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ABSTRACT
We pose a fundamental question in understanding how to identify
and design successful communities: What factors predict whether
a community will grow and survive in the long term? Social sci-
entists have addressed this question extensively by analyzing of-
fline groups which endeavor to attract new members, such as social
movements, finding that new individuals are influenced strongly by
their ties to members of the group. As a result, prior work on the
growth of communities has treated growth primarily as a diffusion
processes, leading to findings about group evolution which can be
difficult to explain. The proliferation of online social networks and
communities, however, has created new opportunities to study, at
a large scale and with very fine resolution, the mechanisms which
lead to the formation, growth, and demise of online groups.

In this paper, we analyze data from several thousand online so-
cial networks built on the Ning platform with the goal of under-
standing the factors contributing to the growth and longevity of
groups within these networks. Specifically, we investigate the role
that two types of growth (growth through diffusion and growth by
other means) play during a group’s formative stages from the per-
spectives of both the individual member and the group. Applying
these insights to a population of groups of different ages and sizes,
we build a model to classify groups which will grow rapidly over
the short-term and long-term. Our model achieves over 79% accu-
racy in predicting group growth over the following two months and
over 78% accuracy in predictions over the following two years. We
utilize a similar approach to predict which groups will die within
a year. The results of our combined analysis provide insight into
how both early non-diffusion growth and a complex set of network
constraints appear to contribute to the initial and continued growth
and success of groups within social networks. Finally we discuss
implications of this work for the design, maintenance, and analysis
of online communities.
Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications – Data mining
General Terms: Measurement; Theory.
Keywords: Social Networks, Group Formation, Online Communi-
ties, Information Diffusion
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1. INTRODUCTION
The formation and evolution of groups has long been a focus in

social science research. While the proliferation of online commu-
nities has made it possible to study the dynamics of group member-
ship in richer detail than ever before [2, 15, 19, 31], several impor-
tant questions about the factors that influence group growth remain
unresolved. Why do some groups grow faster than others? Why
do some groups continue to attract new members over time while
others do not? What causes groups to stop growing? These fun-
damental questions in the study of group dynamics have important
implications for research on communities, both online and offline.
Motivation. Researchers have only recently begun to take advan-
tage of large-scale data from online social networks and commu-
nities to study the dynamics of group formation and evolution. A
key motivation in this paper is not only to contribute to the under-
standing of the relationship between structural features of a group
and its future growth, but also to understand how this relationship
might change over time. While past work has measured growth
rates over a fixed period of time, there is no reason to expect that
what makes groups grow fast in the short-term is the same as what
makes them grow fast or continue growing over longer periods. In
addition, past research has not examined future growth rates as a
function of past growth or a group’s current size or age. These gaps
represent important issues in the study of online communities.

We also seek to address unresolved questions from the more re-
cent work on social networks and group evolution. Prior research
on online community growth has resulted in sometimes puzzling
findings indicating that ties spanning group boundaries may induce
individuals to join a group while also slowing down overall growth.
In this work, we are motivated in part by the desire to explain these
seemingly inconsistent results.
An Empirical Puzzle. Past research in the social sciences has ad-
vanced important, but sometimes, conflicting hypotheses about the
relationship between group growth and group network structure.
Citing the example of a Boston community which failed to culti-
vate enough support to preserve itself aganst a threat, Granovetter
hypothesizes that this community failed to grow because it was too
clustered, though this hypothesis is not tested empirically [12]. The
intuition is that if the members of a group have a disproportionate
amount of friendship or communication ties with people within the
group (as opposed to with individuals outside the group) then the
group is too inwardly focused to ever grow. For Granovetter, weak
ties outside of the group could have facilitated the mobilization of
resources from members outside the community to defend against
being taken over by adjacent neighborhoods.

The strength of Granovetter’s ’weak ties’ traditionally lies in
their ability to facilitate the spread of information. Centola and
Macy, however, identify that the act of joining a group may be
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Figure 1: Illustration of diffusion vs. non-diffusion growth

categorically different from simply being informed of it [6]; using
simulated networks, they provide examples of how such ’complex’
contagions may not spread via weak ties in the same way [5, 6].
In contrast to Granovetter, Centola and Macy’s results suggest that
diffusion and growth processes in groups are facilitated by the pres-
ence of strong ties and clustering within the group.

Backstrom, et al. provide one of the first empirical investigations
of group evolution using data from online social networks [2]. Ex-
amining the LiveJournal friendship network and DBLP coauthor-
ship network, the authors identify how certain network structural
features of a group influence its growth patterns over time. Their
work casts group growth mainly as a diffusion process similar to
Centola [6] and Granovetter [12] — that is, they assume that a
group grows through the ties its members have to individuals out-
side the group. In other words, researchers envision membership
status spreading through the network structure of a given commu-
nity. Among other insights, they uncover the seemingly paradoxi-
cal finding that clustering in a group both attracts new members and
decreases overall group growth, bearing out the predictions made
by both Centola [6] and Granovetter [12].

Specifically, for an individual with social ties to members of a
group, Backstrom, et al. find that the probability of joining the
group increases with the number of ties among the individual’s in-
group friends. This suggests that as the clustering of a group in-
creases, individuals with ties to the group will be more likely to
join, boosting group growth. At the same time, however, the au-
thors also find that as the ratio of open to closed triads in a group
(a measure of clustering) increases, the average four-month growth
rate of a group decreases. Thus, they leave a key question about
their findings unresolved: If individuals with prior connections to a
group are more likely to join a highly clustered group, then why do
highly clustered groups experience lower growth rates overall?

1.1 Overview of Results
In this paper, we contribut to research on group evolution in so-

cial networks by making a conceptual difference between diffusion
and non-diffusion growth in groups. Diffusion growth describes
the process in which groups attract new members through ties to
existing members; in these cases, the ties form the ’skeleton’ over
which membership spreads. In non-diffusion growht, individuals
with no prior ties to any group members become members them-
selves. Here, group membership apepars to ’jump’ across the com-
munity network. This is an important distinction not explicitly
made in prior work, but vital to understanding why some groups
grow larger, faster, and for longer preiods than others.

Figure 1 illustrates the difference between diffusion and non-
diffusion growth in a group. In both scenarios at time t1, nodes
c, d, e are members of a group, and nodes a and b are not members.
a, however, is connected to two of the group’s members, whereas b
has no ties to the group (borrowing the language of [2], we explain
in section 3 that a is part of the group’s fringe). The group experi-
ences diffusion growth if at time t2, a joins the group. The group
experiences non-diffusion growth if b joins the group at time t2.
Analysis of Diffusion and Non-Diffusion Growth. Our analysis
focuses on the differences in the processes which govern diffusion
and non-diffusion growth. In our two main analytical exercises, we
explore the tension between these two types of growth as both out-
comes and inputs in models of group formation and future growth.
We conduct our analysis using data on online groups drawn from
communities built on a common platform, Ning. Through empir-
ical study of these networks, we explain the puzzling finding that
clustering within a group can both increase the probability of a non-
member joining and decrease the overall growth rate of a group.

We gain this insight by examining the mediating role that diffu-
sion growth plays in explaining the relationship between clustering
and group growth. Our main finding is that group clustering does
increase the diffusion growth of a group, but that groups which
grow primarily through diffusion reach smaller sizes eventually. In
this way, the apparent inverse relationship between clustering and
overall group growth is actually moderated by the different effects
of group clustering on diffusion and non-diffusion growth. If a
group is highly clustered, it is more likely to experience diffusion
growth, but if more of a group’s growth comes from diffusion, then
it is also less likely to grow larger overall. In addition, we find
that small groups within smaller communities tend to experience
more diffusion growth than similarly sized groups in larger com-
munities. This suggests that understanding group growth requires
attention not only to aspects of individuals and the group, but also
to the wider network setting in which these groups are situated.
Predicting Group Growth and Longevity. The second part of
our analysis uses these insights about diffusion and non-diffusion
growth to generate models which predict the growth and longevity
of groups mined from a diverse set of thousands of independent net-
works. We analyze the predictive accuracy of various group struc-
tural features for two outcomes: (1) the rate of group growth over
a fixed period of time, and (2) the longevity of a group’s growth
(i.e. the amount of time that passes before a group stops growing).
Our models incorporate features capturing the rate of growth and
the proportion of that growth occurring due to diffusion processes,
as well as network features such as the group’s transitivity and the
size of cliques within groups. We demonstrate the effects of these
features on group growth and longevity. In addition, we extend past
work on group growth by predicting growth for groups at different
stages of evolution (i.e. groups of different ages and sizes).

Specifically, we find that the predictive accuracy of certain group
features is contingent on the current size and age of a group. For
predicting short-term growth, models that incorporate past growth
rates have the greatest accuracy. Models that include network struc-
tural features predict long-term growth more accurately. Regard-
ing longevity, we find that the size of the largest clique within a
group predicts positive growth more accurately than all other fea-
tures. Our models using all features generally achieve AUC values
greater than 0.78, meaning that we consistently perform better than
chance, and our most accurate models achieves AUC close to 0.87.
We utilize our findings to first show how features relevant to growth
may vary depending on specific prediction goals and discuss how
the results of our analysis can help inform insights about the struc-



Feature All Groups Small Grps Large Grps
Number of Nodes 32.9 14.9 51.6
Number of Edges 108.2 25.4 194.3
Giant Component .89 .86 .91

Transitivity .30 .33 .28
Fringe Size 488.2 344.2 638.1
Longevity 336.4 283.9 390.9

Table 1: Network descriptive statistics for Ning group sample
(mean values).

tural properties which predispose certain groups to continue grow-
ing and others to stop.

Finally, we conclude our paper with a discussion of the impli-
cations of our findings for future work on online communities and
group evolution. We generalize our results to other settings and de-
scribe how past work can be reinterpreted in light of our findings.
By paying closer attention to different types of growth processes,
researchers can better focus their analysis on linking individual on-
line behavior to macro dynamics of group formation and evolution.
In addition, we contextualize our findings in practical applications
by explaining how understanding group growth can help architects
of online communities design platforms that better promotes mem-
bership and participation. We also discuss limitations of our work,
open questions, and future directions for research.

2. RELATED WORK
The growth of groups in social networks has often been viewed

as a diffusion process. Consequently, many researchers treated
growth as a process similar to the diffusion of innovations [26] and
other behaviors. Early studies, such as Milgram’s small-world ex-
periment [18], demonstrated that information could spread along
social networks quickly, and Granovetter’s theory of the "strength
of weak ties" [12] provided a conceptual framework for how this
might occur. Granovetter’s theory explained these global patterns
of information transmission using local features built into the struc-
ture of the network. It was natural, then, that social scientists inter-
ested in group evolution used the language of diffusion to describe
how group growth.

Research on social movements is one area which has emphasized
the importance of diffusion growth in groups. A social movement
refers to the phenomenon in which a group of individuals join to
take collective action in order to press for some social change or ex-
press some grievance against an authority figure. Consider, for ex-
ample, the protest activity in the Middle East in February 2011 and
the role played by social networks in mobilizing protestors [27].
Past work has shown that such movements grow by attracting indi-
viduals with prior ties to group members [9, 17]. Most social move-
ment studies share the view that participants are recruited through
pre-existing ties with group members [28], with estimates that 74-
100% of members of such movements joining due to such ties [16].

Diffusion processes in group growth has also been the focus so-
cial science research in other settings. For example, sociologists
and economists have investigated how pressure from co-workers
can make individuals more likely to join labor unions [30]. In addi-
tion, in political parties and civic associations, membership growth
is linked to the influence of existing members who recruit friends
and families as new members [25]. Even studies of religious con-
version take into account the effect of being associated with exist-
ing members of a given religion [29].

The shift to online tools for social organization has provided a
host of new opportunities to study the dynamics of communities.
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Figure 2: Proportion adjacent pairs vs. probability of fringe
member joining.

While extensive research has focused on identifying implicit com-
munities within networks [10, 15, 21], this is not our present goal.
Other work has focused on capturing properties of explicitly de-
fined groups within networks. Mislove, et al. analyze groups oc-
curing in a variety of networks (Flickr, YouTube, Orkut, and Live-
Journal) finding that they tend to overlap with highly clustered sub-
graphs of the network and that smaller groups exhibit higher clus-
tering than larger ones [19]. Zheleva, et al. develop a theoreti-
cal model of how users in an evolving social network might af-
filiate which closely matches the observed properties of groups in
Flickr [31].

Ducheneaut, et al. examine the impact of network features on the
longevity of groups, finding that guilds in World of Warcraft with
smaller subgroups and higher density survive longer; given the in-
tensely goal-directed nature of these groups, they hypothesize that
such structures reduce coordination problems [7]. As mentioned,
our work is informed by Backstrom, et al.’s investigation of the for-
mation and growth of groups in large social networks [2]. Our anal-
ysis starts by answering the open questions left by this prior work
and goes on to develop a more comprehensive view of what predis-
poses some groups to rapid and continued growth. We also analyze
groups within thousands of independently-formed social networks,
which we believe improves the robustness and generalizability of
our findings.

3. NING COMMUNITY DATA
The data for our analysis comes from the membership lists of

communities built using Ning (http://www.ning.com), a web
platform that allow users to create their own online social networks
similar to Facebook. These online communities, which we call
Ning communities serve a variety of interests ranging from small
private networks for friends and families to public networks for
larger organizations. Some of the largest networks belong to en-
tertainment properties such as the Dallas Mavericks NBA Team
(http://friends.mavs.com) and the rapper 50 Cent (http:
//thisis50.com).

Ning communities include a variety of social features includ-
ing user profiles, forums, blogs, and groups. For each user in
a Ning community, we observe their group affiliations and when
they joined these groups. Only some communities in our data al-
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Figure 3: Future growth rates vs. transitivity for Ning groups
with 50 members.
low users to explicitly ‘friend’ other users. For all communities,
however, social interactions on a page, such as replying to a user
in a forum, are stored as user-to-user comments. In our analysis,
we consider an edge to have been created between two users when
they have exchanged at least one comment in each direction (recip-
rocal communication). We found that this formulation reduced is-
sues due to spam messages which are often unreciprocated. While
these implicit edges are different from the explicit edges based on
‘friend’ relationships, we find that they serve as suitable network
structures for our analysis. Using the group affiliation data and
the comment networks, it is possible to reconstruct the day-by-day
evolution of groups within a Ning community.

4. GROUP GROWTH AND DIFFUSION
In the following subsections, we provide definitions for diffusion

and non-diffusion growth. We then discuss how data was collected
from Ning communities and groups to analyze how these interact
with network clustering and overall growth.

4.1 Diffusion and Non-Diffusion Growth
We define diffusion growth as the addition to a group of new

members with existing social ties to one or more group members
(see Figure 1). Non-diffusion growth comes from new members
with no prior ties to group members. This conceptual distinction
leads to two hypotheses about why users join a group. Under dif-
fusion growth, users may be influenced to join due to the behavior
of their friends. In non-diffusion growth, users may join because
there is a feature of the group itself (i.e. a common interest) which
appeals to them. In these cases, a Ning community user might be
exposed to the group through some means other than an invitation
from a friend, such as banner ads on the Ning community website
or a search for similar groups. It is, of course, possible that some
users join groups based both on shared interests and influence from
a friendship tie — which can be difficult to separate — but for our
purposes, we designate users who join groups as part of either dif-
fusion or non-diffusion growth to simplify our analysis [1].

To measure diffusion growth in a Ning group, we first consider
a snapshot of the friendship network containing the members of a
Ning group, G, at a given moment in its evolution, t1. Second, we
identify all users in the Ning community who are not members of
the Ning group but who have at least one tie to the members of the
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Figure 4: Group transitivity vs. proportion of future growth
from the fringe.

Ning group. This set of users is what [2] call the group’s fringe,
fG. Finally, we then obtain a snapshot of the Ning group network
at t2, where t2 represents some fixed time after t1 — call this new
snapshot of the Ning group, G�. We then identify the members of
G� that were not part of G as m, representing the overall growth of
G from t1 to t2. The proportion of Ning users in m that were also
in fG signals the amount of growth in G attributable to diffusion
growth whereas (|m|/|m ∩ fG|) gives the total amount of non-
diffusion growth in G from t1 to t2.

4.2 Sampling Ning Communities and Groups
For the analysis in this section, we sampled Ning groups and

communities using the following rules. First, based on an exami-
nation of several groups, we set a lower threshold of 10 members
for the final group size. Groups which did not grow larger than 10
members may represent ’failed attempts’ or ’tire-kicking’ by cre-
ators and thus would not be sensible to include in our sample. We
also excluded all groups which grew to be larger than 50% of the
surrounding community, as these may represent groups which are
not distinct from the overall community (and thus would grow ar-
tificially large). In order to eliminate ’right-censoring’ issues in as-
sessing group growth over time, we considered only groups which
had stopped adding new members 2 months prior to the end of the
data collection period; while this may form an artificial constraint,
it allows us to analyze groups according to their final size. Table
1 reports descriptive statistics for the sample of 4,051 Ning groups
from 418 Ning communities used in the analysis below. In Table 1,
’small’ groups are those smaller than the median group size in our
sample (22 eventual members) ’small’, and ’large’ are those larger
than the median.

4.3 Resolving the Clustering-Growth Paradox
Using our sample of Ning groups, we replicated experiments

by Backstrom, et al. [2] concerning the effects of group cluster-
ing on future group growth and the probability of an individual in a
group’s fringe joining the group [2]. First, for each group, G, with
50 or more members, we obtain a snapshot of the group on the date,
time t, on which it gained its 50th member. We then calculate the
proportion of members in G’s fringe, fG, who joined the group af-
ter 180 days — we treat this as the probability of a fringe member
joining the group. Then, for each group, we calculate the average
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Figure 5: Proportion of group membership from fringe vs. cur-
rent group size (by eventual group size).

proportion of adjacent pairs among a fringe member’s group mem-
ber friends. The proportion of adjacent pairs refers to the number
of ties between a fringe member’s group member friends divided
the by the possible number of ties between them.

Figure 2 plots the average probability of a fringe member joining
a group against the average proportion of adjacent pairs among this
individual’s in-group friends for all of the groups in our sample
(with separate lines for fringe members with 4, 5, and 6 friends
in the group). We observe a generally positive relationship be-
tween the proportion of adjacent pairs and the probability of a
fringe member joining a group which strengthens with the number
of friends that the fringe member has in the group. The explanation
for this is intuitive. If non-member has six friends in the group who
are highly clustered, the social pressure to join the group is stronger
than that for a non-member who has only three friends in the group
who are highly clustered.

In Figure 3, we also plotted the 30-, 60-, and 180-day future
growth rates of Ning groups at size 50 against their clustering as
measured by transitivity. The transitivity of a graph, G, is equal to
the number of closed triads in G divided by the possible number
of closed triads in G. According to Figure 3, the average future
growth rate of a Ning group (of size 50) decreases as the current
transitivity of a group increases. For example, for Ning groups that
have transitivity = 0, 180-day growth rates exceed 1.6, whereas a
highly clustered group, with transitivity = .8, experiences a 180-day
growth rate of only 1.2.

The findings shown in Figures 2 and 3 show that group clustering
appears to both increase and decrease future group growth across
the wide range of groups and diverse communities available in the
Ning data. Thus, the relationships that Backstrom, et al discover in
their work are not particular to the LiveJournal or DBLP commu-
nities [2]. Having shown the general nature of this pattern, we now
move on to explaining how it arises.

4.4 Network Clustering and Growth
Comparing diffusion and non-diffusion growth for Ning groups

sheds light on these contradictory findings. In Figure 4, we plot
the transitivity of a group at t, where t is equal to the time where a
group reaches 50 members, against the proportion of its growth in
the next 30, 60, and 180 days that comes from the fringe (i.e. diffu-
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Figure 6: Proportion of current membership from fringe vs.
future overall growth.
sion growth). We calculate the proportion of growth attributable to
diffusion growth as described above. Figure 4 contains smoothed
versions of line plots to facilitate interpretation.

The results from Figure 4 are clear. As the clustering of a group
increases, the proportion of its future growth from its fringe also in-
creases. However, even though group clustering promotes diffusion
growth, this is not enough evidence to claim that higher clustering
leads to greater overall growth. In fact, most of the confusion as-
sociated with the clustering-growth paradox comes from assuming
that group growth is primarily achieved through diffusion growth.

Higher group clustering therefore leads to a greater proportion
of its members joining diffusion growth. This, in turn, influences
future rates of overall growth. Figure 5 illustrates the differences
between small and large groups (embedded within small and large
communities) in terms of their fringe and non-fringe membership
composition over their first 100 members. To generate this graph,
we divided groups into four categories based on ’final’ group sizes
and ’final’ community sizes. We classify any group which never
gains more than 113 members as ’small’, and those which surpass
630 as ’large’. Communities with more than 2000 users are large,
while those with less are small.

Figure 5 shows that in groups which eventually grow large, a
smaller proportion of membership comes from the fringe than in
groups which eventually grow small; moreover, this is true at any
point in a group’s growth from 10 to 100 members. In small Ning
communities, groups which eventually grow larger than 630 mem-
bers will gain only 10% of their first 40 members from the fringe,
on average (black dotted line in Figure 5). In these same commu-
nities, groups which never grow larger than 113 members will gain
25% of their first 40 members from the fringe (gray dotted line in
Figure 5).

The resolution to the growth-clustering paradox is evident from
the patterns shown in Figures 4 and 6. Figure 4 shows that higher
group clustering increases the proportion of growth which happens
as a result of diffusion processes. Figure 6 shows that the group’s
overall growth rate decreases as the proportion of group member-
ship coming from the fringe increases. Thus, we infer that higher
clustering increases the amount of diffusion growth happening in a
group, but decreases a group’s growth rate overall.

We attribute this pattern to the notion that some groups grow by
appealing to common interests and identities (non-diffusion growth)
while other groups grow by virtue of its extra-group connections



Category Feature Description

Growth Monthly Growth Rate Fraction of users who joined in the prior month
Fringe Growth Rate Fraction of users who joined in the prior month who joined from the fringe

Connectivity

Group Transitivity Transitivity of network formed by group members
Transitivity Ratio Ratio of group transitivity to transitivity of entire community

Group Density Density of network formed by group members
Density Ratio Ratio of group density to density of entire community

Structural Clique Ratio Largest fraction of group members whose edges form a clique
Disconnected Ratio Fraction of group members who are not a part of the group’s largest connected component

Table 2: Features used in all growth and longevity models.

(diffusion growth). If a group relies on diffusion growth, it can
only grow as much as the number of ties its members have to non-
members. At some point, a group relying on diffusion growth,
might run out of such ties, constraining its eventual growth. Thus,
while clustering in a group can increase joining activity from the
group’s fringe, it can also diminish the group’s overall growth.
Group growth and Ning community size. While Figure 5 offers
insight into the relationship between the amount of growth a group
experienced through diffusion and its future growth, it also shows
how this dynamic operates for groups in different settings. While
groups that reach eventually smaller sizes tend to experience more
diffusion growth, we can also compare growth rates for eventually
small groups in large communities and small communities.

According to Figure 5, among eventually small groups, those
that were established in Ning communities that are eventually small
tend to experience a greater proportion of diffusion growth than
those in Ning communities that are eventually large. For example,
in an eventually small group with 40 current members, an average
of 28% of its current members will have come from the fringe if
the group is in an eventually small community. By contrast, if the
same group were in an eventually large community, only 16% of
its current members will have come from the fringe on average.

These observations lead to the hypothesis that smaller commu-
nities may foster greater familiarity among individuals, and thus,
stronger social pressures to adopt behaviors such as group mem-
bership. This is consistent with social science research finding that
participation rates in civic groups or clubs, such as voter registra-
tion organizations, in small towns and rural areas is far higher than
in big cities [22]. Part of the explanation is that individuals expe-
rience more peer pressure in smaller, more intimate communities
than in big cities where they may be more isolated.

Figure 5 also shows the same contrast between small and large
communities for eventually large groups, but the difference is much
smaller. This is likely because eventually large groups generally at-
tract many members through wider appeal. That is, individuals join
not because they were invited by a ‘friend’ in the group; instead,
they join because they have some broad interest shared by the mem-
bers of the group. For example, consider the differences between
a Ning group that serves as an online fan club for a professional
sports team and a group used by close friends to exchange private
group messages. Regardless of where the online fan club group is
established–i.e. a small or large Ning community–its growth pri-
marily comes from its appeal to other fans rather than through the
influence of its members’ external friendship ties.
Diffusion Growth and Future Overall Growth. Figure 6 fur-
ther clarifies the relationship between the proportion of a group’s
current members who came from the fringe and the group’s future
growth rate. Specifically, in Figure 6, if no members of a 50 mem-
ber group joined from the fringe, then on average, we expect the
group to grow by a factor of 1.6 over the next 180 days. How-
ever, if 90% of the group joined from the fringe, then we expect the

group to only grow by a factor of 1.2 in the same amount of time.
We observe the same pattern when examining growth rates over
periods of 30 or 60 days. Again, this suggests that fringe growth
early in a group’s existence can diminish the eventual size of the
group. One hypothesis about why groups which grow primarily
through diffusion would be eventually smaller concerns the pur-
poses of these groups. Prior work has shown that group dynamics
can differ greatly for groups based on a common bond versusthose
based on a common identity [23, 24]. We discuss the connection
between these attachment types in Section 6.

5. PREDICTING GROWTH & LONGEVITY
Building on these empirical observations, we engage in two ma-

chine learning tasks aimed at predicting which groups will be suc-
cessful in attracting new members. The goal of our first task is to
understand what group and network characteristics predict whether
a group will grow faster or slower than others. Specifically, we ex-
plore how the predictive value of these features vary along three
dimensions: group age, group size, and prediction interval.

We test the effects of age by taking snapshots of groups at 60 and
180 days after their creation. For each age group, we separate these
snapshots into two categories according to size, resulting in a total
of 4 age-size ’buckets’ of data; for each of these buckets, we gen-
erate two models, one aimed at predicting short-term growth and
the other at predicting long-term growth. Building these 8 models
in this manner provides results which are cleaner and more inter-
pretable as they allow us to clearly observe how coefficients change
across groups of different ages and sizes and for the two predic-
tion intervals without having to explain complex interaction effects.
Comparing these models provides a rich picture of how diffusion
processes, group transitivity, and other features predict short-term
and long-term growth of groups. In our second modeling task, we
utilize these same features to predict whether groups will ’die’ or
cease to grow within a given period of time, shedding additional
light on how these group and network characteristics affect group
dynamics.

5.1 Features for Learning
We begin by defining a set of features to be used in our predictive

models, described in Table 2. We divide these features into three
rough categories which describe the data at different levels. The
first category, labeled growth features, capture how quickly and by
what means the group was growing when the snapshot was taken.
These features serve as a baseline, capturing both the current ’ve-
locity’ of growth, as well as insights from the prior section about
the role of diffusion processes in subsequent growth.

In addition, we consider a set of connectivity features, capturing
the probability of edges among members of the group absolutely
and relative to the community as a whole, and structural features,
chosen because they succinctly summarize aspects of higher-level
structure within the group. As most features approximated a log-



Size Statistics 60 Days 180 Days

Small
Number of Groups 5871 5312
2-Month Growth 1.333 1.165
2-Year Growth 2.613 1.934

Large
Number of Groups 1602 2884
2-Month Growth 1.147 1.076
2-Year Growth 1.494 1.267

Table 3: Number of groups, short-term (2-month) and long-
term (2-year) median growth rates for each age*size bucket.

normal distribution, values were log-transformed as part of our an-
laysis. Monthly growth rate and group transitivity more closely
approximated normality after being power-transformed.

5.2 Predicting Group Growth
We now describe in more detail the procedure used in our first

task of generating predictions about short-term and long-term group
growth. We started with a sample of 11,944 groups mined from
1,713 distinct Ning communities. These groups were selected us-
ing the same criteria for group size, community size, and expira-
tion date as in our prior analysis. To aid in generalizability, we
limited data collection to no more than 50 groups within any sin-
gle community in order to avoid over-representing a single, large
community in our analysis.

As mentioned above, we generated snapshots for groups at two
ages (60 and 180 days) and then separated groups of the same age
into ’small" (10-100 members) and ’large’ (150-1000) members.
Rather than including group size as a dependent variable, we bin
groups in this manner for two reasons: (1) results from prior work
indicate a natural threshold for group size around 150 members [8,
15], (2) our dependent variable, growth rate, does not exhibit equal
variance for small and large groups (a small group can feasibly
grow 100x in size, while a large group can not).

For each group, we define the ’growth rate’ to be the ratio of
the group size at prediction time to the group size at the time of the
first snapshot. For each group at a given age, we calculate the short-
term (2 month) and long-term (2 year) growth rates. Table 3 shows
median growth rates over these two prediction intervals. For each
combination of age, size, and prediction interval, we structure our
problem as a binary classification task, with class 1 representing
groups growing more quickly than the median rate, a formulation
which provides a balanced sample without excluding groups from
our analysis. We generate predictions using a classifier based on
logistic regression.

5.2.1 Growth: Results
Below, we summarize and compare results from the 8 models

(for each combination of group age, size, and prediction interval)
described above. In evaluating our models, we consider two dif-
ferent evaluation measures: the classification accuracy and the area
under the ROC curve (AUC). In each task, we generate models for
each category of features and a fourth combining all features.
Short-term growth. In Figure 7, we show the accuracy of model
predictions for short-term growth. Rows show results for groups
of the same age, and columns show groups of the same size. In
each cell, the four bars correspond to the four models: (G)rowth,
(C)onnectivity, (S)tructural, and (ALL) features. For short-term
growth, we can clearly see that the growth features contribute the
most to the accuracy of the models and that predictions are more
accurate for larger, younger groups, perhaps where the growth rate
from the prior month provides more signal. For large groups at
60 days, for instance, the combined model achieves 79.2% accu-
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Figure 7: Short-term (2-month) prediction accuracy of models.
Rows show groups of the same size, columns show groups of
the same age. Note that the y-axis starts at 0.5, the expected
accuracy of a random model.

racy (AUC = 0.868), with predictions driven almost entirely by the
growth metrics. As shown in Figure 7, models based on growth
metrics alone consistently achieved prediction accuracy over 68.6%
(consistently over 77.3% for large groups).

Table 4 shows regression coefficents for the models combining
all features. Within each age-size bucket, distributions for each fea-
ture were standardized to have a mean of 0 and standard deviation
of 1, allowing us to directly compare regression coefficients. Here,
we see clearly that short-term predictions are heavily dependent on
monthly growth rate, especially for large groups. For small groups,
we find that increased group transitivity and growth from the fringe
signal a decreased likelihood that a group will grow rapdily, match-
ing earlier observations about diffusion processes, transitivity and
growth. An intriguing finding seemingly at odds with this obser-
vation about transitivity is that a larger clique seems to predict an
increased likelihood that a group will grow rapidly, with this effect
stronger for small groups. Furthermore, groups with more individ-
uals outside the largest connected component seem to grow more
quickly as well. Together, these findings hint at a more nuanced
picture of how network properties predispose groups to growth,
which we will discuss later on in our analysis.
Long-term growth. Figure 8 shows prediction accuracy achieved
by our models for long-term growth. Again, rows correspond to
group size, columns to group age, and the bars in each cell represent
the four models. In general, our models still achieve relatively high
accuracy, up to 78.6% (AUC = 0.868) for small groups at 60 days
and consistently over 71.9% (AUC = 0.782), in predicting whether
groups will grow rapidly over the subsequent two years. We see
an interesting pattern where model fit for small groups is better at
60 days and for large groups at 180 days; looking more closely, we
see that this is because different features appear to be contributing
to predictions for small and large groups. For small groups, we see
that the models based on structural features are more accurate than
those based on growth metrics.

In Table 5, we show coefficients for the combined models (as
with the short-term models, distributions for feature values are stan-
dardized). Again, we see a pattern where increased growth from
the fringe predicts decreased growth rates for small groups and in-
creased transitivity predicts decreased growth for all groups. In



Small Large
Feature 60 Days 180 Days 60 Days 180 Days
Monthly Growth 1.19*** 0.88*** 1.94*** 2.00***
Fringe Growth -0.20*** -0.10* — —
Group Trans. -0.68*** -0.67*** — —
Trans. Ratio 0.22*** 0.12* — —
Group Dens. 0.24* — — —
Dens. Ratio -0.14** -0.11 — —
Clique Ratio 0.95*** 1.10*** — 0.32**
Disconnected 0.34*** 0.38*** — 0.33***

Table 4: Regression coefficients for combined models predict-
ing short-term growth (For this and following tables: * p <
0.01, ** p < 0.005, *** p < 0.001). Coefficients with p > 0.05
are not reported.

addition, the presence of larger cliques and more members outside
the giant component is predictive of increased growth for groups
of all sizes and ages. Interestingly, at least for small groups, these
structural features now appear to play a very large role regarding
the outcome of our predictions.
Predictive Value of Features. As expected, groups which were
growing quickly at the time of the first snapshot were likely to con-
tinue to do so over the short-term, though the extent to which this
feature predicted long-term growth for large groups may have been
surprising. Of greater interest to us, however, were the findings
pertaining to fringe growth, which confirm the results of our prior
empirical investigation concerning the role that diffusion processes
play in the growth of groups. We find that the negative effect of dif-
fusion processes on subsequent growth is significant only for small
groups, suggesting some support for our initial hypothesis about
differences between groups smaller and larger than 150 members.

Similarly, for small groups, our models confirmed prior observa-
tions concerning group transitivity and growth, with increased tran-
sitivity predicting decreased growth over the short-term for small
groups and over the long-term for all groups. An interesting re-
sult seemingly at odds with these findings about transitivity was
that, over both prediction intervals, the presence of a large clique
appeared to predict a greater likelihood of subsequent growth. The
estimated effect of clique size on subsequent growth was especially
high for small groups, hinting that these structural features may be
important at the early stages of group formation. In the discussion,
we provide hypotheses about types of network structures which
could lead to these combinations of features. Our finding that hav-
ing more members outside of the largest connected component ap-
pears to be a good predictor of growth coincides with our notion
of non-diffusion growth (membership ’jumps’ across the network
rather than following existing connections).

We chose this classification approach to match the real-world
analysis task of identifying groups which will be ’successful’ in the
future; an alternative approach would be to utilize linear regres-
sion to predict final group size. Though space does not permit a
full exposition of these linear models, our experiments showed that
group size could be predicted with some accuracy (for long-term
growth predictions, we achieved adjusted R2 values around 0.5 for
models combining all features). While these final size predictions
were driven heavily by growth features, an analysis of deviance re-
vealed that adding features pertaining to network connectivity and
structure provided a better model fit despite the added complexity.

5.3 Predicting Group Longevity
In this section, we focus on the closely related problem of pre-

dicting when groups will ’die’, or cease to attract new members.
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Figure 8: Long-term (2-year) prediction accuracy of models.

Instead of predicting when groups will cease to grow, we again
avoid right-censoring problems by focusing on the binary classifi-
cation task of predicting whether they will continue to grow after 1
year (360 days). In order to simplify our analysis in this section, we
focus on groups at a single age (90 days), selecting the 1818 groups
which stopped growing within a year (Class 0) and the 1818 groups
which grew the fastest after 1 year (Class 1) to obtain a balanced
sample. We utilize the same features and logistic regression ap-
proach used before. As our goal is now to predict which groups will
’die’, we expect that the feature coefficeints learned by the model
will have signs opposite those in the growth analysis (i.e. features
which positively predict growth should negatively predict death).
Results. Coefficients estimated by our five models, as well as the
accuracy and AUC for each, are summarized succinctly in Table
6. For the task of predicting whether groups would stop growing
within a year, the group size at the time of the snapshot again pro-
vided the most information, followed by the structural metrics. The
model using only structural metrics achieved a favorable 70.4% ac-
curacy (AUC = 0.759) compared to random chance (50.0%) and
the models utilizing only growth (62.0% accuracy) or connectivity
(61.9% accuracy) features. Our combined model achieves 77.4%
accuracy (AUC = 0.834) in predicting whether groups will ’die’
within a year. Observing the magnitude and sign of learned coeffi-
cients for the longevity model, we see that they match closely the
findings from the growth analysis. We summarize these observa-
tions in the list below and then in more detail in our discussion.

• A higher proportion of growth from diffusion corresponds to
a higher likelihood that a group will die.

• Clique Ratio is the strongest feature: a large clique makes a
group significantly less likely to die.

• We see similar patterns as with growth with respect to the
Group Transitivity and Disconnected Ratio features – low
transitivity and fewer members in the large connected com-
ponent make a group significantly less likely to die.

• One finding which differs from the growth analysis is that
groups which are more dense than their surrounding com-
munity are more likely to die.

• Groups with a high monthly growth rate are more likely to
continue growing a year later.



Small Large
Feature 60 Days 180 Days 60 Days 180 Days
Monthly Growth 0.49*** 0.62*** 1.24*** 1.55***
Fringe Growth -0.27*** -0.31*** — —
Group Trans. -1.34*** -1.37*** -0.31** -0.25*
Trans. Ratio 0.37*** 0.33*** — 0.21**
Group Dens. — — -0.41 —
Dens. Ratio -0.32*** -0.49*** — -0.17
Clique Ratio 2.64*** 2.33*** 0.67*** 0.48***
Disconnected 0.75*** 0.78*** 0.20 0.47***

Table 5: Regression coefficients for combined models predict-
ing long-term growth.

6. DISCUSSION
Core-Periphery Structures. Building off of these findings, we
could hypothesize that groups with one or more cores of tightly
connected members and a periphery of members loosely connected
or entirely disconnected from this core should experience increased
and prolonged growth (low transitivity, small connected compo-
nents, and large cliques). Such core-periphery structures have been
observed empirically in many large, real-world networks such as
communication and transportation systems [13], online media sites
[11], and social networks [15]. The densely connected core allows
for the swift transmission of resources [13] and the loose periphery
allows for the presence of structural holes [3], or ties which bridge
clusters, allowing members on the periphery to bring new infor-
mation or members to the core. When all members are too tightly
bound to the core, as they are in groups with high fringe growth
and high transitivity, groups might become too inwardly focused,
precluding the possibility of gaining new information and members
outside the group.
Common-Bond vs. Common-Identity Groups. Qualitative re-
search on online and offline groups has detailed differences be-
tween groups based on common bond, where group members form
attachments to one another, and those based on common identity,
in which group members form attachments to the group itself. Our
results imply that groups with high transitivity and high diffusion
growth represent common-bond groups due to the strong relation-
ship between group members. Prior research on offline communi-
ties [23] has argued that common-identity groups may adapt better
to changes in membership, as attachment is not so dependent on
who is or is not in the group. This resilience may play a greater
role in online communities, where membership can change much
more dramatically. Research on online communities has shown
that groups which accrue more traffic witness greater membership
turnover [4, 14]. Ren, et al. [24] hypothesize that change of this
type may be unsettling for members of bond-based communities,
leading these communities to falter.

7. CONCLUSION
Summary. We investigated the relationship between a group’s
network features and its future growth using online community
data from Ning.com social networks. We considered two types of
growth: 1) diffusion growth, wherein a group attracts new members
through the friendship ties of its current members to outsiders, and
2) non-diffusion growth, wherein individuals without pre-existing
ties to any group members join a group. First, we showed that while
group clustering increases diffusion growth, groups that grow more
from diffusion tend to reach smaller eventual sizes. This explains
the empirical puzzle that group clustering can increase the proba-

Feature Model G Model C Model S Model ALL
Prior Month -0.46*** -0.39***
Fringe Growth 0.26*** 0.27***
Group Transitivity 0.23*** 0.30***
Transitivity Ratio -0.18*** -0.12
Group Density -0.67*** 0.27
Density Ratio 0.41*** 0.65***
Clique Ratio -1.05*** -1.59***
Disconnected Ratio -0.62*** -0.47***
Accuracy 0.622 0.619 0.701 0.744
AUC 0.656 0.647 0.758 0.809

Table 6: Coefficients and prediction outcomes for modles pre-
dicting at 90 days whether groups would cease to grow within a
year. Note that coefficient signs differ from the prior analysis.

bility of an individual joining a group (given that the individual has
ties to the group) while decreasing a group’s overall growth rate.

Second, we generated a set models which use a group’s structural
features and past growth experience to predict its eventual size and
longevity. We found that past growth features predict short-term
growth more accurately while, for small groups at least, network
structural features better predict long-term growth. In terms of
growth rates, we find that while a group’s higher transitivity leads
to slower long-term growth, the larger a group’s largest clique, the
more likely the group will experience fast growth over a 2-year pe-
riod. In addition, structural features predict a group’s longevity bet-
ter than a group’s past growth and connectivity features. We note,
finally, that we were able to achieve robust results using networks
based on implicit (comment) reciprocal edges rather than explicitly
defined (friend) edges.
Areas for Future Research. Our findings have useful practical im-
plications and serve as a springboard for future research. For archi-
tects and administrators of online communities, understanding the
dynamics of group growth is important for sustaining and promot-
ing interaction [20]. Knowing how groups form within networks
helps community managers assess the future growth prospects of
the community. In addition, it helps administrators decide whether
to implement certain features, like membership invitation requests,
in online groups to regulate group growth. Because our results were
based on data from a wide array of online social network settings,
our insights are also generalizable to many online environments.

Our findings raise several important open research questions.
While we explored one measure of group longevity, studies of group
growth would benefit from research that better specifies the key
moments of a group’s life-cycle. In addition, we welcome fur-
ther investigation into the relationship between group growth and
the group content. Finally, we encourage analysis on how groups
within the same community network setting interact with one an-
other — what role do members that have multiple group affilia-
tions play in promoting diffusion growth? Under what conditions
do groups ‘compete’ for members? We invite future research on
these questions to enhance our knowledge about the relationship
between networks, group growth, and online community evolution.
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