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ABSTRACT

We study online social networks in which relationships careb
ther positive (indicating relations such as friendship)epative
(indicating relations such as opposition or antagonismghS mix
of positive and negative links arise in a variety of onlin&isgs;
we study datasets from Epinions, Slashdot and Wikipediafiitde
that the signs of links in the underlying social networks barpre-
dicted with high accuracy, using models that generalizesacthis
diverse range of sites. These models provide insight inteesof
the fundamental principles that drive the formation of sigjfinks
in networks, shedding light on theories of balance and stiam
social psychology; they also suggest social computingiegibns
by which the attitude of one user toward another can be etiina
from evidence provided by their relationships with othemmbers
of the surrounding social network.

Categories and Subject DescriptorsH.2.8[Database Manage-
ment]: Database applicationsBata mining

General Terms: Algorithms; Experimentation.

Keywords: Signed Networks, Structural Balance, Status Theory,
Positive Edges, Negative Edges, Trust, Distrust.

1. INTRODUCTION

Social interaction on the Web involves both positive anchtigg
relationships — people form links to indicate friendshipppgort,
or approval; but they also link to signify disapproval of eth, or
to express disagreement or distrust of the opinions of sti®hile
the interplay of positive and negative relations is cleariportant
in many social network settings, the vast majority of onloeial
network research has considered only positive relatigsgiio].

Recently a number of papers have begun to investigate megati
as well as positive relationships in online contexts. Famnegle,
users on Wikipedia can vote for or against the nominationtlof o
ers to adminship [3]; users on Epinions can express trusstudt
of others [8, 18]; and participants on Slashdot can decltrers
to be either “friends” or “foes” [2, 13, 14]. More generalbtbi-
trary hyperlinks on the Web can be used to indicate agreenrent
disagreement with the target of the link, though the lackx«plieit
labeling in this case makes it more difficult to reliably detane
this sentiment [20].

For a given link in a social network, we will define gggnto be
positive or negative depending on whether it expressesitveosr
negative attitude from the generator of the link to the riegip* A

We consider primarily the case of directed links, though our
framework can be applied to undirected links as well.
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fundamental question is then the following: How does tha sifj

a given link interact with the pattern of link signs in its &wicin-

ity, or more broadly throughout the network? Moreover, wduat
the plausible configurations of link signs in real sociawmks?
Answers to these questions can help us reason about howveegat
relationships are used in online systems, and answers ¢nar-g
alize across multiple domains can help to illuminate som#ef
underlying principles.

Effective answers to such questions can also help inforndé¢he
sign of social computing applications in which we attempinfer
the (unobserved) attitude of one user toward another, tisengos-
itive and negative relations that have been observed initieity
of this user. Indeed, a common task in online communitie® is t
suggest new relationships to a user, by proposing the fawmat
of links to other users with whom one shares friends, interes
other properties. The challenge here is that users may \ae# h
pre-existing attitudes and opinions — both positive andatieg
— towards others with whom they share certain charactesistind
hence before arbitrarily making such suggestions to ugéssm-
portant to be able to estimate these attitudes from existifdence
in the network. For example, il is known to dislike people that
B likes, this may well provide evidence abadts attitude toward
B.

Edge Sign Prediction. With this in mind, we begin by formulat-
ing a concrete underlying task — tleege sign prediction problem
— for which we can directly evaluate and compare different ap
proaches. The edge sign prediction problem is defined asifll
Suppose we are given a social network with signs on all itegdg
but the sign on the edge from nodé¢o nodev, denoteds(u, v), has
been “hidden.” How reliably can we infer this sigifu, v) using
the information provided by the rest of the network? Note this
problem is both a concrete formulation of our basic questaiyout
the typical patterns of link signs, and also a way of appriarh
our motivating application of inferring unobserved attiés among
users of social computing sites. There is an analogy heteetonk
prediction problenfor social networks [16]; in the same way that
link prediction is used to to infer latent relationshipsttae present
but not recorded by explicit links, the sign prediction desh can
be used to estimate the sentiment of individuals toward e#wdr,
given information about other sentiments in the network.

In studying the sign prediction problem, we are followingexq
perimental framework articulated by Guha et al. in theidgtof
trust and distrust on Epinions [8]. We extend their approach
number of directions. First, where their goal was to evalymbp-
agation algorithms based on exponentiating the adjaceratgixn
we approach the problem using a machine-learning frametiaik
enables us to evaluate which of a range of structural festare
most informative for the prediction task. Using this franoeky we
also obtain significantly improved performance on the tasélfi



Second, we investigate the problem across a range of dataset
identify principles that generalize across all of them, gasiing
certain consistencies in patterns of positive and negagiation-
ships in online domains.

Finally, because of the structure of our learned models, nee a
able to compare them directly to theories of link signs fraon s
cial psychology — specifically, to theories bélanceand status
These will be defined precisely in Section 3, but roughly kjyep
balance is a theory based on the principles that “the enemyyof
friend is my enemy,” “the friend of my enemy is my enemy,” and
variations on these [4, 11]. Status is a theory of signedflmnina-
tion based on an implicit ordering of the nodes, in which dtpes
(u, v) link indicates that considers to have higher status, while
a negativgu, v) link indicates that, considers to have lower sta-
tus. The pointis that each of these theories implicitly {0 own
model for sign prediction, which can therefore be compaoealir
learned models. The result is both a novel evaluation oftities-
ories on large-scale online data, and an illumination oflearned
models in terms of where they are consistent or inconsistéht
these theories.

Generalization across Datasets.We study the problem of sign
prediction on three datasets from popular online socialiansites;
in all cases, we have network data with explicit link signsheT
first is the trust network of Epinions, in which the sign of tirk
(u, v) indicates whether has expressed trust or distrust of user
(and by extension, the reviews of [8]. The second is the social
network of the technology blog Slashdot, wharean designate
as either a “friend” or “foe” to indicate’s approval or disapproval
of v's comments [2, 13, 14]. The third is the voting network of
Wikipedia; here, the sign of the linku, v) indicates whethet
voted for or against the promotion ofto admin status [3].

Despite the fact that link signs have quite different megsiim
the three settings, our main results generalize acroskrak tdo-
mains in several important ways. First, we find that sign jored
tion performance degrades only slightly when we train oudet®
on one domain and test them on another. This indicates that ou
models are capturing principles that will arguably gerieeato a
range of future contexts in which signed links are employather
than picking up on idiosyncrasies of particular individdamains.
Moreover, this generalization holds despite the fact thatqual-
ity of prediction performance is different across the damaifor
example, predicting link signs is more difficult on Wikipadiyet
models trained on Wikipedia still perform on other domairithw
very little loss of accuracy compared to models that werdieiy
trained on those domains.

Second, we find that the social-psychological theories lafrtuz
and status agree with the learned models in certain chaisiitte
ways, and disagree in other characteristic ways, as we relgbin
Section 3. These similarities and contrasts among the radiéet
wise persist at a general level across the datasets, angribnide
insight into the successes and failures of balance andssaatin-
terpretative frameworks for understanding how link sigresteeing
used across all these systems.

Additional Tasks. We consider several further issues beyond the
problem of sign prediction. Among these, we ask whetherrinfo
mation about negative links can be helpful in addressingtipres
that concern purely positive links. Specifically we consithe link
predictionproblem: given a pair andv, is there a (hidden) pos-
itive edge betweemn. andv? We ask how much performance is
improved if the negative edges in the network are also \@silh
other words, how useful is it to know where a person’s eneanies

if we want to predict the presence of additional friends? \Wd fi
that negative links can be a powerful source of addition@rma-

tion for a task such as this: on all two of the three datasetgeta
boost in improvement over random choice of up to a factor 6f 1.
This type of result helps to argue that positive and negaitives
in online systems should be viewed as tightly related to e#uér,
rather than as distinct non-interacting features of théesys

We also investigate more “global” properties of signed aloci
networks, motivated by the local theories of balance antlista
Specifically, the “friend of my enemy” logic of balance thgsug-
gests that if balance is a key factor in determining signekl fior-
mation at a global scale, then we should see the networkiparti
into large opposed factions. The logic of status theoryherother
hand, suggests that we should see an approximate totairayder
of the nodes, with positive links pointing from left to righhd
negative links pointing from right to left. Searching fothar of
these global patterns involves developing approximatémogd-
tion heuristics for the underlying networks, since the tvattgrns
correspond roughly to the well-knownaximum cuandmaximum
acyclic subgrapltproblems. We employ such heuristics, and find
significant evidence for the global total ordering sugge$te sta-
tus theory, but essentially no evidence for the division factions
suggested by balance theory. This result provides an ntggcon-
trast with our basic results on sign prediction using loealtdires,
where strong aspects of both theories are present; it stsgtes
the mechanisms by which local organizing principles scaldéou
global ones is complex, and an interesting source of furbpen
questions.

Further Related Work. Earlier in the introduction, we discussed
some of the main lines of research on which we are buildingg,he
we survey further lines of study that are also related to aankw

First, our use of trust networks as a source of data connects t
a large body of work on trust management in several settings,
cluding peer-to-peer networks [12, 25], Semantic Web apfibns
[22], and Web spam detection [10]. Related to trust manageise
the development of user rating mechanisms on sites suctask-SI
dot [13, 14] and the development of norms to control deviat b
havior [6]. Recent work has also investigated online comitrasm
devoted to discussion of controversial topics, where oneegpect
to find strong positive and negative interactions [2, 24]d &me
analysis of sentiment, subjectivity, and opinion in text bacome
an active area in natural language processing [20].

Our general goal of inferring an individual’'s attitudes gagts
parallels to a long line of work orecommendation systerffsl],
in which the goal is typically to infer how a user would evakia
given items based on their evaluation of other items. Theee a
crucial differences, however, between an analysis in whiciser
is evaluating (inert) items, and our case in which a useratsting
otherpeople— in this latter case, the objects being evaluated are
themselves capable of forming opinions and expressingadds,
and this provides additional sources of information basedhe
full social network of interactions.

As noted above, there is a long history of work in the social sc
ences on balance theory [4, 11], including more recent waork o
mathematical models that attempt to capture how balancariss
from dynamic changes to link signs over time [1, 17]. In rdcen
work, we analyzed theories of balance and status in the xonte
of social media sites, investigating the extent to whichhethe-
ory helped explain the linking behavior of users on thessgit5].
Our work there studied how balance and status effects caasact
modifiers on the default behavior of a set of people measured i
aggregate; the problem of making predictions at the levehof
dividuals was left as an open question. Here, we take some ini
tial steps toward addressing this question, combining atyais of
signed networks with machine-learning techniques so asrtouf-
late individual-level predictions.



|| Epinions | Slashdot| Wikipedia

Nodes 119,217 82,144 7,118
Edges 841,200 | 549,202 103,747
+ edges 85.0% 77.4% 78.7%
— edges 15.0% 22.6% 21.2%

Table 1: Dataset statistics.

DATASET DESCRIPTION

We consider three large online social networks where eagh li
is explicitly labeled as positive or negative: Epinionsastidot and
Wikipedig.

Epinions is a product review Web site with a very active user
community. Users are connected into a network of trust aed di
trust, which is then combined with review ratings to deterni
which reviews are most authoritative. The data spans franirth
ception of the site in 1999 until August 12, 2003. The network

2.

fromz toy. Thatis,s(z,y) = 1 when the sign ofzx, y) is positive,
—1 when the sign is negative, afdvhen there is no directed edge
from z to y. Sometimes we will also be interested in the sign of a
directed edge connectingandy, regardless of its direction; thus,
we write 3(z,y) = 1 when there is a positive edge in one of the
two directions(z, y) or (y, =), and either a positive edge or no edge
in the other direction. We writé(x,y) = —1 analogously when
there is a negative edge in one of these directions, and eitheg-
ative edge or no edge in the other direction. We wiite, y) = 0

in all other cases (including when there are edgeg) and(y, z)
with opposite signs, though this is in fact rare in our datgsd-or
different formulations of our task, we will suppose that#qpartic-
ular edge(u, v), the signs(u, v) or §(u, v) is hidden and that we
are trying to infer it.

Features.We begin by defining a collection of features for our ini-
tial machine-learning approach to this problem. The femtare

contains 119,217 nodes and 841,000 edges, of which 85.0% aredivided into two classes. The first class is based on the dign

positive. 80,668 users received at least one trust or distuge,
while there are 49,534 users that created at least one agidadc
at least one signed edge.

Slashdotis a technology-related news website. In 2002 Slashdot
introduced theSlashdot Zoavhich allows users to tag each other
as “friends” or “foes.” The semantics of a signed link is damito
Epinions, as a friend relation means that a user likes anae’s
comments, while a foe relationship means that a user findbano
user’'s comments uninteresting. We crawled Slashdot inuzeipr
2009 to obtain its network of 82,144 users and 549,202 edfyes o
which 77.4% are positive. 70,284 users received at leassigned
edge, and there are 32,188 users with non-zero in- and guéele

Wikipedia is a collectively authored encyclopedia with an ac-
tive user community. The network we study corresponds tessot
cast by Wikipedia users in elections for promoting indidtfuto
the role of admin. A signed link indicates a positive or negat
vote by one user on the promotion of anotherfor a supporting
vote and— for an opposing vote). Using the latest complete dump
of Wikipedia page edit history (from January 2008) we extec
all administrator election and vote history data. This gas@,794
elections with 103,747 total votes and 7,118 users pasdtiicig in
the elections (either casting a vote or being voted on). Gthisto-
tal, 1,235 elections resulted in a successful promotionlenth559
elections did not result in the promotion of the candidatdnout
half of the votes in the dataset are by the existing adminslewh
the other half comes from ordinary Wikipedia users. Theltiegu
network contains 7,118 nodes and 103,747 edges of whicl84/8.7
are positive. There are 2,794 nodes that receive at leastdye
and 1,376 users that both received and created signed edges.

In all networks the background proportion of positive ediges
about the same, witkk80% of the edges having a positive sign.

3. PREDICTING EDGE SIGN

We now consider the problem of predicting the sign of indinadl
edges in our dataset. The set-up for this problem follow$rthrae-
work of Guha et al. [8]: We are given a full network with all but
one of the edge signs visible, and we are interested in fneglihe
sign of this single edge whose sign has been suppressedcadrhis
be viewed as leave-one-out cross-validation in the presmmext,
where we learn using the rest of the network and aim to préfoéct
missing sign of a single edge.

3.1 A Machine-Learning Formulation
Given a directed grapfy = (V, ) with a sign (positive or nega-
tive) on each edge, we le{z, y) denote the sign of the edde, v)

’Datasets are availablelat t p: / / snap. st anf ord. edu

degrees of the nodes, which essentially record the aggréuogl
relations of a node to the rest of the world. The second ckss i
based on the principle from social psychology that we carecnd
stand the relationship between individualsand v through their
joint relationships with third parties: for example, is there some-
one who has a positive relationship toward boethndv, a negative
relationship toward botlh andwv, or a positive relationship toward
one and a negative relationship toward the other? ThusjriEsof
this second class are based on two-step paths involvamdv.

We define the first class of features, based on degree, ag$ollo
As we are interested in predicting the sign of the edge froto
v, we consider outgoing edges fromand incoming edges to.
Specifically we usé; (v) andd;, (v) to denote the number of in-
coming positive and negative edgestaespectively. Similarly we
used,,,(u) andd,,,, (u) to denote the number of outgoing positive
and negative edges from respectively. We us€'(u, v) to denote
the total number of common neighborswéndwv in an undirected
sense — that is, the number of nodesuch thatw is linked by an
edge in either direction with bottaandv. We will also refer to this
quantityC'(u, v) as theembeddedness the edge u, v). Our seven
degree featureare the five quantitied; (v), d;, (v), dl.,,, d, ..
andC(u, v), together with the total out-degree ofand the total
in-degree ofv, which ared, ,(u) + d,,.(u) andd}, (v) + d;, (v)
respectively.

For the second class of feature we consider eaatl involving
the edge(u, v), consisting of a nodev such thatw has an edge
either to or fromu and also an edge either to or fram There are
16 distinct types of triads involvingu, v): the edge betweem and
u can be in either direction and of either sign, and the edgedsst
w andv can also be in either direction and of either sign; this leads
to2-2-2-2 = 16 possibilities. Each of these 16 triad types may
provide different evidence about the sign of the edge fioto v,
some favoring a negative sign and some favoring a positiye. si
We encode this information in a 16-dimensional vector dpeg
the number of triads of each type that, v) is involved in.

Learning Methodology and Results.We use a logistic regression
classifier to combine the evidence from these individuatuiess
into an edge sign prediction. Logistic regression learnodahof
the form

1
14 e~ (bo+2F bizi)

P(+|z) =

wherez is a vector of featurese(, . .., z,) andbo, . .., b, are the
coefficients we estimate based on the training data.

The edges signs in the networks that we study are overwhelm-
ingly positive. Thus we consider and evaluate two differapt
proaches. First, we use the full dataset where about 80%eof th
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Figure 1: Accuracy of predicting a sign of edge(u,v) given
signs of all other edges in the network. (a) Epinions, (b) Skh-
dot, (c) Wikipedia.

edges are positive. Second, we follow the methodology ofeGaih
al. [8] and create halanced datasetith equal numbers of positive
and negative edges, so that random guessing yields a 50%ctorr
prediction rate. For every negative edge v) we sample a ran-
dom positive edge, which ensures that the number of positie
negative edges in the data we consider for training and gedi
is balanced. Moreover, we also consider two different ext@n
measures: the classification accuracy and the area undeCfie
curve (AUC). For ease of exposition we focus on classificetio-
curacy on a balanced dataset. As we discuss later our resalts
robust to whether we use the full or balanced dataset anchehet
we evaluate using AUC or accuracy.

We describe each edde, v) in this set using the two classes
of features described above. We consider all 23 featuredtieg
and we also evaluate performance using features of eachsgas
arately — that is, representing each edge as a 7-dimensiectar
of degree features and as a 16-dimensional vector of tretdrfes.
We also consider performance across different types ofsedige
particular, since the triad features are relevant only whemd v
have neighbors in common, it is natural to expect that thélybsi
most effective for edges of greater embeddedness. We theref
consider the performance restricted to subsets of edgeferkat
levels of minimum embeddedness.

The classification accuracy is shown in Figure 1, where tesul
are described for all three datasets, for the two classesafifes
separately and together, and for different levels of mimmem-
beddedness (denoted By,,). Several observations stand out. First,
prediction based on the learned models significantly ofdparthe
results reported in Guha et al. [8] for the Epinions dataBe low-
est error rate achieved in their paper is 14.7% whereas wanobt
error rates of 11.45% for Degree, 6.64% for 16Triads and%.58
for All23.

These results are particularly interesting because oturiesare
based only on local properties in the one-step neighborlobtie
edge(u, v) whose sign is being inferred, in contrast with the prop-

agation model of Guha et al. This suggests that edge signsecan
meaningfully understood in terms of such local propertiather
than requiring a notion of propagation from farther-offtgasf the
network.

Second, consistent with intuition, the triad features qenfless
well than the degree features for edges of low embeddedbess,
become more effective as the embeddedness increases aadex gr
amount of triadic information becomes available.

Finally, it is also noteworthy that the accuracy on the Weklja
network is significantly lower than on the other two networkgen
for edges with large embeddedness. This discrepancy betwee
Wikipedia and the other datasets is interesting becaugeogitve
and negative links on Wikipedia correspond to evaluatibas are
more publicly visible, more consequential, and more infation-
based than for the other two datasets, since they resultgdatic
votes on promotion of individuals to adminship, where thedia
dates being voted on have accumulated a long history ofityobi
Wikipedia. One could conjecture that these aspects of thkiev
ations in the Wikipedia dataset make it correspondingly evdif-
ficult (though still surprisingly feasible) to predict th&utcomes
from simple structural measures.

In all experiments we report the average accuracy and estima
logistic regression coefficients over 10-fold cross vdl@ta If not
stated otherwise, we limit our analyses to edges with minirem-
beddedness 25. We note that our results are robust withatespe
to training dataset and evaluation metric. Generally, whging
the full dataset rather than the balanced one, random gugeisst
proves accuracy from 50% to approximately 80%. With the full
dataset the accuracy of our logistic regression methoaspond-
ingly jumps to the 90-95% range and maintains roughly a 15% ab
solute improvement over random guessing. When evaluasimyu
AUC rather than accuracy the overall pattern of performatozs
not change. The various forms of logistic regression hav€ A
approximately 90% on the balanced dataset and 95% on the full
dataset.

3.2 Connections to Theories of Balance and
Status

Our goal is to use the machine learning framework not just to
predict the edge signs themselves, but also for derivinighits
into the usage of these systems based on the observed paitern
positive and negative edges.

Specifically, logistic regression provides a coefficiersoasated
with each feature, which suggests how the feature is beied g
the model to provide weight for or against a positive edge.sTdnis
provides a natural and appealing connection to classiealrids
from social psychology, which also offer proposals for hailvsets
of these features offer evidence for the sign of the €dge).

We focus here on the second class of features, based on triad
types, which are motivated by social-psychological thepabout
local patterns of relationships. Specifically, we say thttemry of
triad typesis a function

f : {types T} — {+17 7170}7

which specifies for each triad typewhether it constitutes evidence
for a positive(u, v) edge () = +1), evidence for a negative
(u,v) edge (f(7) = —1), or whether it offers no evidenc¢ (r) =
0).
Our logistic regression model provides a learned theoryiafl t
types for each dataset, in whigh{r) is equal to the sign of the
coefficient associated with the feature But several principles
from social psychology also provide theories of triad typieyel-
oped from plausible assumptions about human behaviorrrttae
through a data-driven approach. In other words, the leammedel



and the qualitative models from the literature are expkgse¢he
same language — as mappings from triad types to positivegr ne
ative evidence — and we can thus ask questions about how the
theories align with each other. Through this line of invgation

we can gain insight into two issues: first, we can evaluatexiw-

ing theories on our on-line datasets; and second, we carhase t
existing theories as an interpretive framework for reasgribout

the structure of our learned model.

Balance and Status. We begin by summarizing the two main
social-psychological theories of triad types that we corapa.

The more well-studied of the two Etructural balance theory
based on the common principles that “the friend of my friead i
my friend,” “the enemy of my friend is my enemy,” “the friend
of my enemy is my enemy,” and (perhaps less convincinglyg “th
enemy of my enemy is my friend.” Concretely, this means that i
w forms a triad with the edgéu, v), then structural balance theory
posits that(u, v) should have the sign that causes the triangle on
u, v, w to have an odd number of positive signs, regardless of edge
direction — just as each of the principles above has an odderum
of occurrences of the word “friend.” In other word&,iance (7) =
5(u, w)5(v, w), where we recall that the value ®fcorresponds to
the sign regardless of the direction of the edge.

An alternate theory, which is implicit in the work of Guha &t a
[8] and developed further in our recent research [15], issaity of
status In this theory, a positive edge:, y) means that: regards
y as having higher status than herself, while a negative édgg
means that regardsy as having lower status than herself. Assum-
ing that all participants in the system agree on this statdsring,
status theory predicts that when the direction of an edgéjsef,
its sign should flip as well.

So to determin€fstatus(7), We first flip the directions of the
edges between andw and between andw, if necessary, so that
they point fromu to w and fromw to v; we flip the signs accord-
ingly as we do this. We then definé..:.s(7) to be the sign of
s(u, w) + s(w,v). This means that status theory makes no pre-
diction when the two signs cancel out, but otherwise, it jwteda
positive or negative sign based on the imputed status oaktip
betweenu andv.

Notice that balance and status agree on some types of triads
for example, when points positively taw andw points positively
to v, thenw is both the friend ofu’s friend, and also someone of
higher status than, and thus both theories predict a positive sign
for (u,v). But balance and status can also disagree — for example,
whenwv points positively tow andw points positively tou, then
balance concludes thatis the friend ofu’s friend and thugu, v)
is positive, but status posits thahas lower status thamand thus
(u, v) is negative.

Comparison of Balance and Status with the Learned Modelln
Table 2, we show the signs of the three theories discussed abo
— balance, status, and the learned model — on the three tatase
For denoting the 16 triad types, in the table and elsewhezejsg a
shorthand in which we record the four binary choices thatprise
each type. Thus a typewill be represented by a string of the form
[F'| B][F|B][p|m][p|m] to indicate the direction of the edges along
the two-step path-w-v (Forward or Backward on each step), and
the signs of these two edges (plus or minus). For exanipl&np

is the triad type in which: points negatively tav, andv points
positively tow (since the first step in the-w-v path is forward and
minus, while the second is backward and plus).

At ageneral level, the results show that both social-psigcfical
theories agree fairly well with the learned models — withesgr
ment on more than half the triad types where they make piedit
and generally on three-quarters or more of the triad typeskiL

Feature|| Balance theory| Epinions | Slashdot| Wikipedia

const 0 0.4321| 1.4973 0.0395
pp 1 0.0470| 0.0395 0.0553
pm -1 | -0.1154| -0.2464 -0.1632
mp -1 ] -0.2125| -0.3476 -0.1432
mm 1| -0.0149| -0.0262 -0.0465

Table 3: Regression coefficients based on Balance attribige
and learned logistic regression.

Feature || Status theory| Epinions | Slashdot| Wikipedia
const 0 -0.6873[ -1.3915 -0.3039
u<w<v 1 0.1165| 0.0463 0.0258
u>w>v -1 | -0.1002 -0.114 -0.1941
u<w>v 0 0.0572| 0.1558 0.0300
u>w<v 0| -0.0064| 0.0382 0.0543

Table 4: The coefficients based on Status Theory and learned
logistic regression.

ing at the absolute values of the coefficients, we note thadice
features stand out in importance across all three datasefseeif-
ically, there are coefficients of large magnitude for all Efefea-
tures, as well as the FBmp and BFpm features. In contrasBBhe
features have coefficients of much smaller magnitude. Wesds
that balance theory is in notably better alignment with treathed
model for Epinions and Slashdot than it is for Wikipedia. As-d
cussed above, Wikipedia differs considerably from the othe
datasets in that it is a publicly visible voting forum. Givirese re-
sults it is interesting to conjecture that in such a settiagus may
play a stronger role.

It is also interesting to consider the cases in which theee ar
relatively stable disagreements among the models acreghitee
datasets. In particular, we see that balance theory centlistis-
agrees with the learned model (and with status theory) wiae-i
dicts that a negativeu, w) and negativéw, v) edge should suggest
a positive(u, v) edge. This is precisely the kind of case that seems
somewhat suspect intuitively, namely “the enemy of my enény
my friend”. Balance theory also consistently disagree$ Wwitth
the learned model and status theory when it predicts thasidiy@
(v,w) and positive(w, u) edge should result in a positive, v)
edge. Here the direction of the two-step path is froto « rather
thanu to v, and one can conjecture that this opposite direction path
has a lower predictive power for the, v) sign. Indeed these two
cases suggest modifications of the models, as we now discuss.

Comparison of Balance and Status with Reduced ModelsTo
fully understand the relationship of the learned model @ ttre-
ories of balance and status, it helps to look at “reductiafshe
model that capture just the features essential to thesewaries.

Let’s begin by considering balance theory. Balance theay h
generally been applied as a theory of undirected graphsuh
its extension to directed graphs by ignoring edge directaanwe
use it here) is standard as well [23]. With this in mind, lets-
sider the learning problem using a feature set in which wat tre
all edges as undirected. In this setting, there are only difter-
ent triad types involving a node and the edgéu, v), depending
on whether the undirected ed@e, w} is positive or negative, and
whether the undirected eddev, v} is positive or negative (since
we can no longer observe the directions of these edges)., Weus
create a 4-dimensional feature vector for the edge), by simply
counting how many undirected triads of each type it is ingdlin.
We then apply logistic regression to this 4-dimensionabjam.

The results are depicted in Table 3. We see that for all triad
types other than the “enemy of my enemy” typer@), and all
three datasets, the learned coefficient is the same as ttietpe
of balance theory. The disagreement for the: type is a further



Feature|| Bal | Stat | Epinions | Bal | Stat || Slashdot| Bal | Stat | Wikipedia | Bal | Stat

const -0.1656 0.018 -0.215

FFpp 1 1 0.4869 0.8504 0.2849

FFpm -1 0 -0.5166 -0.9008 -0.4337

FFmp -1 0 -0.4476 -1.0513 -0.3092

FFmm 1 -1 -0.7331 X -0.5874 X -0.768 X

FBpp 1 0 0.3416 0.4385 0.0544

FBpm -1 1 -0.0147 X -0.1439 X -0.0131 X
FBmp -1 -1 -0.8598 -1.1887 -0.1986

FBmm 1 0 0.0436 -0.0719 X -0.0325 X

BFpp 1 0 0.0814 0.3593 0.116

BFpm -1 -1 -1.3097 -1.0838 -0.3527

BFmp -1 1 -0.1228 X -0.248 X 0.0527 X
BFmMm 1 0 0.0788 -0.024 X -0.0968 X

BBpp 1 -1 -0.0855| x -0.0873| x -0.0065| x

BBpm -1 0 -0.0536 -0.2736 -0.0168

BBmp -1 0 -0.0382 -0.2788 0.0507 X
BBmm 1 1 -0.0242 X X 0.2275 -0.1616 X X
Total errors 3 3 4 2 7 2

Table 2: Logistic regression coefficients compared to statuand structural balance theory. x means there is discrepancy in predic-
tions between the Balance (Status) theory and what is learderom the logistic regression model. Each line representsicections and
signs of the edges on a pathA, B, C') where “BFpm" stands for Backward Forward plus minus and denotes a pathA «+4 B — —C.

Feature|| Epinions | Slashdot| Wikipedia 1
const -2.2152| -2.8475 -1.4496 0.9 (A)
FF 0.2023| 0.2092 0.0773
FB 0.1286| 0.1698 0.0286 081
BF 0.0077| 0.0842 0.0544 07}
BB -0.0692 | -0.0293 -0.0259 o6l
Table 5: Learned logistic regression coefficients for the mael 05t
based on the counts of directed positive paths. 1
>
indication of the difficulty of the “enemy of my enemy” aspexdt § 0.9
balance in these domains, and in fact is consistent withtemal- 8 osh
tive formulation of balance theory due to Davis in the 1960s [ ; ol
which agrees with standard balance theory on the first thiae t 3 )
types and makes no prediction emmn. We will refer to Davis'’s B 06f
variant on balance theory asgak balance * osl
We can do a similar reduction for status theory. We begin by pr 1 : : : : : : :
processing the graph to flip the direction and sign of eaclatney 00 (C) Ei@ig —_—
edge, thereby creating a positive edge with the same irtzipon ’ Em=25
under status theory. The resulting graph has only positiges, 0.8
and hence there are only four triad types — based on whether th 0.7t
(u, w) edge is forward or backward, and whether the v) edge 06l
is forward or backward. We create a 4-dimensional featuctove
for the edge(u, v) by counting the frequencies of these four triad 051
types, and apply logistic regression. ? 2 £ %2 ¢2 ¢ 5
The learned coefficients for this problem are shown in Table 4 s 3 & 5 ¢ ¢ 2
Here we see that on both triad types for which status theokema 3 9 g 8 g 5 @
a prediction, and across all three datasets, the sign oktradd g g 3
coefficient is the same as the sign of the status prediction. Figure 2: Accuracy of predicting a sign of edge(u, v) given
What emerges from the analysis of these reduced-form madels  signs of all other edges in the network. (a) Epinions, (b) Skb-
that each of balance theory and status theory are essgrttaili- dot, (c) Wikipedia.

rate at the granularity in which they are most naturally folated
— in the case of balance, on undirected graphs; and in the case
of status, once edge signs and directions have been calioaica
This makes it clear that our results for the more detailedypé-

{—1,0,+1} provided by balance, Davis’s notion of weak balance,
and status (denoteBlalanceDetWeakBalDetandStatusDetn the

model go beyond the scale of resolution at which either loalam figure).

status can provide accurate predictions, and illuminateesmore All-positive subgraphs. There is a final reduced model that also

subtle effects that govern social interactions. provides insight into the role of balance theory partidyléor these
To further elaborate on this point, we can evaluate the ptiedi datasets. Suppose that we preprocess the graph by simptindel

accuracy of each of these reduced models in comparison falthe  all negative edges, so that we are left with the subgraphistimg
model on all 16 triad types. The results are shown in Figure 2. of only positive edges. Again, there are now four possikkedtr
Here, we consider the two kinds of reduced 4-dimensionalfea types, and we show the learned coefficients for logisticaggjon
sets, and evaluate performance using both the coefficieatadd on this 4-dimensional problem in Table 5. Balance would joted
via logistic regression (denoteBialancelLrnand StatusLrnin the that all coefficients should be positive, since all relagiagmdicate
figure), as well as the lower performance using coefficierdmf friendship under the interpretation of balance theory.sTagrees



All23 || Epinions | Slashdot| Wikipedia

Epinions 0.9342| 0.9289 0.7722
Slashdot 0.9249| 0.9351 0.7717
Wikipedia 0.9272| 0.9260 0.8021

Table 6: Predictive accuracy when training on the “row”
dataset and evaluating the prediction on the “column” datast.

with Table 5 except for the last row, where the coefficientha t
learned model is negative across all three datasets. This-co
sponds to the triad type in which links positively tow, andw
links positively tou. The data indicates that this in fact serves as
evidence of a negativeu, v) link in all datasets, and status theory
provides one simple hypothesis for why:uifregardsw as having
higher status, and in turn regards: as having higher status, then
arguablyu will view v as having lower status.

3.3 Generalization across datasets

We now turn to the question of how well the learned predictors
generalize across the three datasets, in order to investiga ex-
tent to which the learned models are based on specific piepert
of each dataset versus more general properties of sociabriet
data. That is, in our investigation thus far the learned risokave
been able to take advantage of properties of each specifisatat
whereas the base social science models are generic actasstda
Thus it could be the case that the models obtained usingtiogis
regression perform well only on the individual datasets dmictv
they were trained. On the other hand, if the learned models ar
able to generalize across datasets it suggests that tleetmader-
lying general principles that guide the creation of signddes in
social network graphs and which the regression models da@b
capture.

To evaluate the generalization accuracy of the models we per
form the following experiment. For each pair of datasets ra@t
the logistic regression model on the first dataset and etealtian
the second dataset. Table 6 shows the results of these 9-exper
ments using the All23 model. The diagonal entries of theetabl
show the results already presented above (i.e. leave-ainerass-
validation for a single dataset), whereas the off-diagardties
show the generalization across datasets. We see the same ove
all pattern as before, with prediction accuracy being aersibly
lower for Wikipedia than for the other two dataset. We alsotbat
the off-diagonal entries are nearly as high as the diagpshtsv-
ing that there is very good generalization and thus theredddre
general cross-dataset properties captured by the modehotm
the first and second columns (testing on the Epinions anchSlas
dot datasets) there is remarkably little decrease in padaoce re-
gardless of which of the three datasets is used for trainihgte
that in particular, even training on the Wikipedia dataselds
good prediction performance on the other two datasets -while
the Wikipedia dataset is difficult in terms of prediction a@cy it
seems to provide the same underlying structural informai®the
other datasets in that it allows training of a more generaleho

Table 7 shows the results of these experiments using theddar
Balance and Status models considered above. For compavison
also show the performance of the basic BalanceDet, WeakBala
and StatusDet models (which are not learned from the dat@). F
balance we see that the generalization performance is agan
good, and also that the prediction accuracy in all casesgisehi
than for the nonlearned balance models. However for states,
see a considerably different picture. The model does nargéine
as well, and in fact often performs worse than the baseliatist

BalanceLm || Epinions | Slashdot| Wikipedia
Epinions 0.9027 0.9166 0.7319
Slashdot 0.9020 0.9203 0.7439
Wikipedia 0.8985| 0.9145 0.7558
BalanceDet 0.7709| 0.8414 0.5778
WeakBalance|| 0.8233| 0.8698 0.6081
StatusLrn || Epinions | Slashdot| Wikipedia
Epinions 0.8313 0.7514 0.6410
Slashdot 0.7682| 0.7847 0.6094
Wikipedia 0.7592| 0.6598 0.7163
StatusDet 0.8083 0.7173 0.6679

Table 7: Predictive accuracy when training on the “row
dataset and evaluating the prediction on the “column” datast.

3.4 Heuristic Predictors

Having now explored the relationship of balance and staius t
the output of a machine learning model, it is natural to afso i
vestigate simple “hand-written” heuristic predictors ttetmine
baseline performance levels for the sign prediction task.

We construct a few such predictors using ideas drawn from sta
tus and balance theory, as well as considerations of nodeeleg
We again use the same evaluation framework, in which foryever
negative edgéu, v) we sample a random positive edge, to ensure
that random guessing gets 50% of the predictions correct.

We consider the following heuristic predictors:

e A balance heuristic.For each choice of the sign ¢, v),
some of the triads it participates in will be consistent with
balance theory, and the rest of the triads will not. We choose
the sign for(u, v) that causes it to participate in a greater
number of triads that are consistent with balance.

A status heuristicWe define an estimate of a nodis status

to beo(x) = df (z) +d,,,(z) — df,, () — d;, (x). This
givesx status benefits for each positive link it receives and
each negative link it generates, and status detrimentsfdr e
negative link it receives and each positive link it genesate
We then predict a positive sign fdi, v) if o(u) < o(v),
and a negative sign otherwise.

An out-degree heuristicNe predict the majority sign based
on the signs given by the edge initiatar That is, we predict
An in-degree heuristid\e predict the majority sign based on
the signs received by the edge targefThat is, we predict-

if df (v) > dj, (v).

We show the results of these simple predictors in Figure@; pl
ted as a function of embeddedness. First, while these poeslic
perform considerably better than guessing — and quite weslbime
cases — they generally perform worse than the models disduss
above. Second, in the case of the Epinions data, some ofshese
ple predictors perform comparably well to the results regubin
[8] (though not as well as the very best results in that paper)s
underscores the value of having simple baseline measures.

There are several additional points worth noting. Firsg, it
degree heuristic (InSign) performs relatively poorly asrall datasets
(although it beats the other predictors for low embeddeiretse
Wikipedia dataset), while out-degree (OutSign) perfornadl wn
two of the three; this corresponds to the intuitively natamnclu-
sion that the generator of the edge plays a larger role incsger-
mination than the recipient. Second, the triadic featurestatus
(StatDif) and balance (Balance) — do better with increasng

model when trained on one dataset and tested on another. Thisbeddedness, but in most cases performance of these festariss

suggests that the learned balance properties are rejageeleric
across different online settings, whereas the status piepere
more particular to a given dataset.

to drop again as embeddedness gets too high. One can understa
this in terms of a tradeoff between two types of informatipars
sity. On the one hand, when an edge participates in relgtieal
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Figure 3: Accuracy for simple models as a function of minimumedge embeddedness. Refer to main text for model descriptien

triads (low embedding) then the triadic features providatresly
little information, but on the other hand relatively few edgn the
graph have a high degree of embedding (e.qg., significantlyeb
25).

4. GLOBAL STRUCTURE OF SIGNED NET-
WORKS

When we perform sign prediction for an edge v) using infor-
mation about the two-step paths framto v, and when we relate
our learned models to the predictions of balance and states,
are usindocal information about the neighborhoods of the nodes.
However, the theories of balance and status also each ghalxal
predictions about the pattern of the signs in the networkvalsde,
and it is interesting to investigate the extent to which ¢hglebal
predictions are borne out by the network structure of ouasizts.

Balance and Status: From Local to Global. The global predic-
tions of balance and status are best explained in their sshpkt-
tings, which are for networks in which each pair of nodes is-co
nected by an edge. This complete connectivity clearly dags n
hold for our datasets, but we will explain how to adapt thedjore
tions of the models to our setting nonetheless, and thewctséar
evidence of these predictions.

The global prediction of balance theory is contained in artém
of Cartwright and Harary from the 1950s. It asserts thatlifral
angles in a completely connected undirected graph obegtstal
balance, then globally the network can be divided into tviguas
of mutual friends, such that all edges between the two cligue
negative [4].

THEOREM1 (CARTWRIGHT-HARARY). Let G be a signed,
undirected complete graph in which each triangle has an addn
ber of positive edges. Then the nodeg-atan be partitioned into
two setsA and B (where one ofA or B may be empty), such that
all edges withinA and B are positive, and all edges with one end
in A and the other inB are negative.

We can analogously formulate a local-to-global connecfan
status theory, but it leads to a quite different structurabdjction.
Rather than undirected complete graphs, the basic fornmsftta-
orem will use completely connected directed graphs, whiehex
ferred to astournaments directed graphs in which each pair of
nodes is connected by a directed edge in one direction ottltes. o

First, if we consider the local condition that motivatedssahe-
ory in the previous section, it required that for any edgev), and
any third nodew, it should be possible to assign distinct numeri-
cal “status values” tas, v, andw in such a way that the positive
edges among them (if any) go from nodes of lower status toshode
of higher status, and the negative edges among them (if any) g
from nodes of higher status to nodes of lower status. Letyithsa
the three nodes, v, andw are status-consistenf this condition

holds. We can now have the following result, which says thalf i
three-node sets are status-consistent, then the wholb glkegys a
form of status-consistency: there is a total ordering ofrthées in
which positive edges all go left-to-right, and negative exigll go
right-to-left.

THEOREM 2. LetG be a signed, directed tournament, and sup-
pose that all sets of three nodesGhare status-consistent. Then it
possible to order the nodes 6f as vy, ve, ..., v, in such a way
that each positive edge;, v;) satisfiesi < j, and each negative
edge(v;, v;) satisfies > j.

Proof. Following an idea from the previous section, we first re-
verse the direction of each negative edgé&iand give it a positive
sign. Notice that if all sets of three nodes were statusistarg
before this conversion, they remain status-consisteet #fis con-
version.

Let G’ be the resulting graph; note th&t' has only positive
edges. If any three-node subgrapl@ihwere to form a directed cy-
cle, then the three nodes in this cycle would violate statiussistency.
Thus, all three-node subgraphs@f are acyclic. Applying a well-
known theorem on tournaments (see e.g. the opening expositi
[5]) it follows that G itself is acyclic. Thus, we can find a topolog-
ical orderinguvy, va, ..., v, Of G'.

Finally, we claim that this ordering satisfies the condisiarf the
theorem. Indeed, if an edde;, v;) is positive inG, then it is also
an edge inG’, so by the property of the topological ordering we
have: < j. And if an edge(v;, v;) is negative inG, then(v;, v;)
is an edge ofy’, whencei > j as requireds

Searching for Evidence of Global Balance and Status.Both
Theorem 1 and 2 have more elaborate generalizations, wigen th
underlying graph is not completely connected, by genengjithe
respective three-node conditions to arbitrary cycles. ddrilese
generalized conditions the conclusions remain the samenél-
ance holds, we should expect to see a network that is divitted i
two mutually opposed factions of friends, and when statudsho

we should expect to see a network whose edges respect a global

ordering. We therefore take these two basic patterns — aidivi
into two factions, and a global ordering — as potential “sigmes”
for the effects of balance and status respectively at a plebel.
Of course, at best we expect to see balance and status hoiding
approximate sense, and so we search for approximate versfon
these two global signatures, rather than exact versions.

For balance theory, we attempt to partition the graph into tw
sets to maximize the following objective function: the nuembf
positive edges with both ends in the same set, plus the nuafber
negative edges with ends in opposite sets. (We will also Isaly t
those edges that contribute to the objective functionsaitésfied
by the partition.) We develop the following maximizatioruinistic



Balance || Epinions | Slashdot| Wikipedia
Netwok 0.8344 0.8105 0.7809
Permuted 0.8562 0.7779 0.7866
Rewired 0.8993| 0.8310 0.8316
Status Epinions | Slashdot| Wikipedia
Network 0.7905] 0.8221 0.8538
Permuted 0.7241| 0.7568 0.7767
Rewired 0.6377 0.6644 0.6321

Table 8: Fraction of edges satisfying global balance and stias.

for this problem. We start by randomly partitioning the nedeo

two sets. Then we repeatedly pick a random node, and chaage th

set it belongs to if that would increase the value of the dbjec
function. We run this procedure many times from differeritiah
starting sets. On our datasets, we found experimentallytkiea
variance of the solution is very small, as the heuristic kjyicon-
verges to a solution whose objective function value is withfew
hundred of the best solution found over all runs. Note thsra i
trivial solution that would simply declare one of the setb&othe
empty set and the other to be the full node set; this wouldexehi
an objective function value equal to about 80% of the edgeses
in our datasets about 80% of the edges are positive, and $itéevpo
edges would be precisely those that are satisfied by thigipart

For status theory we employ a different heuristic. Firsinabe
proof of Theorem 2, we replace each negative edge with aiypmsit
edge pointing in the opposite direction, thus obtainingraaed
network with only positive edges. In this transformed graibie
goal is to find an ordering of the nodes that maximizes the mumb
of edges pointing from a node earlier in the ordering to o ith
later in the ordering. (Again, we will refer to such edges emb
satisfiedby the ordering.) This is precisely thdaximum Acyclic
Subgraph Problemwhich is known to have strong inapproximabil-
ity bounds: a random ordering achieves an objective functaue
equal to half the total number of edges in expectation, aisctdm-
putationally hard to do asymptotically better than thishia tvorst
case [9]. Of course, our datasets are not necessarily wasstin-
stances — indeed, status theory suggests they may haveadtit
structure — and we employ the following heuristic. We staithw
a random ordering; we then repeatedly pick a random pair @és0
and swap their positions in the ordering if that would insethe
value of the objective function. Again, we run this heudstiulti-
ple times and take the best solution found.

Evaluating Global Balance and Status.We now use these two
heuristic optimization methods to assess the extent tohwvbéch
of the three networks exhibits global balance and statusepties.
That is, we ask whether the quality of the partition or ondgnive
find is better than would be expected from simple baselinggate
from our datasets. If the quality is significantly above sbelse-
lines, it provides evidence for these structures. We usesteh
baselines. The first permuted-signs baseliria which we keep
the structure of the network fixed, but we randomly shuffletel
edge signs. The second igewired-edges baselin@ which we

is very little evidence for the global presence of strudtbedance
in our three network datasets.

For the global version of status theory, shown in the secamnt p
of Table 8, we see quite a different picture. Roughly, we dile a
to find orderings for all three datasets that satisfy abou8%1b
of all edges. This is much higher than the 50% obtainable faom
random ordering; and moreover, it is significantly bettemtlhe
performance on either of our two baselines. Thus, we do fiid ev
dence for an approximate global status ordering in the raakets,
compared to baselines derived from random variations ofithe

Overall, then, there is evidence for link formation corengtwith
a global status ordering on the nodes, in which positives|irgad
to point left-to-right in this ordering, while negative tbito point
right-to-left in this ordering. On the other hand, we can fira
significant evidence for the kind of partitioning into famis that
balance theory suggests at a global level. This forms aigirnitig
contrast with our results at a local level, where there wadesce
for both balance and status. There is no contradiction tsimeg
the fidelity of balance and status at a local level is only apipr
mate, but it does raise interesting questions that suggesteed
for more powerful and general ways to relate the local stigcof
sign patterns to more global forms of structure.

5. PREDICTING POSITIVE EDGES

In the introduction we noted that the sign prediction prable
considered in this paper is closely related to limk prediction
problem of inferring latent relationships that are present but not
recorded by explicit links [16]. We now turn to this problemar-
der to investigate the role of negative edges here as weshiticu-
lar we consider the question of whether information abogatiee
links can be helpful in predicting the presence or absenes oin-
observed positive link. In other words, how useful is it taokn
who a person’s enemies are, if we want to predict the preseince
additional friends?

Specifically, suppose we are given a social network where the
task is to predict the presence or absence of a positive exdgeén
two individuals. This is analogous to the experiments abowgy
now it is the presence or absence of an edge in some conthat rat
than the sign of an edge that is to be predicted. We consider tw
cases. In the first case, only information about the pos#dges is
used to predict the presence or absence of a hidden posilje e
whereas in the second case information about both the ymsitid
negative edges is used for the prediction.

We use the machine learning framework developed in previous
sections to build classifiers that predict whether therstexa pos-
itive edge between a pair of nodes. We train two sets of models
using the same features (16Triads) but in one case we usalthe f
network with positive and negative edges, while in the otteese
we use only the positive edges. We then devise the following e
periment. For a positive edde, b) we pick a corresponding pair
of nodes(c, d) that arenotconnected by an edge but have the same

generate a random network where each node maintains the sam@&umber of common neighbors (embeddednesg)ds). Then we

number of incoming and outgoing positive and negative edges
Table 8 shows the value of the objective function (as a foaabf
the total number of edges) for each of balance and statusicaoss
each of our real networks in comparison to the permutedssigal
rewired-edges baselines. For balance theory, notice thafingd
objective function values that are comparable to the totaltion
of positive edges, which we noted is trivially achievabladalso
trivially achievable in the two baselines, which have thesdrac-
tions of positive edges). Moreover, if we randomize the oekw
structure while preserving the signed in- and out-degreesob-
tain a network that actually achievegyeeater objective function
value under our heuristics. Taken together, this suggkatgtiere

formulate a binary classification problem where we are ga/pair
of nodes and the goal is to determine whether the positive &g
present; that is, we aim to distinguish between pairs of 8¢dg)
that are connected by a positive edge and pairs of nadé3 that
are not connected by an edge.

For each pair of nodes we compute two sets of features. For the
first set of features we include the information from positand
negative edges by computing the features counting theéremyuof
each of 16 distinct signed directed triads between a paiodés.
For the second set of features that are based on only positiyes
we simply compute the frequencies of 4 directed paths coetpos
of only positive edges (namely, FFpp, FBpp, BFpp, BBpp).



Features || Epinions | Slashdot| Wikipedia
Positive edges 0.5612| 0.5579 0.6983
Positive and negative edg 0.5911| 0.5953 0.7114

Table 9: Predicting the presence of a positive edge.

We then train and evaluate two models: one trained only on fea
tures based on positive edges, and the other trained on toke wh
set of features that also include evidence coming from tlgane
tive edges. Our goal here is to understand how informati@utab
negative relationships affects the overall performangeredicting
existence of positive edges.

Table 9 shows the predictive accuracy for the above taslceSin
we pick an equal number of edges and non-edges, random iguiessi
has an accuracy of 0.50. A logistic regression model usihgtoe
features based on the positive edges improves the perfeartan
about 0.56 for Epinions and Slashdot, while it gives a mughéi
boost in Wikipedia, where the classification accuracy atricg0.
This is somewhat surprising as we previously saw that far pig-
diction Wikipedia was more difficult than the other datasets

Next we consider a logistic regression model that is traioed
features based on both positive and negative edges. Thislmod
scores 0.59 on Epinions and Slashdot, while it improves ¢énop
mance on Wikipedia to 0.71. This means that if we use infoionat
about negative edges for predicting the presence of pestiges
in Epinions and Slashdot we get 3 percentage point impromeime
absolute terms, and a 50% increase in the boost relativertiona
guessing, compared to a model based only on positive edges.

These results clearly demonstrate that in some settings the
a significant improvement to be gained by using informatiooua
negative edges, even to predict the presence or absencsitifgo
edges. Thus itis often important to view positive and negdinks
in an on-line system as inter-related, rather than as distion-
interacting features of the system.

6. CONCLUSION

We have investigated some of the underlying mechanisms that

determine the signs of links in large social networks wheterac-
tions can be both positive and negative. By casting this asla-p
lem of sign prediction, we have identified principles thatgalize
across multiple domains, and which connect to social-psipdy
theories of balance and status. Moreover, our methodsdonsie-
diction yield performance that significantly improves oeous
approaches. At a global level, we have seen that there ismeuid
in all of our datasets for an approximate global status andesn
nodes, while we find in contrast that there is essentiallyuidesce
for a global organization of these networks into opposiragifas;
this suggests that balance is operating more strongly achlievel
than at a global one. Finally, we have seen that employirayrimd-
tion about negative relationships can be useful even fdsttsat
involve only the positive relationships in the network, Isus the
problem of link prediction for positive edges.

There are a number of further directions suggested by thik.wo
A first one is of course to explore methods that might yield sti
better performance for the basic sign prediction problend @
understand whether the features that are relevant to moteade
methods help in the further development of social theorisgoed
links. We are also interested in strengthening the conmrestbe-
tween local structure and global structure for signed lifksally,
as noted at the outset, the role of positive and negativéioeta
ships in on-line settings is not limited to domains whereytase
explicitly tagged as such.
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