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Abstract that it represents. Above models can find patterns which
account for the connections between nodes, but they can-

We develop thd.atent Multi-group Membership
not account for the node features.

Graph (LMMG) model, a model of networks
with rich node feature structure. In the\MG Node features along with the links between them provide
model, each node belongs to multiple groupsand  rich and complementary sources of information and should
each latent group models the occurrence of links e used simultaneously for uncovering, understanding and

as well as the node feature structure. TMMG exploiting the latent structure in the data. In this respeet

can be used to summarize the network structure,  develop a network model that considers both the emergence
to predict links between the nodes, and to pre-  of links of the network and the structure of node features
dict missing features of a node. We derive effi- such as user profile information or text of a document.

cient inference and learning algorithms and eval-
uate the predictive performance of theIMG on
several social and document network datasets.

Considering both sources of data, links and node features,
leads to more powerful models than those that only con-
sider links. For example, given a new node with a few
of its links, traditional network models provide a predic-
1. Introduction tive distribution of nodes to which it might be connected.
However, to predict links of a node, our model does not
Network data, such as social networks of friends, cita-need to see any of its links. It can predict links using only
tion networks of documents, and hyper-linked networks ofthe node’s features. For example, we can suggest a user’s
webpages, play an increasingly important role in moderrfriendships based only on the profile information, and rec-
machine learning applications. Analyzing network dataommend hyperlinks of a webpage based only on its tex-
provides useful predictive models for recommending newtual information. Moreover, given a new node and its links,
friends in social networksBackstrom & Leskovec201)  our model also provides a predictive distribution of node
or scientific papers in document network&(lapati et al.  features. This can be used to predict features of a node
2008 Chang & Blej 2009. given its links or even predict missing or hidden features of
A node given its links. For example, in our model interests
of a user or keywords of a webpage can be predicted using

els of network link structure. Latent variable mod- v th i fth work. Such dicti
els (Airoldietal., 2007 Hoffetal, 2002 Kemp et al, only the connections of the network. such predictions are
out of reach for traditional models of networks.

2006 decompose a network according to hidden pat-
terns of connections between the nodes, while modwe develop alatent Multi-group Membership Graph

els based on Kronecker productseg¢kovec eta).201Q  (LMMG) model of networks that explicitly ties nodes into
Kim & Leskoveg 2012a 20113 accurately model the groups of shared features and linking structure (Figlre
global network structure. Though powerful, these modelsNodes belong to multiple latent groups and the occurrence
account only for the structure of the network, while ignor- of each node feature is determined by a logistic model
ing observed features of the nodes. For example, in sociddased on the group memberships of the given node. Links
networks users have profile information, and in documenbf the network are then generated via link-affinity matri-
networks each node also contains the text of the documemes. Each link-affinity matri¥®; represents a table of link

Appearing inProceedings of the 29" International Conference tendencies, and an appropriate entrygfis chosen based

on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright ©N Whether or not a pair of nodes share the membership
2012 by the author(s)/owner(s). in groupi. We derive efficient algorithms for model pa-

Research on networks has focused on various mo
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Figure 1.Latent Multi-group Membership Graph model. A node

belongs to multiple latent groups at once. Based on group-mem  Figyre 2.Plate model representation lofIMG model.
berships features of a node are generated using a logistielmo

Links are modeled via link-affinity matrices which allows fich ~ that this allows for rich flexibility in modeling the links of
interactions between members and non-members of groups.  the network as well as for uncovering and understanding
the latent structure of the network.
rameter estimation and prediction. We study the perfor- . . N
mance ofLMMG on real-world social and document net- Next we formal_|ze .th_d‘MMG moc_iel llustrated in Fig-
works. We investigate the predictive performance on threéJre2 .and describe it in a generative way. Formally, eaf:h
different tasks: node feature prediction, link predictiand hodei = 1,2,---, V has a real-valued group membership
supervised node classification. Th®IMG provides sig- ¢i € [0,1] foreachgroug = 1,2, -, K. ¢y represents

nificantly better performance on all three tasks than niaturathe probability that nodé belongs to grougk. Assuming

alternatives and the current state of the art. the Beta distribution parameter_lzed by, iz as a prior
distribution of group membershif;;., we model the latent

group assignment;;, for each node as follows:

2. LMMG Model Formulation

The Latent Multi-group Membership Graph (LMMG)
model is a model of a (directed or undirected) network and
nodes which have categorical features. Our model containsince each group membership of a node is independent,
two important ingredients for innovation (See Figaje a node can belong to multiple groups simultaneously.

First, the model assigns nodes to latent groups and allowshe group memberships of a node affect both node features
nodes to belong to multiple groups at once. In contrast tgynd its links. With respect to node features, we limit our
multinomial models of group membershipi(oldietal,  focus to binary-valued features and use a logistic function
2007 Chang & Blei 2009 where the membership of a to model the occurrence of node’s features based on the
node is shared among the groups (the probability ovegroups it belongs to. For each featurg of nodei (I =
group memberships of a node sums to 1), we model group ... 1) we consider a separate logistic model where we
memberships as a series of Bernoulli random varialles ( regard group membershigs, , - - - , ¢;x as input features

in Figure1), which indicates that nodes in our model can of the model. In this way, the logistic model represents the
truly belong to multiple groups. Thus, in contrast to multi- relevance of each group membership to the presence of a
nomial topic models, a higher probability of node member-node feature. For convenience, we refer to the input vector

bir ~ Beta(agi, ax2)
zik ~ Bernoulli(¢;x) fork=1,2,--- K. (1)

ship to one group does not necessarily lower the probabilityf nodei for the logistic model ag; = [¢i1, - - - , dix, 1],

of membership to some other group in ttMG. whereg; 41y = 1 represents the intercept term. Then,
Second, for modeling the links of the network, each group 1

k has associated a link-affinity matri@(n Figurel). Each Yit = 14 oxo(—wT o)

e X . S . exp(—w; ¢i)

link-affinity matrix represents a table of link affinities/gn .

that a pair of nodes belongs or does not belong to gkoup Fy ~ Bernoulli(yy) forl=1,2,---,L  (2)

Thus, depending on the comb_|nat|on of the m(_ambershlpg»vherewl € RE+1 s the logistic model parameter for the
of nodes to groug, an appropriate element 6f;, is cho-

sen. For example, the ent(§, 0) of ©;, captures the link- I-th node feature. The value of eaaty, indicates the con-

affinity when none of the nodes belongs to grayvhile tribution of groupk to the presence of node feature
(1,0) stores the link-affinity when first node belongs to theIn order to model the links of the network, we build
group (1) but the second does not (0). As we will later showon the idea of the Multiplicative Attribute Graph (MAG)
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0.1 E captures exactly the opposite behavior where links are most
likely between members and non-members. While the
m m m core-periphery structure is captured by link-affinity matr
in Figure 3(c) where nodes that share group memberships
(a) Homophily  (b) Heterophily  (c) Core-periphery  (the “core”) are most likely to link, while nodes in the pe-

riphery are least likely to link among themselves.
Figure 3.Link structures modeled by link-affinity matrices. phery y 9

model Kim & Leskoveg 20123. Here each latent group 3 Inference, Estimation and Prediction
k has associated a link-affinity matri®, € [0,1]%*2.

Each entry of the link-affinity matrix indicates a tendency We now turn our attention ttMMG model estimation.
of linking between a pair of nodes depending on whethelGiven a set of binary node featurésand the network4,
they belong to the group or not. In other words, given we aim to find node group membershifsparameter$y’
the group assignments;, and z;;, of nodesi and j, z; of node feature model, and link-affinity matric®s
“selects” a row and;;, “selects” a column ob,, and the

linking tendency from node to nodej is captured by 3.1. Problem formulation

Olzix, zj1]. After acquiring such link-affinities from all ]

the groups, we define the link probability; as the prod- When the node featu-rdg = {Fu ti=1,- ’J{[VX’NZ =
uct of the link-affinities. Therefore, based on latent groupl’_ -, L} a'f‘d the_adjacency matrid € {0, .1} are
assignments and link-affinity matrices, we determine eac/¢V€N: We aim to find the group memberships= {¢;. :

entry of the adjacency matrix € {0, 1}¥*N of the net- ¢ = L=+, N, k=1,--- K}, the logistic model param-
work as follows: etersW = {wy, : l=1,---,L, k=1,---,K+1},and

the link-affinity matrices® = {©; : k = 1,--- K}. We
Dij = H Oklzik, Zjk] apply the maximum likelihood estimation, which finds the
k optimal values ofp, W, and®© so that they maximize the
Ai; ~ Bernoulli(p;;) fori,j=1,2,---N. (3) likelihood P(F,A,$|W,0,a), wherea = {(ay1,ak2) :

) ] o ] k = 1,---, K} represents hyper parameters for the Beta
The parameter matri®; represents the link affinity with prior distributions. In the end, we aim to solve

respect to the particular groip The model offers flexibil-
ity in a sense that we can represent many types of linking max log P(F, A, ¢|W, 0, ). (4)
structures. In Figur&, by varying the link-affinity matrix, $W,0

the model can capture heterophily (love of the different),now we compute the objective function in the above opti-
homophily (love of the same), or core-periphery structure mization problem. Since theMMG independently gener-
This way the affinity matrix allows us to discover the ef- gtesF and 4 given group memberships we decompose
fects of node features on links of the network. the log-likelihoodlog P(F, A, ¢|W, ©, o) as follows:

The node features and the links of the network are con-

nected via group memberships. For instance, suppose log P(F, A, ¢|W, 8, )

thatwyy, is large for some featureand groupk. Then, as = log P(F[¢, W) + log P(A|,0) + log P($|a) . (5)
the nodes belongs to groug: with high probability ¢

is close tol), the featurd of nodei, Fj;, is more likely

to bel. By modeling group memberships using multiple
Bernoulli random variables (instead of using multinomial
distribution @Airoldi et al., 2007 Chang & Blej 2009), we
achieve greater modeling flexibility which allows for mak- log P(|er) = Z(o"“ — 1)log ik
ing predictions about links given features and features 4k

Hence, to computibg P(F, A, |, 0, «), we separately
calculate each term of EquatioB)( We obtainlog P(¢|«)
andlog P(F'|¢, W) from Equations 1) and @):

given links. In Sectiort, we empirically demonstrate that + Z(OLkQ — 1) log(1l — @)

the LMMG outperforms traditional models on these tasks. ik

Moreover, if we divide the nodes of the network into two log P(F|¢, W) = " Fulogya + (1 — Fz) log(1 — ya)
sets depending on the membership to grbunen we can il

discover how members of grouplink to other members
as well as non-members of groépbased on the structure
of ©;. For example, whe®,, has large values on diagonal With regard to the second term in Equati, (

entries like in Figure3(a), members or non-members are

likely to link among themselves, while there is low affinity ~ log P(A|¢, ©) = log Z P(A|Z,$,0©)P(Z|¢,0©) (6)
for links between members and non-members. Fig(iog z

wherey;; are defined in Equatior&).
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for Z ={zp:i=1---,N, k=1,---,K}. Note whereFj is either0 or 1, andy,;; andp;; is respectively
that A is independent o given Z. To exactly calculate defined in Equation?) and @). Due to the brevity, we
log P(A|¢, ©), we sumP(A|Z,©)P(Z|¢) over every in-  describe the details of Equatiof)(in the full version of
stance o7 given® and¢. However, this requires the sum this paperKim & Leskoveg 2012h. Hence, by adding up
over2VK instances. As this exact computation is infeasi- 2% 9Lk and g=4 “A , we complete computing the deriva-

. R b Oir’
ble, we apprOX|mz_;1th>gP(A|¢,, ©) using its lower bound e of the Iower bound of log- I|keI|hoo%— and update
obtained by applying Jensen’s Inequality to Equatin ( he group membershipy;, using the gradlent method:

log P(A|¢, ©) =logEz.¢ [P(A|Z,0)] vew  old (acA OLp acA) (10)

= + 2
Odir.  Odir O

>Ez4 log P(A|Z,0)] . 7) ik — Pik TV
Now that we are summing up oveN? terms, the for«’?l_given learning rate. By_updating ?achﬁik in turn
computation of the lower bound is feasible. We thusby fixing the others, we can find the optimal group mem-
maximize the lower boundl of the log-likelihood bershipsp given the model parameters and®.

log P(A, F, ¢|W, O, «). To sum up, we aim to maximize
Update of node feature model parametersiV. Now

min —(Ly 4+ Lp+ L) + AW (8) we update the parametdig of node feature model while

¢W.0 keeping group membershipsfixed. Note that given the
where £, = log P(¢|a), Lr = log P(F|¢, W), and group members_hip$ the node feature model and the n(_at—
LA = Ez.,[log P(A|Z,W)]. To avoid overfitting, we yvork model are |r_1d_epen_dent of eac_h other. Thereforg, find-
regularize the objective function by the L1-normiat. mg_pa_lrameterBI_/ is |d_ent|c_al to running the L1-regularized
logistic regression given input and outputF' data as we
penalize the objective function in Equatio) ©on the L1
value of model parametel®. We basically use the gradi-
To solve the problem in Equatio)( we alternately up- ent method to updaféd” but make it sparse by applying the
date the group memberships the model parametef#’, technique similar t&. ASO:
and©. Once¢, W, and®© are initialized, we first update

3.2. Parameter estimation

the group memberships to maximize£ with fixing W ‘%_F - Z(Fil — i) bik

and®. We then update the model parametédfsand© to Qi -

minimize the function(—£ + A|W|;) in Equation ) by ew OLp .

fixing ¢. Note thatl is decomposed intg 4, L, andL,. wie” = wip? + Fale — A(k)Sign(wik) (11)

Therefore, when updatind” and© giveng, we separately
maximize the corresponding log-likelihoods: and £4.  if wi® # 0 or |a£ﬁc| > (k) wherel(k) = X for k =
We repeat this alternate updating procedure until the solut, - .. | K and\(K + 1) = 0 (i.e., we do not regularize on
tion converges. In the following we describe the details. the intercepts)yr is a constant learning rate. Furthermore,
if wy, crossed) while being updated, we assi@nto w;y,
Update of group memberships¢. Now we focus on up-  same as inLASSO. By this procedure, we can update the
dating group memberships given the model parameters node feature model parametdis to maximize the lower
W and®©. We use the coordinate ascent algorithm whichpound of log-likelihoodZ as well as to maintain the small
updates each membership, by fixing the others so to  number of relevant groups for each node feature.
maximize the lower bound. By computing the deriva-
tives of £, L, andL4 we apply the gradient method to Update of network model parameters©. Next we fo-
update eackp;: cus on updating network model parameteéds,when the
group membershipg are fixed. Again, note that the net-
work model is independent of the node feature model given

8£¢ 70&]61—1 apo — 1

0bir, ik L= dix the group membershigs so we do not need to considég
oL imi i '

F_ Z(F_ — ya)wn or Lp. We thus updat® to maximizeL 4 given ¢ using
0pik p the gradient method.
aﬁA 8logpij 810g(1 — pij)
_— E ~ _— _— —
oo 7 j:,%:_l ik 7-:%:—0 ik Ve Lam Vo, Ezny 21 logpij + Zo log(1 — pi)

n Z alogpﬂ Z 0log(1 — pjs) ©) Or = 09 + y4Ve,La
jiAj=1 Obin §:A;i=0 Oik for a constantlearning ratg,. We explain the computation
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of Vo, Ez~qlogp;; andVe, Ez4 log(l — p;;) in detail Features Nodes Features
in the full version of this papeiim & Leskoveg 20128. ?
g & ? & ?
3.3. Prediction E E ? 2
22122 20121212 ?

With a fitted model, our ultimate goal is to make predic-
tions about new data. In real-world application, the node (&) Missing feature  (b) Missing link  (c) Supervised node
features are often missing. Our approach is able to nicely ~Prediction prediction classification
handle such missing node features by fittldlgMG only
to the observed features. In other words, when we update
the group membershipsor the feature model parameters « Facebook100 (FB):

W’ by the gradient method from Equatic) @nd (1), we tech (769 nodes, 33,312 edges) and 24 university-

(';nly averaglge thﬁterms correspopdmfg t(; thec(j)btserl\zled cigta. related node features like major, gender, and dormi-
or example, when there is missing feature data, Equation tory (Traud et al, 2017,

(9) can be converted into as:

Figure 4.Three link and feature based predictive tasks.

Facebook network of Cal-

e WebKB (WKB): Hyperlinks between computer sci-

Lr _ 2ir,eolFi — ya)wik ence webpages of Cornell University in the WebKB

Din = S irco L (12) dataset (195 nodes, 304 edges). We use occurrences
e of 993 words as binary featureGraven et a.1999.

for the observed dat@.

Similarly, for link prediction we modify the model estima- We binarized discrete valued featuresg( school year)

tion method as follows. While updating the node featureP@seéd on whether the feature value is greater than the
model parameter” based on the features of all the nodesmedian value.  For the non-binary categorical features
including a new node, we estimate the network model pa{&:9- major), we used an indicator variable for each pos-
rameters® only on the observed network by holding out sible feature value. Some of these datasets are available at
the new node. This way, the observed features naturallfft t P:// snap. st anf ord. edu.

update the group memberships of a new node. We then

predict the missing node features or network links by using,DerICtIVe tasks. We investigate the predictive perfor-

the estimated group memberships and model parametersmance of theeMMG based on three different tasks. We

. . . visualize them in Figurd. Note that the column represents
Source code of our algorithms is available ateither features or nodes depending on the type of the task.

http://snap. stanford. edu. For each matrix, given 0/1 values in the white area, we pre-
dict the values of the entries with question marks. First,
4. Experiments assuming that all node features of a given node are com-

pletely missing, we predict all the features based on the
First, we run various prediction tasks: missing node featur links of the node (Figurd(a)). Second, when all the links
prediction, missing link prediction, and supervised nodeof a given node are missing, we predict the missing links by
classification. In all tasks our model outperforms naturalysing the node feature information (Figut)). Last, we
baselines. Second, we qualitatively analyze the relationassume only few features of a node are missing and perform
ships between the node features and the network structuggipervised classification of a specific node feature given al
by a case study of a Facebook ego-network and show hothe other node features and the network (Figi(cd).
the LMMG identifies useful and interpretable latent struc-
tures. Baseline models. Next we introduce natural baseline as
well as the state-of-the-art methods. First, for the most
Datasets. For our experiments, we used the following basic baseline, when predicting some missing value (node
datasets containing networks and node features. feature or link) of a given node, we average the correspond-
ing values of all the other nodes and regard it as the prob-
e AddHealth (AH): School friendship network (458 ability of valuel. We refer to this algorithm as AVG. Sec-
nodes, 2,130 edges) with 35 school-related nodend, as we can view each of the three prediction tasks as the
features such as GPA, courses taken, and placeslassification task, we use Collective Classification (CC)
ment Bearman et a].1997). algorithms that exploit both node features and network de-
e Egonet (EGO): Facebook ego-network of a particularpendencies3en et al.2008. For the local classifier of CC
user (227 nodes, 6,348 edges) and 14 binary featuresgorithms, we use Naive-Bayes (CC-N) as well as logistic
(e.g. same high school, same age, and sports club)egression (CC-L). We also compare tHdMG to the state
manually assigned to each friend by the ‘ego’ user. of the art, Relational Topic Model (RTM)XChang & Blej
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LL LL
AVG | CC-N | CC-L | RTM | LMMG AVG | CC-N | CC-L | RTM | LMMG
AH -23.0 | -176 | -16.8 | -63.4 -15.6 AH -40.2 | -57.2 | -38.9 | -100.6 | -36.1
EGO -5.4 -6.6 -5.1 -9.9 -3.7 EGO || -142.7 | -134.3 | -157.6 | -149.9| -125.9
FB -8.7 -11.6 -8.9 -19.0 -1.4 FB -320.8 | -330.7 | -345.6 | -359.1 | -328.3
WKB || -179.3| -186.8 | -179.2 | -336.8 | -173.6 WKB -54.2 | -1855| -39.6 | -25.8 -13.7
ACC AUC
AVG | CC-N | CC-L | RTM | LMMG AVG | CC-N | CC-L | RTM | LMMG
AH 0.53 0.61 0.56 0.59 0.64 AH 0.51 0.69 0.39 0.56 0.72
EGO 0.79 0.81 0.78 0.74 0.86 EGO 0.61 0.89 0.55 0.49 0.89
FB 0.77 0.76 0.75 0.77 0.80 FB 0.73 0.70 0.57 0.46 0.73
WKB 0.88 0.88 0.89 0.88 0.90 WKB 0.70 0.86 0.55 0.50 0.89

Table 1.Prediction of missing node attributes. Th®MG per- Table 2.Prediction of missing links of a node. Thé&IMG per-
forms the best in terms of the log-likelihood as well as tlassl-  forms best in all but one case.
fication accuracy on the held-out data.

to recover the missing links. For evaluation, we use the log-

likelihood (LL) of missing links as well as the area under
2009. We give_further d_etails about these models in thethe ROC c(urVZe (AUC) ofgmissing link prediction.
full version of this paperKim & Leskovecg 20121.

We give the experimental results for each dataset in Ta-
Task 1: Predicting missing node featuresFirst, we ex-  ble 2. Again, theLMMG outperforms the baseline mod-
amine the task of predicting missing features of a nodeels in the log-likelihood except for the Facebook100 data.
where features of other nodes and all the links are observethterestingly, while RTM was relatively competitive when
We randomly select a node and remove all the feature valpredicting missing features, it tends to fail predictingsai
ues of that node and then try to recover them. We quantifyng links, which implies that the flexibility of link-affinyt
the performance by using the log-likelihood of the true fea-matrices is needed for accurate modeling of the links.

ture values over the estimated distributions as well as the\/e observe that Collective Classification methods look

predpuv_e accuracy (the probability of correctly predigt competetive in some performance metrics and datasets. For
the missing features) of each method. . ) o
example, CC-N gives good results in terms of classifica-
Table 1 shows the results of the experiments by measurtion accuracy, and CC-L performs well in terms of the log-
ing the average of log-likelihood (LL) and prediction accu- likelihood. As CC-N is a discriminative model, it does not
racy (ACC) for each algorithm and each dataset. We notic@erform well in missing link probability estimation. How-
thatLMMG model exhibits the best performance in the log- ever, thdLMMG is a generative model that produces a joint
likelihood for all datasets. While CC-L in general performs probability of node features and network links, so it is also
the second best, our model outperforms it by up to 23%very good at estimating missing links. Hence, in overall,
The performance gain over the other models in terms of actheLMMG nicely exploits the relationship between the net-
curacy seems smaller when compared to the log-likelihoodwork structure and node features to predict missing links.
HoweverLMMG model still predicts the missing node fea-
tures with the highest accuracy on all the datasets. Task 3: Supervised node classification. Finally, we

| ticular. thd. MMG exhibits th (i . examine the performance on the supervised classification
h particufar, EXNIDIES the most improvementIn g 1 many cases, we aim to classify entities (nodes)

pode feature prediction on the ego-network dataset (30%;q0 on their feature values under the supervised setting.
in LL and 7% in ACC) over the next best method. Here

. Here the relationships (links) between the entities are als
bershi ¢ h in th K Th %rovided. For this experiment, we hold out one feature of
memberships of each person in the ego-network. Thus, g,yeq a5 the output class, regarding all other features of

group of people in the net\/\_/ork intrinsica_lly sharg SOM€14des and the network as input data. We divide the nodes
node feature value (community membership). In this SeNs8, o a 70% training and 30% test set. Similarly, we mea-

the node features and the links in the ego-network are diz | .« the average of the log-likelihood (LL) as well as the
rectly related to each other and our model successfully ex

) : X ; . o average classification accuracy (ACC) on the test set.
ploits this relationship to predict missing node features.
We illustrate the performance of various models in Table

Task 2: Predicting missing links. Second, we also con- The LMMG model performs better than the other mod-
sider the task of predicting missing links of a specific nodeels in both the log-likelihood and the classification accu-
while the features of the node are given. Similarly to theracy. It improves the performance by up to 20% in the
previous task, we select a node at random, but here we résg-likelihood and 5% in the classification accuracy. We
move all its links while observing its features. We then aimalso notice that exploiting the relationship between node
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LL that summer interns, who met our Facebook user neither
AVG | CC-N | CC-L | RTM | LMMG because of shared graduate school nor because of age, form

AH -84.5| -486.6 | -60.5 | -236.0 | -55.3 s .
EGO T 248 540 222 [ 417 | 212 a group within which people are densely connected. On the

EB | 9761 2546 797 | 1817 | 634 other hand, people of the same age at the same university
WKB || -17.5 | -254.6 | -15.4 | -193.6 | -15.0 also exhibit homophily, but are less densely connected with
ACC each other. Such variation in link density that depends on

AVG | CC-N | CC-L [ RTM [ LMMG the group memberships agrees with our intuition. Those

AH 0.52 | 058 | 0.63 | 0.51 0.63 who worked at the same company actively interact with

EGO || 046 | 0.76 | 0.77 | 0.75 | 0.79 each other so almost everyone is linked in Facebook. How-

FB 0.69 | 0.71 0.77 0.72 0.77

WKB 1 082 1081 1 0.84 | 084 0.85 ever, as the group of people of the same university or age

group is large and each pair of people in that group does not

Table 3.Supervised node classification. Th&IMG gives the ~ necessarily know each other, the link affinity in this group
best performance on both metrics and all four datasets. is naturally smaller than in the intern’s group.

features and the global network structure improves the per§|m|larly, groups 2 and 3 form the two Sports groups

formance of supervised node classification compared to th{eBASKETBALL’ SQUASH). People are connected densely

. . within each of the groups, but less connected to the out-
models focusing on local network dependenceg (Col- . .
. e side of the groups. Furthermore, we notice that those who
lective Classification methods).

graduated from the same high school (HS) as well as the
Case study: Analysis of a Facebook ego-network_ast same undergraduate schooINWERSITY) form another

we qualitatively analyze the Facebook ego-network exam€@mmunity but the membership to high school is more im-
ple to provide insights into the relationship between nodd®°rtant than to the undergraduate university (8.7 vs. 2.3).

features and network structure. By investigating model pat ast, for groups 4 and 5, we note that the corresponding
rameters¥)/ and®), we can find not only what features are |ink-affinity matrices are nearly flai.. values are nearly
important for each group but also how each group affectsiniform). This implies that groups 4 and 5 are related to
the link structure. general node features. In this sense, we hypothesize that

We begin by introducing the ego-user which we used tofeatureslike CS, family, math camp, and the company, have

create a network between his Facebook friends. We askd@atively little effect on the network structure.
our user to label each of his friends with a number of la-
bels. He chose to use 14 different labels. They correb. Related Work and Discussion

spond to his high school (HS), undergraduate universit;grh LMMG build . hi hine |
(UNIVERSITY), math olympiad camp (&P), computer € uilds on previous research in machine fearn-

programming club (KRoG) and work place (KOMP) ing and network analysis. Many models have been de-

friends. The user also assigned labels to identify friend¥€!0P€d to explain network link structur@ioldi et al,
from his graduate program (CS) and university (ST), bas2007 Hoff etal, 2902 KemP etal, 2006 Leskovec et a).
ketball (BASKETBALL) and squash (SUASH) clubs, as 2010 and extensions that incorporate node features have

well as travel mates (FAVEL), summer internship buddies 2/SO been proposegtoor et al. 2001 Kim & Leskoveg
(INTERN), family (FAMILY ) and age group (&). 2011k Taskar et a].2003. However, these models do not

_ _ consider latent groups and thus cannot provide the benefits
We fit theLMMG to the ego-network and each friend’s la- of dimensionality reduction or produce interpretable €lus

bels, and obtained the model parametéraind®©. We set  ters useful for understanding network community structure
the number of latent groups fosince the previous predic-

tion tasks worked well whe — 5. In Table4. for each The LMMG provides meaningful clustering of nodes and
of 5 latent groups, we represent the top 3 features with théhew features in the network. Network models of similar

largest absolute value of model paramétgr, | and the cor- flavor have been proposed in the pasirgldi et al., 2(_)07’
responding link-affinity matrice®). Hoff et al, 2002 Kemp et al, 2006, and some even incor-

porate node feature€hang & Blej 2009 Nallapati et al.
We begin by investigating the first group. The top three la-2008 Miller et al., 2009. However, such models have
bels the most correlated to the first group are SEEAaNd  been mainly developed for document networks where they
INTERN. However, notice thatNTERN is negatively corre-  assume multinomial topic distributions for each word in the
lated. This means that group 1 contains students from th@ocument. We extend this by learning a logistic model of
same graduate school and age, but not people with whomccurrence of each feature based on node group member-
our user worked together at the summer internship (eveships. We highlight this difference to previous models. For

though they may be of the same school/age). We also not@pic memberships. previous models use multinomial dis-
that©, exhibits homophily structure. From this we learn
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[ Group ] Top1 [ Top2 | Top3 | Link-affinity matrix |
1 ST (9.0) AGE (4.5) INTERN (-3.7) [0.67 0.08; 0.08 0.17]
2 HS (-8.7) UNIVERSITY (-2.3) | BASKETBALL (2.2) || [0.26 0.18; 0.18 0.38
3 UNIVERSITY (-7.1) | KORST (-2.6) SQUASH (2.2) 0.22 0.23;0.230.32
4 CS (7.3) FamiLY (7.0) Cawmp (6.9) 0.250.24;0.240.27
5 KCowmp (5.2) KORST (4.4) INTERN (-3.8) 0.290.22;0.22 0.27

Table 4.Logistic model parameter values of top 3 features and thedffinity matrix associated with each group in the ego-ruekw

tributions, where a node has a mass of 1 to splitamong var- extract symbolic knowledge from the world wide web.
ious topics. In contrast, in theMMG, a node can belong In AAAI 98, 1998.

to multiple topics at once without any constraint. .
P P y Getoor, L., Segal, E., Taskar, B., and Koller, D. Probabilis

While previous work tends to explore only the network or  tic models of text and link structure for hypertext classi-
only the features, theMMG jointly models both so that it fication. In1JCAI Workshop on Text Learning: Beyond
can make predictions of one given the other. Th&MG SQupervision, 2001.

models the interaction between links and group member-

ships via link-affinity matrices which provide great flexibi  HOff, P, Raftery, A, and Handcock, M. Latent space

ity and interpretability of obtained groups and interactio approaches to social network analysidournal of the
American Satistical Association, 97:1090-1098, 2002.
TheLMMG is a new probabilistic model of links and nodes

in networks. It can be used for link prediction, node fea-Keémp, C., Tenebaum, J. B., and Griffiths, T. L. Learning
ture prediction and supervised node classification. We Systems of concepts with an infinite relational model. In
have demonstrated qualitatively and quantitatively that t AAAI 06, 2006.

LMMG proves useful for analyzing network data. The kim M. and Leskovec, J. Network completion problem:

LMMG significantly improves on previous models, inte- Inferring missing nodes and edges in networksSIiM,
grating both node-specific information and link structure 557114

to give better predictions.

Kim, M. and Leskovec, J. Modeling social networks with

node attributes using the multiplicative attribute graph
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A. Mathematical Details
A.1. Update of Group Membership ¢

In Equation @), we proposed the gradient ascent method

which updates each group membership to maximize
the lower bound of log-likelihood.. To complete its
computation, we further take a look W and

9Ez~0loe=pij) iy detail. Then, we can also compute
aEsz) logpj»; B]EZN¢ log(l—pji,) H
rm and T in the same way.

First, we calculate the derivative of expected log-liketid
for edgesEz.~.4 log p;;. When all the group memberships

except forg,, are fixed, we can deriv@% from
definition ofp;; in Equation @) as follows:

OE 7. log pi; 9
Z~g¢ 108 Pij Zlog@k/[zik'azjk/]‘|
k/

OPik O
Ez~¢log O [ziks, ij/]}

0
:%jw%

IEZN¢

(13)
Here we use the following property. Sineg, is an in-
dependent Bernoulli random variable with probabitity;,
for any functionf : {0,1}? — R,
Ez~of(zik, 2jk) = Gir i f(1,1) + dir(1 — ¢jx) f(1,0)
+(1 = ¢ik)dji f(0,1) + (1 = dix) (1 — ;1) £(0,0).

(14)
Hence, by applying Equatioi ) to (13), we obtain
8EZN¢ logpij - 8 . )
Do = Jom Ez~g log Ok [zik, Zjk]
= ¢jr log Or[1,1] + (1 — ¢;i) log Ox[1,0]
— $t 1og ©4[0,1] — (1 — h;1) log ©4[0,0] . (15)

Next, we compute the derivative of expected log-likelihood L4

for unlinked node pairs,e. Ez., log(1l — p;;). Here we

approximate the computation using the Taylor's expansion,

log(1 — x) ~ —x — 0.522 for smallz:
8IEZN¢ 10g(1 - pij) - _8Ezw¢pij —0 56EZ~¢p12j
OPik OPik o 0k

To compute%%,

OBz~oPij
0Py,
0 K H@ Zikt y Zik |
a¢ Z~¢ k' |Zik! s Zjk!
0
8@5 EZNtb@k[szaZ]k H 6/@’ sz’ ij,]
k' Ak
0
= H EZN(b@k’ [Zik/’zjk,]%EZNtb@k[zik, ij] )

K £k

By Equation (4), eachE ;.4 O« [zik, zjx] and its derivative
can be obtained. Similarly, we can calculd

we complete the computation gi%“%

As we attalnaEzgzlog”” and 6]EZ~"’613§(1 Pii) e even-
9Lr and

~ oD%
Bir , SO

tually calculat . Hence, by adding u ¢ vt
gif‘ we complete computing the derlvatlve of the lower

bound of Iog—hkehhooda?ﬁ.

oc
0ix

0L
Odir

OLp

0L
_|_
Odir

+ .
Odir

A.2. Update of MAG Model Parameters©

Next we focus on the update of parameters of the network
model,©, where the group membershipis fixed. Since
the network model is independent of the node attribute
model given the group membership we do not need to
considerLy, Lr, or [W|;. We thus updat® to maximize
only £ 4 given¢ using the gradient method.

As we previously did in computinggfi by separating edge
and non-edge terms, we compute e%g% for k =
, K andz, 22 € {0,1}. To describe mathematically,

-

8EZN¢ 1ng”

BGk xl,xg ~ aek $17x2
8EZN¢ log pij)
. 16
* Z 0O [x1, 22] (16)

A”'—O

Now we compute each term in the above calculation by the
definition of p;;. First, we compute the former term by
using Equation4) For instance,

0log ©4]0,1]

(1= din) 9k
00.[0,1] '

= (1— o) djk 0r0, 1]

90,0, 1]

Hence, we can properly compute Equati@f)(depending
on the values of; andzxs.

Second, we use the same Taylor’s expansion technique for
the latter term in Equatiorl) as follows:

8EZN¢ log(l - pij) - 0

- Ez~o (—pij — 0.5p3;) .
0Ok [z1, 2] 09On[x1, 2] 2 o (=pij ;)
Similarly to 222, 2222 is computed by
0

E,V@/Zi/,Z'liEN@ Ziks 2g
l};[k Z~¢Ow [Zik .m]a@k[th] 2z~ Ok[2ik, 2jk]

where each term is obtained by Equatidd)( Similarly,

~¢p” OL A
we compute— so that we can obtalgm

Ok[z1,22]
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B. Implementational Details aim to predict all the features of a node where its links to the
other nodes are fully observed (Task 1 in Sectpriwhile
holding out the test node, we can set up the same prediction

Since the objective function in Equatiod) §s non-convex, taskin a way that we select one at random from the other
the final solution might be dependent on the initial valuesnodes (training nodes) and regard it as the validation test
of ¢, W, and®. For reasonable initialization, as the node node. We then perform the missing node feature predic-
attributesF are given’ we run the Singu|ar Vector Decom- tion on this validation node and obtain the IOg-IikeIihOOd
position (SVD) by regarding” as anN x L matrix and  result. By running this procedure with varying the vali-
obtain the Singu|ar vectors Corresponding to the}ﬁ)pin_ dation test node, we can attain the average Iog-likelihood
gular values. By taking the tofy components, we can ©On the missing node features given the specific valuk of
approximate the node attributéd over K latent dimen-  (i-e. N-fold cross-validation). Finally, we compare the av-
sions. We thus assign tieth entry of thek-th right sin- ~ erage log-likelihood values according the valuefofand
gular vectors multiplied by the-th singular value intas;, ~ Pick up the best one to maximize the log-likelihood. This
forl = 1,---,Landk = 1,---, K. We also initialize ~method can be done by the other prediction tasks, missing
each group membership;, based on thé-th entry of the  link prediction and supervised node classification.

k-th left singular vectors. This approximation can in par-

ticular provide good enough initial values when the f6p  B.3. Baseline Models

singular values dominate the others. In order to obtain th
sparse model parametdr, we reassigti to w;; of small
absolute value such thab;;| < A.

B.1. Initialization

Here we briefly describe how we implemented each base-
line method depending on the type of prediction task.

Finally, to initialize the link-affinity matrice®, we intro- ~ AVG. In this baseline method, we regard edettn node
duce the following way. When initializing the-th link- ~ feature and a link to théth node as an independent ran-
affinity matrix ©;, we assume that the group other thandom variable, respectively. In other words, we assume that
groupk has nothing to do with network structuies. every ~ missing node features or links do not depend on each other.
entry in the other link-affinity matrices has the equal value Hence, we predict théth missing node feature by find-
Then, we compute the ratio between entfggz,, z»] for  ing the probability that thé-th node feature of all the other
x1, 22 € {0, 1} as follows: nodes have valué. We then regard the found probability
as that of the missingth node feature taking value
@k[l'l, xg] X Z Ez,\,qu[zik = T1, %k = xg]

i Similarly, when we predict missing links (in particulareth
2,7 Aq5=

link to thei-th node) of a given node, we average the prob-
As the group membershipis initialized above and;;, and ability that all the other nodes are linked to th¢h node

z;1, are independent of each other, we are able to Comput@nd take it as the probability of link from the given node to
the ratio between entries 6f;. After computing the ratio thei-th node {.e. preferential attachment).

between entries for each link-affinity matrix, we adjust the

scale of the link-affinity matrices so that the expected numCC-N. For this method, we basically use the Naive-Bayes
ber of edges in the MAG model is equal to the number ofmethod using node features of each node as well as those

edges in the given networke. =, . pi; = 32, . Ayj. of .neighl:.Joring nodes. To represent each node featu_re. of
' ' neighboring nodes by a single value, we select the majority
B.2. Selection of the Number of Groupsk value (either O or 1) from the neighbors’ feature values.

Another issue in fitting theMMG to the given network and However, we cannot use the r_10de features when predict-
dng all the node features of a given node. Furthermore, the

node feature data is to determine the number of groups, de f f neiahbori d inable wh
K. We can find the insight about the value &f from node features of neighboring nodes are unattainable when

the MAG model. It has been already proved that, in or.we predict missing links. Therefore, depending on the type

der for the MAG model to reasonably represent the real-of prediction task, we exploit only achievabl_e information
world network, the value ofC should be in the order of &M°NY node features and those of neighboring nodes.

log N whereN represents the number of nodes in the net- _
work (Kim & Leskoveg 20123. Since in theL MMG the CC-L. We employ the similar approach to the CC-N. How

neor ks e odelea sty o the WAG moce, e 72 1% 150 1 00l eoresin e e
the same argument on the number of grofpstill holds. y 9 9 9

nodes rather than pick up the majority value.
However, the above argument cannot determine the specific

value of K. To select one value ok, we use the cross- RTM. We use the Ida-R package to run RTMtp://cran.r-
validation method as follows. For instance, suppose that w@roject.org/web/packages/|da/index.html).



