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ABSTRACT
Diffusion of information, spread of rumors and infectious diseases
are all instances of stochastic processes that occur over the edges
of an underlying network. Many times networks over which con-
tagions spread are unobserved, and such networks are often dy-
namic and change over time. In this paper, we investigate the
problem of inferring dynamic networks based on information dif-
fusion data. We assume there is an unobserved dynamic network
that changes over time, while we observe the results of a dynamic
process spreading over the edges of the network. The task then is
to infer the edges and the dynamics of the underlying network.

We develop an on-line algorithm that relies on stochastic con-
vex optimization to efficiently solve the dynamic network inference
problem. We apply our algorithm to information diffusion among
3.3 million mainstream media and blog sites and experiment with
more than 179 million different pieces of information spreading
over the network in a one year period. We study the evolution of
information pathways in the online media space and find interest-
ing insights. Information pathways for general recurrent topics are
more stable across time than for on-going news events. Clusters
of news media sites and blogs often emerge and vanish in matter of
days for on-going news events. Major social movements and events
involving civil population, such as the Libyan’s civil war or Syria’s
uprise, lead to an increased amount of information pathways among
blogs as well as in the overall increase in the network centrality of
blogs and social media sites.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining
General Terms: Algorithms; Experimentation.
Keywords: Networks of diffusion, Information cascades, Blogs,
News media, Meme-tracking, Social networks.

1. INTRODUCTION
Networks represent a fundamental medium for spreading and

diffusion of various types of behavior, information, rumors and dis-
eases [27]. A contagion appears at some node of a network and
then spreads like an epidemic from node to node over the edges of
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the underlying network. For example, in case of information diffu-
sion, the contagion represents a piece of information [16, 18] and
infection events correspond to times when nodes mention or copy
the information from one of their neighbors in the network. Sim-
ilarly, we can think about the spread of a new type of behavior or
an action, e.g., purchasing a new cellphone [15], or the propaga-
tion of a contagious disease over the edges of the underlying social
network [6].

In the context of network diffusion, we often observe the tem-
poral traces of diffusion while the pathways over which contagion
spreads remain hidden. In other words, we observe the times when
each node gets infected by the contagion, but the edges of the net-
work that gave rise to the diffusion remain unobservable. For ex-
ample, we can often measure and observe the time when people
decide to adopt a new behavior while we do not explicitly observe
which neighbor in the social network influenced them to do so. In
case of information diffusion, we often observe people (or media
sites) talking about a new piece of information without explicitly
observing the path it took in the information diffusion network to
reach the particular node of interest. And, epidemiologists often
observe when a person gets sick but usually cannot tell who in-
fected her. In all these examples, one can observe the infection
events themselves while not knowing over which edges of the net-
work the contagions spread. Therefore, one of the fundamental
research problems in the context of network diffusion is inferring
the structure of networks over which various types of contagions
spread [10]. Moreover, many times networks over which conta-
gions diffuse are not static but change over time. Depending on
the type of contagion, the time of the day, or death of the existing
and birth of new nodes, the underlying network may dynamically
change and shift over time.

In recent years, several network inference algorithms have been
developed [9, 10, 12, 20, 24, 30]. Some approaches infer only the
network structure [10, 30], while others infer not only the network
structure but also the strength or the average latency of every edge
in the network [9, 20]. However, to the best of our knowledge,
previous work has always assumed networks to be static and con-
tagion pathways to be constant over time. However, in most cases,
networks are dynamic, and contagion pathways change over time,
depending upon the contagions that propagate through them [22,
28]. For example, a blog can increase its popularity abruptly after
one of its posts turns viral, this may create new edges in the infor-
mation transmission network and so the content the blog produces
in the future will likely spread to larger parts of the network. Sim-
ilarly, at any given time a particular unexpected event may occur
and a topic or piece of news may become very popular for a limited
period of time. This again will lead to different emerging and van-
ishing information pathways, and thus to a time-varying underlying



Model Edge (j, i) transmission likelihood f(ti|tj;αj,i)

EXPonential
{

α j,i · e−α j,i(ti−t j)

0
if t j < ti
otherwise

POWer law

{
α j,i
δ

(
ti−t j

δ

)−1−α j,i

0

if t j +δ < ti
otherwise

RAYleigh
{

α j,i(ti− t j)e−
1
2 α j,i(ti−t j)

2

0
if t j < ti
otherwise

Table 1: Various models of edge transmission likelihood.

network. In order to better understand these temporal changes, one
needs to reconstruct the time-varying structure and underlying tem-
poral dynamics of these networks and then study the information
pathways of real-world events, topics or content.

Our approach to time-varying network inference. In this paper
we investigate the problem of inferring dynamic networks based on
information diffusion data. We assume there is an unobserved dy-
namic network that changes over time, while we observe the node
infection times of many different contagions spreading over the
edges of the network. The task then is to infer the edges and the dy-
namics of the underlying network. We develop an efficient on-line
dynamic network inference algorithm, INFOPATH, that allows us to
infer daily networks of information diffusion between online media
sites over a one year period using more than 179 million different
contagions diffusing over the underlying media network.

We model diffusion processes as discrete networks of fully con-
tinuous temporal processes occurring at different rates building on
our previous work [9, 11]. Our model allows information to prop-
agate at different rates across different edges by adopting a data-
driven approach, where only the recorded temporal diffusion events
are used. The model considers the information which propagates
through the network due only to diffusion, while ignoring any ex-
ternal sources [22]. However, our original diffusion model con-
sidered only static networks [9]. Here, we generalize the model
and develop a new inference method to support dynamic networks.
Our time-varying network inference algorithm, INFOPATH, uses
stochastic gradient [26] to provide estimates of the time-varying
structure and temporal dynamics of the inferred network. The frame-
work enables us to study the temporal evolution of information
pathways in the online media space.

We apply the INFOPATH algorithm to synthetic as well as real
Web information propagation data. We study 179 million different
information cascades spreading among 3.3 million blog and news
media sites over a one year period, from March 2011 till Febru-
ary 2012.1 Results on synthetic data show INFOPATH is able to
track changes in the topology of dynamic networks and provides
accurate on-line estimates of the time-varying transmission rates of
the edges of the network. INFOPATH is also robust across network
topologies, and temporal trends of edge transmission dynamics.

Experiments on large-scale real news and social media data lead
to interesting insights and findings. For example, we find that the
information pathways over which general recurrent topics propa-
gate remain more stable over time, while unexpected events lead
to dramatically changing information pathways. Clusters of main-
stream news and blogs often emerge and vanish in a matter of days,
and our on-line algorithm is able to uncover such structures. News
events that involve large-scale social movements, as the Libyan
civil war, Egypt’s revolution or Syria’s uprise, result in a greater
increase in information transfer among blogs than among main-

1All data, code and additional results are available at the supporting
website [1]: http://snap.stanford.edu/infopath.

stream media. Perhaps surprisingly, the amount of mainstream me-
dia and blogs among the most influential nodes for most topics or
news events are comparable. However, we find that growing num-
bers of influential blogs on some topics or news events are often
temporally correlated with large-scale social movements (e.g., the
Occupy Wall Street movement in Sept-Nov 2011).

Further related work. Previous methods for inferring diffusion
networks [9, 10, 12, 20] also use a generative probabilistic model
for modeling cascading processes over networks. NETINF [10] and
MULTITREE [12] infer the network connectivity using submodu-
lar optimization. NETRATE [9] and CONNIE [20] infer not only
the network connectivity but also transmission rates of infection or
prior probabilities of infection using convex optimization. More-
over, there have been also attempts to model information diffusion
without assuming the existence of an underlying network [33, 32].

However, to the best of our knowledge, all previous approaches
to network inference assume the network and the underlying dy-
namics of the edges to be constant, i.e., the network structure and
the transmission rates of each edge do not change over time. There-
fore, they consider the pathways over which information propa-
gates to be time-invariant. The main contribution of this paper is
to combine stochastic gradient and the diffusion model introduced
in [9] to develop an efficient on-line network inference algorithm
that provides time-varying estimates of the edges of a network and
the transmission rates of each edge. This allows us to detect how
information pathways emerge and vanish over time, and identify
when nodes produce highly viral content.

The remainder of the paper is organized as follows: in Sec. 2,
we revisit the model of diffusion and state the dynamic network
inference problem. Section 3 describes the proposed time-varying
network inference method, called INFOPATH. Section 4 evaluates
INFOPATH quantitatively and qualitatively using synthetic and real
diffusion data. We conclude with a discussion of results in Sec-
tion 5.

2. PROBLEM FORMULATION
In this section, we build on our fully continuous time model

of diffusion [9, 11]. We start by briefly describing the generative
model for the observed data. We then revisit how to compute the
likelihood of a cascade using the model and state the continuous
time network inference problem for both static and dynamic net-
works. Across the section, we explicitly point out which assump-
tions of the original model need to be extended in order to support
dynamic networks.

Observed data. For now let’s consider a single static directed net-
work. Over the edges of the network multiple contagions propa-
gate. As the contagion spreads from infected to non-infected nodes
over the edges of the network the contagion creates a cascade.
For each contagion c, we observe a cascade tc, which is simply
a record of observed node infection times during a time window
of length T c. In an information propagation setting, each cascade
corresponds to a different piece of information and the infection
time of a node is simply the time when the node first mentioned the
piece of information c.

Cascade is a N-dimensional vector tc := (tc
1, . . . , t

c
N) recording

the times when each of N nodes got infected by the contagion c:
tc
k ∈ [t0, t0 + T c]∪ {∞}, where t0 is the infection time of the first

node. Generally contagions do not infect all the nodes of the net-
work, symbol ∞ is used for nodes that were not infected by the
contagion c during the observation window [t0, t0 + T c]. Conta-
gions often propagate simultaneously [21, 25] over the same net-



Model Log survival function Hazard function Cascade gradient for uninfected Cascade gradient for infected
logS(ti|t j;α j,i) H(ti|t j;α j,i) ∇α j,i Lc(A) ∇α j,i Lc(A)

EXP −α j,i(ti− t j) α j,i T − tc
j (tc

i − tc
j )−

1
∑k:tck<tci

αk,i

POW −α j,i log
(

ti−t j
δ

)
α j,i · 1

ti−t j
log
( T−tc

j
δ

)
log
( tc

i −tc
j

δ

)
−

(tc
i −tc

j )
−1

∑k:tck<tci
αk,i(tc

i −tc
k )
−1

RAY −α j,i
(ti−t j)

2

2 α j,i · (ti− t j)
(T−tc

j )
2

2
(tc

i −tc
j )

2

2 −
tc
i −tc

j
∑k:tck<tci

αk,i(tc
i −tc

k )

Table 2: Contagion transmission models for the three edge transmission likelihoods: Exponential, Power-law and Rayleigh.

work but we assume each contagion to propagate independently of
each other.

Given a set of node infection times of many different contagions,
our goal is to infer the underlying dynamic network over which
contagions propagated. We apply the Maximum Likelihood princi-
ple in order to infer the network that most likely generated the ob-
served data. We proceed by assuming a static network and describe
the generative model of information diffusion. We then generalize
the model to dynamic networks.

Pairwise transmission likelihood. The first step in modeling dif-
fusion dynamics is to consider pairwise node interaction. For eve-
ry pair of nodes ( j, i), we define a pairwise transmission rate α j,i
which models how frequently information spreads from node j to
node i; the strength of an edge ( j, i). We pay attention to the
rather general case of heterogeneous pairwise transmission rates,
i.e., infections can occur at different transmission rates over diffe-
rent edges of the network. As α j,i → 0 the expected transmission
time from node j to node i becomes arbitrarily long. In contrast
with the original model [9], we will later allow transmission rates
α j,i to change over time. In particular, we will allow the trans-
mission rates α j,i to change across cascades but not within a cas-
cade. Allowing edge transmission rates to dynamically increase
and decay over time will enable us to infer time-varying diffusion
networks.

Next, we define f (ti|t j;α j,i) to be the conditional likelihood of
transmission between node j and node i and assume it depends
on the infection times (t j, ti) and the edge transmission rate α j,i.
We allow information to only propagate forward in time, i.e., node
j that has been infected at time t j may infect node i at time ti
only if t j < ti, otherwise f (ti|t j,α j,i) = 0. The shape of the con-
ditional likelihood of transmission may depend on the particular
setting (information, influence, diseases, etc.) in which propaga-
tion takes place. In some scenarios, it may be possible to estimate
a non-parametric likelihood while in others, expert knowledge may
be used to decide upon a parametric model. For simplicity, we
consider three well-known parametric models of edge transmission
rates: exponential, power-law, and Rayleigh, defined in Table 1.
Exponential and power-law likelihoods have been used in modeling
information propagation in social and information networks [9, 10,
11, 12, 20], while Rayleigh has been used in previous work in dis-
ease spread in epidemiology [31]. In all three models, as α j,i→ 0,
the likelihood of infection tends to zero.

We recall some additional standard notation [14] that we will use
in the remainder of the section. Given some node j, infected at time
t j, we define the survival function of edge j→ i as S(ti|t j;α j,i) =

1−F(ti|t j;α j,i) where F(ti|t j;α j,i) =
∫ ti

t j
f (t|t j;α j,i)dt is the cu-

mulative transmission density function, computed from the trans-
mission likelihood. Finally, the hazard function, or instantaneous
infection rate, of edge j→ i is the ratio H(ti|t j;α j,i) = f (ti|t j;α j,i)/
S(ti|t j;α j,i). We derive the log survival and hazard functions for the
three edge transmission models in Table 2.

Likelihood of a cascade. Consider some node i in a directed net-
work. Node i can get infected by any of its parents (i.e., nodes
pointing to i). Once infected, node i can then also spread the con-
tagion to its children (i.e., nodes i points to). As in the independent
cascade model [13], we assume that node gets infected once the
first parent infects it (i.e., a node can get infected only once). Then,
the likelihood of infection of node i at time ti given a collection of
previously infected nodes (t1, . . . , tN |tk ≤ ti) results from summing
over the likelihoods of the mutually disjoint events that each node
is the first parent that generated the infection event of our node i:

f (ti|t1, . . . , tN \ ti;A) = ∑
j:t j<ti

f (ti|t j;α j,i)×

∏
j: j 6=k,tk<ti

S(ti|tk;αk,i), (1)

where A := {α j,i | i, j = 1, . . . ,n, i 6= j}. If we assume that infec-
tions are conditionally independent given the parents of the infected
nodes, the likelihood of the infections in a cascade is:

f (t≤T c
;A) = ∏

ti≤T
∑

j:t j<ti
f (ti|t j;α j,i)×

∏
j: j 6=k,tk<ti

S(ti|tk;αk,i), (2)

where t≤T c
denotes the vector of infected nodes in the cascade up to

T c. Removing the condition k 6= j makes the product independent
of j,

f (t≤T c
;A) = ∏

ti≤T
∏

k:tk<ti

S(ti|tk;αk,i)×

∑
j:t j<ti

f (ti|t j;α j,i)

S(ti|t j;α j,i)
. (3)

The fact that some nodes are not infected during the observation
window is also informative. We therefore add multiplicative sur-
vival terms to Eq. 3 and rearrange with hazard functions:

f (t;A) = ∏
i:ti≤T

∏
m:tm>T

S(T |ti;αi,m)× (4)

∏
k:tk<ti

S(ti|tk;αk,i)

(
∑

j:t j<ti
H(ti|t j;α j,i)

)
. (5)

Perhaps surprisingly, our continuous time model of diffusion is
a particular case of Aalen’s additive regression model, frequently
used in survival theory analysis [3]. In Aalen’s model, the hazard
function, or instantaneous infection rate, of node i is parametrized
as αi,0(t)+α(t)T

i si(t), where α(t) is a vector that accounts for the
effect of a collection of observable covariates s(t) and αi,0(t) is
a baseline. It is easy to show that the hazard function of node i
at time ti for the three pairwise transmission models: exponential,
power-law and Rayleigh, has the following form:

H(ti|t1, . . . , tN \ ti;A) = α
T
i si(ti; t1, . . . , tN \ ti), (6)



Algorithm 1 INFOPATH: the dynamic network inference algorithm
Require: C, t,K,T,ρ

while k < K do
ck← cascade-sampling(C, t,T );
for all ( j, i) : tck

j < tck
i do

αk
j,i =

(
α

k−1
j,i − γk∇α j,i Lck (Ak−1)

)+
;

for all ( j, i) : α
k−1
j,i > 0, tck

j → ∞ do
αk

j,i = ρα
k−1
j,i ;

k = k+1;
A∗← AK−1;
return A∗;

where αi = (α1,i, . . . ,αN,i) accounts for the effect of a collection of
observable covariates si(ti; t1, . . . , tN \ ti), the covariates depend on
the pairwise transmission model (exponential, power-law or Ray-
leigh) and the previously infected nodes, and the baseline is zero.

Dynamic network inference problem. Given a static network
with constant edge transmission rates α j,i, the network inference
problem reduces to solving a maximum likelihood problem over
set of recorded cascades C [9]:

maximizeA ∑c∈C log f (tc;A)
subject to α j,i ≥ 0, i, j = 1, . . . ,N, i 6= j, (7)

where A := {α j,i | i, j = 1, . . . ,n, i 6= j} are the edge transmission
rates we aim to infer. The edges of the network are those pairs of
nodes with transmission rates α j,i > 0.

Now we generalize the network inference problem to dynamic
networks with edge transmission rates α j,i(t) that may change over
time. To this aim, at any given time t, we solve a maximum weighted
likelihood problem over the set of recorded cascades by time t,
Ct = {t1, . . . , t|Ct |}:

maximizeA(t) ∑c∈Ct
wc(t) log f (tc;A(t))

subject to α j,i(t)≥ 0, i, j = 1, . . . ,N, i 6= j,
(8)

where wc(t) ≥ 0 is a weight that penalizes the importance of cas-
cade c based on how old it is at time t and A(t) := {α j,i(t) | i, j =
1, . . . ,n, i 6= j} are the variables. The intuition here is that diffusion
network smoothly changes over time and that recent cascades have
higher importance in determining current network structure than
old cascades. Thus, at any point in time, we can solve the above
optimization problem to obtain the structure of the diffusion net-
work at that particular time. Next, we show how to efficiently solve
the above optimization problem for all time points t.

3. THE INFOPATH ALGORITHM
The problem defined by equation Eq. 8 is convex for the three

transmission models we consider. Therefore we can aim to find the
unique optimal solution at any given time point t:

THEOREM 1 ([9]). Given log-concave survival functions and
concave hazard functions in the parameter(s) of the pairwise trans-
mission likelihoods, the network inference problem defined by equa-
tion Eq. 8 is convex in A.

Stochastic gradient (SG) methods have been shown to be ex-
tremely successful for taking advantage of the structure exhibited
by the optimization problem stated in Eq. 8. They have received
increasing attention in the machine learning literature [4, 5, 7, 8,
29]. Although many optimization methods based on stochastic gra-
dient descent have been proposed, we have found that in practice

the basic projected stochastic gradient method [26] works well for
our problem. Other more sophisticated methods, like the stochas-
tic average gradient [29] or incremental average gradient [7] do not
offer a significant advantage. Therefore, we proceed with the basic
stochastic gradient method in the remainder of the paper.

Projected Stochastic Gradient. The projected stochastic gradient
method [26] uses iterations of the form:

α
k
j,i(t) =

(
α

k−1
j,i (t)− γk∇α j,i Lck (A

k−1(t))
)+

, (9)

where ∇α j,i Lck (·) is the gradient of the log-likelihood Lc(·) with
respect to the edge transmission rate α j,i, γk is a step-size, (z)+ =
max(0,z), and cascade ck is sampled (with replacement) from Ct .
The gradients for all three edge transmission models are given in
Table 2.

Note that instead of using all historic data and then explicitly
penalizing each cascade by a different weighting factor wc(t), we
use a different, more scalable approach. We sample cascades with
replacement, where the probability of a cascade being sampled de-
cays with the age of the cascade. This way recent cascades get sam-
pled more often and thus implicitly hold higher importance when
inferring the network. In practice, we achieve a significant speed
up by using this approach. Moreover, in our dynamic network infe-
rence problem, the edge transmission rates usually vary smoothly.
This means that stochastic gradient descent is a perfect method as
we can use the inferred network from the previous time step as
initialization for the inference procedure in the current time step.
We find that setting the starting point α0

j,i of each edge transmis-
sion rate α j,i to the last outputted estimate of the transmission rate
allows us to further speed up the algorithm.

Importantly, in each iteration k of the projected stochastic gra-
dient method, we only need to compute the gradients ∇α j,i Lck (Ak)
for edges ( j, i) such that node j has been infected in cascade ck, and
the iteration cost and convergence rate are independent of |C| [5,
23]. Rigorous theoretical analysis of convergence turns out to be
a challenging problem which we leave for future work. However,
we point out that standard analyses [26] typically assume the gra-
dients ∇ALc(Ak) to be either bounded above by a constant M,
where ||∇ALc(A)|| ≤M, or Lipschitz-continuous with constant L,
||∇ALc(A2)−∇ALc(A1)|| ≤ L||A2−A1||. In our case, these con-
ditions are violated if at any iteration k, there is a node i infected in
cascade ck such that H(tck

i |t
ck
j ;α

k−1
j,i ) = 0 ∀ j : tck

j < tck
i , i.e., node

i has no parents that explain the infection at tck
i , and the objective

function is positively unbounded. In practice, we obtain a good
performance and avoid such scenario by bounding below each fea-
sible transmission rate, α j,i ≥ ε . An edge transmission rate α j,i is
feasible if there is at least one cascade in which both node j and
i get infected. When outputting the final solution, we simply omit
edges with transmission rates ε .

Aging edges. Suppose we solve the dynamic network inference
problem for a given time t using the projected SG method. In each
iteration k, we only update edge transmission rate αk

j,i if node j has
been infected in cascade ck. Now, suppose a few edge transmission
rates α0

j,i are greater than zero for a given node j, i.e., their last
outputted estimates before t have been positive. Then, if node j
turns to be infected in many sampled cascades at time t but it never
transmits information to any of its neighbors i in the future, the edge
transmission rates αk

j,i will eventually converge to zero for large k.
However, if node j is never infected for any of the future cascades,
then none of edge transmission rates α j,i will be updated, and they
will remain positive. So, if node j is never infected in subsequent
future cascades, the transmission rates α j,i will remain positive for-
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Figure 1: True and inferred edge transmission rates for edges with different 4 transmission rate evolution patterns: (a) Slab, (b)
Square, (c) Chainsaw, (d) Hump. Results are for the Kronecker core-periphery with exponential edge transmission model for 200
time units with 1,000 cascades per time unit. Our INFOPATH method is able to track the evolving edge transmission rates over time.
INFOPATH works better for continuously evolving edge transmission rates (c, d).

ever. However, we would like these unused edges ( j, i) to decay
and eventually vanish, or equivalently the transmission rates α j,i to
converge to zero. To achieve this, we multiply transmission rates of
unused edges by aging factor ρ every time we solve the dynamic
network inference problem. We use ρ = 0.95 in all experiments.

Cascade sampling. In Eq. 9, instead of sampling cascades uni-
formly at random and explicitly penalizing each cascade by a dif-
ferent weighting factor wc(t), we achieve a significant speed up by
sampling cascades using a sampling procedure that penalizes old
cascades and considers wc(t) = 1 for all cascades. There are many
possible sampling schemes. In practice, and for simplicity, we use
windowed uniform sampling or windowed exponential sampling.
Windowed means that when solving the network inference prob-
lem for time t, we only sample (uniformly or exponentially) cas-
cades that have started in a sampling time window (t−T,T ). Here,
we find an an important tradeoff. The shorter is the sampling time
window T in the stochastic gradient descend, the quicker our al-
gorithm is tracking changes in the edge transmission rates. How-
ever, short sampling time window results in less reliable estimates
because of sampling from a smaller universe of distinct cascades.
Therefore, in order to be able to track changes quickly, we would
need to observe many cascades over time.

4. EXPERIMENTAL EVALUATION
We evaluate the performance of INFOPATH on time-varying syn-

thetic networks that mimic the structure of real networks as well as
on a dataset of more than 179 million information cascades ex-
tracted from 300 million blogs and news articles from 3.3 million
media sites over a period of one year, from March 2011 till Febru-
ary 2012. All the data, code and additional results are available at
the supporting website [1].

4.1 Experiments on synthetic data
The goal of the experiments with synthetic data is to understand

how temporal changes in a network affect the performance of our
algorithm. We aim to detect not only when an edge appears (i.e., its
transmission rate becomes > 0) or disappears (i.e., its transmission
rate becomes 0) but also provide instantaneous transmission rate
estimates that track the true edge transmission rates over time.

Experimental setup. First, we generate synthetic networks us-
ing Kronecker graph models of directed real-world networks [17].
For all our experiments, we consider two different Kronecker net-
works, both with 1,024 nodes and 2,048 edges: A core-periphery
Kronecker network with parameter matrix [0.9,0.5;0.5,0.3]) and a
hierarchical Kronecker network with parameters [0.9,0.1;0.1,0.9].

The next step is to make each edge to follow a particular edge
transmission rate evolution pattern. Our goal later will be to recover

the network as well as the evolution of the transmission rate of each
individual edge.

We consider five edge evolution patterns: Slab, Square, Chain-
saw, Hump and constant (see Figure 1). Slab and Hump patterns
model outgoing connections of sites that become popular for a short
period of time. Square and Chainsaw patterns model incoming con-
nections to sites that perform updates periodically at specific times
of the day or days of the week. Constant pattern represents con-
nections between sites that interact at any time and during a long
period of time, usually large media sites. We consider Chainsaw,
Hump and Continuous to be examples of Type I pattern, without
discontinuities, and Slab and Square to be examples of Type II pat-
term, with discontinuities.

We assign to each edge in the network an evolution pattern cho-
sen uniformly at random from the set of the above 5 patterns. Then,
we generate transmission rate values α∗j,i(t) for each edge accord-
ing to its chosen evolution pattern. The evolving edge transmission
rate α∗j,i(t) models how quickly information spreads from one node
to another. Finally, we generate 1,000 information cascades per
time step. For each cascade we randomly pick the cascade initiator
node.

Given the node infection times from the recorded cascades, our
goal then is to find the true edges of the network and for each edge
discover its transmission rate evolution pattern. In other words, in-
ferring how each edge transmission rate α(t) evolves over time.
Figure 1 shows the true and inferred edge transmission rates for
four different edges, each with a different evolution pattern: Slab,
Square, Chainsaw and Hump. Observe that INFOPATH is able to
track the evolving edge transmission rates over time for all evo-
lution patterns. INFOPATH gives near perfect performance when
edge transmission rate evolves continuously (Chainsaw, Hump).
Interestingly, even when the edge transmission rate evolves discon-
tinuously (Slab, Square), INFOPATH manages to track it.

Accuracy of INFOPATH. We evaluate the INFOPATH method quan-
titatively by computing four different measures for every time step:
Precision, Recall and Accuracy of inferred edges as well as the
Mean Squared Error (MSE) in the edge transmission rate. Preci-
sion at time t is the fraction of edges in the inferred network Ĝ(t)
present in the true network G∗(t). Recall at time t is the fraction
of edges of the true network G∗(t) present in the inferred network
Ĝ(t). And accuracy at time t is defined as

1−
∑i, j |I(α∗i, j(t))− I(α̂i, j(t))|
∑i, j I(α∗i, j(t))+ I(α̂i, j(t))

,

where α∗(t) is the true transmission rate at time t, α̂(t) is the esti-
mated transmission rate at time t, and I(α(t)) = 1 if α(t) > 0 and
I(α(t)) = 0 otherwise. Inferred networks with no edges or only
false edges would have zero accuracy. Last, Mean Squared Error
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Figure 2: Precision and Recall (P-R), Accuracy and Mean
Squared Error (MSE) of our INFOPATH method against time.
(a,c,e): Core-periphery (C-P) Kronecker network with expo-
nential edge transmission model (b, d, f), and Hierarchical (HI)
Kronecker network with Rayleigh edge transmission model.
Performance on Type I (Chainsaw, Hump) and Type II (Slab,
Square) edge transmission rate evolution patterns is plotted.

(MSE) at time t is defined as E
[
||α∗(t)− α̂(t)||2

]
, where α∗(t) is

the true edge transmission rate at time t and α̂(t) is the estimated
transmission rate.

Figure 2 shows Precision, Recall, Accuracy, and MSE over time
for the time-varying core-periphery Kronecker network with expo-
nential edge transmission model, and hierarchical Kronecker net-
work with Rayleigh edge transmission model. Observe that the
performance of our method is stable across time, and as mentioned
before, continuous evolution patterns are easier to track and esti-
mate than discontinuous ones.

Accuracy vs. running time in static networks. Our stochastic
gradient descend based method, INFOPATH, can be also used to
speed-up inference of static networks. In such scenario, stochastic
gradient descend processes cascades in a random round-robin fash-
ion. Here, we compare INFOPATH to the state of the art methods
for inference of static networks: NETINF [10] and NETRATE [9].
First, we compare the methods by computing the accuracy against
running time. Second, we compare INFOPATH to NETRATE in
terms of mean squared error of the estimated transmission rates
against the running time. We omit NETINF from this last compari-
son since it only infers the network structure (and no edge transmis-
sion rates). For the sake of fairness in the running time comparison
we implemented all methods in C++. Our C++ implementation of
NETRATE is much faster than the public Matlab implementation.

Figure 3 compares Accuracy and MSE against running time for
the three network inference methods for a static core-periphery
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Figure 3: Accuracy and Mean Squared Error (MSE) against
running time for a 1,024 node, 2,048 edge time-invariant core-
periphery Kronecker network with power-law edge transmis-
sion model and 5,000 cascades. Longer running times mean the
algorithms run for more iterations. INFOPATH and NETRATE
improve accuracy until convergence. However, INFOPATH
achieves the same level of performance 10-100 times faster.

Kronecker network. INFOPATH is about 10 to 100 times faster
than NETRATE and as fast as NETINF, while achieving the same
accuracy as NETRATE. Importantly, INFOPATH and NETRATE al-
ways improve accuracy with the running time, until convergence.
In terms of MSE, INFOPATH achieves lower MSE values much
quicker than NETRATE.

4.2 Experiments on real data
The emergence of specific information pathways often depends

on the information content of the news that is propagating [22, 28].
For example, a real world event may occur for a limited period of
time and thus news related to the event spread quicker and to larger
parts of the network around such time period. At any given time,
there are many different real world events, topics, and content that
propagates through the Web, leading to different emerging and van-
ishing information pathways, and thus an underlying time-varying
network. In order to better understand these temporal changes, we
aim to reconstruct time-varying networks and the information path-
ways for particular real world events and topics.

Dataset description. We experiment with more than 300 million
blog posts and news articles collected from 3.3 million websites
over a period of one year, from March 2011 till February 2012. We
trace the flow of information using memes [16]. Memes are a short
textual phrases (like, “lipstick on a pig”) that travel through the
Web. We consider each meme m as a separate information cascade
cm. Since all documents which contain memes are time-stamped,
a cascade cm is simply a record of times when sites first mentioned
meme m. We extracted more than 179 million memes, longer than
four words. Out of these, 34 million distinct memes appeared at
least twice, resulting in 34 million different information cascades.

Experimental setup. Our aim is to consider sites that actively
spread memes over the Web. We achieve this by selecting top 5,000
sites in terms of the number of memes they mentioned. Moreover,
we are interested in inferring dynamic networks related to particu-
lar topics or events. So, we assume we are also given a keyword
query Q related to the event/topic of interest. When inferring a net-
work for a given query Q, we only consider documents (and the
memes they mention) that include keywords Q. Then, we build
information cascades using only those memes and apply the IN-
FOPATH algorithm to infer the edges and evolving edge transmis-
sion rates. The edge transmission rates explain the propagation of
information related to a given topic or real world event Q. For
each query Q we infer one network per day. Table 3 summarizes



Topic or news event (Q) # sites # memes

Amy Winehouse 1,207 109,650

Fukushima 1,666 383,745

Gaddafi 1,358 440,646

Kate Middleton 1,427 191,777

NBA 2,087 1,543,630

Occupy 1,875 655,183

Strauss-Kahn 1,263 204,238

Syria 1,565 615,176

Table 3: Topic and news event statistics.

the number of sites and meme cascades for several topics and real
world events.2.

Implementation and scalability. We developed an efficient dis-
tributed implementation of our INFOPATH algorithm in C++ based
on the network analysis library SNAP [2]. We deployed the imple-
mentation in a cluster with 1,000 CPU cores and 6 TB of RAM.
With this setup, we considered 38 different topics/events Q. For
each topic, we inferred a time-varying network with a daily tempo-
ral resolution for a period of one year, from March 2011 to February
2012. Each network has thousands of nodes and is based on hun-
dreds of thousands of cascades. Inferring 38 different time-varying
networks took less than 4 hours on our cluster. Note that this is
equivalent to solving Eq. 8 more than 13,000 times (38 x 365) for
millions of pairwise transmission rates. We also tested our algo-
rithm on larger datasets. For example, for “Occupy Wall Street
movement”, we were able to infer a 43,415-node time-varying net-
work over a period of 18 months, from January 2011 to June 2012,
using 1,381,793 information cascades.

Visualizing the information pathways. Figure 4 plots diffusion
networks for three different 2011 world events: Fukushima nuclear
disaster, UK royal wedding, and civil uprise in Syria. Each net-
work is shown at three different time points. Red nodes represent
mainstream media sites, and blue nodes represent blogs [16].

Based on the figure, we draw several interesting observations.
Most often, information propagates through a core-periphery net-
work structure. Such structure emerges by few central media sites
and blogs driving the adoption of memes across the Web [10].
However, the network structure often changes dramatically over
time, and we find clusters that emerge and vanish in short peri-
ods of time. For example, the information networks for Syria’s
uprise illustrated in Figures 4(g-h), do not have any clear clustering
structure. However, on December 2, 2011 (Figure 4(i)) a cluster
suddenly emerges in the network. Further investigation reveals that
the cluster is composed of UK news sites and blogs that discuss
recently implemented EU sanctions against Syria. Generally, it is
common to observe sudden formation of clusters of sites from spe-
cific geographical areas. This is specially noticeable in the informa-
tion network for Fukushima’s disaster, in Figures 4(a-c). Such clus-
ters often form due to language boundaries, since such boundaries
prevent memes to flow across countries or continents. Moreover,
we often observe that such clusters are caused by a common exter-
nal event [22], like in the case of UK discussion on EU sanctions
against Syria. Inferred dynamic networks can thus be used to in-
vestigate the flow of information as well as to detect external events
that cause sudden perturbations to the diffusion network structure.

2Additional time-varying diffusion networks for other topics and
news events are available at the supporting website [1]

Evolution of edge transmission rates. Next, we aim to study the
evolution of links among different types of sites. We label the nodes
in our network as mainstream media and blog, and compute the
number of links between different types of sites over time. Figure 5
gives the results for several inferred diffusion networks for different
topics and world events. We note several interesting patterns.

The connectivity changes tend to reflect the amount of attention
that a news event or a topic triggers over time. Unexpected news
events, like the sex scandal of the director of the International Mon-
etary Fund Strauss-Kahn on May 14, 2011 in Fig. 5(g) or the death
of British singer Amy Winehouse on July 23, 2011 in Fig. 5(a),
result in a dramatic increase in the number of edges over a short
period of time. More general topics, like the NBA in Fig. 5(e),
result in a network with more stable connectivity over time. Cer-
tain types of news are sometimes spreading earlier among blogs
than mainstream media. This is especially the case for popula-
tion wide events like the Fukushima nuclear disaster, civil war in
Libya and civil uprise in Syria (Fig. 5(b, c, h). However, it happens
more frequently that the largest amount of links are mainstream
media-to-mainstream media and the fewest links point from blogs
to mainstream media. These results are intuitive and consistent
with previous work [10, 16] that observed most often information
flows from mainstream media to blogs (and rarely the other way
around). However, as we see here for population level events and
social movements (like, in case of the civil unrest in the Middle
East) social media plays crucial role in information dissemination
and organization of civil movements.

Evolution of node centrality. Having studied the dynamics of
edges in the network we now move towards investigating the net-
work centrality of blogs and mainstream media sites over time for
different topics and world events. To measure network centrality
of node S in the network at time t, we first compute shortest path
length from S to any other node R in the network. Then centrality of
node S is defined as ∑R 1/d(S,R), where d(S,R) is the shortest path
length from S to R (if R is not reachable from S then d(S,R) = ∞).
For networks with core-periphery structure, nodes with high cen-
trality are typically located in the “central” core of the network.

Figure 6 plots the percentage of blogs among the top 100 most
central sites over time for eight different topics/events of 2011. Per-
haps surprisingly, we observe there is a about the same number of
mainstream media and blogs in the top-100 most central nodes for
most networks – the number of blogs in the top-100 does not typi-
cally decreases below 30% or increases over 70%. For some topics,
mainstream media are always more central (e.g., baseball and NBA
in Figures 6(a, b)). In contrast, for other topics, blogs dominate
mainstream media over a significant amounts of time (e.g., Gaddafi
in Fig. 6(c)). Centrality of mainstream media and blogs can be
relatively constant (Fig. 6(a,b)) or more time-varying (Fig. 6(c,h)).
We find that a significant rise in the number of central blogs is of-
ten temporally correlated with an increasing social unrest (e.g., the
Occupy Wall Street movement in Sept-Nov 2011 in Fig. 6(f)).

Accuracy on real data. So far, we have used memes to trace the
flow of information over the Web and have made several qualitative
observations about the structure and dynamics of information path-
ways in online media. We now proceed and attempt to also quan-
titatively evaluate INFOPATH on real data. In case of real data the
ground-truth information diffusion network is impossible to obtain.
However, we can use the temporal dynamics of hyperlinks created
between news sites as a proxy for real information flow. Thus, by
observing the times when sites create hyperlinks, our goal is to in-
fer the ‘targets’ of the links (i.e., infer the hyperlink network from
the hyperlinks times).
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Figure 4: Time-varying diffusion networks for three different major events of 2011. Red nodes are mainstream media, and blue
nodes are blogs. Additional visualizations for other topics and events are available at the supporting website [1].

We proceed as follows. First, we discretize the time in days, we
generate one network G∗(t) per day t, in which we add an edge
(u,v) if a document on a site u linked to a document on a site v
within the last day. Then, we build a set of hyperlink cascades.
A hyperlink cascade ch starts when a site publishes a piece of in-
formation and then other sites use hyper-links to refer to it. Since
all our documents/posts are time stamped, we can trace the hyper-
links in the reverse direction and obtain information cascades. We
extracted almost 0.5 million hyperlink cascades from 3.3 million
websites from July 2011 till December 2012. Our aim is to use the
hyperlink cascades to infer the time-varying network G∗(t). We
then evaluate how many edges INFOPATH estimates correctly by
computing Accuracy, Precision and Recall for each day.

Figure 7 shows Precision, Recall, and Accuracy over time for
a time-varying hyperlink network with 11,461 nodes and 19,915
edges created over time, using 495,655 hyperlink cascades from
July 2011 to December 2011. We assume an exponential edge
transmission model. We observe weekly periodicity and the overall
encouraging performance of around 0.4 to 0.5 for all three perfor-
mance metrics.

5. CONCLUSION
All previous network inference algorithms have assumed diffu-

sion networks to be static. Therefore, they have considered the
pathways over which information propagates to be static over time.
In contrast, we developed an algorithm for time-varying network
inference, INFOPATH. Our algorithm provides on-line time-varying
estimates of the edges of the network as well as the dynamic edge
transmission rates, which allows us to detect how information path-
ways emerge and vanish over time.

We evaluated our algorithm on synthetic data and demonstrated
that INFOPATH successfully tracks changes in the topology of dy-
namic networks, provides accurate on-line estimates of the time-
varying edge transmission rates and is also robust across network
topologies, edge transmission models and patterns of evolution of
edge transmission rates.

We also run INFOPATH on real data and investigated how real
networks and information pathways evolve over time. We found
that information pathways over which general recurrent topics prop-
agate remain relatively stable across time. In contrast, major real-
world events lead to dramatic changes and shifts in the informa-
tion pathways. We observed that clusters of mainstream news and
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Figure 5: The number of links that point between different types of sites over time for eight different inferred diffusion networks.
We split the sites into mainstream media and blogs and count the links among these two node types.
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Figure 7: Precision, Recall, and Accuracy of INFOPATH for a
time-varying hyperlink network with 11,461 nodes and 19,915
edges over time, using 495,655 hyperlink cascades from July
2011 to December 2011.

blogs often emergence and vanish in matter of days. We discovered
that there is an early greater increase in information transfer among
blogs than among mainstream media for news involving general
population and social unrest, such as the Libyan civil war, Egyptian
revolution, Syria’s uprise and the Occupy Wall Street movement.

Our work also opens various venues for future work. For exam-
ple, rigorous theoretical analysis of the convergence of our stochas-
tic gradient descent method would provide further insights for its
performance. Moreover, we notice that many times the changes in
the inferred network structure could be attributed to sudden exter-
nal real-world events. This opens two interesting questions. How
can diffusion network inference be combined with methods for de-
tecting external influence in networks [22]? And also, how can
dynamic network inference be extended for detecting unexpected
real-world events based on a stream of documents? Last, many
times not only information but also sentiment attached to a piece
of information spreads through the network [19]. It would be inter-
esting to think about inference of signed networks, where a posi-
tive/negative valence of an edge models sentiment relationship be-
tween a pair of nodes. Overall, such methods would allow us to im-
prove our understanding of the current landscape of news coverage,
the role that news media plays in framing the discussion of impor-
tant topics, and the evolving ecosystem that news media occupies.
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