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Abstract

We present a unified model of what was tradi-
tionally viewed as two separate tasks: data asso-
ciation and intensity tracking of multiple topics
over time. In the data association part, the task
is to assign a topic (a class) to each data point,
and the intensity tracking part models the bursts
and changes in intensities of topics over time.

Our approach to this problem combines an exten-
sion of Factorial Hidden Markov models for topic
intensity tracking with exponential order statis-
tics for implicit data association. Experiments
on text and email datasets show that the inter-
play of classification and topic intensity track-
ing improves the accuracy of both classification
and intensity tracking. Even a little noise in
topic assignments can mislead the traditional al-
gorithms. However, our approach detects correct
topic intensities even with 30% topic noise.

1. Introduction

When following a news event, the content and the tem-
poral information are both important factors in under-
standing the evolution and the dynamics of the news
topic over time. When recognizing human activity, the
observed person often performs a variety of tasks in
parallel, each with a different intensity, and this inten-
sity changes over time. Both examples have in com-
mon a notion of classification: e.g., classifying docu-
ments into topics, and actions into activities. Another
common point is the temporal aspect: the intensity of
each topic or activity changes over time.

In a stream of incoming email for example, we want
to associate each email with a topic, and then model
bursts and changes in the frequency of emails of each
topic. A simple approach to this problem would be to
first consider associating each email with a topic us-
ing some supervised, semi-supervised or unsupervised
(clustering) method; thus segmenting the joint stream
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into a stream for each topic. Then, using only data
from each individual topic, we could identify bursts
and changes in topic activity over time. In this tra-
ditional view (Kleinberg, 2003), the data association
(topic segmentation) problem and the burst detection
(intensity estimation) problem are viewed as two dis-
tinct tasks. However, this separation seems unnatural
and introduces additional bias to the model. We com-
bine the tasks of data association and intensity track-
ing into a single model, where we allow the temporal
information to influence classification. The intuition
is that by using temporal information the classifica-
tion would improve, and by improved classification the
topic intensity and topic content evolution tracking
also benefit.

Our approach combines an extension of Factorial Hid-
den Markov models (Ghahramani & Jordan, 1995) for
topic intensity tracking with exponential order sta-
tistics for implicit data association. Additionally, we
demonstrate the use of a switching Kalman Filter to
track content evolution of the topic over time. Our ap-
proach is general in the sense that it can be combined
with a variety of learning techniques; we demonstrate
this flexibility by applying it in supervised and unsu-
pervised settings. Experimental results show that the
interplay of classification and topic intensity tracking
improves accuracy of both classification and intensity
tracking. More specifically, our contributions are:

e A suite of models, EDA-IT, IDA-IT and
IDA-ITT, for simultaneous reasoning about topic
labels and topic intensities, and extensions to
topic drift tracking.

e A modeling trick which uses exponential order
statistics to achieve implicit data association.
This idea allows us to make an intractable data
association problem tractable for exact inference,
and is of independent interest.

e The extensive empirical evaluation in the super-
vised and unsupervised setting on synthetic as
well as two real world datasets.
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In the following sections we will use email topic detec-
tion and tracking as our running example. We also use
the terms topic and class as synonyms. Also note, that
our approach is not limited to the text domain. All our
methods are general in a sense that they can be ap-
plied to any problem with simultaneous classification
and class intensity tracking (e.g., activity recognition).

2. Classification and intensity tracking
in the static case

Traditionally, classification refers to the task of assign-
ing a class label ¢ to an unlabeled example x, given a
set of training examples xz; and corresponding classes
¢;. Classification can be performed by calculating
the probability distribution over the class assignments,
P(c|z), using Bayes’ rule, P(c|z) x P(c)P(x|c), where
the class prior P(c) and conditional probability of the
data P(z|c) are estimated from the training set.

Work in the areas of clustering, topic detection and
tracking, e.g., (Allan et al., 1998; Yang et al., 2000),
and text mining, e.g., (Swan & Allan, 2000; Blei et al.,
2003), has explored techniques for identifying topics
in document streams using a combination of content
analysis and time-series modeling. Most of these tech-
niques are guided by the intuition that the appearance
of a topic in a document stream is signaled by a burst,
a sharp increase of intensity of document arrivals. For
example, in the problem of classifying emails into top-
ics, the focus of attention might change from one topic
to another and hence taking into account the topic in-
tensity should help us in the classification task.

To define the notion of intensity, consider a task
where we are given a sequence of n email messages,
ri,...,Tn, and are asked to assign a topic ¢ to each
email. We also observe the message arrival times
t1,...,tn. The intensity A. of a topic c is defined as
the rate at which documents of that topic appear, or
equivalently as the inverse expected interarrival time
E[A.]~! of the topic ¢, where A.; = t.; —t.;—1 is the
time difference between two subsequent emails from
the same topic ¢. A natural model of interarrival times
is the exponential distribution (Kleinberg, 2003), i.e.,
A ~ Exp(A), with density p(A | \) = Aexp(—AA).

Let us first consider the case of a single topic. A nalve
solution to estimating intensity dynamics would be to
compute average intensities over fixed time windows.
Since the exponential distribution has very high vari-
ance, this procedure is likely not to be very robust.
Furthermore, it is not easy to select the appropriate
length for the time window, since, depending on the
topic intensity, the same time window will contain very
different numbers of messages. Also, from the perspec-

tive of identifying bursts in the data, a set of discrete
levels of intensity is preferable (Aizen et al., 2004). To
overcome these problems, Kleinberg (2003) proposed
a weighted automaton model (WAM), an infinite-state
automaton, where each state corresponds to a partic-
ular discrete level of intensity. For each email, a tran-
sition is made in the automaton, whereby changes in
intensities are penalized. This can be interpreted as a
Hidden Markov Model, where the search for the most
likely parameters of the exponentially distributed topic
deltas A ; reduces to the Viterbi algorithm.

Since the WAM model operates on a single topic only,
hard assignments of messages to topics have to be
made in advance. Although classification can be done
using methods as described in (Blei & Lafferty, 2005;
Segal & Kephart, 1999), these hard assignments im-
ply that topic detection and identification of bursts
are separated. However, our intuition is that temporal
information should help us assign the right topic and
that the topic of an email will influence topic intensity.
For example, if we are working on a topic with a very
high intensity and the next email arrives at the right
moment, then this will influence our belief about the
email’s topic. On the other hand, if an email arrives
late and we are very sure about its topic, we will have
to revise our belief about the intensity of the topic.

In the following sections, we propose a suite of models
which simultaneously reason about topic labels and
topic intensities. In Section 6 we show how a little
class topic assignment noise can confuse WAM, while
our model still identifies the true topic intensity level.

3. Classification and intensity tracking
in the dynamic case

Given a stream of data points (we can think of them
as emails) on K topics (classes) together with their
arrival times, (z1,t1), (z2,t2), (zs3,t3), ..., we want
to simultaneously classify the emails into topics and
detect bursts in the intensity of each of the topics.

We have a data association problem: We observe the
message deltas A; = t;—t;_1, the time between arrivals
of consecutive emails. One first needs to associate each
email with a correct topic to find the topic deltas, the
time between messages of the same topic. Given the
topic deltas one can then determine the topic intensity.

For example, Figure 1(a) shows arrival times for email
data and indicates importance of the data association
part. Each dot represents an email message and we
plot the message number vs. the time of a message.
Vertical parts of the plot correspond to bursts of activ-
ity. Horizontal parts correspond to low activity (long
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Figure 1. Topic deltas and observed message deltas for email (a) and news data (b).
Observed deltas in (b) look almost uniform, despite strong bursts in topic

dominated by bursts in a single topic.
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Note how observed deltas are

intensities. Explicit (but intractable) data association model (c) capturing the intensity-driven generative process. We
observe t-th message from the distribution over N words and A, the elapsed time from the last received email. We have
K topics, each with intensity L,(fk) at time t. C} is the topic indicator, 7; stores the time of last email of each topic.

time between consecutive emails). Not knowing the
true topics, we only observe the black dotted curve in
the middle and we need to associate each email with
the correct topic (curves above and below the middle
one). Notice how bursts in activity of one topic domi-
nate the observed deltas (middle dotted curve).

A naive approach to solving the data association prob-
lem described above is to explicitly keep track of when
we last saw a message from a given topic. Figure 1(c)
presents a Dynamic Bayesian Network (DBN) for mod-
eling such a process. Each topic k is associated with an
intensity process Lgk), which is a Markov chain mod-
eling the change of topic intensity over time. The dis-
crete states Lgk) = [ are associated with a parameter
A(l) of an exponential distribution, modeling the mes-
sage interarrival times for topic k. We model the topic
transition probabilities as P(Lgf_)l =1 Lgk) =1) =
1—6, and P(|L§ﬁ_)1 —1ll=1| Lgk) =1) = 6/2, properly
accounting for boundary cases. So we allow intensity
to increase or decrease with probability 8, which is a
parameter of the model.

We can explicitly model Tt(k), the time at which we

last saw an email from topic k, as a vector 7¢. At
each time index ¢, the topic ¢; of the t-th message is
¢t = argmax Tt(k)7 i.e., the last message on topic ¢
happened at the current time. The transition from 7
to the next time step 741 is a follows: for each topic k,

. . (k) . . .
a new arrival time 7,} is generated by incrementing

Tt(k) by the topic delta, which is exponentially distrib-
uted with parameter )\(Lgk)). Now, the smallest of
7{,1 determines the email arrival time and the index
determines the topic, ¢;+; = argming Ttlg_kl) For the
topic c¢;41 of this new email, we update the last topic
access time Tt(frtf Vo= Ecjfl). The remaining Tt(f)l for

k # c¢;41 are unchanged, and remain identical to Tt(k).

In our problem the model observes message delta,
A; = maxy Tt(k) —maxy, Tt(f)l, which is the time between
the current message and the previous one. We also ob-
serve a representation w; of the message, e.g., a bag of
words representation. Unfortunately, the inference in
this model is intractable — the state space grows as T'%
with the number T of documents. Conceptually, the
explicit data association model EDA-IT, as sketched
in Figure 1(c), represents the generative process, un-
derlying the intensity driven generation of document
streams. Instead of investigating heuristics for coping
with the intractability of the presented model, we now
introduce a simpler model, which elegantly avoids the
intractability of explicit data association.

4. Implicit data association models

4.1. IDA-IT: Supervised, implicit data
association for intensity tracking

From Section 3 we have that the topic c¢iy1 of next
message is the one with minimum T’ﬁ’fl = Tt(k) + Ag.
Here Ay ~ Exp[A(Ly)] is the topic delta, i.e., the
time between consecutive emails from topic k. So
the probability that the next email is from topic k is
P(eopr = k) = P(rV+A, < 704085 | 7944, > 7),
where j ranges over all topics, and r = max Tt(k) is the
arrival time of email at time index ¢. So, the proba-
bility that the topic of next arriving email is k, is the
chance that 7/ §’_?1 is the earliest of all “scheduled” ar-
rivals, conditioned on how much time has passed.

The key to making the EDA-IT model tractable is to
exploit the memorylessness of the exponential distri-
bution to avoid keeping track of the times 7y when we
have last seen a message on each topic. The memo-
rylessness property states that, if X ~ Exp()\), then
P(X>T+t|X >T)=P(X >t). Assuming the
intensities of each topic are fixed, it follows that
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(CyLy = 1) ~argmin{Exp[A(l1)], ..,
(A¢Ly = 1) ~min{Exp[A(l1)], ..

Exp[A(le)])}, (1)
SExpAMI)D} (2)

Both conditional probability distributions (CPDs) rely
on exponential order statistics: The observed message
delta is the minimum of several exponential distribu-
tions (Eq. 2), whereas the selected topic is the corre-
sponding index of the smallest variable (Eq. 1). At
first glance, since these CPDs represent complex order
statistics, it is not obvious whether they can be rep-
resented compactly and evaluated efficiently. The fol-
lowing result (Trivedi, 2002) gives simple closed form
expressions for the CPDs 1 and 2:

Proposition 1 Let Aq,..., A, >0 and Z; ~ Exp(A1),
oy Zn ~ Exp(A\,). Then min{Z,...,Z,}

Exp(z \j) and P(Z; = min{Zy,...,Z,}) = ﬁ
J
Using these CPDs, we arrive at the model presented

in Figure 2(a). We retain the intensity processes Lgk),
but instead of keeping track of Tt(k), the time of last
email of each topic, and deriving the topic label ¢; from
it, we use the intensities Ly directly to model the topic
prior. In this model, the association of message deltas
(time between consecutive emails) to topic deltas (time
between consecutive emails of the same topic) is im-
plicitly represented. We refer to this model as IDA-IT,

Implicit Data Association for Intensity Tracking.

The order statistics simplification is an approximation,
since in general the topic intensities are not constant
during the interval between emails. Our model makes
the simplifying assumption that the topic is condition-
ally independent of the message delta given the topic
intensities. However, our experimental results indicate
that this approximation is very powerful and performs
very well in practice. Moreover, the IDA-IT model
now lends itself to exact inference (for a small number
of topics). IDA-IT is a simple extension of the Fac-
torial Hidden Markov Model (Ghahramani & Jordan,
1995), for which a large variety of efficient approxi-
mate inference methods are readily available. Note
that the IDA-IT model is a special case of contin-
uous time models such as continuous time Bayesian
Networks (CTBNs) (Nodelman et al., 2003). Unlike
our model, CTBNs are in general intractable, and one
has to resort to approximate inference (c.f., Ng et al.,
2005).

4.2. IDA-ITT: Unsupervised topic and
intensity tracking

In a truly dynamic setting, such as a stream of docu-
ments, we do not only expect the topic intensities to
change over time, but the vocabulary of the topic itself
is also likely to change, an effect known as topic drift.
Next, we present an extension of IDA-IT model that

Cy——l~

@?\. "@\.

(a) IDA-IT

) IDA-ITT

Figure 2. Proposed graphical models. (a) Implicit (and
tractable) data association and intensity tracking; (b) Im-
plicit data association with intensity and topic tracking.

also allows for tracking the evolution of the content of
the topics.

Here we use the Switching Kalman Filter to track the
time evolution of the words associated with each topic.
We represent each topic with its centroid — a center
of the documents in the topic. As the topic content
changes, the Kalman filter tracks the centroid of the
topic over time. Since representing documents in the
bag—of-words fashion results in extremely high dimen-
sional spaces, where modeling topic drift becomes dif-
ficult, we adopt the commonly used Latent Semantic
Indexing (Deerwester et al., 1990) to represent docu-
ments as vectors in a low dimensional space.

Using the Gaussian Naive Bayes model, the obser-
vation model for documents becomes P(Wy,; | C; =
k) ~ N(pik,07 ), where we represent each topic by
its mean p®) and variance ¢®. For simplicity of pre-
sentation, we will assume that only the topic centers
change over time, while variances remain constant. As-
suming a normal prior on the mean, and a normal drift,

ie. uélj_)l = 1™ 4 v for v ~ N(0,£2), we can model
(k)

the topic drift 4 ,...,ur(llf) by plugging a Switching
Kalman Filter (SKF) into our IDA-IT model. We call
this model Implicit Data Association for Intensity and
Topic Tracking (IDA-ITT), presented in Figure 2(b).

The SKF model fits in the following way:
tinuous state vector p; = (pgl),...,ugm) describes
the prior for the topic means. The linear transition
model is simply the identity, i.e., py41 = p¢ + v. This
means that we expect the prior to stay constant, but
allow a small Gaussian drift v. The observation model
is a Gaussian distribution dependent on the topic:
Wi | [e, Cy = ] ~ N (Hye - g, 3¢). Hereby, H, is a ma-
trix selecting the mean MEC) from the state vector p.
For example, in the case of two classes, and the doc-
uments represented as points in R?, H; = (1,1,0,0)
and Hy = (0,0,1,1). We can estimate X from train-
ing data and keep it constant, or associate it with a
Wishart prior. In this paper, we select the first option
for clarity of presentation.

The con-
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Unfortunately, we cannot expect to do exact inference
anymore, since inference in such hybrid models is in-
tractable (Lerner & Parr, 2001). However, there are
very good approximations for inference in Switching
Kalman Filters (Lerner, 2002). We will briefly explain
our approach to inference in Section 4.5.

4.3. Active Learning for IDA-ITT

We also extended of our model to the semi-supervised,
expert-guided classification case, where occasional ex-
pert labels for the hidden variables are available, and
investigated an active learning method for selecting
most informative such labels. Due to space constraints
we do not present the model derivation and experi-
mental results for this case. Please refer to (Krause
et al., 2006) for further details on the model for the
semi-supervised case.

4.4. Generalizations

Our approach is general, in at least three ways. Firstly,
as argued in Section 1, the application is not limited
to document streams. Another possible application
of our models is fault diagnosis in a system of ma-
chines with different failure rates, or activity recogni-
tion, where the observed person is working on several
tasks in parallel with dynamic intensities. Secondly,
our models fit well in the supervised, unsupervised and
semi-supervised case as demonstrated in the paper.
Lastly, instead of using a Naive Bayes classifier as done
here, any other generative model for classification can
be “plugged” into our model, such as TAN trees (Fried-
man et al., 1997) or more complex graphical models.
Instead of using Latent Semantic Indexing to repre-
sent documents, it is possible to use topic mixture
proportions computed using Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) or some other method.
In the LDA example, one can either apply the SKF
directly to the numerical topic mixture proportions,
or track the mixture proportions using the Dirichlet
distribution (which makes inference more difficult).

Most generally, our model can be considered as a prin-
cipled way of adapting class priors according to class
frequencies changing over time. Instead of assuming
that the transition probabilities 6 stay constant be-
tween any two subsequent events, a possible extension
is to let them depend on the actual observed message
deltas, by modeling Lgk) as continuous-time Markov
processes. We experimented with this extension, but
did not observe significant difference in the behavior,
since in our data sets the actual observed deltas were
rather uniform (Figure 1(b)). Similarly, the Gaussian
topic drift v in the IDA-ITT model can be made de-
pendent on the observed message delta, allowing larger

drifts when the interval between messages is longer.
4.5. Scalability and implementation details

For a small number of topics, exact inference in the
IDA-IT model is feasible. The variables Lgk) and C
are discrete, and the continuous variables are all ob-
served. Hence, the standard forward-backward and
Viterbi algorithm for Hidden Markov Models can be
used for inference. Unfortunately, even though the in-
tensity processes L,Ek) are all marginally independent,
they become fully connected upon observing the doc-
uments and the arrival times, and the tree-width of
the model increases linearly — the complexity of exact
inference increases exponentially — in the number of
topics. Exact inference has complexity O(T K?2|L|*%),
where L is the set of intensity levels, and K, T are the
number of topics and documents, respectively. How-
ever, there are several algorithms available for ap-
proximate inference in such Factorial Hidden Markov
Models (Ghahramani & Jordan, 1995). We imple-
mented an approach based on particle filtering, and
fully-factorized mean field variational inference. In
Section 6, we present results of our comparison of these
methods with the exact inference.

Our implementation of the topic tracking model
IDA-ITT is based on the algorithm for inference in
SKFs proposed by Lerner (2002). At each time step,
the algorithm maintains a belief state over possible
locations of the topic centers, represented by a mix-
ture of Gaussians. To avoid the multiplicative increase
of mixture components during each time update step,
and the resulting exponential blow-up in representa-
tion complexity, the mixture is collapsed into a mix-
ture with fewer components. In our implementation,
we keep the four components with the largest weight
from each topic and each intensity.

5. Experimental setup

Synthetic datasets. First, we evaluate our models
on two synthetic datasets. The first dataset (S1) was
designed to test whether implicit data association re-
covers true topic intensity levels. For each of the two
topics, we generated a sequence of 300 observations,
with exponentially distributed time differences. Every
hundred samples, we changed the topic intensity, in
the sequence [i, 1—%8, é] for topic 1 and [ﬁ, é, ﬂ for
topic 2. The observed feature W, is a noisy copy of the
topic variable Cy, taking the probability 0.9 for correct
topic to introduce additional classification uncertainty.

The second dataset (S2) tests the resilience towards
noise in the assignments of messages to topics. Obser-
vations in the dataset are uniformly spaced four hours
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apart, so the observed message deltas are completely
uninformative. Every fourth email is from topic 2, the
remaining emails are from topic 1. So, the true inten-
sity of topic 1 is %, and for topic 2 it is %. We again
observe a noisy copy of the true topic label. However,
for 30% of the observations from topic 2, the evidence
points to the wrong topic — we assign the probability
of the correct topic to 0.49; thus hard-assignment of
topics will misclassify 30% of messages from topic 1.

Enron email corpus. The Enron dataset contains
517,431 emails from 151 Enron employees. We selected
all 554 email messages from tech—-memos and universi-
ties folders of employee Kaminski, treating each folder
as a separate topic. The email data spans from De-
cember 1999 to May 2001.

Reuters document corpus Volume 1 contains
810,000 English language news articles, spanning a
year starting from August 1996. We selected 2,303
documents from four topics (wholesale prices, environ-
ment issues, fashion, and obituaries). The number of
documents per topic varies between 259 and 938. For
each document we also know the time of publication.

Document representation and training. In both
real datasets we removed stop-words and words with
document frequency of less than 5. We also applied
Latent Semantic Indexing (Deerwester et al., 1990)
retaining 8 latent dimensions, with components de-
termined on the training data. We decreased the di-
mensionality of the data to increase interpretability of
the results, avoid over-confidence of Naive Bayes and
decrease the number of estimated parameters. In all
experiments, we used the first 25% of data for training
and the rest for testing. In the Enron data set, this
amounts to the first six months of data for training
and in Reuters only for a month and a half. Since the
documents are not evenly distributed over time and
some topics have high (low) intensity at the start of
the datasets, the learned class (topic) priors may be
different from the true class priors, an issue not ad-
dressed by traditional methods.

6. Experimental results
6.1. Topic intensity tracking

Experiments on synthetic datasets. First, we
analyze the recovery of the intensity changes on the
synthetic dataset. We chose the intensity levels i, %,
3—12, é, ﬁ and ﬁ. So the three “correct” intensity
levels are available, as well as three “wrong” levels.
We set the intensity transition probability to 0.2.

Figure 3(a) presents the results. The x-axis presents
documents ordered in time of arrival and on the y-axis

we plot the inverse intensity (average topic delta), i.e.,
time between two consecutive emails from the same
topic. The dashed lines correspond to the ground truth
(topic deltas), which are not observed by the algo-
rithms. Notice that the exact inference successfully
recovers the true intensities, in spite of the high vari-
ance of the exponential distribution. Also observe that
the Viterbi decoding successfully avoids simply match-
ing the observed message deltas. This indicates that
IDA-IT model succeeds in the data association task.
Also, at the end of the sequence, where no messages of
topic 2 are observed, the intensity of the low frequency
topic is estimated as low, which means we successfully
incorporate the “negative evidence”.

Figure 3(a) also compares the performance of differ-
ent inference algorithms to estimate the latent inten-
sities. Both the exact inference and the particle filter
recover the true parameters very well. The variational
approximation still captures the qualitative behavior,
but does not provide as good results as the other meth-
ods. This shows that approximate inference can be
used for scaling up the model to larger datasets.

Next, we analyze the intensity tracking in presence
of classification noise using the synthetic dataset 2,
where 30% of examples are misclassified. We com-
pare against the Weighted Automaton Model (WAM)
on hard-assigned labels. We chose the intensity levels

% (correct for topic 1), ¢, 75 (both wrong, indicate

5
misclassification) and - (correct for topic 2). The

intensity transition probability is set to 0.1.

IDA-IT recovers the true underlying rate of both top-
ics. Figure 3(b) shows this for the low intensity topic 2.
Estimating the rates after hard-assigning labels drasti-
cally decreases performance. Furthermore, all 30% ex-
amples misclassified by the Naive Bayes are correctly
classified during our inference. This indicates syner-
getic effects between intensity estimation and topic
identification. It also shows that IDA-IT does true
data association of topic deltas, even with completely
uninformative message deltas.

Experiments on Enron and Reuters. We com-
pare IDA-IT and the traditional WAM model on En-
ron and Reuters datasets. Figures 1(a) and 1(b) show
the observed data for Enron and Reuters. We plot the
message number versus the time of the message. Each
dot represents a message. Vertical parts correspond to
bursts of activity and horizontal to low activity (long
time between consecutive messages). The algorithm
observes the dashed curve in the middle and needs to
associate each message with the correct topic (curves
above and below the middle one). Notice how bursts in
activity of one topic dominate the observations. Notice
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Figure 3. (a) True and recovered topic intensities (topic deltas) using various inference techniques with IDA-IT on syn-

thetic dataset 1.

(b) Classification noise confuses traditional approach of separate classification and topic intensity

tracking. By coupling classification and intensity tracking, IDA-IT recovers true topic intensities. (c¢)-(f): Comparison of
IDA-IT and WAM on Enron and Reuters datasets. We plot intensity level vs. message number. Dashed line presents true
intensity and solid lines present recovered intensity level. We circled the areas where WAM model significantly deviates
from the truth. Only in one case (first ellipse in (¢)) does WAM perform better.

how in the Reuters data set (Figure 1(b)) the observed
message deltas are almost uniform, but the individual
topics exhibit strong bursts of activity (sharp vertical
jumps on the plot).

Figure 3 shows the results on intensity tracking. Fig-
ures 3(c) and 3(d) compare our IDA-IT with the tra-
ditional approach, where each message is first assigned
a topic and then WAM is run separately on each
topic. We circled the spots where the WAM model
gets confused due to misclassifications and determines
the wrong intensity level. On the contrary, IDA-IT
can compensate for classification noise and more accu-
rately recover true intensity levels.

Similarly, Figures 3(e) and 3(f) show the results for 2
out of 4 topics from the Reuters data set. Notice how
topic 1 interchanges the low and high activity and how
using hard classification with WAM model misses sev-
eral transitions between intensities. In a data-mining
application aiming at the detection of bursts, these
lapses would be highly problematic.

6.2. Improved classification

In the previous section, we showed how coupling clas-
sification and intensity tracking better models the in-
tensity than if classification and tracking are done sep-
arately. Next, we evaluate how classification accuracy

is influenced by combining it with intensity tracking.

Figure 4 compares the overall classification error of
the baseline, the Gaussian Naive Bayes classifier, with
the proposed IDA-IT model. We ran 3 experiments:
Enron emails, topics 1 and 2 from Reuters and all 4
Reuters topics. We used same preprocessing of the
data as in the other experiments (see Section 5). For
Enron we determined a set of intensity levels 1, %, %,
& and the transition probability of 0.1 using cross-
validation. The error rate of Gaussian Naive Bayes
(GNB) is 0.053, IDA-IT scores 0.036, which is a 32%

relative decrease of error.

We ran two experiments with Reuters. For both exper-
iments we used intensity levels %, %, 3% and transition
probability 0.2. In first experiment, we used only top-
ics 1 and 2. Classification error of GNB is 0.121 and
error of IDA-IT is 0.068, which means 45% relative de-
crease in classification error. The second experiment
uses 4 topics, so the overall performance of both classi-
fiers is lower, but we still get 22% relative improvement
in classification.

Note, that our models do not have an explicit class
prior but model it through topic intensity. This has the
effect that the topic which is currently at high activity
also has higher prior topic probability. Therefore the
precision of the bursty topic increases at the cost of
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Figure 4. Reduction in error for Enron and Reuters

reduced recall for of classes with lower intensity. This
usually leads to overall improvement of classification
accuracy, but there are cases where improvement is
marginal or even decreases due to the lower recall on
low intensity topics.

6.3. Topic tracking in unsupervised case

Next, we present the application of implicit data as-
sociation and intensity tracking model to the unsu-
pervised setting, where we are using the Switching
Kalman Filter as introduced in IDA-ITT (section 4.2).
For this experiment we chose two Reuters topics,
wholesale prices and environment issues. Using LSI,
we reduce the dimensionality of data to two dimen-
sions. We then represent each document as a point in
this two-dimensional space and use IDA-ITT to track
the evolution of content and intensity of the topics.

Exploring the most important words from the cluster
centroid of topic wholesale prices, measured by magni-
tude of LSI coeflicients, we see that words economist,
price, bank, index, industry, percent are important
throughout the time. However, at the beginning and
the end of the dataset, important words are also bu-
reau, indicator, national, office, period, report. Then
for few weeks in December and early January the topic
drifts towards expected, higher, impact, market, strong,
which are terms used when last year’s trends are ana-
lyzed and estimates for next year are announced.

7. Conclusion

We presented a general approach to simultaneous clas-
sification of a stream of datapoints and identification
of bursts in class intensity. Unlike the traditional ap-
proach, we simultaneously addresses data association
(classification, clustering) and intensity tracking.

We showed how to combine an extension of Factor-
ial Hidden Markov models for topic intensity tracking
with exponential order statistics for implicit data asso-
ciation, which allows efficient inference. Additionally,
we applied a switching Kalman Filter to track the time

evolution of the words associated with each topic.

Our approach is general in the sense that it can be
combined with a variety of learning techniques. We
demonstrated this flexibility by applying it in a super-
vised and unsupervised setting. Extensive evaluation
on real and synthetic datasets showed that the inter-
play of classification and topic intensity tracking im-
proves the accuracy of both classification and intensity
tracking.
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