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Abstract— Consider a network of, say, sensors, or P2P nodes, network, and we want this information to survive. In a high
or bluetooth-enabled cell-phones, where nodes transmit forma-  fajlure-rate environment (e.g., fire or evacuation syste¢here
tion to each other and where links and nodes can go up or might he very little time between detection of the event and

down. Consider also a ‘datum’, that is, a piece of informatim, .
like a report of an emergency condition in a sensor network, the destruction of the node. We want to get the data off the

a national traditional song, or a mobile phone virus. How ofen Node as quickly as possible and spread it through the network
should nodes transmit the datum to each other, so that the datm  so that the information will survive.

can survive (or, in the virus case, under what conditions wlilthe Thus, informally, the problem can be stated as follows:
virus die out)? Clearly, the link and node fault probabiliti es are

important — what else is needed to ascertain the survivabity Under what conditions can we expect the object or
of the datum? datum (e.g. the virus, or the piece of information) to
We propose and solve the problem using non-linear dynamical survive or die out in a dynamic network?
systems and fixed point stability theorems. We provide a clesl- . . . . . .
form formula that, surprisingly, depends on only one additional We can identify two major cases. In the first, if the transmis-

parameter, the largest eigenvalue of the connectivity matx. Sion rate is not fast enough, the object will eventually pisa
We illustrate the accuracy of our analysis on realistic and eal pear from the network. In the second case, if the transnmissio

settings, like mote sensor networks from Intel and MIT, as w#  rate is fast enough, then the datum will take over a significan
as Gnutella and P2P networks. part of the network and it will linger practically for ever.
|. INTRODUCTION Interestingly, there is a fascinating, and shatpase transition

In this work. we focus on the conditions under which getween the two regimes. The next example illustrates the

L . . : above concepts.
self-replicating object can survive in an unreliable netwo P

We assume a network (e.g. a sensor network) where initiﬁ‘%ﬁm:ﬁgure 1 ShO_WS an example of informaFion survival
some nodes have an object (e.g. a query, or some other dat a 2D'9_”0F graph W_'thN = 10, 00.0 nodes (Sect|0n. I.V_has
Nodes and edges are unreliable: edges may be up or do re detallls, t_he qualitative behavior of real graphs |slan)1_

and with some probability, nodes may die (e.g., run out (l):foreach time instarnt we pIotthe number of “carners",_thgt is
batteries); we also assume that they then resurrect witheso?_lﬂe nurlnbelr_ of‘up n(c)jdles ﬁarrymglthe dlattum. we plof[ |nII|near
resurrection rate (e.g., someone installs fresh bat)erile inear, ‘og-linear, anc 10g-log scales (p_o s (a-), “‘*.*"’e.y)’
assume that a node loses the object in case of death a%dllustrate_the qualltgtlve difference in each regimeings
subsequent resurrection. (Our upcoming analysis could %lér.chom'nﬁ anaIyS|s,bw:e chose thrge bsets 0; pahr;\*mﬁt?rs
easily modified to handle the converse assumption, but ti ttings, so that we are below-, at-, and above- the thrésho

is outside the scope of this work). With some transmissi S we can see, there is a significant, qualitative differance

probability, the object may be transmitted from a node th Fhavior under these three settings. Below the threshiodd, t

has it, to its neighbors; if the link and the neighbor are “up|,nformation dies ouexponentially quicklyThis is shown on
at the time, the copy is’ successful figure 1(b), where the exponential function becomes a sttaig

For example, consider a cellphone network where the cos)jﬂe when plotted on log-linear scales. Exactly at the thoéss

munication between nodes is subject to loss (link failyre nd by “exactly” we mean several significant digits!), the

and nodes may go down (battery failure, shut down by us{ymber of carriers decaysolynomially following a power

a 1 1 1 -
or moved out of range). Consider some static piece ofinfermlaW t* and becoming a straight line on log-log scales (see

tion, or “datum”, such as a mobile phone virus. As cellphonézégu,re 1(C))', Above the threshold, the expected .number. of
go down, the virus dies; however, when the cellphone is up aﬁarners stabilizes at a non-zero value, and the informatio
infected, the virus infects other phones. We seek the condit asts practically for ever, although the number of carrreesy
under which the virus would die out and not become an, _ . ,

The datum will not necessarily take over the network conepfetsince

epldemlc. Conversely* we C(_)U|d have Some_ mformatlon (S%es are continuously dying and waking up, so there areyala@ame nodes
an emergency alert, or an important “reading”) in a sensot are alive but without the information.
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Fig. 1. Survival of information on a grid networlkumber of carriers, over time, for a 2-D grid network witN=10,000 nodes, and for below, at and above
(our) threshold. Notice very different qualitative belaet below threshold, the information dies axponentiallyquickly (line, in log-lin scales, of Figure

(b)). Exactly at threshold, the information is dying out apaver law (line, in log-log scales, of Figure (c)). Abovedshold, the information survives,
practically for ever (all figures).

be less thanV, because of down-nodes, and not-yet-infected Our work was initially motivated by sensor and P2P network
nodes. We give a precise definition of the term “practicatly f design, but it is also applicable in several other settings:
ever” in Section llI. e Virus containment and anti-virus protection, where the
Our work provides an analytical model and identifies thlatum” is a virus: Here, walo want to drive the datum to
fundamental conditions for which a datum will survive oextinction, and our approach allows us to decide how often to
become extinct in a dynamic network. Although the problemuarantineeach node and for how long.
definition is deceptively simple, there is no known pradtica e Social networks: News, rumors, and web-log (“blog”)
exact solution. The obvious one, discussed later in Sedilion dissemination, marketing and fad propagation, and mangmor
requires Markov Chains, and is prohibitively expensive: i@applications that seek to propagate and maintain infoonati
computational cost is proportional ®", where N is the can be handled under this framework.
number of nodes. For referencg?” is comparable to the The remainder of the paper is organized as follows: Sec-
number of electrons in the universe. Note that our model tion 1l surveys the related work. Section Il describes our
very general since it considers: (a) a dynamic network (withon-linear dynamical system approach, and gives the major
failing links and nodes), (b) arbitrary topology, and (c)edo theorems and proofs. Section IV gives experimental results
not make any assumption about the initial conditions. We conclude in Section V.

Our Contributions:They are the following. Il. RELATED WORK

1) Closed form formula:Based on our novel dynamical Graphs and sensor networks have attracted a lot of interest
system model, we derive a survivability condition thagyely, for quick and efficient aggregation of informatico],
is extremelysimple, general and accurate. In fact, 0uf 11 for understanding “trust’ and “distrust” in online el
formula includes as a special case the SIS model Qfqyorks [21], and in several other areas. With respect to ou
viral propagation (described later). o problem, the closest related work has been in the areas of

2) Experimental validation of our modeExtensive simu- ossip-based protocols, epidemiology, and computer igcur
lations on several realistic topologies (sensor from lnte% a) Gossip-based protocol€Gossip-based protocols have
MIT, and P2P networks like Gnutella) show that oupeen studied in both peer-to-peer as well as sensor and other
model is highly accurate in determining the behavior ofy 1o networks, where nodes may be up or down. The
the system and identifying the threshold for the phasgie of node turnover in such networks is referred to as

transition. churn [40]; in high-churn settings, gossiping is often useful

Our work in perspectiveln addition to its theoretical as a mechanism for ensuring eventual-consistency of state i
merit, our survivability condition provides a starting pbi distributed networks despite unpredictable node popnati
for: (a) network design, and (b) interpretation of empiricaand connectivity.
or simulated results. First, network designers would use ou Thus, gossip-based protocols have been studied in high-
results to choose the node density, the network size, or ttleurn cases, for reliable multicast and broadcast proto-
datum retransmission frequency in order to save or drive ¢ols [33], [23], [36], [4], resource location [30], [38],ifare
extinction the datum, when these parameters are knowndatection [46], [39], [42], [7], [50], database aggregatja8],
under the control of the designer. Second, even when we diatabase and peer-to-peer replication [12], [10], and rérgsu
not know or cannot control these properties, our fundanhenthe stability of dynamic hash table-based peer-to-peer sys
relationships will help researchers interpret the obskree tems [22], [40]. Information dissemination under memorg-co
simulated results. straints have also been studied [35]. Empirical and thexalet



studies of gossip protocols include [5], [16], [33], [3029], TABLE |

TABLE OF SYMBOLS

[49]. _
However, they all assume that the initial infection or re- ]SvymbOI Bﬁﬁgglgpnodes e TeWorK
broadcast rate is high enough that dying out is not a contern. Bis Probability that linki — ; is up
this work we exactly quantify the conditions for survivatyil 5 Death rate: Probability that nodedies
b) Epidemiology:The epidemiology community has de- | v Resurrection rate:
veloped the so-calleSIRandSISmodels [2] of infection. The Probability that node comes back up
T Retransmission rate:

SISmodel Susceptible — Infective — Suscept)bie suitable

- Probability that node broadcasts
for, e.g., the common flu, where nodes may be infected, heal dpi(t) o

Probability that node is alive at

(and susceptible), and infected again. Bi&model Suscep- time ¢ and has info
tible — Infective — Removgds suitable for, say, mumps, where | ¢:(t) Probability that node is alive at
a node, after being infected, becomes removed (with lifesti time ¢ but without info
immunity). 1 —pi(t) — q;(t) | Probability that node is dead _

The area of “interacting particle systems” is also remotely| vi(t) il';’q;gbf?mtirt]t;zgf ?tzdge?gohet;sor:gt;?i%vs
related: “particles” propagate over a simple network agdivay B(t), (t) Probability column vectors
to different processes; the one closest to our work is the C(¢) True number of carriers at time
“contact process” [24], [34], [13]. However, most previous| C(t Estimated number of carriers at time
work in this area assumes networks with (a) infinite size, angl C " Number of carriers at quasi-steady-state
(b) regular topologies such as line graphs and grids. S The N x N system mairix

The approach we present here is based on the SIS model s The Igrge_s_t eigenvalue df

s=1\ gl “Survivability score”

a node is “susceptible” to a data item when it is online an
functioning normally; as nodes crash, they become “immune”
for the duration of their failure, and later become “susitegt
again when they are back online. Intuitively, the model wef the sensor). Every dead nodgehas probabilityy; of
focus on resembles an SIS model with random “quaranting&surrecting to the “up” state, but without any information
Our novelty is that we studgrbitrary graph topologies and in its memory (e.g., due to the periodic replacement of dead
we are the first to derive the survivability condition for buc batteries). The symbols we use are listed in Table I.
cases. This system can be modeled as a Markov chain, where each
c) Computer security:There are numerous studies ofiode can be in one of three states: “Has Info”, “No Info” or
worm and virus propagation on the Internet [48], [32], [37];Dead”, with transitions between them as shown in Figure 2.
[43], [45], based on theSIS SIR and influencemodels of The full state of the system at any instant consistévo$uch
infection [31], [8], [1], [19]. Others have done detaileddasic states, one for each node. Thus, there Hfesystem states.
studies of the spread of worms [37], [43], [44] illustratinglransitions out of the current system state depemigt on the
the exponential spreading predicted by SIR and SIS modetdg|rent state and not on any previous states; thus it is adwark
with the entire susceptible population quickly becomedtdd chain.
and then slowly being “removed” as patches are applied.There is an extremely subtle point here: observe that there
Epidemiological models have again been used in developilsgan absorbing set of states (where no node is in “Has Info”)
good guarantining strategies for scanning worms [17]. Worand that this set can be reached from any starting state, Thus
propagation has been studied under special cases, such abdninformation will die out with probabilityi as time tends
email networks [51] and on the IPv6 Internet [3]. Mathensltic to infinity (see [6]). However, from a practical point of view
modeling of propagation behavior [47], [18] has providedhen the parameter values are within a particular region of
some answers on “epidemic thresholds”; we show that otlne parameter space, this extinction happens quickly. Defin
current work includes these results as a special case. this region in the parameter space is exactly the goal of our
work. Outside this region, the time to extinction can be very
long. For example, consider the case of the SIS model, which
We are given a network ofV nodes (sensors, computerss a special case of our problem as we show in Corollary 2
or people) andE directed links between them. For ease afi Section IlI-D: even for a simple line graph, under the SIS
exposition, we assume discrete time-steps of gizewhere model and with above-threshold condition, the expecte@ tim
At is vanishing At — 0). The continuous-time versionto extinctiont growsexponentiallywith the size of the graph
is omitted for space, because it gives identical surviitghil N. Specifically,r — c-e” as N — oo [14]. As an arithmetic
results. example, suppose that we are above threshold, on a network
Within a At time interval, each nodé has a probability with N=1000 nodes, and that the time-tickAs = 10~ (the
r; of trying to broadcast its information, and each linkcycle time of a 1GHz processor). Then the expected time to
i — j has probability3;; of being “up”, and thus correctly extinction isO(e1%° x 107%) ~ 10*7 years, while the age
propagating the information to noge Each node also has a of the universe is of the order of billiori(°) years. In such
node failure probabilitys; > 0 (e.g., due to battery failure cases, the datum practically survives for “ever”.

IIl. PROPOSEDMETHOD



1-9 Receives Info vih-2 probability of the node being dead (i$— p;(t) — ¢i(t)). Then,
we can approximate our setting with the following dynamical

system:
Prob q (t) Lemma 1 (Dynamical systemYhe probabilitiesp;(¢) and
gi(t) for nodei (i = 1,...,N) to be in state “Has Info” and
Resurrected “No Info”, respectively, at timef, are approximated by
y.
' pi(t) = pilt—1)*(1—5;)
Prob 1 - (t)—Q(t) +q;(t — 1) % (1 —v(t)) Vi, Vt 1
1y, (O3 JUM @it —1) * (1= (1)) (1)
ai(t) = qi(t—1)* (vi(t) — &)
Fig. 2. Transitions for each nodethis shows the three states for each node, +i (1 - pi(t - 1) - Qi(t —1)) Vi, vt (2)

and the probabilities of transitions between states.
wherew;(t) is the probability that nodé doesnot receive the
information from any of its neighbors at tinteand it is given

The question is: under what conditions does the informati@ﬁ(
survive for a long time, and when will the information die vi(t) =10, (1 — 7 Biip;(t — 1)) 3
out quickly? LetC(t) denote the expected number of carriers ~ Proof: Starting from state “No Info” at timeé — 1, node
(nodes in “Has Info” state) at time In generalC'(t) decays i can acquire this information (and move to state “Has Info”)
exponentially, polynomially or logarithmically (with erpted if it receives a communication from some other ngdd_et
time to extinction comparable to or larger than the age of the(t) be the probability that node doesnot receive the
universe for large graphs), depending whether the systemiriformation fromany of its neighbors. Then, assuming that
below, at or above the threshold [13], [14], [15]. Figurea)1( the neighbors’ states aiedependentwe use the transition
(c) illustrate these three cases. We focus on the fast é¢xtinc matrix in Figure 2 and apply it for each node and write
case, since many other works have looked at the rapid sprelasvn the probabilities of being in each state at timeiven
case (e.g., [37], [43)]). the probabilities at time— 1. Recall that we use time-steps of

Definition 1 (Fast Extinction):“Fast extinction” (hence- vanishing sizeAt, exactly so that the probability of two events
forth “extinction”, for brevity) is the setting where the miber happening within the same time-tick is vanishingly smatid a
of carriers C(t) decays exponentially with time(((t) ~ thus we can neglect second- and higher-order terms. Eq. 2 is
cte>1). derived though similar reasoning. [ ]

We shall use the term “survival” for the converse case, The reader may be skeptical about the impact of the
where the time to extinction is astronomically high. We §hal,qenendence assumption. However, as we show in Section IV,
use the term “at the threshold” for the extremely improbablge assumption (Egs. 1-3) leads to extremely accuratetsesul
case when the number of carrier§?) decreases as a Powefkqr o) the real and synthetic networks we tried. In fact, the
law with time. Finally, we shall use the term quasi-steatités qyted lines in Figure 1(a-c) all correspond to the estiameti
for the situation when we are above threshold and numigkh the Dynamical Systerand the independence assumption,

of carriers seems stable, like the ‘above threshold’ case \pile the black circles correspond to averages, after we run
Figure 1 for time-tick 200 and above. The number of carrietg lations: notice how close the results are.

C«» at the quasi-steady-state will be referred to eesitual
carriers’.

We can now formally state our problem:

Problem 1: Giventhe network topology (link “up” proba-
bilities) 5;;, the retransmission rates, the resurrection rates
~v; and the deathrate (:=1...N,j=1...N)

Find: the condition under which a datum will suffer “fast Our goal is to find the conditions under which we have “fast

Next, we discuss the properties of this dynamical system,
and specifically we study the condition for fast extinctiam o
this system.

B. Main Result

extinction”. extinction”. The high-level description of our approachthe
_ following: (a) We start from the Dynamical System equations
A. Main Idea (Eq (1)-(3)), (b) we show that it has a fixed point (namely,

Solving this problem for the full Markov chain requireswhen the datum/virus is extinct), and (c) we find the condgio
3N variables and is thus intractable, even for moderate-sizedder which this fixed point is “stable”. Under exactly those
networks. Exact values for the “fast extinction” threshal@ conditions, the system will quickly return to the extincatst
unavailable even for simpler versions of this problem [18]. We present the details next. After appropriately manip-

Our main contribution is an accurate approximation, usingating the Dynamical System equations (described in the
a non-linear dynamical system of onliy variables. Let extended version [9]), we get the so-callegstem matrixs,
pi(t) andg;(t) be the probabilities of nodibeing in the “Has which is pivotal for the rest of the analysis. This is &nx N
Info” and “No Info” states at time, respectively. Thus, the square matrix, defined as follows:



Definition 2 (System Matrix): The above result agrees with intuition: The survivabilify o

5 i the datum increases with the connectivity 5, the retrans-
= 1—o i o= J 4) mission rater and the resurrection ratg and decreases with
! T jﬁﬁm otherwise the death rate.
fori=1,...N,andj=1,...N. C. Lemmas and other results
Intuitively, the diagonal of the matrix has the terrhs- §;, First, we show that the scenario with no information surviva

which give the probability thai-th node will remain alive. (p;(t) = 0) forms a fixed point of the dynamical system. Then,
The off-diagonal elementsS;; of the matrix contain the we show that below the threshold condition of Theorem 1, this
probability that node will be infected by nodej: -%6- is fixed point isasymptotically stableinder small perturbations

the probability nodei is alive and without the information, (this is how we derived the condition in Theorem 1). Finally,
r; is the probability thatj transmits information an@;; the we show that our threshold is insensitive to the startingesta

probability that the transmission will succeed. below the thresholdp;(t) — 0 and thusC(t) — 0 expo-
Let [A, g| be the magnitude of the largest eigenvalue (inentially quickly. Detailed proofs are provided in extedde
magnitude). version [9].

Definition 3 (Survivability score)The largest eigenvalue ~Before we give the formal version, we present the intuition.
s = |\, g| of the system matri¥ is defined as “survivability A dynamical system, like, e.g., a ball on a flat surface, has a

score” for the system. fixed point if it is at equilibrium there. The fixed point is dai
Let C(t) to be the expected number of carriers at time t0 be stable (eg., a ball inside a spherical bowl, with nom-ze
according to this dynamical syster@i(t) = ZZN— L pi(t). friction, resting at its bottom), if the system returns tatth
Theorem 1 (Condition for fast extinction)f the surviv- Point, despite a small perturbation. The ball inside a bawl i
ability scores = |, g| obeys a dynamical system with a few variables (2 polar coordinates
b for the ball, and a few more variables for its velocity vegtor
s=\ gl <1 In our case, we have 2¥ variables, thep;(t) andg;(t) for
! each node. Our goal is to find the fixed point for our 2F-

then we have fast extinction in the dynamical system, that Bimensional vector, given the transitions equations (E§) 1
the expected number of Carrieé(t) decays exponentially and study the conditions under which this point will be stabl
over time. Definition 5 (Asymptotic Stability of a Fixed Pointk

Proof: The proof follows from Lemma 2 and Theorems dixed point Py is “asymptotically stable” if, on a slight
and 3. For the full details, see the extended version [9]hat tPerturbation fromP, the system returns t&; (as opposed
high level, the proof examines the stability of the fixed poirf0 moving away, or staying in the neighborhood Bf but
of Egs. 1,2. The fixed point is the case where no node carrié@t approaching it) [25].
the datum f;(t) = 0 ¥4). A dynamical system has a stapldVathematically, this means that the Jacobian matrix of the
fixed point if the first eigenvalue of the Jacobian matrix gtystem, computed at poifl;, has all eigenvalues smaller than
that point is smaller than 1. In our case, the first eigenvafue 1 in magnitude [25].
the Jacobian matrix is exactly the same as that ofSpstem  Lemma 2 (Fixed Point)The values
Matrix of Eq. 4. | - %

Definition 4 (Threshold):We will use the term “below (pi(t) =0,4i(t) = yi 51.)
threshold” whens < 1, “above threshold” whers > 1, and
“at the threshold” fors = 1.

The results above are very general, and, as we show viar
simulations, very accurate as well. Next, we examine one,
common special cases, to demonstrate the intuitive bEhaVﬂQr
of the system.

Corollary 1 (Homogeneous reliable-link casdj:all nodes

for all nodesi, are a fixed point of Eqgs. 1-3.
Proof: By substitution into Equations 1-3. ]
heorem 2 (Stability of the fixed pointThe fixed point of
mma 2 isasymptotically stabléf the system is below the
eshold, that iss = [\, g| < 1.

Proof: Omitted, for space (see [9]). The sketch of the
T : } proof is as follows: We compute th&N x 2N Jacobian of
exhibit similar behaviorg; = d,7; = r,7; =y forall i, and o, 4y namical system, and request that the largest eigsval

B = [f;] is a symmetric binary matrix (links are undirectedy, it de< 1. It turns out that this is exactly the eigenvalue
and are always up or always down), then the condition for fast \ha v « N system matrixhat we defined earlier -

extinction is: Theorem 3 (Insensitivity to the starting staté): we are
o A p<l (5) below threshold{ = |)_‘1.,S| < 1), then we have fast extinction
. S(y+90) 7 ) regardlessof the starting state.
Proof: The system matrixS can be written asS = Proof: See extended version of the paper [9]. ®m

(I*(1—=08)+Bx*r-v/(y+9)) wherel is the N x N ) )

identity matrix. From the properties of eigenvalues, weehaP- Corollaries and Special Cases

that\, g = (1 —0) + A, g =r-v/(y+4) and, combining  Here we present some special cases and corollaries, and
with Theorem 1, we have the proof. m show that the results agree with our intuition.



TABLE Il

Corollary 2: We include the SIS model of viral infection
PARAMETER SETTINGS FOR THE DATASETS

as a special case.

. Cu Dataset threshold o o r s

P_roof. The SIS modpl has only two states per node: “Has below 011 o0l 01 590
Infection” and “No Infection.” In our model, if we increasee GRID at 0.01| 0.004| 01| 1.001
resurrection ratey so that a “dead” node comes back “up” gblo"e O(.)OZZII.- 0061 8-1 é-gi
very quickly, we can give the appearance of oty states: GNUTELLA af ow 007 | 0004l 01l 1003
“Has Info” and “No Info”, and thus mimic the SIS modeia above 0.01 0.01| 0.1 1.05
In fact, if the ratio of resurrection-vs-death rate ¢ver §;) INTEL bte|0W oodé 086%%3 8-1 L 86%63
increases to |nf!r_1|ty, and all death rates are the same, te fa above 001 001 | 01 133
extinction condition of Corollary 1 becomegs - A, p < 1 below 0.15| 001] 01 0.96
This is exactly the epidemic threshold condition for the SIS MIT at 0.05 | 0.0006 | 0.1 1.01
above 001| 00101 1.88

model [47], [18].

Corollary 3 (P2P resilience):Consider astar network (one
hub and many satellite nodes) andiag network (nodes in 2000 1000
a circle) with the same number of nodads > 5. They have . 800
similar number of edges\—1 for star, N for ring). However,
the star network has higher higher survivability score, and the
gap widens with the number of nod@é.

a
S
S

1000]

Number of links
Number of links

Proof: |\, g, |=VN-1>2=[\p | Sothe ™
star network has higher survivability score. ] I —— | -
This agrees with intuition: in thetar graph, the central node (o’ °* rma” °
will have the datum/virus with very high probability, anchit! (a) INTEL link qualities (b)MIT link qualities

keep transmitting it to the satellite nodes, infecting sale Fig. 3. Link quality distributions:Plots (a) and (b) plots the number of links
of them. which will in turn infect it back later. In the’ng versus link quality. Pairs of sensors which cannot comnataiavith each

’ . L other have a link quality of. While the INTEL distribution shows a broad
neftwork, every _'nfeCted node has only two ne'ghbors(_cmnqgnge of link qualities, théIT distribution is very highly peaked.
to infect - if it fails, the system is one step closer to exting.
Again, we highlight the fact that thetar network outperforms
the ring on survivability, despite the fact that it is sparser by

one edge. ¢ INTEL: A 54-node sensor network observed over a period

of 33 days [27]. The nodes are Mica2Dot sensors collecting

IV. EXPERIMENTS time-stamped topology information once every 31 seconds.
: . _ . The data was collected using the TinyDB in-network query
To _ver|fy our assumptions, we run a set of SImuI"’lt'ogrocessing system, built on the TinyOS platform. The link-
experiments on several real and synthetic networks. We sh }9/ probabilities;; were estimated from the collected data.

that The nodes were deployed in a lab with a rectangular shape
1) Our Equations 1-3 accurately track the true dynamiggq “soft” walls which can be penetrated by radio signals,
of the system, and give excellent estimat&@) for the |eading to a high average node degreef) in the network.

number of carriers at time, Figure 3(a) shows the distribution of link qualitigs;, which
2) The threshold condition derived in Theorem 1 is accurai@e smeared-out over the entire range. The average linkyual
and sharp; and (considering only the links with non-zero link quality) igny
3) The final behavior of the system is insensitive to thgyy (0.14).
starting conditions. e MIT: This is a40-node sensor network at MIT (see [26]
Next, we describe our datasets and simulation parametdos,an earlier version of the network). Each node is a Crossbo
and then present the experimental results. Mica2. Each node was attached to a Crossbow MIB600
interface board that provides both power and an Ethernet
A. Datasets backchannel for programming and data collection. Sensers a

Four different datasets were used: These include one sptaced in a elongated “corridor”. This implies a lower agga
thetic, one Peer-to-Peer and two sensor network deploymegage degree~ 18); however, the link quality distribution is
datasets. The datasets vary in both size as well as topologyery peaked, figure 3(b). This leads to a high value.eg for

e GRID: This is a large synthetic 2D grid witlv = 10,000 the average link quality (again only considering the noroze
nodes and? = 39,600 edges. The link “up” probabilities;() quality links). Note, these conditions are the exact opgpasi
are set ta).1 between all neighbors on the grid. what we see in théNTEL dataset.

e GNUTELLA This is a snapshot of the Gnutella peer- )
to-peer file sharing network, collected in Mareho1 [41], B- Accuracy of the dynamical system
with N= 62,586 nodes anfl' = 295,784 edges. The link “up” For each network we set the parameters so that the system
probabilitiesd;; are set ta).1 for the existing edges. was below-, above- and at- threshold according to Theorem 1,



as shown in Table Il. Given the network and the estimated like “at-threshold” setting, that is, the value ofthat gives a
qualities, we chose parameter values so that they arevediati survivability score ofs = 1. As earlier, the small sizes of
close to the threshold. networksINTEL andMIT have higher variance.
We initialize all nodes in the “Has Info” state’(t = 0) = We observe the following:
N), since the final state is insensitive to the initial coratis e Below our threshold, the information dies outhe
(see Theorem 3 and the experiments in Section IV-D). We theamber of carriers is very close to zero for all the datasets.
run the simulation fofl” = 10, 000 steps, according to the state e Above the threshold, the information survivE&sen after
diagram of Figure 2, and we record the number of card&rs a “long” time, there is a significant population of nodes ie th
(nodes with information) for each of tHE epochs. Then, we network that are alive and carry the information.
repeated each simulatidi®0 times and we record the average e Effect of network sizerTthe larger the network, the
and standard deviation of the number of carriers at eachhepomore accurately our theorem marks the onset of survivgbilit
Figure 4 shows the number of carriers over time (d209 The results are good fadNTEL and MIT (N = 54 and
simulation epochs are shown for visual clarity; the resultS§ = 40), very good forGRID (/N=10,000) and perfect for
are similar overl’ = 10,000 timesteps). Simulation resultsGNUTELLA (N=62,000),
are shown in solid lines, along with confidence intervals (+/ In conclusion, our threshold condition is very accurate.
one standard deviation). We also ran our dynamical syst&rarying resurrection rate ~: Here we vary the resurrection
(Equations 1-3) with exactly the same parameters and plot aate v, while keeping the the rest fixed-5£0.1, §=0.01).
estimated number of carrie€d(¢) in dotted lines. We observe Figure 6 shows the results in an analogous fashion to Figure
the following: 5. The conclusions are identical as in Figure 5, providing
e The dynamical system is very accuraildie dotted lines additional evidence that our threshold condition is aceura
of our dynamical system are visually indistinguishablenfro
the solid lines of the simulation (relative error is just and D.
1%). Thus, Equations 1-3 and their independence assumptiorBo far we have considered the case where all nodes are
are highly accurate for a wide variety of real-world setting initially in the ‘Has Info’ state, i.e. all nodes are carser
e The information dies out below our thresholBor all (infected). Next we show that our results do not change as
the datasets, the number of carriers goes to zero very guickie vary the number of initial carrierS (¢t = 0).
below the threshold. Figure 7 shows examples of the network being below-,
e Above our threshold, the number of carriers remaindt- and above- the threshold. We run the experiment on
practically constant:For all the datasets, the informationthe GNUTELLA network with N = 62,000 nodes and’ =
survives for a “long” time. 295,000 edges. We vary the number of initially infected rsode
e Variance decreases with network sidearge networks, in the range (1,000, 5,000, 10,000, 20,000, 40,000). Notice
like GRID andGNUTELLA had small variance, which makeghat the behavior is independent of the starting conditions
the error bars invisible in Figures 4(a-b). Smaller networkIn Figure 7(a), below the threshold, the information dies
like the INTEL and MIT datasets show wider confidenceéut exponentially fast. Not surprisingly, with fewer iriti
intervals. In retrospect, this makes sense, probably bem@;riersC(t = 0), the information becomes extinct even faster.

Insensitivity to initial conditions

related to the law of large numbers. Figure 7(b) shows the number of carriers over time, when we
- are at threshold. Now, information is dying out much slower
C. Accuracy of the threshold condition (polynomially fast).

In this set of experiments, we vary one parameter while In Figures 7(c, d), we are above the threshold. Notice that
keeping all the others fixed. The link qualitigs; depend the information now survives. Moreover, all curves coneerg
on the environment, while the death rate is intrinsic to to the same expected number of carriérs,, regardless
the sensor and its battery; thus, we only perform experimenf the initial conditions. In Figure 7(c), notice that some
that vary the retransmission rate and the resurrection ratecurves move up, while some others move downwards, so that
~. For each dataset, we run simulations for several valuestbey all reach the same state. The curves in Figure 7(d) are
r and~, and recordC«.», the number of carriers left after qualitatively similar, with just a highe€(¢) (thanks to the
a “long” time (1, 000 simulation epochs, in our experiments)higher survivability scores).

Recall that we defined this situation as quasi-steady;siatd

we definedC«.» as the number ofesidual carriers
Again, for each Setting we ruh00 simulations, to obtain We formulated and studied the problem of the “information

confidence intervals. survival threshold”, that is, the condition under which duha
Varying retransmission rate r: Here we fix the death rate transmitted from node to node will SUrVive, deSpite node and
& and the resurrection rate both t00.01. Figure 5 shows link failures. Our contributions are the following:

the numberC..» of residual carriers versus the retransmission « Closed form formula We provide the first and only
rater, on all four datasets. The results of our dynamical system solution to this problem, with a simple formula that works
(Egs. 1-3) were very close to that of the simulations, and for arbitrary network topologies, and arbitrary rates for
are omitted for visual clarity. The dashed vertical line ksar retransmission, death and resurrection.

V. CONCLUSIONS
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Fig. 7. Number of carriersC(t) versus time (simulation epochs): GNUTELbatwork, below, at and above the threshold, with initial temof carriers
C(t = 0) varying in (1,000, 5,000, 10,000, 20,000, 40,000). Thenesittn/survival behavior is the same, regardless of thgaintonditions.

« Experiments on real dat&hrough extensive experiments
we show that our analysis is extremely accurate, with
typical relative error abouit%.

« Several additional observations: (a) the final state does

not depend on the initial conditions, and (b) our analysis
includes the well known SIS infection model as a special
case.



From a practical system design point of view, we avoig2]
(“fast”) extinction if we arrange the network topology art
network parameters (retransmission-, death-, and regiomne
rates) so that we satisfy our condition £ |)‘1,S| >1). And [23]
conversely, if we want to guarantee fast extinction (sayafo
computer virus, or an illegal copy of an MP3 song), we shou%‘u
shoot for the reverse condition. [25]

Future work could focus on optimization problems, wher[%]
our result provides a valuable stepping stone. A typicadgr
guestion would bevhat is the cheapest (least energy) networz7]
that can sustain a ‘datum’®ne could also study mechanismg?8l
by which nodes in a dynamic high-churn network could
determinghe current threshold, and act accordingly, like, e.g29]
stop retransmitting to save energy.

[30]
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