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ABSTRACT

Online content exhibits rich temporal dynamics, and dieaesal-
time user generated content further intensifies this psoceew-
ever, temporal patterns by which online content grows adéda
over time, and by which different pieces of content compete f
attention remain largely unexplored.

We study temporal patterns associated with online contedt a
how the content’s popularity grows and fades over time. The a
tention that content receives on the Web varies dependimgaoy
factors and occurs on very different time scales and atrdifite
resolutions. In order to uncover the temporal dynamics dihen
content we formulate a time series clustering problem usisigni-
larity metric that is invariant to scaling and shifting. Wevelop the
K-Spectral Centroid K-SC) clustering algorithm that effectively
finds cluster centroids with our similarity measure. By spyd
an adaptive wavelet-based incremental approach to dlugteve
scaleK-SC to large data sets.

We demonstrate our approach on two massive datasets: a set of

580 million Tweets, and a set of 170 million blog posts and iew
media articles. We find tha-SC outperforms the K-means clus-
tering algorithm in finding distinct shapes of time seriesir @nal-
ysis shows that there are six main temporal shapes of atteafi
online content. We also present a simple model that relipkgy
dicts the shape of attention by using information about argynall
number of participants. Our analyses offer insight into wn
temporal patterns of the content on the Web and broaden tiex-un
standing of the dynamics of human attention.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Clustering]

General Terms
Algorithm, Measurement
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Figure 1: Short textual phrases and Twitter hashtags exhiti
large variability in number of mentions over time.

1. INTRODUCTION

Online information is becoming increasingly dynamic and th
emergence of online social media and rich user-generatetgmo
further intensifies this phenomena. Popularity of varioiesgs of
content on the Web, like news articles [30], blog posts [21], 2
Videos [10], posts in online discussion forums [4] and picide-
views [13], vary on very different temporal scales. For egm
content on micro-blogging platforms, like Twitter [15, 344 very
volatile, and pieces of content become popular and fade away
matter of hours. Short quoted textual phrases (“memesg)aixl
decay on a temporal scale of days, and represent the infeatal
of the “news cycle.” [22] Temporal variation of named emttiand
general themes (like, “economy” or “Obama”) exhibits vadas
at even larger temporal scale [3, 14, 31].

However, uncovering patterns of temporal variation on thebW
is difficult because human behavior behind the temporahtian
is highly unpredictable. Previous research on the timingrofn-
dividual's activity has reported that human actions ramgenfran-
dom [26] to highly correlated [6]. Although the aggregateamy-
ics of individual activities tends to create seasonal tsamrdsimple
patterns, sometimes collective actions of people and fieetefof
personal networks result in a deviation from trends. Moegoall
individuals are not the same. For example, some act as “mflue
tials” [33]. The overall picture of temporal activity on thieb
is even more complex due to the interactions between ina&d
small groups, and corporations. Bloggers and mainstreadiame
are both producing and pushing new content into the systéin [1
The content then gets adopted through personal social rehand
discussed as it diffuses through the Web. Despite extensiad-
tative research, there has been little work about tempatiéms
by which content grows and fades over time and by which daiffer
pieces of content compete for attention during this pracess



Temporal patterns of online content. Here we study what tem-
poral patterns exist in the popularity of content in sociadia.
The popularity of online content varies rapidly and extsbitany
different temporal patterns. We aim to uncover and detech su
temporal patterns of online textual content. More spedificeve
focus on the propagation of the hashtags on Twitter, and tloe g
tation of short textual phrases in the news articles and-plsis
on the Web. Such content exhibits rich temporal dynamics [21
22, 26] and is a direct reflection of the attention that pegplg to
various topics. Moreover, the online media space is occupie
a wide spectrum of very distinct participants. First of dfiere
are many personal blogs and Twitter accounts, with a religtiv
small readership. Secondly, there are professional bfsgaed
small community-driven or professional online media sifés,
The Huffington Post) that have specialized interests angores
quickly to events. Finally, mainstream mass media, like Ta s
tions (e.g., CNN), large newspapers (e.g., The Washingtist) P
and news agencies (e.g., Reuters) all produce content afdifpu
to the other contributors mentioned above. We aim to unaedst
what kinds of temporal variations are exhibited by onlinateat,
how different media sites shape the temporal dynamics, dvat w
kinds of temporal patterns they produce and influence.

The approach. We analyze a set of more than 170 million news
articles and blog posts over a period of one year. In additian
examine the adoption of Twitter hashtags in a massive se8@f 5
million Twitter posts collected over a 8 month period. We smea
the attention given to various pieces of content by tradiegium-
ber of mentions (i.e., volume) over time. We formulate a teee
ries clustering problem and use a time series shape sityitagt-

ric that is invariant to the total volume (popularity) ane tiime of
peak activity. To find the common temporal patterns, we agvel
a K-Spectral Centroid-SC) clustering algorithm that allows the
efficient computation of cluster centroids under our distamet-
ric. We find thatK-SC is more useful in finding diverse temporal
patterns than the K-means clustering algorithm [17]. Wesbtgy
an incremental approach based on Haar Wavelets to impreve th
scalability ofK-SC for high-dimensional time series.

Findings. We find that temporal variation of popularity of content
in online social media can be accurately described by a seadf
time series shapes. Surprisingly, we find that both of thetolo
of hashtags in Twitter and the propagation of quoted phrases
the Web exhibit nearly identical temporal patterns. We fimat t
such patterns are governed by a particular type of onlineianed
Most press agency news exhibits a very rapid rise followeé by
relatively slow decay. Whereas, bloggers play a very ingtntole
in determining the longevity of news on the Web. Depending on
when bloggers start participating in the online discoubhsertews
story may experience one or more rebounds in its popularity.
Moreover, we present a simple predictive model which, based
timings of only few sites or Twitter users, predicts with 75%g¢u-
racy which of the temporal patterns the popularity timeesewill
follow. We also observe complex interactions between wifie
types of participants in the online discourse.

Consequences and applicationdvore generally, our work devel-
ops scalable computational tools to further extend undeditg

of the roles of different participants play in the online rizespace.
We find that the collective behavior of various participagaserns
how we experience new content and react to it. Our resulte hav
direct applications for predicting the overall populadtyd tempo-

ral trends exhibited by the online content. Moreover, ogults
can be used for better placing of content to maximize clickigh
rates [5] and for finding influential blogs and Twitters [23].

2. FINDING TEMPORAL PATTERNS

In this section, we formally define the problem and then psepo
K-Spectral CentroidK-SC) clustering algorithm.

We start by assuming that we are given a time series of mention
or interactions with a particular piece of contents. Thisldde a
time series of clicks or plays of a popular video on YouTube, t
number of times an article on a popular newspaper website was
read, or the number of times that a popular hashtag in Twitter
used. Now we want to find patterns in the temporal variation of
time series that are shared by many pieces of content.

We formally define this as a problem of clustering time series
based on their shape. Given that online content has largggicar
in total popularity and occurs at very different times, wdl fiist
adopt a time series similarity metric that is invariant talswg and
shifting. Based on this metric, we develop a novel algoritiom
clustering time series. Finally, we present a speed-umtguak that
greatly reduces the runtime and allows for scaling to laagasets.

2.1 Problem definition

We are givenV items of contents and for each iteimve have
a set of traces of the forifs;, t;);, which means that site; men-
tioned item; at time¢;. From these\V traces, we then construct
a discrete time series; (t) by counting the number of mentions of
item< at time intervak. Simply, we create a time series of the num-
ber of mentions of item at timet wheret’s measured in some time
unit, e.g., hours. Intuitively;; measures the popularity or attention
given to item: over time. For convenience let us also assume that
all time seriese; have the same lengti,. The shape of the time
seriesz; simply represents how the popularity or attention to item
i changed over time. We then aim to group together items so that
items's in the same group have a similar shape of the time series
This way we can infer what items have a similar temporal patte
of popularity, and we can then consider the center of eacsteriu
as the representative common pattern of the group.

2.2 Measure of time series shape similarity

In order to perform the clustering based on the shape of ¢ne it
popularity curve, we first discuss how we can measure theeshap
similarity of two time series.

Figure 1 shows an example of temporal variability in the num-
ber of mentions of different textual phrases and Twitterhlegs.

We plot the average popularity curve of 1,000 phrases witfekt
overall volume (after aligning them so that they all peathatsame
time). The figure shows two individual phrases. First is thetg
from U.S. president Barack Obama about the stimulus ‘Bilkill
sign this legislation into law shortly and we’ll begin magithe
immediate investments necessary to put people back to worg d
the work America needs donedhd the second is tH&ipstick on

a pig” phrase from the 2008 U.S. presidential election campaign.
Notice the large difference among the patterns. Whereangee
phrases almost symmetrically rise and fade, the “Lipstitia ig”
has two spikes with the second being higher than the firsteuitine
stimulus bill phrase shows a long streak of moderate agtivit

A wide range of measures of time series similarity and apgres.
to time series clustering have been proposed and investigetiow-
ever, the problem we are addressing here has several dréstcs
that make our setting somewhat different and thus common met
rics such as Euclidean or Dynamic Time Warping are inapjpaitgr
in our case for at least two reasons. First, if two time semngse
very similar shape but different overall volume, they slosiill
be considered similar. Thus, scaling the time series onythgis
should not change the similarity. Second, different itemgear
and spike at different times. Again, even though two timéeser



may be shifted, they should be considered similar provided t
they have similar shape. Thus, translating time series eriiitie
axis should not change the similarity between the two tinese

Time series similarity measure.As described above we require a
time series similarity measure that is invariant to scading trans-
lation and allows for efficient computation.

Since the time series of popularity of items on the Web typica
exhibit bursty and spiky behavior [10], one could addressith
variance to translation by aligning the time series to pdatha
same time. Even so, many challenges remain. For example, wha
exactly do we mean by “peak”? Is it the time of the peak popular
ity? How do we measure popularity? Should we align a smoothed
version of the time series? How much should we smooth?

Even if we assume that somehow peak alignment works, the
overall volume of distinct time series is too diverse to bediy
compared. One might normalize each time series by somegnece
sarily arbitrary) criteria and then apply a simple distanteasure
such as Euclidian norm. However, there are numerous way®o n
malize and scale the time series. We could normalize so dkedt t
time series volume is 1, that the peak volume is 1, etc.

For example, Figure 2 illustrates the ambiguity of choosing
time series normalization method. Here we aim to group tienes
S1,..., S4in two clusters, where S1 and S2 have two peaks and
S3 and S4 have only one sharp peak. First we align and scade tim
series by their peak volume and run the K-Means algorithmgusi
Euclidean distance (bottom figures in (B) and (C)). (We ckdbis
time series normalization method because we found it tooparf
best in our experiments in Section 3.) However, the K-Medns a
gorithm identifies wrong clusters {S2, S3, S4} and {S4}. Thss
because the peak normalization tends to focus on the glaadi p
and ignores other smaller peaks (figure (B)). To tackle thibp
lem we adopt a different time series distance measure arelagev
a new clustering algorithm, which does not suffer from suehay-
ior, i.e., it groups together the two peaked time series SIS
and puts single peaked time series S3 and S4 in the otheerclust

First, we adopt a distance measure that is invariant toregald
translation of the time series [9]. Given two time serieendy, the
distanced(z, y) between them is defined as follows:

d(x,y) = min Iz~ oyl @)
wa ]l
wherey,) is the result of shifting time serigg by ¢ time units,
and|| - || is thelz norm. This measure finds the optimal alignment

(translationg) and the scaling coefficieat for matching the shapes
of the two time series. The computational complexity of tper-
ation is reasonable since we can find a closed-form expressio

compute the optimad for fixed q. With ¢ fixed, W is a

convex function ofa, and therefore we can find the optimalby

(L'T’ 7
setting the gradient to zera: = Hy(y;“"g. Also, note thatl(x, y)
q

is symmetric inz andy (refer to extended version for details [1]).
Whereas one can quickly find the optimal valuexgthere is no
simple way to find the optimaj. In practice we first find alignment
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Figure 3: (a) A cluster of 7 single-peaked time series: 6 hawbe
shape M1, and one has the shape M2. (b) The cluster centers
found by K-Means (KM) and KSC. The KSC cluster center is
less affected by the outlier and better represents the comnmo
shape of time series in the cluster.

K-means clustering algorithm [17] but enables efficienttazd
computation under the scale and shift invariant distandeicrteat

we use. K-means iterates a two step procedure, the assigatapn
and the refinement step. In the assignment step, K-meamgnassi
each item to the cluster closest to it. In the refinement dtep t
cluster centroids are then updated. By repeating these teps,s
K-means minimizes the sum of the squared Euclidean distance
between the members of the same cluster. Simila¢hsC al-
ternates the two steps to minimize the sum of squared dissanc
but the distance metric is not Euclidean but our distanceimet
d(z,y). As K-means simply takes the average over all items in the
cluster as the cluster centroid, this is inappropriate wvenuse
our metricd(z, y). Therefore, we develop a K-Spectral Centroid
(K-SC) clustering algorithm which appropriately computes aust
centroids under time series distance meiie, y).

For example, in Figure 2K-SC discovers the correct clusters
(blue group in panel (A)). Whed(m,y) is used to compute the
distance between S2 and the other time seii¢s, ) finds the
optimal scaling of other time series with respect to S2. Tl$dnis
much closer to S2 than S3 and S4, as it can match the variation i
the second peak of S2 with the proper scaling (panel B). Bexau
of accurate clustering{-SC computes the common shape shared
by the time series in the cluster (panel C).

Moreover, even if K-means and-SC find a same clustering,
the cluster center found kiy-SC is more informative. In Figure 3,
we show a cluster of single-peaked time series, and try terubs
the common shape of time series in the cluster by computing a
cluster center by K-means a@SC. Since the cluster has 6 time
series of the same shape (M1) and one outlier (M2), we want the
cluster center to be similar to M1. Observe tKaSC finds a better
center than K-means. As K-means computes the average shape o
time series for a cluster center, the resulting center isiges to
outliers. Wheread{-SC scales each time series differently to find
a cluster center, and this scaling decreases the influermélars.

More formally, we are given a set of time series and the num-

¢’ that makes the time series to peak at the same time and thenper of clustersk. The goal then is to find for each clusteran

search for optimal; aroundq’. In our experiments, the starting
point ¢’ is very close to the optimal since most of our time series
have a very sharp peak volume, as shown in Section 3. Thetefor
this heuristic findg that is close to the optimal very quickly.

2.3 K-Spectral Centroid Clustering

Next, we present the K-Spectral Centrokt+§C) clustering al-
gorithm that finds clusters of time series that share a distem-
poral patternK-SC is an iterative algorithm similar to the classical

assignment}, of time series to the cluster, and the centrpjdof
the cluster that minimize a functiafi defined as follows:

K
F:Z Z cf(m,p,kf.

k=1z;€C},

@)

We start theK-SC algorithm with a random initialization of the
cluster centers. In the assignment step, we assign eatt the
closest cluster, based affz,y). This is identical to the assign-
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Figure 2: (A) Four time series, S1, .., S4. (B) Time series after scaling and alignment. (C) Clustecetroids. K-Means wrongly puts
{S1}inits own cluster and {S2, S3, S4} in the second clustemhile K-SC nicely identifies clusters of two vs. single peaked time s&s.

ment step of K-means except that it uses a different distarete
ric. After finding the cluster membership of every time seriwe
update the cluster centroid. Simply updating the new ceagehe
average of all members of the cluster is inappropriate, iaggimot

the minimizer of the sum of squared distances to memberseof th

cluster (underd(x, y)). The new cluster center;, should be the
minimizer of the sum ofl(x;, 1x)? over allz; € Cy:

[y = arg mln Z (zi, )" 3)

z,€Cy

SinceK-SC is an iterative algorithm it needs to update the cluster

centroids many times before it converges. Thus it is cruoifind
an efficient way to solve the above minimization problem.

Next, we show that Eg. 3 has a unique minimizer that can be

expressed in a closed form. We first combine Egs. 1 and 3.

lloiig,) — pll?

uk:argmln Z min ME
m

@594
z, €CY, o

Since we find the optimal translatiep in the assignment step of
K-SC, consider (without the loss of generality) thatis already
shifted byg;. We then replace; with its optimal value (Sec. 2.2):

Hi. = argmin T ||2 2, ”||:c P Al

We flip the order ofc? pz; and simplify the expression:

i, = argmin s Z (AT
Iz || ]

LELI)
=argmin 3 ([T -
Tl 22 ]

argmln /,L Z
I ||2 R e

Finally, substitutingy -, .., (I — ) by M leads to the fol-

lowing minimization problem

Hx? H2

T
el (4)

Wy = arg mm
el ?

Algorithm 1 K-SC clustering algorithm: K-SG(,C, K)
Require: Time seriese;, ¢ = 1,2, ..., N, The number of clusters
K, Initial cluster assignments' = {C1,..,Ck }
repeat
C+C
for j =1to K do {RefineTment step}
M Sieo (I - 57)
u;j < The smallest eigenvector af
Cj < (Z)
end for
for ¢ = 1 to N do {Assignment step}
j" < argminj=1, r d(zi, j1;)
Oj* <~ Oj* U {Z}
end for
until ¢ = C
return C, i, ..., i

The solution of this problem is the eigenvectgy, corresponding
to the smallest eigenvalue,, of matrix M [12]. If we transformu

by multiplying the eigenvectors dif, thenp” M. is equivalent to
the weighted sum of the eigenvaluesidf whose smallest element
is Am||i2||>. Therefore, the minimum of Eq. 4 is,, and letting

1 = ., achieves the minimum. A3/ is given byz;'s, we simply
find the smallest eigenvector @f for the new cluster center;;.
Sincey;, minimizes the spectral norm @i/, we call 4;, the Spec-
tral Centroid, and call the whole algorithm the K-Spectral Centroid
(K-SC) clustering (Algorithm 1).

2.4 Incremental K-SC algorithm

Since our time series are usually quite long and go into hedsdr
and sometime thousands of elements, scalabilitg-&C is impor-
tant. Let us denote the number of time seriesNythe number
of clusters byK, and the length of the time series iy The re-
finement step oK-SC computesM first, and then finds its eigen-
vectors. Computing/ takesO(L?) for eachz;, and finding the
eigenvectors of\/ takesO(L?®). Thus, the runtime of the refine-
ment step is dominated b9 (max(NL? KL?)). However, the
assignment step takes ord®)( K N L), and therefore the complex-
ity of one iteration ofK-SC is O(max(NL?, KL?)).

A cubic complexity inL is clearly an obstacle foK-SC to be
used on large datasets. Moreover, there is another reaspapyh



Algorithm 2 Incremental K-SC 40 -

T T T P
Require: Time seriese;, ¢ = 1,2, ..., N, The number of clusters 35 L %%%gg:gﬂg . 4
K, Initial assignments” = {C4,..,Ck}, Start levelS, The g T2-T1(median)
length ofz;’s L e
for i = 1to N do £
z; + Discrete Haar Wavelet Transform =
end for s
for j = Stolog,(L) do &
fori=1toN do ) 0 | | | 1 1 I
yi < Inverse Discrete Haar Wavelet Transfoes{( : 27)) 01 02 03 04 05 06 07 08
{Zi(l . n) means the first elements ot;} Ratio of the threshold to the peak value
end for Figure 4: Width of the peak of the time series versus the frac-
(C s ooy ) <= K-SC,C,K) tion of the threshold we set.

end for

rewrn G p, ..o pic After these preprocessing steps, we choose the 1,000 neest fr

quent phrases and for each phrase create a time series ofixen
of mentions (i.e., volume) per unit time interval. To reduepid
plying K-SC directly to high dimensional data is not desirable. fluctuation in the time series, we apply Gaussian kernel shiog.
Like K-means,K-SC is a greedy hill-climbing algorithm for op-
timizing a non-convex objective function. SinéeSC starts at
some initial point and then greedily optimize the objectivac-
tion, the rate of convergence is very sensitive to the ilitgion of
the cluster centers [28]. If the initial centers are pooHgsen, the
algorithm may be very slow, especially¥ or L are large.

We address these two problems by adopting an approach simi-
lar to Incremental K-means [28] which utilizes the multsoéution
property of the Discrete Haar Wavelet Transform (DHWT) [[].
operates as follows: the first few coefficients of DHWT decomp
sition contain an approximation of the original time sed¢sery
coarse resolution, while additional coefficients show iinfation
in higher resolution. Given a set of time serigsave compute the
Haar Wavelet decomposition for every time serigsThe DHWT
computation is fast, takin@ (L) for each time series.

By taking the first few coefficients of the Haar Wavelet decom-
position of the time series, we approximate the time setiesry
coarse granularity. Thus, we first cluster the coarse-gtarepre-
sentations of the time series using #&SC algorithm. In this case
K-SC will be run very quickly and will also be robust with respect
to random initialization of the cluster centers. Then, weveio the
next level of resolution of the time series and use the assigis
from the previous iteration oK-SC as the initial assignments at
the current level. We repeat this procedure until we reaeHuh
resolution of the time series, i.e., all wavelet coefficseate used.
Even when we are working with full resolution time seri&sSC
converges much faster than if we startedC from a random ini-
tialization, since we start very closely from the optimairoAlg.

2 gives the pseudo-code of the Incremeieb C algorithm.

Choosing the time series length.In principle the time series of
each phrase contairis =8,760 elements (i.e., the number of hours
in 1 year). However, the volume of phrases tends to be concen-
trated around a peak [22], and thus taking such a long tiniesser
would not be a good idea. For example, we measure the similar-
ity between two phrases that are actively quoted for one vaeek
abandoned for the rest of the time. We would be interestedlynai

in the differences of them during their active one week. Hmwe

the differences in inactive periods may not be zero due teen@ind
these small differences can dominate the overall simyiaiihce
they are accumulated over a long period. Therefore, we &tenc
the time series to focus on the "interesting” part of the tseges.

To set the length of truncation, We measure how long the peak
popularity spreads out: 16t, be the time when the phrase reached
peak volume, and let, be the phrase volume at that time (i.e.,
number of mentions at houf,). For a thresholdzv, (for 0 <
x < 1), we go back in time fronT}, of a given phrases and record
asTi (z) thelasttime index when the phrase’s volume gets below
xv,. Next, we go forward in time frorff}, and mark thdirst time
index when its volume gets below thresholdiasz). Thus, T4 (z)
measures the width of the peak from the left, &adx) measures
the width of the peak from the right.

Figure 4 plots the median value @, — T1(z), T2(x) — Tp
andT>(z) — T1(x) as a function ofc. We note that most phrases
maintain nontrivial volume for a very short time. For exampt
takes only 40 hours for the phrase volume to rise from 10% ef th
peak volume, reach the peak, and fall again below 10% of thk pe
volume. In general, the volume curve tends to be skewed to the
right (i.e., T, — T1(z) andTz(z) — T}, are far for smalle). This

3. EXPERIMENTAL RESULTS means that in general the volume of phrases rather quicklyhes
Next we describe the data, experimental setup, and evatuati its peak and then slowly falls off. o
the clusters we find. We describe our findings in Section 4. Given the above results, we truncate the length of the timesse
to 128 hours, and shift it such that it peaks at the 1/3 of thizeen
3.1 Experimental setup length of the time series (i.e., the 43th index).
First we apply our algorithm to a dataset of more than 172 mil- Choosing the number of clusters.The K-SC algorithm, like all
lion news articles and blog posts collected from 1 millioriroa the other variants of K-means, requires the number of disiste

sources during a one-year period from September 1 2008 to Au- be specified in advance. Although it is an open question how to
gust 31 2009. We use the MemeTracker [22] methodology toiden choose the most appropriate number of clusters, we meaeure h
tify short quoted textual phrases and extract more than 34®m the quality of clustering varies with the number of clustékée ran
short phrases. To observe the complete lifetime of a phrase, K-SC with a different number of clusters, and measured Hartgan’
only keep phrases that first appeared after September 5.sfEms Index and the Average Silhouette [17]. Figure 3.1 shows &hges
removes the phrases quoted repeatedly without a refereracest- of the two measures as a function of the number of clustere. Th
tain event, such as "l love you.” higher the value the better the clustering. The two metrcaat
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Figure 5: Clustering quality versus the number of clusters.
F

Method Z d(p,i7 N/j)2
(lower is better)| (higher is better)
KM-NS 122.12 2.12
KM-P 76.25 3.94
K-SC 64.75 4,53

Table 1. Cluster quality. KM-NS: K-means with peak align-
ment but no scaling; KM-P: K-means with alignment and scal-
ing. Notice K-SC well improves over K-means in both criteria.

necessarily agree with each other, but Figure 3.1 sugdestsat
lower value of K gives better results. We chog€é = 6 as the
number of clusters. We also experimented withe {3,...,12}
and found that clusterings are quite stable. Even wRegs- 12,

all of 12 clusters are essentially the variants of clustesswe find
using K = 6 (refer to extended version of the paper [1] for details).

3.2 Performance of K-SC Algorithm

Having described the data preprocessing &R8C parameter
settings we evaluate the performance of our algorithm ims$eof
quality and speed. We compare the resulke§C to that of K-
means, which uses the Euclidean time series distance médiric
particular, we evaluate two variants of K-means that diffethe
way we scale and align the time series. First, we align the tim
series to peak at the same time but do not scale them ig-thes.

In the second variant we not only align the time series batsdale
them in they-axis so that they all have the peak volume of 100.

For each algorithm we compute two performance metrics: (a)
the value of the objective functioR as defined in Equation 2, and
(b) the sum of the squared distances between the clustezrsent
S~ d(ui, 115)%. FunctionF measures the compactness of the clus-
ter, while the distances between the cluster centers me#seidi-
versity of the clusters. Thus, a good clustering has a lowevaf
F and large distances between the cluster centers. Tablesérse
the results and shows thKtSC achieves the smallest value Bf
and the biggest distance between the clusters. Note thanibti
trivial that K-SC achieves a bigger value 8F d (s, 11;)? than K-
means, becausk-SC does not optimizes" d(y:, ;1;)%. Manual
inspection of the clusters from each algorithm also suggtwtt
K-means clusters are harder to interpret th&SC clusters, and
their shapes are less diverse than thosk-&C clusters. We also
experimented with normalizing the sum of each time serigbé¢o
same value and standardization of the time series but weziel@in
to to make K-means work well (refer to [1] for details). Weals
note thatk-SC does not require any kind of normalization, and
performs better than K-means with the best normalizatiothote

Scalability of K-SC. Last, we analyze the effect of the Wavelet-
based incremental clustering procedure in the runtimé-6iC. In

our data set, we use relatively short time series<{ 128) andK-

SC can easily handle them. In the following experiment we show
that K-SC is generally applicable even if time series would span
for more than hundreds of time indexes.
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400
200
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[ |
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The number of time series (x1000)

15 2 25 3

Figure 6: Runtime of Naive K-SC and Incremental K-SC.

particular, we take, = 512 instead of L = 128 for truncating

the time series, and run IncremenkalSC five times increasing the
number of time series from 100 to 3,000. As a baseline, we per-
form K-SC without the incremental wavelet-based approach. Fig-
ure 6 shows the average values and the variances of the mintim
with respect to the size of the dataset. The incrementaloagpr
reduces the runtime significantly. While the runtime of ea
SCgrows very quickly with the size of the data, incremerm€asC
grows much slower. Furthermore, notice also that the ems bn

the runtime of incrementa-SC are very small. This means that
incrementalk-SC is also much more robust to the initialization of
the cluster centers than naikeSC in that it takes almost the same
time to perform the clustering regardless of the initialditions.

4. EXPERIMENTS ON MEMETRACKER

Cluster | C1| c2| c3] c4] c5] c6
/e 28.7%] 23.2%| 18.1% | 13.3%] 10.3%| 6,4%
4 681| 704| 613| 677] 719]| 800
Viss 463 246| 528| 502| 466| 295
Vr 54| 74| 99| 51| 41| @2
Vr/V || 7.9% | 10.6% | 16.2%| 7.5%| 5.7% | 4.0%
T, 148 021] 1.30| 197| 159| -0.34
FB 33.3% 42.9% | 29.1% | 36.2% | 45.0% | 53.1%
FBias: || 274% | 35.6% | 28.5% | 32.6% | 36.5% | 53.4%

Table 2: Statistics of the clusters from Figure 7. f.: Fraction
of phrases in the cluster,V: Total volume (over 1 year) Vias:
Volume around the peak (128 hours)Vp: Volume at the peak
(1 hour), Vp/V: Peak to total volume, L;: Blog Lag (hours),
F'B: Fraction of blog volume over 1 year, F' B12s: Fraction of
blog volume around the peak.

Now we describe the temporal patterns of the Memetrackergeisr
as identified by ouK-SC algorithm. Figure 7 shows the cluster
centers forK = 6 clusters, and Table 2 gives further descriptive
statistics for each of the six clusters. We order the clgserthat
C1 is the largest and’6 is the smallest. Notice the high variabil-
ity in the cluster shapes. The largest three clusters indhedw
exhibit somewhat different but still very spiky temporahbgior,
where the peak lasts for less than 1 day. On the other hanldein t
latter three clusters the peak lasts longer than one dayoédth
we present the clustering of the top 1,000 most frequentsgista
more than half of the phrases lose their attention afterglesitay.

The biggest cluster;'1, is the most spread out of all the “single
peak” clusters that all share the common quick rise follolrgc
monotone decay. Notice that C1 looks very much like the @eera
of all the phrases in Figure 1. This is natural because the ave

We assume that we are dealing with much longer time series. In age pattern would be likely to occur in a large number of pFsas
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Figure 7: Clusters identified by K-SC. We also plot the average of the time when a particular type ofvebsite first mentions the
phrases in each cluster. The horizontal position correspaifs to the average time of the first mention. P: professional loig, N:

newspaper, A: news agency, T: TV station, B: blog aggregator

ClusterC2 is narrower and has a quicker rise and decay than
Whereas(C'1 is not entirely symmetric, the rise and decay(t
occur at around the same rate3 is characterize by a super quick
rise just 1 hour before the peak and a slower decay &iarand
C2. The next two clusters;4 and C'5, experience a rebound in
their popularity and have two peaks about 24 hours apart.leVhi

C4 experiences a big peak on the first day and a smaller peak on

the second day;’5 does exactly the opposite. It has a small peak
on the first day and a larger one on the second day. Finallgsplsr

in ClusterC'6 stay popular for more than three days after the peak,
with the height of the local peaks slowly declining.

Cluster statistics. We also collected statistics about the phrases
in each of the clusters (Table 2). For each cluster we contbete
following median statistics over all phrases in the clustiee total

Number of website 50 | 100 | 200 | 300

Temporal features | 76.62% | 81.23% | 88.73% | 95.75%
Wolume features 70.71% | 77.05% | 86.62% | 95.59%
TF-IDF features 70.12% | 77.05% | 87.04% | 94.74%

Table 3: Classification accuracy of the clusters with a diffeent
set of features. See the main text for description.

volume ofC'2 coming from mainstream media is only 30% of that
of C3. Interestingly enough, the phrasesafs have the largest
volume around the peak and also far the highest peak voluhee. T
dominant force here is the attention from news media, beo@gs
shows the smallest fraction of the blog volume. The next tlue-c
ters, C4 and C5, have two peaks and are the mirror versions of
each other. They also show similar values for most categofiee

phrase volume over the entire 1 year period, volume in the 128 only difference is tha€’'4 has bigger volume from mainstream me-
hour period around the peak, the volume during the hour aroun dia and gets mentions from blogs for a longer time, whichltesu
the peak, and the ratio between the two. We also quantify tbg B in the larger value of the total volume around the peak. The la
Lag as follows: we use the classification of Google News ahella  cluster,C'6, is the most interesting one. The phrase§'tnhave the
all the sites indexed by Google News as mainstream medialand a highest overall volume, but the smallest volume around #ekp
the other sites as blogs [22]. Then for each phrase we defog Bl It seems that many phrases in this cluster correspond tapiutst
Lag as the difference between the median of the time when newson which the blogosphere discusses for several days. Anothe
media quote the phrase and the median of the time when blogsteresting aspect af’6 is that the role of blogs in the cluster. It has
quote the phrase. Note that positive Blog Lag means thatsblog distinctively high fraction of the blog volume, and the omlyster

trail mainstream media. At last, we compute the ratio of wodu
coming from the blogs to the total phrase volume for the tweeti
horizons, a one year and 128 hours around the peak.

We find that clusteilC'1 shows moderate values in most cate-
gories, confirming that this cluster is closest to a behaviar typ-
ical phrase. Cluste€2 and C3 have sharp peaks, but their total
volume around the peak is significantly different. This eliéince
comes from the reaction of mainstream media. Although bloit ¢
ters have higher peak than other clusters, 74 and 99 regglgcthe

where bloggers actually lead mainstream media.

Modeling the time series shape.Our analysis so far shows that
the clusters have very different characteristics as welliesrse
shapes. Motivated by this result, we conduct a temporalyaisal

for an individual website with respect to each cluster. Wedtly-
esize that if a certain website mentions the phrase thiscrékte
distinctive temporal signature of the phrases. For exanfpben
Table 2 we see that blogs tend to mention the phrases in C6 ear-
lier. If the hypothesis is true, therefore, then we shouldabke



to predict to which cluster a phrase belongs to solely basetti®
information about which websites mentioned the phrase.t iBha
based on which sites mentioned the phrase we would like thqire
the temporal pattern the phrase will exhibit.

For each phrase we construct a feature vector by recording fo
each website the time when it first mentioned the phrase. Elaw
site does not mention a phrase, we consider it as a missiag\dat
impute the missing time as the average of the times when the we
site first mentioned phrases. For comparison we also cans$wo
other feature vectors. For each website, we first recordrwtion
of the phrase volume created by that website. In additiontrest
every phrase as a “document” and every site as a “word”, agml th
compute the TF-IDF score [29] of each phrase.

Given feature vectors, we learn six separate logistic s=jpa
classifiers so that theth classifier predicts whether the phrase be-
longs to the-th cluster or not. Moreover, we vary the length of fea-
ture vectors (i.e., the number of the sites used by the @ilgsby
choosing the largest websites in terms of phrase volume e\t
the average classification accuracy in Table 3. By usingrifoe-i
mation from only 100 largest websites, we can predict theeslud
the phrase volume over time with the accuracy of 81%. Amoag th
three types of features, we observe that the features bas#teo
temporal information give best performance.

Time series shape and the types of websiteEncouraged by the
above results, we further investigate how websites cantgito the
shape of the phrase volume and interact each other in easterclu
For the analysis we manually chose a set of 12 representegive
sites. We manually classified them into five categories basdHe
organization or the role they play in the media space: Nepasa
Professional blogs, TV, News agencies and Blogs (referedtith
version for the used list of websites [1]).

First, we repeat the classification task from previous eadbiut
now with only the 12 websites. Surprisingly, we obtain anrage
classification accuracy of 75.2%. Moreover, if we choose &B-w
sites largest by total volume we obtain accuracy of 73.7%udyg
thel;-regularized logistic regression to select the optimal (most
predictive) set of 12 websites we obtain the accuracy of%6.0

Second, using the classification of websites into 5 groups we
compute the time when websites of that type tend to mentien th
phrases in particular cluster. Figure 7 shows the measwerdge
time for each type of website. Letters correspond to thesygfe
websites and the horizontal position of letters correspdndthe
average time of the first mention. For example, it is the mrofe
sional bloggers (P) that first mention the phrases in Cl¢steand
C2. For phrases i1, this is followed by newspapers (N), news
agencies (A), then television (T) and finally by bloggers. (B)C2
the order is a bit different but the point is that all types trmm
the phrase very close together. Interestingly, for the ggsanC'3
news agencies (A) mention the phrase first. Notice @fahas the
heaviest tail among all the single-peak clusters. Itis abbpdue to
the fact that many different organizations subscribe aruigtuthe
articles from news agencies, and thus the phras€Sislowly per-
colates into online media. We observe the process of peicolay
looking at the time values in Figure 7: starting from newsraigs
to newspapers and professional bloggers, and finally to @tbsis
and small bloggers. Ii@'4 and C5, we note that it is the blog-
gers that make the difference. @i bloggers come late and create
the second lower spike, while {5 bloggers (both small ones and
professional ones) are the earliest types. Finally, thaggw inC'6
gain the attention mainly on the blogosphere. We alreadytbatv
this cluster has the highest proportion of the blog volumgaiA,
we note that bloggers mention the phrases in this clustert aigthe
peak popularity and later the rest of the media follows.

5. EXPERIMENTS ON TWITTER

We also analyze the temporal patterns of attention of conten
published on Twitter. In order to identify and trace contdrat
appears on Twitter we focus on appearance of URLs and “hash-
tags”. Users on Twitter often make references to intergstimtent
by including the URL in post. Similarly, many tweets are aoeo
panied by hashtags (e.gdilovelifebecausg short textual tags that
get widely adopted by the Twitter community. Links and haglst
adopted by the Twitter users, represent specific piecedaia-
tion that we can track as they get adopted across the net®ork.
ilarly as with the quoted phrases, our goal here is applKR§C
in order to identify patterns in the temporal variation of thopu-
larity of a hashtags and URLs mentioned in tweets and to &xpla
the patterns based on individual users’ participation.

Data Preparation. We collected nearly 580 million Twitter posts
from 20 million users covering a 8 month period from June 2@09
February 2010. We estimate this is about 20-30% of all pasbs p
lished on Twitter during that time frame. We identified 6 moifi
different hashtags and 144 million URLs mentioned in thessp
For each kind of items of content (i.e., separately for URhd the
hashtags) we discard items which exhibit nearly unifornuxc
over time. Then we order the items by their total volume armdi$o
on 1,000 most frequently mentioned hashtags (URLs) and@00,
users that mentioned these items most frequently.

Analysis of the results. We present the results of identifying the
temporal patterns of Twitter hashtags. We note that we olviiy
similar results if using URLs. For each hashtag, we builchzeti
series describing its volume following exactly the sameqwol as
with quoted phrases. We use 1 hour time unit and truncatestiess
to 128 hours around the peak volume with the peak at occuating
1/3 of 128 hours. We ruk-SC on these time series and present
the shapes of identified cluster centroids in the Figure 8.

Whereas mass media and blogs mention phrases that arelrelate
to certain pieces of news or events, most Twitter users dugt-
tags entirely by personal motivation to describe their moodur-
rent activity. This difference appears in Figure 8 in thasirftash-
tags maintain nonzero volume over the whole time period.s Thi
means that there always exist a certain number of users whe me
tion a hashtag even if it is outdated or old. Nevertheless ptit-
terns of temporal variation in the hashtag popularity amy een-
sistent with the clusters of temporal variation of quotedapbs
identified in Figure 7. We can establish a perfect correspooe
between the classes of temporal variation of these two viry d
ferent types of online content, namely quoted phrases antiefw
hashtags (and URLs). We arrange the clusters in Figure 8ein th
same order as in Figure 7 so that corresponds ta'1, T2 to C2,
and so on. These results are very interesting especiallsiden
ing that the motivation for people in Twitter to mention hizjs
appears to be different from mechanisms that drive the amfopft
quoted phrases. Although we omit the discussion of the teahpo
variation of URL mentions due to brevity, we note that theadied
clusters are nearly identical to the hashtag clusters (dge [

Table 4 gives further statistics of Twitter hashtag clust€om-
paring these statistics to characteristics of phrasearsi¢Table 2)
we observe several interesting differences. The largesterwlus-
ter (T'2) has more phrases than the largest phrase clustey, (
while the smallest Twitter cluster has more members tharlesta
phrase cluster. This shows that sizes of Twitter clustezssame-
what more skewed. Moreover, we also note that Twitter ciaste
are less concentrated around the peak volume, with the pak v
ume accounting for only around 2-5% of the total volume (irggke
clusters peak accounts for 4-16% of the total volume).



Cluster| T1| T2| T3| T4| T5] T6
I 16.1%] 35.1%] 15.9% 10.9% | 13.7% 8.3%
V 4083| 3321| 3151 3253 3972 3177
Vios 760 604| 481| 718] 738 520
Vr 86| 169] 67| 60| 67| 53
Vep/V | 21%| 51%| 2.1%| 1.8%]| L1.7%] 1.7%

Table 4: Twitter hashtag cluster statistics. Table 2 giveshe
description of the symbols.

Number of featured] 50 | 100 | 200 | 300

Temporal features || 69.53% | 78.30% | 88.23% | 95.35%
\olume features 66.31% | 71.84% | 81.39% | 92.36%
TF-IDF features 64.17% | 70.12% | 79.54% | 89.93%

Table 5: Classification accuracy of the clusters in Twitter vith a
different set of features. Refer to the main text for descripion.

Next we also perform the predictive task of predicting thepsh
of volume over time curve for Twitter hashtags. Twitter dateery
sparse as even the most active most users mention only abtmt 1
50 different hashtags. Thus we order users by the total nuofbe
hashtags they mention, collect them into groups of 100 useis
measure the collective behavior of each group of users.

For each hashtag, we build a feature vector whiettecompo-
nent stores the time of the earliest mention of the tag by aey u
in the groupi. Similarly as with quoted phrases we construct a fea-
ture vector based on the fraction of the mentions from eachygr
and another feature vector based on the TF-IDF score tegtadish-
tags as “documents” and user groups as “words”. For eacteclus
we perform a binary classification for a cluster against #st us-
ing the logistic regression, and report the average acguvaer
the six classification tasks in the Table 5. Again, the terapi@a-
tures achieve best accuracy, suggesting that the time whisera
group adopts a hashtag is an important factor in determinavy
the popularity of the hashtag will vary over time. We alsoenibiat
the accuracies are lower than for quoted phrases (Tabled3than
gap gets larger as we choose a smaller number of features. Thi
gap suggests that a small number of large famous media sites a
blogs has a much greater influence on the adoption of newsamedi
content than the most active groups of users have on theiadapt
Twitter hashtags. Even though the large scale temporaldipseof
attention of Twitter and news media content seems similbes€
results hint that the adoption of quoted phrases tends toumh m
quicker and driven by a small number of large influentialsit®n
the other hand, in Twitter it appears as if the influentiaks rauch
less influential and have smaller cumulative impact on theertd
popularity.

6. RELATED WORK

There are two distinct lines of work related to the topics-pre
sented here: work on temporal dynamics of human activitg, an
research on the general time series clustering.

Temporal dynamics of human activity. Patterns of human atten-
tion [34, 35], popularity [24, 30] and response dynamics1@]
have been extensively studied. Research investigatedtahymat-
terns of activity of news articles [5, 30], blogposts [3, 24, 27],
Videos [10] and online discussion forums [4]. Our work hese i
different as we are not trying to find a unifying global modél o
temporal variation but rather explore techniques thamalls to
quantify what kinds of temporal variations exist on the Wetthis
light, our work aligns with the researches on Web searchiesier
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that find temporal correlation between social media [2] cerps
whose temporal variations are similar each other [8]. Atéenpo-
ral patterns are identified, one can then focus on optimiziegia
content placement to maximize clickthrough rates [5], jotath
the popularity of news [30] or finding topic intensities stnes [19].

Time series clustering. Two key components of time series clus-
tering are a distance measure [11], and a clustering agoii82].
While the Euclidean distance is a classical time serieaitst met-
ric, more sophisticated measures such as the Dynamic Tinng-Wa
ing and the Longest Common Subsequence [18] have also been
proposed. Among clustering algorithms, the agglomerdtiee-
archical [20] and the K-means clustering [28] are frequeused.
Due to its simplicity and scalability, K-means inspired maari-
ants such as k-medoids[17], fuzzy K-means [17], and the &=pe
tion Maximization based variant [28]. To address the issaesed
by the high dimensionality of time series data, transforoehsas
Discrete Fourier Transform, Discrete Haar Wavelet Tramsffy],
Principal Component Analysis and Symbolic Aggregate Agpro
mation [25] have also been applied.

7. CONCLUSION

We explored temporal patterns arising in the popularityrdine
content. First we formulated a time series clustering maoband
motivated a measure of time series similarity. We then ape
K-SC, a novel algorithm for time series clustering that efficignt
computes the cluster centroids under our distance metinall¥
we improved the scalability o-SC by using a wavelet-based in-
cremental approach.

We investigated the dynamics of attention in two domains. A



massive dataset of 170 million news documents and a set of 580[13] D. Gruhl, R. Guha, R. Kumar, J. Novak, and A. Tomkins.

million Twitter posts. The proposeld-SC achieves better cluster-
ing than K-means in terms of intra-cluster homogeneity auelr
cluster diversity. We also found that there are six différgmapes
that popularity of online content exhibits. Interestinglye shapes
are consistent across the two very different domains of/shamely,
the short textual phrases arising in news media and the dgssht
on Twitter. We showed how different participants in online-m
dia space shape the dynamics of attention the content esceiv
And perhaps surprisingly based on observing a small number o
adopters of online content we can reliably predict the dielsa
namics of content popularity over time.

All'in all, our work provides means to study common temporal
patterns in popularity and the attention of online contemgtiden-
tifying the patterns from massive amounts of real world da@aur
results have direct application to the optimal placementrdine
content [5]. Another application of our work is the discavef the
roles of websites which can improve the identification ofuefitial
websites or Twitter users [23]. We believe that our apprazfdrs
a useful starting point for understanding the dynamicsénathline
media and how the dynamics of attention evolves over time.
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