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ABSTRACT
Online content exhibits rich temporal dynamics, and diverse real-
time user generated content further intensifies this process. How-
ever, temporal patterns by which online content grows and fades
over time, and by which different pieces of content compete for
attention remain largely unexplored.

We study temporal patterns associated with online content and
how the content’s popularity grows and fades over time. The at-
tention that content receives on the Web varies depending onmany
factors and occurs on very different time scales and at different
resolutions. In order to uncover the temporal dynamics of online
content we formulate a time series clustering problem usinga simi-
larity metric that is invariant to scaling and shifting. We develop the
K-Spectral Centroid (K-SC) clustering algorithm that effectively
finds cluster centroids with our similarity measure. By applying
an adaptive wavelet-based incremental approach to clustering, we
scaleK-SC to large data sets.

We demonstrate our approach on two massive datasets: a set of
580 million Tweets, and a set of 170 million blog posts and news
media articles. We find thatK-SC outperforms the K-means clus-
tering algorithm in finding distinct shapes of time series. Our anal-
ysis shows that there are six main temporal shapes of attention of
online content. We also present a simple model that reliablypre-
dicts the shape of attention by using information about onlya small
number of participants. Our analyses offer insight into common
temporal patterns of the content on the Web and broaden the under-
standing of the dynamics of human attention.

Categories and Subject Descriptors
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General Terms
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Figure 1: Short textual phrases and Twitter hashtags exhibit
large variability in number of mentions over time.

1. INTRODUCTION
Online information is becoming increasingly dynamic and the

emergence of online social media and rich user-generated content
further intensifies this phenomena. Popularity of various pieces of
content on the Web, like news articles [30], blog posts [21, 27],
Videos [10], posts in online discussion forums [4] and product re-
views [13], vary on very different temporal scales. For example,
content on micro-blogging platforms, like Twitter [15, 34], is very
volatile, and pieces of content become popular and fade awayin a
matter of hours. Short quoted textual phrases (“memes”) rise and
decay on a temporal scale of days, and represent the integralpart
of the “news cycle.” [22] Temporal variation of named entities and
general themes (like, “economy” or “Obama”) exhibits variations
at even larger temporal scale [3, 14, 31].

However, uncovering patterns of temporal variation on the Web
is difficult because human behavior behind the temporal variation
is highly unpredictable. Previous research on the timing ofan in-
dividual’s activity has reported that human actions range from ran-
dom [26] to highly correlated [6]. Although the aggregate dynam-
ics of individual activities tends to create seasonal trends or simple
patterns, sometimes collective actions of people and the effects of
personal networks result in a deviation from trends. Moreover, all
individuals are not the same. For example, some act as “influen-
tials” [33]. The overall picture of temporal activity on theWeb
is even more complex due to the interactions between individuals,
small groups, and corporations. Bloggers and mainstream media
are both producing and pushing new content into the system [16].
The content then gets adopted through personal social networks and
discussed as it diffuses through the Web. Despite extensivequali-
tative research, there has been little work about temporal patterns
by which content grows and fades over time and by which different
pieces of content compete for attention during this process.



Temporal patterns of online content. Here we study what tem-
poral patterns exist in the popularity of content in social media.
The popularity of online content varies rapidly and exhibits many
different temporal patterns. We aim to uncover and detect such
temporal patterns of online textual content. More specifically, we
focus on the propagation of the hashtags on Twitter, and the quo-
tation of short textual phrases in the news articles and blog-posts
on the Web. Such content exhibits rich temporal dynamics [21,
22, 26] and is a direct reflection of the attention that peoplepay to
various topics. Moreover, the online media space is occupied by
a wide spectrum of very distinct participants. First of all,there
are many personal blogs and Twitter accounts, with a relatively
small readership. Secondly, there are professional bloggers and
small community-driven or professional online media sites(like,
The Huffington Post) that have specialized interests and respond
quickly to events. Finally, mainstream mass media, like TV sta-
tions (e.g., CNN), large newspapers (e.g., The Washington Post)
and news agencies (e.g., Reuters) all produce content and push it
to the other contributors mentioned above. We aim to understand
what kinds of temporal variations are exhibited by online content,
how different media sites shape the temporal dynamics, and what
kinds of temporal patterns they produce and influence.

The approach. We analyze a set of more than 170 million news
articles and blog posts over a period of one year. In addition, we
examine the adoption of Twitter hashtags in a massive set of 580
million Twitter posts collected over a 8 month period. We measure
the attention given to various pieces of content by tracing the num-
ber of mentions (i.e., volume) over time. We formulate a timese-
ries clustering problem and use a time series shape similarity met-
ric that is invariant to the total volume (popularity) and the time of
peak activity. To find the common temporal patterns, we develop
a K-Spectral Centroid (K-SC) clustering algorithm that allows the
efficient computation of cluster centroids under our distance met-
ric. We find thatK-SC is more useful in finding diverse temporal
patterns than the K-means clustering algorithm [17]. We develop
an incremental approach based on Haar Wavelets to improve the
scalability ofK-SC for high-dimensional time series.

Findings. We find that temporal variation of popularity of content
in online social media can be accurately described by a smallset of
time series shapes. Surprisingly, we find that both of the adoption
of hashtags in Twitter and the propagation of quoted phraseson
the Web exhibit nearly identical temporal patterns. We find that
such patterns are governed by a particular type of online media.
Most press agency news exhibits a very rapid rise followed bya
relatively slow decay. Whereas, bloggers play a very important role
in determining the longevity of news on the Web. Depending on
when bloggers start participating in the online discourse the news
story may experience one or more rebounds in its popularity.

Moreover, we present a simple predictive model which, basedon
timings of only few sites or Twitter users, predicts with 75%accu-
racy which of the temporal patterns the popularity time series will
follow. We also observe complex interactions between different
types of participants in the online discourse.

Consequences and applications.More generally, our work devel-
ops scalable computational tools to further extend understanding
of the roles of different participants play in the online media space.
We find that the collective behavior of various participantsgoverns
how we experience new content and react to it. Our results have
direct applications for predicting the overall popularityand tempo-
ral trends exhibited by the online content. Moreover, our results
can be used for better placing of content to maximize clickthrough
rates [5] and for finding influential blogs and Twitters [23].

2. FINDING TEMPORAL PATTERNS
In this section, we formally define the problem and then propose

K-Spectral Centroid (K-SC) clustering algorithm.
We start by assuming that we are given a time series of mentions

or interactions with a particular piece of contents. This could be a
time series of clicks or plays of a popular video on YouTube, the
number of times an article on a popular newspaper website was
read, or the number of times that a popular hashtag in Twitterwas
used. Now we want to find patterns in the temporal variation of
time series that are shared by many pieces of content.

We formally define this as a problem of clustering time series
based on their shape. Given that online content has large variation
in total popularity and occurs at very different times, we will first
adopt a time series similarity metric that is invariant to scaling and
shifting. Based on this metric, we develop a novel algorithmfor
clustering time series. Finally, we present a speed-up technique that
greatly reduces the runtime and allows for scaling to large datasets.

2.1 Problem definition
We are givenN items of contents and for each itemi we have

a set of traces of the form(sj , tj)i, which means that sitesj men-
tioned itemi at timetj . From theseN traces, we then construct
a discrete time seriesxi(t) by counting the number of mentions of
itemi at time intervalt. Simply, we create a time series of the num-
ber of mentions of itemi at timet wheret’s measured in some time
unit, e.g., hours. Intuitively,xi measures the popularity or attention
given to itemi over time. For convenience let us also assume that
all time seriesxi have the same length,L. The shape of the time
seriesxi simply represents how the popularity or attention to item
i changed over time. We then aim to group together items so that
itemi’s in the same group have a similar shape of the time seriesxi.
This way we can infer what items have a similar temporal pattern
of popularity, and we can then consider the center of each cluster
as the representative common pattern of the group.

2.2 Measure of time series shape similarity
In order to perform the clustering based on the shape of the item

popularity curve, we first discuss how we can measure the shape
similarity of two time series.

Figure 1 shows an example of temporal variability in the num-
ber of mentions of different textual phrases and Twitter hashtags.
We plot the average popularity curve of 1,000 phrases with largest
overall volume (after aligning them so that they all peak at the same
time). The figure shows two individual phrases. First is the quote
from U.S. president Barack Obama about the stimulus bill:“I will
sign this legislation into law shortly and we’ll begin making the
immediate investments necessary to put people back to work doing
the work America needs done.”and the second is the“Lipstick on
a pig” phrase from the 2008 U.S. presidential election campaign.
Notice the large difference among the patterns. Whereas average
phrases almost symmetrically rise and fade, the “Lipstick on a pig”
has two spikes with the second being higher than the first, while the
stimulus bill phrase shows a long streak of moderate activity.

A wide range of measures of time series similarity and approaches
to time series clustering have been proposed and investigated. How-
ever, the problem we are addressing here has several characteristics
that make our setting somewhat different and thus common met-
rics such as Euclidean or Dynamic Time Warping are inappropriate
in our case for at least two reasons. First, if two time serieshave
very similar shape but different overall volume, they should still
be considered similar. Thus, scaling the time series on they-axis
should not change the similarity. Second, different items appear
and spike at different times. Again, even though two time series



may be shifted, they should be considered similar provided that
they have similar shape. Thus, translating time series on the time
axis should not change the similarity between the two time series.

Time series similarity measure.As described above we require a
time series similarity measure that is invariant to scalingand trans-
lation and allows for efficient computation.

Since the time series of popularity of items on the Web typically
exhibit bursty and spiky behavior [10], one could address the in-
variance to translation by aligning the time series to peak at the
same time. Even so, many challenges remain. For example, what
exactly do we mean by “peak”? Is it the time of the peak popular-
ity? How do we measure popularity? Should we align a smoothed
version of the time series? How much should we smooth?

Even if we assume that somehow peak alignment works, the
overall volume of distinct time series is too diverse to be directly
compared. One might normalize each time series by some (neces-
sarily arbitrary) criteria and then apply a simple distancemeasure
such as Euclidian norm. However, there are numerous ways to nor-
malize and scale the time series. We could normalize so that total
time series volume is 1, that the peak volume is 1, etc.

For example, Figure 2 illustrates the ambiguity of choosinga
time series normalization method. Here we aim to group time series
S1, . . . , S4 in two clusters, where S1 and S2 have two peaks and
S3 and S4 have only one sharp peak. First we align and scale time
series by their peak volume and run the K-Means algorithm using
Euclidean distance (bottom figures in (B) and (C)). (We choose this
time series normalization method because we found it to perform
best in our experiments in Section 3.) However, the K-Means al-
gorithm identifies wrong clusters {S2, S3, S4} and {S4}. Thisis
because the peak normalization tends to focus on the global peak
and ignores other smaller peaks (figure (B)). To tackle this prob-
lem we adopt a different time series distance measure and develop
a new clustering algorithm, which does not suffer from such behav-
ior, i.e., it groups together the two peaked time series S1 and S2,
and puts single peaked time series S3 and S4 in the other cluster.

First, we adopt a distance measure that is invariant to scaling and
translation of the time series [9]. Given two time seriesx andy, the
distanced̂(x, y) between them is defined as follows:

d̂(x, y) = min
α,q

||x− αy(q)||

||x||
(1)

wherey(q) is the result of shifting time seriesy by q time units,
and|| · || is thel2 norm. This measure finds the optimal alignment
(translationq) and the scaling coefficientα for matching the shapes
of the two time series. The computational complexity of thisoper-
ation is reasonable since we can find a closed-form expression to

compute the optimalα for fixed q. With q fixed,
||x−αy(q)||

||x||
is a

convex function ofα, and therefore we can find the optimalα by

setting the gradient to zero:α =
xT y(q)

||y(q)||
2 . Also, note thatd̂(x, y)

is symmetric inx andy (refer to extended version for details [1]).
Whereas one can quickly find the optimal value ofα, there is no

simple way to find the optimalq. In practice we first find alignment
q′ that makes the time series to peak at the same time and then
search for optimalq aroundq′. In our experiments, the starting
point q′ is very close to the optimal since most of our time series
have a very sharp peak volume, as shown in Section 3. Therefore,
this heuristic findsq that is close to the optimal very quickly.

2.3 K-Spectral Centroid Clustering
Next, we present the K-Spectral Centroid (K-SC) clustering al-

gorithm that finds clusters of time series that share a distinct tem-
poral pattern.K-SC is an iterative algorithm similar to the classical

(a) Time Series (b) Cluster center

Figure 3: (a) A cluster of 7 single-peaked time series: 6 havethe
shape M1, and one has the shape M2. (b) The cluster centers
found by K-Means (KM) and KSC. The KSC cluster center is
less affected by the outlier and better represents the common
shape of time series in the cluster.

K-means clustering algorithm [17] but enables efficient centroid
computation under the scale and shift invariant distance metric that
we use. K-means iterates a two step procedure, the assignment step
and the refinement step. In the assignment step, K-means assigns
each item to the cluster closest to it. In the refinement step the
cluster centroids are then updated. By repeating these two steps,
K-means minimizes the sum of the squared Euclidean distances
between the members of the same cluster. Similarly,K-SC al-
ternates the two steps to minimize the sum of squared distances,
but the distance metric is not Euclidean but our distance metric
d̂(x, y). As K-means simply takes the average over all items in the
cluster as the cluster centroid, this is inappropriate whenwe use
our metricd̂(x, y). Therefore, we develop a K-Spectral Centroid
(K-SC) clustering algorithm which appropriately computes cluster
centroids under time series distance metricd̂(x, y).

For example, in Figure 2,K-SC discovers the correct clusters
(blue group in panel (A)). When̂d(x, y) is used to compute the
distance between S2 and the other time series,d̂(x, y) finds the
optimal scaling of other time series with respect to S2. Then, S1 is
much closer to S2 than S3 and S4, as it can match the variation in
the second peak of S2 with the proper scaling (panel B). Because
of accurate clustering,K-SC computes the common shape shared
by the time series in the cluster (panel C).

Moreover, even if K-means andK-SC find a same clustering,
the cluster center found byK-SC is more informative. In Figure 3,
we show a cluster of single-peaked time series, and try to observe
the common shape of time series in the cluster by computing a
cluster center by K-means andK-SC. Since the cluster has 6 time
series of the same shape (M1) and one outlier (M2), we want the
cluster center to be similar to M1. Observe thatK-SC finds a better
center than K-means. As K-means computes the average shape of
time series for a cluster center, the resulting center is sensitive to
outliers. Whereas,K-SC scales each time series differently to find
a cluster center, and this scaling decreases the influence ofoutliers.

More formally, we are given a set of time seriesxi, and the num-
ber of clustersK. The goal then is to find for each clusterk an
assignmentCk of time series to the cluster, and the centroidµk of
the cluster that minimize a functionF defined as follows:

F =

K∑

k=1

∑

xi∈Ck

d̂(xi, µk)
2. (2)

We start theK-SC algorithm with a random initialization of the
cluster centers. In the assignment step, we assign eachxi to the
closest cluster, based on̂d(x, y). This is identical to the assign-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (A) Four time series, S1,. . . , S4. (B) Time series after scaling and alignment. (C) Cluster cetroids. K-Means wrongly puts
{S1} in its own cluster and {S2, S3, S4} in the second cluster,while K-SC nicely identifies clusters of two vs. single peaked time series.

ment step of K-means except that it uses a different distancemet-
ric. After finding the cluster membership of every time series, we
update the cluster centroid. Simply updating the new centeras the
average of all members of the cluster is inappropriate, as this is not
the minimizer of the sum of squared distances to members of the
cluster (underd̂(x, y)). The new cluster centerµ∗

k should be the
minimizer of the sum of̂d(xi, µk)

2 over allxi ∈ Ck:

µ∗
k = argmin

µ

∑

xi∈Ck

d̂(xi, µ)
2. (3)

SinceK-SC is an iterative algorithm it needs to update the cluster
centroids many times before it converges. Thus it is crucialto find
an efficient way to solve the above minimization problem.

Next, we show that Eq. 3 has a unique minimizer that can be
expressed in a closed form. We first combine Eqs. 1 and 3.

µ∗
k = argmin

µ

∑

xi∈Ck

min
αi,qi

||αixi(qi) − µ||2

||µ||2

Since we find the optimal translationqi in the assignment step of
K-SC, consider (without the loss of generality) thatxi is already
shifted byqi. We then replaceαi with its optimal value (Sec. 2.2):

µ∗
k = argmin

µ

1

||µ||2

∑

xi∈Ck

||
xT
i µ

||xi||2
xi − µ||2

We flip the order ofxT
i µxi and simplify the expression:

µ∗
k = argmin

µ

1

||µ||2

∑

xi∈Ck

||
xix

T
i µ

||xi||2
− µ||2

= argmin
µ

1

||µ||2

∑

xi∈Ck

||(
xix

T
i

||xi||2
− I)µ||2

= argmin
µ

1

||µ||2
µT

∑

xi∈Ck

(I −
xix

T
i

||xi||2
)µ

Finally, substituting
∑

xi∈Ck
(I −

xix
T
i

||xi||
2 ) by M leads to the fol-

lowing minimization problem:

µ∗
k = argmin

µ

µTMµ

||µ||2
. (4)

Algorithm 1 K-SC clustering algorithm: K-SC(x,C,K)
Require: Time seriesxi, i = 1, 2, ..., N , The number of clusters

K, Initial cluster assignmentsC = {C1, .., CK}
repeat

Ĉ ← C
for j = 1 toK do {Refinement step}

M ←
∑

i∈Cj
(I −

xix
T
i

||xi||
2 )

µj ← The smallest eigenvector ofM
Cj ← ∅

end for
for i = 1 toN do {Assignment step}

j∗ ← argminj=1,..,K d̂(xi, µj)
Cj∗ ← Cj∗ ∪ {i}

end for
until Ĉ = C
return C, µ1, ..., µK

The solution of this problem is the eigenvectorum corresponding
to the smallest eigenvalueλm of matrixM [12]. If we transformµ
by multiplying the eigenvectors ofM , thenµTMµ is equivalent to
the weighted sum of the eigenvalues ofM , whose smallest element
is λm||µ||

2. Therefore, the minimum of Eq. 4 isλm and letting
µ = um achieves the minimum. AsM is given byxi’s, we simply
find the smallest eigenvector ofM for the new cluster centerµ∗

k.
Sinceµ∗

k minimizes the spectral norm ofM , we callµ∗
k theSpec-

tral Centroid, and call the whole algorithm the K-Spectral Centroid
(K-SC) clustering (Algorithm 1).

2.4 Incremental K-SC algorithm
Since our time series are usually quite long and go into hundreds

and sometime thousands of elements, scalability ofK-SC is impor-
tant. Let us denote the number of time series byN , the number
of clusters byK, and the length of the time series byL. The re-
finement step ofK-SC computesM first, and then finds its eigen-
vectors. ComputingM takesO(L2) for eachxj , and finding the
eigenvectors ofM takesO(L3). Thus, the runtime of the refine-
ment step is dominated byO(max(NL2,KL3)). However, the
assignment step takes onlyO(KNL), and therefore the complex-
ity of one iteration ofK-SC is O(max(NL2,KL3)).

A cubic complexity inL is clearly an obstacle forK-SC to be
used on large datasets. Moreover, there is another reason why ap-



Algorithm 2 Incremental K-SC
Require: Time seriesxi, i = 1, 2, ..., N , The number of clusters

K, Initial assignmentsC = {C1, .., CK}, Start levelS, The
length ofxi’s L
for i = 1 toN do

zi ← Discrete Haar Wavelet Transform(xi)
end for
for j = S to log2(L) do

for i = 1 toN do
yi ← Inverse Discrete Haar Wavelet Transform(zi(1 : 2j))
{ zi(1 : n) means the firstn elements ofzi}

end for
(C, µ1, ..., µK)← K-SC(y,C,K)

end for
return C, µ1, ..., µK

plying K-SC directly to high dimensional data is not desirable.
Like K-means,K-SC is a greedy hill-climbing algorithm for op-
timizing a non-convex objective function. SinceK-SC starts at
some initial point and then greedily optimize the objectivefunc-
tion, the rate of convergence is very sensitive to the initialization of
the cluster centers [28]. If the initial centers are poorly chosen, the
algorithm may be very slow, especially ifN or L are large.

We address these two problems by adopting an approach simi-
lar to Incremental K-means [28] which utilizes the multi-resolution
property of the Discrete Haar Wavelet Transform (DHWT) [7].It
operates as follows: the first few coefficients of DHWT decompo-
sition contain an approximation of the original time seriesat very
coarse resolution, while additional coefficients show information
in higher resolution. Given a set of time seriesx, we compute the
Haar Wavelet decomposition for every time seriesxi. The DHWT
computation is fast, takingO(L) for each time series.

By taking the first few coefficients of the Haar Wavelet decom-
position of the time series, we approximate the time series at very
coarse granularity. Thus, we first cluster the coarse-grained repre-
sentations of the time series using theK-SC algorithm. In this case
K-SC will be run very quickly and will also be robust with respect
to random initialization of the cluster centers. Then, we move to the
next level of resolution of the time series and use the assignments
from the previous iteration ofK-SC as the initial assignments at
the current level. We repeat this procedure until we reach the full
resolution of the time series, i.e., all wavelet coefficients are used.
Even when we are working with full resolution time series,K-SC
converges much faster than if we startedK-SC from a random ini-
tialization, since we start very closely from the optimal point. Alg.
2 gives the pseudo-code of the IncrementalK-SC algorithm.

3. EXPERIMENTAL RESULTS
Next we describe the data, experimental setup, and evaluation of

the clusters we find. We describe our findings in Section 4.

3.1 Experimental setup
First we apply our algorithm to a dataset of more than 172 mil-

lion news articles and blog posts collected from 1 million online
sources during a one-year period from September 1 2008 to Au-
gust 31 2009. We use the MemeTracker [22] methodology to iden-
tify short quoted textual phrases and extract more than 343 million
short phrases. To observe the complete lifetime of a phrase,we
only keep phrases that first appeared after September 5. Thisstep
removes the phrases quoted repeatedly without a reference to a cer-
tain event, such as ”I love you.”
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Figure 4: Width of the peak of the time series versus the frac-
tion of the threshold we set.

After these preprocessing steps, we choose the 1,000 most fre-
quent phrases and for each phrase create a time series of the number
of mentions (i.e., volume) per unit time interval. To reducerapid
fluctuation in the time series, we apply Gaussian kernel smoothing.

Choosing the time series length.In principle the time series of
each phrase containsL =8,760 elements (i.e., the number of hours
in 1 year). However, the volume of phrases tends to be concen-
trated around a peak [22], and thus taking such a long time series
would not be a good idea. For example, we measure the similar-
ity between two phrases that are actively quoted for one weekand
abandoned for the rest of the time. We would be interested mainly
in the differences of them during their active one week. However,
the differences in inactive periods may not be zero due to noise, and
these small differences can dominate the overall similarity since
they are accumulated over a long period. Therefore, we truncate
the time series to focus on the ”interesting” part of the timeseries.

To set the length of truncation, We measure how long the peak
popularity spreads out: letTp be the time when the phrase reached
peak volume, and letvp be the phrase volume at that time (i.e.,
number of mentions at hourTp). For a threshold,xvp (for 0 <
x < 1), we go back in time fromTp of a given phrases and record
asT1(x) the last time index when the phrase’s volume gets below
xvp. Next, we go forward in time fromTp and mark thefirst time
index when its volume gets below threshold asT2(x). Thus,T1(x)
measures the width of the peak from the left, andT2(x) measures
the width of the peak from the right.

Figure 4 plots the median value ofTp − T1(x), T2(x) − Tp

andT2(x) − T1(x) as a function ofx. We note that most phrases
maintain nontrivial volume for a very short time. For example, it
takes only 40 hours for the phrase volume to rise from 10% of the
peak volume, reach the peak, and fall again below 10% of the peak
volume. In general, the volume curve tends to be skewed to the
right (i.e.,Tp − T1(x) andT2(x) − Tp are far for smallx). This
means that in general the volume of phrases rather quickly reaches
its peak and then slowly falls off.

Given the above results, we truncate the length of the time series
to 128 hours, and shift it such that it peaks at the 1/3 of the entire
length of the time series (i.e., the 43th index).

Choosing the number of clusters.The K-SC algorithm, like all
the other variants of K-means, requires the number of clusters to
be specified in advance. Although it is an open question how to
choose the most appropriate number of clusters, we measure how
the quality of clustering varies with the number of clusters. We ran
K-SC with a different number of clusters, and measured Hartigan’s
Index and the Average Silhouette [17]. Figure 3.1 shows the values
of the two measures as a function of the number of clusters. The
higher the value the better the clustering. The two metrics do not
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Figure 5: Clustering quality versus the number of clusters.
Method F

∑
d̂(µi, µj)

2

(lower is better) (higher is better)

KM-NS 122.12 2.12
KM-P 76.25 3.94
K-SC 64.75 4.53

Table 1: Cluster quality. KM-NS: K-means with peak align-
ment but no scaling; KM-P: K-means with alignment and scal-
ing. NoticeK-SC well improves over K-means in both criteria.

necessarily agree with each other, but Figure 3.1 suggests that a
lower value ofK gives better results. We choseK = 6 as the
number of clusters. We also experimented withK ∈ {3, . . . , 12}
and found that clusterings are quite stable. Even whenK = 12,
all of 12 clusters are essentially the variants of clusters that we find
usingK = 6 (refer to extended version of the paper [1] for details).

3.2 Performance of K-SC Algorithm
Having described the data preprocessing andK-SC parameter

settings we evaluate the performance of our algorithm in terms of
quality and speed. We compare the result ofK-SC to that of K-
means, which uses the Euclidean time series distance metric. In
particular, we evaluate two variants of K-means that differin the
way we scale and align the time series. First, we align the time
series to peak at the same time but do not scale them in they-axis.
In the second variant we not only align the time series but also scale
them in they-axis so that they all have the peak volume of 100.

For each algorithm we compute two performance metrics: (a)
the value of the objective functionF as defined in Equation 2, and
(b) the sum of the squared distances between the cluster centers,∑

d̂(µi, µj)
2. FunctionF measures the compactness of the clus-

ter, while the distances between the cluster centers measure the di-
versity of the clusters. Thus, a good clustering has a low value of
F and large distances between the cluster centers. Table 1 presents
the results and shows thatK-SC achieves the smallest value ofF ,
and the biggest distance between the clusters. Note that it is not
trivial that K-SC achieves a bigger value of

∑
d̂(µi, µj)

2 than K-
means, becauseK-SC does not optimize

∑
d̂(µi, µj)

2. Manual
inspection of the clusters from each algorithm also suggests that
K-means clusters are harder to interpret thanK-SC clusters, and
their shapes are less diverse than those ofK-SC clusters. We also
experimented with normalizing the sum of each time series tothe
same value and standardization of the time series but were unable
to to make K-means work well (refer to [1] for details). We also
note thatK-SC does not require any kind of normalization, and
performs better than K-means with the best normalization method.

Scalability of K-SC . Last, we analyze the effect of the Wavelet-
based incremental clustering procedure in the runtime ofK-SC. In
our data set, we use relatively short time series (L = 128) andK-
SC can easily handle them. In the following experiment we show
that K-SC is generally applicable even if time series would span
for more than hundreds of time indexes.

We assume that we are dealing with much longer time series. In
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Figure 6: Runtime of Naive K-SC and Incremental K-SC .

particular, we takeL = 512 instead ofL = 128 for truncating
the time series, and run IncrementalK-SC five times increasing the
number of time series from 100 to 3,000. As a baseline, we per-
form K-SC without the incremental wavelet-based approach. Fig-
ure 6 shows the average values and the variances of the runtime
with respect to the size of the dataset. The incremental approach
reduces the runtime significantly. While the runtime of naive K-
SC grows very quickly with the size of the data, incrementalK-SC
grows much slower. Furthermore, notice also that the error bars on
the runtime of incrementalK-SC are very small. This means that
incrementalK-SC is also much more robust to the initialization of
the cluster centers than naiveK-SC in that it takes almost the same
time to perform the clustering regardless of the initial conditions.

4. EXPERIMENTS ON MEMETRACKER

Cluster C1 C2 C3 C4 C5 C6

fc 28.7% 23.2% 18.1% 13.3% 10.3% 6,4%
V 681 704 613 677 719 800
V128 463 246 528 502 466 295
VP 54 74 99 51 41 32
VP /V 7.9% 10.6% 16.2% 7.5% 5.7% 4.0%
Lb 1.48 0.21 1.30 1.97 1.59 -0.34
FB 33.3% 42.9% 29.1% 36.2% 45.0% 53.1%
FB128: 27.4% 35.6% 28.5% 32.6% 36.5% 53.4%

Table 2: Statistics of the clusters from Figure 7.fc: Fraction
of phrases in the cluster,V : Total volume (over 1 year)V128:
Volume around the peak (128 hours),VP : Volume at the peak
(1 hour), VP /V : Peak to total volume,Lb: Blog Lag (hours),
FB: Fraction of blog volume over 1 year,FB128: Fraction of
blog volume around the peak.

Now we describe the temporal patterns of the Memetracker phrases
as identified by ourK-SC algorithm. Figure 7 shows the cluster
centers forK = 6 clusters, and Table 2 gives further descriptive
statistics for each of the six clusters. We order the clusters so that
C1 is the largest andC6 is the smallest. Notice the high variabil-
ity in the cluster shapes. The largest three clusters in the top row
exhibit somewhat different but still very spiky temporal behavior,
where the peak lasts for less than 1 day. On the other hand, in the
latter three clusters the peak lasts longer than one day. Although
we present the clustering of the top 1,000 most frequent phrases,
more than half of the phrases lose their attention after a single day.

The biggest cluster,C1, is the most spread out of all the “single
peak” clusters that all share the common quick rise followedby a
monotone decay. Notice that C1 looks very much like the average
of all the phrases in Figure 1. This is natural because the aver-
age pattern would be likely to occur in a large number of phrases.
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Figure 7: Clusters identified by K-SC . We also plot the average of the time when a particular type ofwebsite first mentions the
phrases in each cluster. The horizontal position corresponds to the average time of the first mention. P: professional blog, N:
newspaper, A: news agency, T: TV station, B: blog aggregator.

ClusterC2 is narrower and has a quicker rise and decay thanC1.
WhereasC1 is not entirely symmetric, the rise and decay ofC2
occur at around the same rate.C3 is characterize by a super quick
rise just 1 hour before the peak and a slower decay thanC1 and
C2. The next two clusters,C4 andC5, experience a rebound in
their popularity and have two peaks about 24 hours apart. While
C4 experiences a big peak on the first day and a smaller peak on
the second day,C5 does exactly the opposite. It has a small peak
on the first day and a larger one on the second day. Finally, phrases
in ClusterC6 stay popular for more than three days after the peak,
with the height of the local peaks slowly declining.

Cluster statistics. We also collected statistics about the phrases
in each of the clusters (Table 2). For each cluster we computethe
following median statistics over all phrases in the cluster: the total
phrase volume over the entire 1 year period, volume in the 128
hour period around the peak, the volume during the hour around
the peak, and the ratio between the two. We also quantify the Blog
Lag as follows: we use the classification of Google News and label
all the sites indexed by Google News as mainstream media and all
the other sites as blogs [22]. Then for each phrase we define Blog
Lag as the difference between the median of the time when news
media quote the phrase and the median of the time when blogs
quote the phrase. Note that positive Blog Lag means that blogs
trail mainstream media. At last, we compute the ratio of volume
coming from the blogs to the total phrase volume for the two time
horizons, a one year and 128 hours around the peak.

We find that clusterC1 shows moderate values in most cate-
gories, confirming that this cluster is closest to a behaviorof a typ-
ical phrase. ClusterC2 andC3 have sharp peaks, but their total
volume around the peak is significantly different. This difference
comes from the reaction of mainstream media. Although both clus-
ters have higher peak than other clusters, 74 and 99 respectively, the

Number of websites 50 100 200 300

Temporal features 76.62% 81.23% 88.73% 95.75%
Volume features 70.71% 77.05% 86.62% 95.59%
TF-IDF features 70.12% 77.05% 87.04% 94.74%

Table 3: Classification accuracy of the clusters with a different
set of features. See the main text for description.

volume ofC2 coming from mainstream media is only 30% of that
of C3. Interestingly enough, the phrases inC3 have the largest
volume around the peak and also far the highest peak volume. The
dominant force here is the attention from news media, becauseC3
shows the smallest fraction of the blog volume. The next two clus-
ters,C4 andC5, have two peaks and are the mirror versions of
each other. They also show similar values for most categories. The
only difference is thatC4 has bigger volume from mainstream me-
dia and gets mentions from blogs for a longer time, which results
in the larger value of the total volume around the peak. The last
cluster,C6, is the most interesting one. The phrases inC6 have the
highest overall volume, but the smallest volume around the peak.
It seems that many phrases in this cluster correspond to hot topics
on which the blogosphere discusses for several days. Another in-
teresting aspect ofC6 is that the role of blogs in the cluster. It has
distinctively high fraction of the blog volume, and the onlycluster
where bloggers actually lead mainstream media.

Modeling the time series shape.Our analysis so far shows that
the clusters have very different characteristics as well asdiverse
shapes. Motivated by this result, we conduct a temporal analysis
for an individual website with respect to each cluster. We hypoth-
esize that if a certain website mentions the phrase this willcreate
distinctive temporal signature of the phrases. For example, from
Table 2 we see that blogs tend to mention the phrases in C6 ear-
lier. If the hypothesis is true, therefore, then we should beable



to predict to which cluster a phrase belongs to solely based on the
information about which websites mentioned the phrase. That is,
based on which sites mentioned the phrase we would like to predict
the temporal pattern the phrase will exhibit.

For each phrase we construct a feature vector by recording for
each website the time when it first mentioned the phrase. If a web-
site does not mention a phrase, we consider it as a missing data. We
impute the missing time as the average of the times when the web-
site first mentioned phrases. For comparison we also construct two
other feature vectors. For each website, we first record the fraction
of the phrase volume created by that website. In addition, wetreat
every phrase as a “document” and every site as a “word”, and then
compute the TF-IDF score [29] of each phrase.

Given feature vectors, we learn six separate logistic regression
classifiers so that thei-th classifier predicts whether the phrase be-
longs to thei-th cluster or not. Moreover, we vary the length of fea-
ture vectors (i.e., the number of the sites used by the classifier), by
choosing the largest websites in terms of phrase volume. We report
the average classification accuracy in Table 3. By using the infor-
mation from only 100 largest websites, we can predict the shape of
the phrase volume over time with the accuracy of 81%. Among the
three types of features, we observe that the features based on the
temporal information give best performance.

Time series shape and the types of websites.Encouraged by the
above results, we further investigate how websites contribute to the
shape of the phrase volume and interact each other in each cluster.
For the analysis we manually chose a set of 12 representativeweb-
sites. We manually classified them into five categories basedon the
organization or the role they play in the media space: Newspapers,
Professional blogs, TV, News agencies and Blogs (refer to the full
version for the used list of websites [1]).

First, we repeat the classification task from previous section but
now with only the 12 websites. Surprisingly, we obtain an average
classification accuracy of 75.2%. Moreover, if we choose 12 web-
sites largest by total volume we obtain accuracy of 73.7%. Byusing
thel1-regularized logistic regression to select the optimal (i.e., most
predictive) set of 12 websites we obtain the accuracy of 76.0%.

Second, using the classification of websites into 5 groups we
compute the time when websites of that type tend to mention the
phrases in particular cluster. Figure 7 shows the measured average
time for each type of website. Letters correspond to the types of
websites and the horizontal position of letters corresponds to the
average time of the first mention. For example, it is the profes-
sional bloggers (P) that first mention the phrases in ClusterC1 and
C2. For phrases inC1, this is followed by newspapers (N), news
agencies (A), then television (T) and finally by bloggers (B). InC2
the order is a bit different but the point is that all types mention
the phrase very close together. Interestingly, for the phrases inC3
news agencies (A) mention the phrase first. Notice thatC3 has the
heaviest tail among all the single-peak clusters. It is probably due to
the fact that many different organizations subscribe and publish the
articles from news agencies, and thus the phrases inC3 slowly per-
colates into online media. We observe the process of percolation by
looking at the time values in Figure 7: starting from news agencies
to newspapers and professional bloggers, and finally to TV stations
and small bloggers. InC4 andC5, we note that it is the blog-
gers that make the difference. InC4 bloggers come late and create
the second lower spike, while inC5 bloggers (both small ones and
professional ones) are the earliest types. Finally, the phrases inC6
gain the attention mainly on the blogosphere. We already sawthat
this cluster has the highest proportion of the blog volume. Again,
we note that bloggers mention the phrases in this cluster right at the
peak popularity and later the rest of the media follows.

5. EXPERIMENTS ON TWITTER
We also analyze the temporal patterns of attention of content

published on Twitter. In order to identify and trace contentthat
appears on Twitter we focus on appearance of URLs and “hash-
tags”. Users on Twitter often make references to interesting content
by including the URL in post. Similarly, many tweets are accom-
panied by hashtags (e.g.,]ilovelifebecause), short textual tags that
get widely adopted by the Twitter community. Links and hashtags,
adopted by the Twitter users, represent specific pieces of informa-
tion that we can track as they get adopted across the network.Sim-
ilarly as with the quoted phrases, our goal here is applyingK-SC
in order to identify patterns in the temporal variation of the popu-
larity of a hashtags and URLs mentioned in tweets and to explain
the patterns based on individual users’ participation.

Data Preparation. We collected nearly 580 million Twitter posts
from 20 million users covering a 8 month period from June 2009to
February 2010. We estimate this is about 20-30% of all posts pub-
lished on Twitter during that time frame. We identified 6 million
different hashtags and 144 million URLs mentioned in these posts.
For each kind of items of content (i.e., separately for URLs and the
hashtags) we discard items which exhibit nearly uniform volume
over time. Then we order the items by their total volume and focus
on 1,000 most frequently mentioned hashtags (URLs) and 100,000
users that mentioned these items most frequently.

Analysis of the results. We present the results of identifying the
temporal patterns of Twitter hashtags. We note that we obtain very
similar results if using URLs. For each hashtag, we build a time
series describing its volume following exactly the same protocol as
with quoted phrases. We use 1 hour time unit and truncate the series
to 128 hours around the peak volume with the peak at occurringat
1/3 of 128 hours. We runK-SC on these time series and present
the shapes of identified cluster centroids in the Figure 8.

Whereas mass media and blogs mention phrases that are related
to certain pieces of news or events, most Twitter users adopthash-
tags entirely by personal motivation to describe their moodor cur-
rent activity. This difference appears in Figure 8 in that most hash-
tags maintain nonzero volume over the whole time period. This
means that there always exist a certain number of users who men-
tion a hashtag even if it is outdated or old. Nevertheless, the pat-
terns of temporal variation in the hashtag popularity are very con-
sistent with the clusters of temporal variation of quoted phrases
identified in Figure 7. We can establish a perfect correspondence
between the classes of temporal variation of these two very dif-
ferent types of online content, namely quoted phrases and Twitter
hashtags (and URLs). We arrange the clusters in Figure 8 in the
same order as in Figure 7 so thatT1 corresponds toC1, T2 toC2,
and so on. These results are very interesting especially consider-
ing that the motivation for people in Twitter to mention hashtags
appears to be different from mechanisms that drive the adoption of
quoted phrases. Although we omit the discussion of the temporal
variation of URL mentions due to brevity, we note that the obtained
clusters are nearly identical to the hashtag clusters (see [1]).

Table 4 gives further statistics of Twitter hashtag clusters. Com-
paring these statistics to characteristics of phrase clusters (Table 2)
we observe several interesting differences. The largest Twitter clus-
ter (T2) has more phrases than the largest phrase cluster (C1),
while the smallest Twitter cluster has more members than smallest
phrase cluster. This shows that sizes of Twitter clusters are some-
what more skewed. Moreover, we also note that Twitter clusters
are less concentrated around the peak volume, with the peak vol-
ume accounting for only around 2-5% of the total volume (in phrase
clusters peak accounts for 4-16% of the total volume).



Cluster T1 T2 T3 T4 T5 T6

fc 16.1% 35.1% 15.9% 10.9% 13.7% 8.3%
V 4083 3321 3151 3253 3972 3177
V128 760 604 481 718 738 520
VP 86 169 67 60 67 53
VP /V 2.1% 5.1% 2.1% 1.8% 1.7% 1.7%

Table 4: Twitter hashtag cluster statistics. Table 2 gives the
description of the symbols.

Number of features 50 100 200 300

Temporal features 69.53% 78.30% 88.23% 95.35%
Volume features 66.31% 71.84% 81.39% 92.36%
TF-IDF features 64.17% 70.12% 79.54% 89.93%

Table 5: Classification accuracy of the clusters in Twitter with a
different set of features. Refer to the main text for description.

Next we also perform the predictive task of predicting the shape
of volume over time curve for Twitter hashtags. Twitter datais very
sparse as even the most active most users mention only about 10 to
50 different hashtags. Thus we order users by the total number of
hashtags they mention, collect them into groups of 100 users, and
measure the collective behavior of each group of users.

For each hashtag, we build a feature vector wherei-th compo-
nent stores the time of the earliest mention of the tag by any user
in the groupi. Similarly as with quoted phrases we construct a fea-
ture vector based on the fraction of the mentions from each group,
and another feature vector based on the TF-IDF score treating hash-
tags as “documents” and user groups as “words”. For each cluster,
we perform a binary classification for a cluster against the rest us-
ing the logistic regression, and report the average accuracy over
the six classification tasks in the Table 5. Again, the temporal fea-
tures achieve best accuracy, suggesting that the time when auser
group adopts a hashtag is an important factor in determininghow
the popularity of the hashtag will vary over time. We also note that
the accuracies are lower than for quoted phrases (Table 3) and the
gap gets larger as we choose a smaller number of features. This
gap suggests that a small number of large famous media sites and
blogs has a much greater influence on the adoption of news media
content than the most active groups of users have on the adoption of
Twitter hashtags. Even though the large scale temporal dynamics of
attention of Twitter and news media content seems similar. These
results hint that the adoption of quoted phrases tends to be much
quicker and driven by a small number of large influential sites. On
the other hand, in Twitter it appears as if the influentials are much
less influential and have smaller cumulative impact on the content
popularity.

6. RELATED WORK
There are two distinct lines of work related to the topics pre-

sented here: work on temporal dynamics of human activity, and
research on the general time series clustering.

Temporal dynamics of human activity. Patterns of human atten-
tion [34, 35], popularity [24, 30] and response dynamics [6,10]
have been extensively studied. Research investigated temporal pat-
terns of activity of news articles [5, 30], blogposts [3, 14,21, 27],
Videos [10] and online discussion forums [4]. Our work here is
different as we are not trying to find a unifying global model of
temporal variation but rather explore techniques that allow us to
quantify what kinds of temporal variations exist on the Web.In this
light, our work aligns with the researches on Web search queries
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Figure 8: Shapes of attention of Twitter hashtags.

that find temporal correlation between social media [2] or queries
whose temporal variations are similar each other [8]. Aftertempo-
ral patterns are identified, one can then focus on optimizingmedia
content placement to maximize clickthrough rates [5], predicting
the popularity of news [30] or finding topic intensities streams [19].

Time series clustering.Two key components of time series clus-
tering are a distance measure [11], and a clustering algorithm [32].
While the Euclidean distance is a classical time series distance met-
ric, more sophisticated measures such as the Dynamic Time Warp-
ing and the Longest Common Subsequence [18] have also been
proposed. Among clustering algorithms, the agglomerativehier-
archical [20] and the K-means clustering [28] are frequently used.
Due to its simplicity and scalability, K-means inspired many vari-
ants such as k-medoids[17], fuzzy K-means [17], and the Expecta-
tion Maximization based variant [28]. To address the issuescaused
by the high dimensionality of time series data, transforms such as
Discrete Fourier Transform, Discrete Haar Wavelet Transform [7],
Principal Component Analysis and Symbolic Aggregate Approxi-
mation [25] have also been applied.

7. CONCLUSION
We explored temporal patterns arising in the popularity of online

content. First we formulated a time series clustering problem and
motivated a measure of time series similarity. We then developed
K-SC, a novel algorithm for time series clustering that efficiently
computes the cluster centroids under our distance metric. Finally,
we improved the scalability ofK-SC by using a wavelet-based in-
cremental approach.

We investigated the dynamics of attention in two domains. A



massive dataset of 170 million news documents and a set of 580
million Twitter posts. The proposedK-SC achieves better cluster-
ing than K-means in terms of intra-cluster homogeneity and inter-
cluster diversity. We also found that there are six different shapes
that popularity of online content exhibits. Interestingly, the shapes
are consistent across the two very different domains of study, namely,
the short textual phrases arising in news media and the hashtags
on Twitter. We showed how different participants in online me-
dia space shape the dynamics of attention the content receives.
And perhaps surprisingly based on observing a small number of
adopters of online content we can reliably predict the overall dy-
namics of content popularity over time.

All in all, our work provides means to study common temporal
patterns in popularity and the attention of online content,by iden-
tifying the patterns from massive amounts of real world data. Our
results have direct application to the optimal placement ofonline
content [5]. Another application of our work is the discovery of the
roles of websites which can improve the identification of influential
websites or Twitter users [23]. We believe that our approachoffers
a useful starting point for understanding the dynamics in the online
media and how the dynamics of attention evolves over time.

Acknowledgment
We thank Spinn3r for resources that facilitated the research, and
reviewers for helpful suggestions. Jaewon Yang is supported by
Samsung Scholarship. The research was supported in part by NSF
grants CNS-1010921, IIS-1016909, Albert Yu & Mary Bechmann
Foundation, IBM, Lightspeed, Microsoft and Yahoo.

8. REFERENCES
[1] Extended version of the paper. Patterns of temporal variation

in online media. Technical Report, Stanford Infolab, 2010.
[2] E. Adar, D. Weld, B. Bershad, and S. Gribble Why We

Search: Visualizing and Predicting User Behavior. InWWW
’07, 2007.

[3] E. Adar, L. Zhang, L. A. Adamic, and R. M. Lukose. Implicit
structure and the dynamics of blogspace. InWorkshop on the
Weblogging Ecosystem, 2004.

[4] C. Aperjis, B. A. Huberman, and F. Wu. Harvesting
collective intelligence: Temporal behavior in yahoo answers.
ArXiv e-prints, Jan 2010.

[5] L. Backstrom, J. Kleinberg, and R. Kumar. Optimizing web
traffic via the media scheduling problem. InKDD ’09, 2009.

[6] A.-L. Barabási. The origin of bursts and heavy tails in human
dynamics.Nature, 435:207, 2005.

[7] F. K.-P. Chan, A. W. chee Fu, and C. Yu. Haar wavelets for
efficient similarity search of time-series: With and without
time warping.IEEE TKDE, 15(3):686–705, 2003.

[8] S. Chien and N. Immorlica. Semantic Similarity between
Search Engine Queries Using Temporal Correlation. In
WWW ’05, 2005.

[9] K. K. W. Chu and M. H. Wong. Fast time-series searching
with scaling and shifting. InPODS ’99, 237–248, 1999.

[10] R. Crane and D. Sornette. Robust dynamic classes revealed
by measuring the response function of a social system.
PNAS, 105(41):15649–15653, October 2008.

[11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh. Querying and mining of time series data:
experimental comparison of representations and distance
measures.VLDB., 1(2):1542–1552, 2008.

[12] G. H. Golub and C. F. Van Loan.Matrix computations (3rd
ed.). Johns Hopkins University Press, 1996.

[13] D. Gruhl, R. Guha, R. Kumar, J. Novak, and A. Tomkins.
The predictive power of online chatter. InKDD ’05, 2005.

[14] D. Gruhl, D. Liben-Nowell, R. V. Guha, and A. Tomkins.
Information diffusion through blogspace. InWWW, 2004.

[15] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter:
understanding microblogging usage and communities. In
WebKDD workshop, pages 56–65. 2007.

[16] E. Katz and P. Lazarsfeld.Personal influence: The part
played by people in the flow of mass communications. Free
Press, 1955.

[17] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data:
An Introduction to Cluster Analysis (Wiley Series in
Probability and Statistics). Wiley-Interscience, March 2005.

[18] E. Keogh and C. Ratanamahatana. Exact indexing of
dynamic time warping.Knowledge and Information Systems,
7(3):358–386, 2005.

[19] A. Krause, J. Leskovec, and C. Guestrin. Data association for
topic intensity tracking. InICML ’06, 2006.

[20] M. Kumar, N. R. Patel, and J. Woo. Clustering seasonality
patterns in the presence of errors. InKDD ’02, 2002.

[21] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the
bursty evolution of blogspace. InWWW ’02, 2003.

[22] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking
and the dynamics of the news cycle. InKDD ’09, 2009.

[23] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective outbreak
detection in networks. InKDD ’07, 2007.

[24] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and
M. Hurst. Cascading behavior in large blog graphs. InSDM
’07, 2007.

[25] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic
representation of time series, with implications for streaming
algorithms. InSIGMOD ’03, 2003.

[26] R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A.
A. N. Amaral. A poissonian explanation for heavy tails in
e-mail communication.PNAS, 105(47):18153–18158, 2008.

[27] Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach
to spatiotemporal theme pattern mining on weblogs. In
WWW ’06, 2006.

[28] J. L. Michail, J. Lin, M. Vlachos, E. Keogh, and
D. Gunopulos. Iterative incremental clustering of time series.
In EDBT, 2004.

[29] G. Salton and M. J. McGill.Introduction to Modern
Information Retrieval. McGraw-Hill, 1986.

[30] G. Szabo and B. A. Huberman. Predicting the popularity of
online content.ArXiv e-prints, Nov 2008.

[31] X. Wang, C. Zhai, X. Hu, and R. Sproat. Mining correlated
bursty topic patterns from coordinated text streams. InKDD
’07, page 793, 2007.

[32] T. Warren Liao. Clustering of time series data - a survey.
Pattern Recognition, 38(11):1857–1874, 2005.

[33] D. J. Watts and P. S. Dodds. Influentials, networks, and
public opinion formation.Journal of Consumer Research,
34(4):441–458, December 2007.

[34] F. Wu and B. A. Huberman. Novelty and collective attention.
PNAS, 104(45):17599–17601, 2007.

[35] S. Yardi, S. A. Golder, and M. J. Brzozowski. Blogging at
work and the corporate attention economy. InCHI ’09, 2009.


