1990.

All these differences between citation projection graphs of old
and recent papers suggest that recent scientific publications, espe-
cially in the past decade, tend to have broader and more diverse
citations than in the past. Moreover, a recent finding shows that
electronic access tends to make researchers cite more recent arti-
cles in a more focused manner [10]. This conclusion is based on
the fact that the overall number of articles being cited is getting
smaller over time. We note that such analysis ignores the relation-
ships between the cited papers. So, our approach digs deeper into
the relationship between the references of individual publications,
and shows how the citation relationships in the recent decade dif-
fer from those of the past. Together with the finding of [10], it is
possible that the electronic access to scientific publications makes
researcher focus more on the high profile publications while it also
allows them to have a more diverse sample of relevant literature at
the same time.

7. DISCUSSIONS AND CONCLUSIONS

In this paper we introduced the notion of citation projection net-
works and investigated citation behaviors in a large collection of
scientific publications spanning natural, social and computer sci-
ences. Our main finding is that there are significant differences in
how high, low and medium impact papers position their citations.
Whereas medium impact papers tend to create citations in a nar-
row, well defined and connected field, the citation networks of low
and high impact publications are much more diverse and similar
to one another. They both cite a very diverse set of sources and
refer to publications in various scientific communities. However,
the high impact publications are able to find bridges and connec-
tions between these scientific communities, whereas the low im-
pact ones are not. Our study indicates the high risk and high return
of citing across communities in natural science and social science.
In contrast, computer science behaves differently, as high impact
papers there tend to have very focused citation networks mostly
referring to papers from a narrow community. However, by analyz-
ing temporal trends in citation patterns we found that both natural
and computer science are getting more interdisciplinary over time
as the citation networks are getting more diverse and increasingly
papers from multiple communities are cited.

As a venue for future work, it would be interesting investigate
whether citations are more used in network referencing terms, than
in labeling terms. By that we mean that scholars may be using
citations to reference disciplines as categories (journal names). The
heterophily or homophily of citations may also reveal field norms
of citation as well as factors contributing to an article’s recognition,
or citation impact.
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