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Epidemic Thresholds in Real Networks
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How will a virus propagate in a real network? How long does it take to disinfect a network given
particular values of infection rate and virus death rate? What is the single best node to immunize?
Answering these questions is essential for devising network-wide strategies to counter viruses. In
addition, viral propagation is very similar in principle to the spread of rumors, information, and
“fads,” implying that the solutions for viral propagation would also offer insights into these other
problem settings. We answer these questions by developing a nonlinear dynamical system (NLDS)
that accurately models viral propagation in any arbitrary network, including real and synthesized
network graphs. We propose a general epidemic threshold condition for the NLDS system: we
prove that the epidemic threshold for a network is exactly the inverse of the largest eigenvalue of
its adjacency matrix. Finally, we show that below the epidemic threshold, infections die out at an
exponential rate. Our epidemic threshold model subsumes many known thresholds for special-case
graphs (e.g., Erdös–Rényi, BA powerlaw, homogeneous). We demonstrate the predictive power of
our model with extensive experiments on real and synthesized graphs, and show that our threshold
condition holds for arbitrary graphs. Finally, we show how to utilize our threshold condition for
practical uses: It can dictate which nodes to immunize; it can assess the effects of a throttling
policy; it can help us design network topologies so that they are more resistant to viruses.
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1. INTRODUCTION

Computer viruses remain a significant threat to today’s networks and systems.
Existing defense mechanisms typically focus on local scanning of virus signa-
tures. While these mechanisms can detect and prevent the spreading of known
viruses, they prove to be of little help in designing globally optimal defenses. The
recent proliferation of distributed denial-of-service [DDoS] attacks in conjunc-
tion with viral spread exacerbates the problem [Martin 2002]. The magnitude
of viral propagation means that DDoS attacks riding on the tail of viruses and
worms can occur in an unprecedented scale and are, therefore, especially detri-
mental. With the exception of a few specialized modeling studies [Kephart and
White 1991, 1993; Pastor-Satorras and Vespignani 2001a, 2002b; Wang et al.
2000], much still remains unknown about the propagation characteristics of
computer viruses and the factors that influence them. The key question in all
these cases is: Will the virus/worm “linger for ever” in the entire network, or
will it die out?

In this paper, we investigate epidemiological modeling techniques to answer
this question. Specifically, we are interested in the following:

� How does a virus spread over a network? Answering this requires a general
analytic model of viral propagation, which can capture the impact of the
underlying topology without being limited by any assumptions about the
topology.

� Does an epidemic threshold exist and, if so, how can we find it? The epidemic
threshold condition is a condition linking the characteristics of the virus and
the network topology such that, if the condition is satisfied, then a viral
infection dies out over time. We want to derive this threshold, based on the
propagation model above.

� If the epidemic threshold condition is satisfied, how fast will the network get
disinfected?

� Which node is best to immunize? Should it be the one with the highest degree,
as the “targeted” immunization policy suggests? Or maybe the one with the
highest PageRank score? We would like the resulting graph to be as resistant
as possible, that is, with the highest possible threshold.

In this paper, we propose answers to exactly these questions. We develop the
NLDS (nonlinear dynamical systems) approach which accurately models viral
propagation, and find the epidemic threshold in this NLDS system. Our so-
lutions hold for arbitrary graphs and render surprisingly simple, yet accurate,
predictions.

The layout of this paper is as follows. Section 2 gives a background review of
previous models. In Section 3, we describe our proposed model. We show that
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our model conforms better to simulation results than previous models over real
networks. In Section 4, we compute the epidemic threshold and present a sur-
prising new result—the epidemic threshold of a given network is related intrin-
sically to (and depends only on) the first eigenvalue of its adjacency matrix. In
Section 5, we demonstrate the accuracy of our results by experiments on several
real and synthetic datasets. We conclude in Section 7. Appendixes A and B pro-
vide detailed proofs of our theorems and some discussions on the complimentary
nature of some very recent follow-up work on this topic [Ganesh et al. 2005].

2. RELATED WORK

The problem of virus propagation has attracted huge interest. Here we survey
some of the related work, focusing mainly on (a) epidemic thresholds for real
and realistic graphs, (b) immunization policies, and (c) related results from
epidemiology.

Among the many proposed models for viral propagation, two have garnered
wide acceptance. The first, called the SIS model, considers individuals as being
either susceptible (S) or infective (I); a susceptible individual can become infec-
tive on contact with another infective individual, then heal herself with some
probability to become susceptible again. The second, called the SIR model, is
similar with the only difference being that once healed an individual is consid-
ered removed (R) from the population and immune to further infection. Intu-
itively, SIS models the flu, while SIR models mumps. While both are important,
we focus on the SIS model in this paper.

2.1 Earlier Epidemic Thresholds and Limitations

The class of epidemiological models that are most widely used are the so-called
homogeneous models [Bailey 1975; McKendrick 1926; Anderson and May 2002].
A homogeneous model assumes that every individual has equal contact to oth-
ers in the population and that the rate of infection is largely determined by
the density of the infected population. Kephart and White [1991, 1993] were
among the first to propose epidemiology-based models to analyze the propaga-
tion of computer viruses. In their model, the communication among individuals
is modeled as a directed graph: a directed edge from node i to node j denotes
that i can directly infect j . A rate of infection, called the birth rate, β, is asso-
ciated with each edge. A virus death rate δ (also called the node-curing rate), is
associated with each infected node.

If we denote the size of the infected population at time t as ηt , a deterministic
time evolution of ηt in the Kephart–White model (hereafter referred to as the
KW model) can be represented as:

dηt

dt
= β〈k〉ηt

(
1 − ηt

N

)
− δηt (1)

where 〈k〉 is the average connectivity (degree) and N is the total number of
nodes. The steady state solution for Eq. (1) is η = N (1 − δ

β〈k〉 ).
An important prediction of Eq. (1) is the notion of an epidemic threshold.

Intuitively, the epidemic threshold τ is a value such that a viral outbreak dies
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out quickly if

β/δ < τ (2)

For the KW model, the proposed epidemic threshold was:

τK W = 1
〈k〉 (3)

where 〈k〉 is the average connectivity [Kephart and White 1991].
The KW model provides a good approximation of virus propagation in net-

works where the contact among individuals is sufficiently homogeneous. How-
ever, there is overwhelming evidence that real networks (including social net-
works [Richardson and Domingos 2001], router and AS networks [Faloutsos
et al. 1999], and Gnutella overlay graphs [Ripeanu et al. 2002]) deviate from
such homogeneity—they follow a power-law structure instead. In other words,
if P (k) is the probability of a node having degree k, then P (k) ∝ k−γ , where γ is
called the power-law exponent. In such a structure, there exist a few nodes with
very high connectivity, but the majority of the nodes have low connectivity. The
high-connectivity nodes are expected to often get infected and then propagate
the virus, making the infection harder to eradicate.

Pastor-Satorras and Vespignani studied viral propagation for such power-law
networks [Moreno et al. 2002; Pastor-Satorras and Vespignani 2001a, 2002a,
2002b]. They developed an analytic model for the Barabási–Albert (BA) power-
law topology [Barabási and Albert 1999]. Their steady state prediction is:

η = 2Ne−δ/mβ (4)

where m is the minimum connectivity in the network. However, this deriva-
tion depends critically on that fact that γ = 3 in the BA model, which does
not hold for many real networks [Kumar et al. 1999; Faloutsos et al. 1999].
Pastor-Satorras et al. [Pastor-Satorras and Vespignani 2002a] also proposed an
epidemic threshold condition, but this uses the “mean-field” approach, where
all graphs with a given degree distribution are considered equal. There is no
particular reason why all such graphs should behave similarly in terms of vi-
ral propagation. The proposed epidemic threshold for this MFA (for mean-field
approximation) model is:

τMFA = 〈k〉
〈k2〉 (5)

where 〈k〉 is the expected connectivity and 〈k2〉 signifies the connectivity diver-
gence (i.e., sum of squared degrees). However, we observe experimentally that
this model yields less than accurate predictions for many networks, as we will
show later.

Several follow-up attempts focus on analyzing even more realistic graph
models. Eguiluz and Klemm [2002] derive a more accurate epidemic threshold
for real graphs, namely 1/(< k > −1). The derivation assumes their earlier
model of highly clustered power-law graphs, which have more realistic behavior
than power law graphs with random wiring. Their simulation results on several
Internet graphs show that their threshold is more accurate.
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Boguñá and Pastor-Satorras [2002] considered the spread of a virus in corre-
lated networks, where the connectivity of a node is related to the connectivity
of its neighbors. These correlated networks include Markovian networks where,
in addition to P (k), a function P (k|k′) determines the probability that a node
of degree k is connected to a node of degree k′.

While some degree of correlations may exist in real networks, it is often
difficult to characterize connectivity correlations with a simple P (k|k′) function.
Prior studies on real networks [Faloutsos et al. 1999; Newman et al. 2002] have
not found any conclusive evidence to support the type of correlation as defined
in Boguñá and Pastor-Satorras [2002]. Hence, in this paper, we will not discuss
models for correlated networks further.

In the following sections, we will present a new analytic model (called
NLDS) that makes no assumptions about the network topology. In other words,
NLDS does not depend on the presence of any specific structure in the topology.
We will show later that NLDS performs as well or better than some previous
models that are tailored to fit special-case graphs (homogeneous, BA power law,
etc.) We then shall derive the epidemic threshold condition for NLDS.

In a recent follow-up to our original paper on this model [Wang et al. 2003],
Ganesh et al. [2005] also obtained the same epidemic threshold result (along
with other results). Their approach is complimentary to ours; they derive an ex-
act bound on the viral propagation equations, whereas we use a point estimate.
Appendix B gives details.

2.2 Immunization

Briesemeister et al [2003] focus on immunization of power-law graphs. They
focus on the random-wiring version (that is, standard preferential attachment),
versus the “highly clustered” power-law graphs of Klemm and Eguiluz (KE).
Their simulation experiments on such synthetic graphs show that KE graphs
can be more easily defended against viruses, while random wiring ones are
typically overwhelmed, despite identical immunization policies.

Cohen et al [2003] studied the acquaintance immunization policy, and
showed that it is much better than random, for both the SIS as well as the
SIR model. The “acquaintance” immunization policy works as follows: pick a
random person and immunize one of its neighbors at random (which will prob-
ably be a “hub”). For power-law graphs (with no rewiring), they also derived
formulas for the critical immunization fraction fc, above in which the epidemic
is arrested. Madar et al [2004] continued along these lines, mainly focusing
on the SIR model for scale-free graphs. They linked the problem to bond per-
colation and derived formulas for the effect of several immunization policies,
showing that the “acquaintance” immunization policy is best. Both works were
analytical, without studying any real graphs.

Hayashi et al [2003] study the case of a growing network and derive analyt-
ical formulas for such power-law networks (no rewiring). They introduce and
study the SHIR model (susceptible, hidden, infectious, recovered), to model
computers under email virus attack and derive the conditions for extinction
under random and under targeted immunization, always for power-law graphs
with no rewiring.
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2.3 Analytical Results

Berger et al [2005] did an analytical study of graphs generated by the
preferential-attachment method and specifically focused on SIS epidemics, and
the effect that the starting node has. Chung et al [2003b, 2003a] study the be-
havior of eigenvalues for power-law graphs (random wiring). Among the several
interesting results, they prove that, under mild assumptions, the eigenvalues of
the adjacency matrix follows a power law, while the spectrum of the Laplacian
matrix follows the semicircle law.

2.4 Survey of Epidemiology Results

Hethcote [2000] gives an overview of the analysis of epidemics, with the typical
SIS and SIR models, several of their extensions, the differential equations that
model the population evolution, and policies and effects of immunization. In all
cases, the topology is not considered, implicitly taken to be a complete clique,
or a homogeneous graph, that is, all nodes have similar degrees. The only ex-
ception is the nonhomogeneous model in Hethcote and Yorke [1984], where the
topology is a collection of cliques, with the behavior of every clique member
being identical to the behavior of the rest of clique members. The model is a
continuous-time model, and, using a theorem by Yorke and Lajmanovich, they
show that the epidemic threshold is related to the first eigenvalue of the ap-
propriate group-to-group interaction matrix. Our upcoming model is related,
but more general, because it needs no assumption about the topology; more-
over, it uses a more elaborate discrete-time model and it explicitly states its
assumption (the independence assumption of Eq. 6).

In conclusion, none of the earlier methods focuses on epidemic thresholds for
arbitrary, real graphs, with only exceptions our earlier conference paper [Wang
et al. 2003], and its follow-up paper by Ganesh et al. [2005].

3. PROPOSED MODEL

In this section, we describe our model of virus propagation (called NLDS), which
does not rely on the presence of homogeneous connectivity or any particular
topology. We assume a connected undirected network G = (N , E), where N is
the number of nodes in the network and E is the set of edges. We assume a
universal infection rate β for each edge connected to an infected node and a
virus death rate δ for each infected node. Table I lists the symbols used.

3.1 Model

Our model works with small discrete time-steps �t, with �t → 0. This is
only for ease of exposition; the same results also hold for the continuous case.
During each time interval �t, an infected node i tries to infect its neighbors
with probability β. At the same time, i may be cured with probability δ.

This process can be modeled as a Markov chain with 2N states. Each state
in the Markov chain corresponds to one particular system configuration of N
nodes, each of which can be in one of two states (susceptible or infective), which
leads to 2N possible configurations. The configuration at time-step t+1 depends
only on that at time-step t; thus, it is a Markov chain.
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Table I. Table of Symbols

Symbol Description
G An undirected connected graph
N Number of nodes in G
E Number of edges in G
A Adjacency matrix of G
A′ The transpose of matrix A
β Virus birth rate on a link connected to an infected node
δ Virus death rate on an infected node
t Time stamp
pi,t Probability that node i is infected at t
�Pt �Pt = (p1,t , p2,t , . . . , pN ,t )

′

ζi,t Probability that node i does not receive infections from its neighbors at t
λi, A The ith largest eigenvalue of A
�ui,A Eigenvector of A corresponding to λi, A
�u′

i,A Transpose of �ui,A

S The “system” matrix describing the equations of infection
λi,S The ith largest eigenvalue of S
s Score s = β/δ · λ1, A

ηt Number of infected nodes at time t
〈k〉 Average degree of nodes in a network
〈k2〉 Connectivity divergence (sum of squared degrees)

This Markov chain also has an “absorbing” state, when all nodes are unin-
fected (i.e., susceptible). This absorbing state can be reached from any starting
state of the Markov chain, implying that this state will be reached with prob-
ability 1 over a long period of time. However, this state could be reached very
quickly or it could take time equivalent to the age of the universe (in which
case, the viral epidemic practically never dies).

The obvious approach of solving the Markov chain becomes infeasible for
large N , because of the exponential growth in the size of the chain. To get
around this limitation, we use the “independence” assumption and replace the
problem with Eq. 7 (discussed below), which is solvable.

Let the probability that a node i is infected at time t by pi,t . Let ζi,t be the
probability that a node i will not receive infections from its neighbors in the next
time-step. This happens if each neighbor is either uninfected, or is infected but
fails to spread the virus with probability (1−β). Since we consider infinitesimal
time-steps (�t → 0), the probability of multiple events within the same �t is
negligible compared to first-order effects, and can be ignored.

ζi,t =
∏

j :neighbor of i

(pj ,t−1(1 − β) + (1 − pj ,t−1))

=
∏

j :neighbor of i

(1 − β ∗ pj ,t−1) (6)

This is the independence assumption: we assume that probabilities pj ,t−1 are
independent of each other.

A node i is healthy at time t if it did not receive infections from its neighbors
at t and i was uninfected at time-step t − 1, or was infected at t − 1, but was
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Infective
1−ζ i,t

i,tζ

Susceptible

δ

Infected by neighbor

Cured

Resisted infection
Not cured

1−δ

Fig. 1. The SIS model, as seen from a single node. Each node, at each time-step t, is either sus-
ceptible (S) or infective (I). A susceptible node i is currently healthy, but can be infected (with
probability 1 − ζi,t ) by receiving the virus from a neighbor. An infective node can be cured with
probability δ; it then goes back to being susceptible. Note that ζi,t depends on the both the virus
birth rate β and the network topology around node i.

cured at t. Denoting the probability of a node i being infected at time t by pi,t :

1 − pi,t = (1 − pi,t−1)ζi,t + δ pi,t−1ζi,t i = 1 · · · N (7)

This equation represents our NLDS (non-linear dynamical system). Figure 1
shows the transition diagram.1

Given a network topology and particular values of β and δ, we can solve
Eq. (7) numerically to obtain the time evolution of the infected population size
ηt , where ηt = ∑N

i=1 pi,t .

3.2 Accuracy of NLDS

Having described our model, we will now show that it closely models the prop-
agation of viruses over different networks. The datasets used for these experi-
ments are:
� Oregon: This is a real network graph collected from the Oregon router views.

It contains 32, 730 links among 11, 461 AS peers. More information can be
found from http://topology.eecs.umich.edu/data.html

� BA power law: These are graphs with power-law degree distributions, as
described in Barabási and Albert [1999]. We synthesized 1000-node power-
law graphs using BRITE [Medina et al. 2001], with the parameters m0 = 10
and m = 2.

� Homogeneous: We used 1000-node graphs generated by the Erdős–Rényi
model [1960].

Unless otherwise specified, each simulation plot is averaged over 15 individual
runs. Different values of β and δ were used to check robustness, but all that
matters (as we show later) is the ratio β/δ.

We begin each simulation with a set of randomly chosen infected nodes
on a given network topology.2 Simulation proceeds in steps of one time unit.

1The ζi,t factor eventually makes no difference to the final threshold result, whether we keep it or
not. We decided to keep it for backward compatibility with the conference paper in SRDS [Wang
et al. 2003], but it makes no difference. The reason is that the time-step �t is so small that the ζ

factor eventually vanishes.
2The number of initially infected nodes does not affect the equilibrium of the propagation.
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Fig. 2. Experiments on the real-world Oregon graph. The plots show the time evolution of infection
in the Oregon network. Both simulations were performed with fixed β, but varying δ. In both cases,
our model conforms more precisely to the simulation results than the MFA model.
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Fig. 3. Experiments on BA power-law topology. We compare our model and the MFA model to
the simulation results for several choices of β, keeping δ fixed. The plots show time evolution of
infected population in a 1000-node BA power-law network. Our model outperforms the other model
in steady state predictions by a slight margin.

During each step, an infected node attempts to infect each of its neighbors with
probability β. In addition, every infected node is cured with probability δ. An
infection attempt on an already infected node has no effect.

3.2.1 Oregon Graph. Figure 2 shows the time evolution of η as predicted by
our model (see Eq. 7) on the Oregon AS graph, plotted against simulation results
and the steady-state prediction of the model proposed in Pastor-Satorras and
Vespignani [2002a] (see Eq. 4). The parameter values were β = 0.14, δ = 0.08
for plot (a) and β = 0.14, δ = 0.24 for plot (b). Since this model in Pastor-
Satorras and Vespignani [2002a] does not estimate the transients, we plot only
the steady state for it. As shown, our model yields results very close to the sim-
ulation. The steady state prediction of Pastor-Satorras and Vespignani [2002a]
is not accurate, exactly because the Oregon AS graph violates the homogeneity
assumption.

3.2.2 BA Power-Law Graph. Figure 3 compares the predictions of our
model against the simulation. It also shows the steady state prediction of the
MFA model [Pastor-Satorras and Vespignani 2002a] for Barabási–Albert net-
works (see Eq. 4). The topology used in Figure 3 is a synthesized 1000-node BA
network, with m0 = 10 and m = 2. The parameter values used were δ = 0.8
for all plots and β = 0.175, 0.15, 0.125 for plots (a)–(c) respectively. As shown,
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Fig. 4. Experiments on random-graph topology. We compare our model and the KW model to
the simulation results for several choices of δ, keeping β fixed. The plots show time evolution of
infected population in a 1000-node Erdös–Rényi random graph, which is the topology that the KW
model is specifically aimed at. Our model generally yields similar predictions as the KW model,
but outperforms it when δ is high.

our model nicely tracks the simulation results. The steady-state prediction of
the MFA model is reasonably accurate (although consistently lower), since the
dataset obeys its assumptions.

3.2.3 Erdös–Rényi Graph. Figure 4 shows simulation results of epidemic
spreading on a synthesized 1000-node Erdös–Rényi random graph [Erdös and
Rényi 1960], plotted against our model. We also show the KW model [Kephart
and White 1991], since it is designed for such graphs. The parameter values
used were β = 0.2 for all plots and δ = 0.24, 0.48, 0.72 for plots (a)–(c), re-
spectively. The results in Figure 4 suggest that again, our model matches the
simulation results very well. The KW model is reasonably close, since it is de-
signed specifically for such graphs.

The experiments shown above, conducted on a real network, a synthesized
BA power-law network, and an Erdös–Rényi network, illustrate the predictive
power of our NLDS model, as well as the accuracy of our independence as-
sumption. In all cases, our predictions match the simulation extremely well,
and often better than older models (KW, MFA), even on graphs that specifically
obey the assumptions of those models.

4. EPIDEMIC THRESHOLD AND EIGENVALUES

As shown in the previous section, NLDS matches simulated viral infections
very closely, irrespective of the underlying network topology. We will now use
this model to derive results on viral infections. Specifically, under what condi-
tions does a viral outbreak become an epidemic?

The epidemic threshold condition codifies this very notion. An informal def-
inition was presented in Eq. (2); we will restate this more formally for NLDS:

Definition 1 (NLDS Epidemic Threshold). The epidemic threshold τ for
NLDS is a value such that

β/δ < τ ⇒ infection dies out over time
β/δ > τ ⇒ infection survives and becomes an epidemic

Previous models have derived threshold conditions only for special-case
graphs. For instance, the epidemic threshold for a homogeneous network is
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the inverse of the average connectivity 〈k〉 [Kephart and White 1991]. Simi-
larly, Pastor-Satorras and Vespignani [2001b] derived a threshold of zero infi-
nite power-law networks. However, a unifying model for arbitrary, real graphs
has not appeared in the literature. The closest model thus far is the MFA
model [Pastor-Satorras and Vespignani 2002a] (see Eq. 5), but that uses the
mean-field assumption. We show later that the MFA model is not as accurate
as NLDS for arbitrary graphs.

The challenge is to capture the essence of an arbitrary graph in as few param-
eters as possible, making no assumptions about its topology. In the following
paragraphs, we derive the epidemic threshold for our model. Our theory is sur-
prisingly simple, yet accurate. We show that the epidemic threshold depends
only on a single parameter—the largest eigenvalue of the adjacency matrix of
the graph. We demonstrate later in Section 5 that this new threshold condition
subsumes prior models for special-case graphs. The main idea behind the proofs
is that our NLDS approach translates the problem of virus survival into the
problem of stability of a nonlinear dynamical system. The system is stable if
the first eigenvalue of the appropriate matrix is small, and unstable otherwise.
A stable NLDS implies that a small perturbation (i.e., a few initially infected
nodes) will eventually return to all-nodes-healthy state, while an unstable sys-
tem will move away.

THEOREM 1 (EPIDEMIC THRESHOLD). In NLDS, the epidemic threshold τ for an
undirected graph is

τ = 1
λ1, A

(8)

where λ1, A is the largest eigenvalue of the adjacency matrix A of the network.

PROOF. We will prove this in two parts: the necessity of this condition in
eliminating an infection and the sufficiency of this condition for wiping out any
initial infection. The corresponding theorem statements are shown below; the
proofs are shown in Appendix A. Following this, we will see how quickly an
infection dies out if the epidemic threshold condition is satisfied.

THEOREM 2 (PART A: NECESSITY OF EPIDEMIC THRESHOLD). In order to ensure
that over time, the infection probability of each node in the graph goes to zero
(that is, the epidemic dies out), we must have β

δ
< τ = 1

λ1, A
.

PROOF. Proved in Appendix A.

THEOREM 3 (PART B: SUFFICIENCY OF EPIDEMIC THRESHOLD). If β

δ
< τ = 1

λ1, A
,

then the epidemic will die out over time (the infection probabilities will go to
zero), irrespective of the size of the initial outbreak of infection.

PROOF. Proved in Appendix A.

Definition 2 (Score). The score s of a virus on a graph is defined as

s = β

δ
· λ1, A (9)
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where β and δ are the virus attack and virus death probability and λ1, A is the
first eigenvalue of the adjacency matrix of the graph.

Theorem 1 provides the conditions under which an infection dies out (s < 1) or
survives (s ≥ 1) in our dynamical system. To visualize this, consider the spread
of infection as a random walk on the graph. The virus spreads across one hop
according to βA and thus it spreads across h hops according to

(
βA

)h, which
grows as

(
βλ1, A

)
every hop. On the other hand, the virus dies off at a rate δ.

Thus, the “effective” rate of spread is approximately βλ1, A/δ, which is exactly
the “score” s. Thus, to have any possibility of an epidemic, the score s must be
greater than 1. This is exactly the epidemic threshold condition that we find.

We can ask another question: if the system is below the epidemic threshold,
how quickly will an infection die out?

THEOREM 4 (EXPONENTIAL DECAY). When an epidemic is diminishing (there-
fore, β/δ < 1

λ1, A
and s < 1), the probability of infection decays at least exponen-

tially over time.

PROOF. Proved in Appendix A.

We can use Theorem 1 to compute epidemic thresholds for many special
cases, as detailed below. All of these are proved in Appendix A.

COROLLARY 1. NLDS subsumes the KW model for homogeneous or random
Erdös–Rényi graphs.

COROLLARY 2. The epidemic threshold τ for a star topology, is exactly 1√
d

,

where
√

d is the square root of the degree of the central node.

COROLLARY 3. Below the epidemic threshold (score s < 1), the expected num-
ber of infected nodes ηt at time t decays exponentially over time.

5. EXPERIMENTS

Theorems 1 and 3 allow us to calculate the NLDS epidemic threshold condition
for an arbitrary undirected graph. In the following paragraphs, we explore the
application of these results to specific topologies and demonstrate with sim-
ulations that our threshold predictions either subsume or outperform models
aimed at specific network topologies.

Specifically, we perform experiments to answer the following questions:

� (Q1) How accurate is our epidemic threshold condition when applied to dif-
ferent topologies? Does a viral infection indeed die out when our epidemic
threshold condition is satisfied?

� (Q2) How do our predictions regarding the epidemic threshold compare to
previous work?

� (Q3) When the epidemic threshold condition is satisfied, does the infection
die out exponentially fast, as predicted by Theorem 4?
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Table II. Dataset Characteristics

Dataset Nodes Edges Largest Eigenvalue

RANDOM 256 982 8.691
POWER-LAW 3,000 5,980 11.543
STAR-10K 10,001 10,000 100
OREGON 11,461 32,730 75.241
ENRON 33,696 361,622 118.417
EMAIL 1,049 37,012 83.460

The datasets we used were:
� RANDOM: An Erdös–Rényi random graph of 256 nodes and 982 edges.
� POWER-LAW: A graph of 3000 nodes and 5980 edges, generated by the pop-

ular Barabási–Albert process [Barabási and Albert 1999]. This generates a
graph with a power-law degree distribution of exponent 3.

� STAR-10K: A “star” graph with one central hub connected to 10, 000 “satel-
lites.”

� OREGON: A real-world graph of network connections between autonomous
systems (AS), obtained from http://topology.eecs.umich.edu/data.html.
It has 11, 461 nodes and 32, 730 edges. We have already seen this graph
before in Section 3.2.

� ENRON: We created a graph from the Enron email dataset, which contains
517, 431 emails from 151 Enron employees. Every email address is a node
and there is an undirected link between two nodes if they had one or more
email exchanges . The graph contains 33, 696 nodes and 361, 622 edges.

� EMAIL: A second real-world email graph comes from a large research insti-
tution. We only considered email addresses coming from the research institu-
tion and exclude emails sent outside the institution. This gives us a network
with 1, 049 nodes and 37, 012 edges.

For each dataset, all nodes were initially infected with the virus and then its
propagation was studied in a simulator. All simulations were run for 10, 000
timesteps, and were repeated 100 times with different seeds, reporting the
mean. We do not plot the standard deviation error-bars, for clarity. Table II
provides more details.

5.1 (Q1) Accuracy of Our Epidemic Threshold Condition

Figure 5 shows the number of infected nodes over time for various values of the
score s, in log-log scales. The dotted line shows the case for s = 1. We observe a
clear trend: below the threshold (s < 1), the infection dies off, while it survives
above the threshold (s > 1). This is exactly as predicted by Theorem 1, and
justifies our formula for the threshold.

Thus, our epidemic threshold condition is accurate: infections become extinct
below the threshold and survive above it.

5.2 (Q2) Comparison with Previous Work

In Figure 6, we compare the predicted threshold of our model against that of
the MFA model. For several values of the score s, we plot the number of infected
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Fig. 5. Accuracy of our epidemic threshold. The number of infected nodes is plotted versus time
for various values of the score s (log-log scales). The case when score s = 1 is shown with the dotted
line. There is a clear distinction between the cases, where s < 1 and s > 1: below 1, the infection
dies out quickly, while above 1, it survives in the graph. This is exactly our proposed epidemic
threshold condition.

nodes left after a “long” time (specifically 500, 1000, and 2000 time-steps). Be-
low the threshold, the infection should have died out, while it could have sur-
vived above the threshold. In all cases, we observe that this change in behav-
ior (extinction to epidemic) occurs exactly at our predicted epidemic threshold.
This is a strong indication that the only assumption of our NLDS model, the
independence assumption, holds for several real and synthetic graphs.
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Fig. 6. Comparison with the MFA model. We plot number of infected nodes after a “long” time
for various values of the score s, versus s. For each dataset, we show results after 500, 1000, and
2000 time-steps. In each case, we observe a sharp jump in the size of the infected population at our
epidemic threshold of s = 1. Note that our results are far more accurate than those of the MFA
model.
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Notice that the NLDS threshold is more accurate than that of the MFA model
for the STAR-10K and the real-world OREGON graphs, while we subsume
their predictions for RANDOM and POWER-LAW, which are the topologies the
MFA model was primarily developed for.

Recalling also that our model subsumes the KW model on homogeneous net-
works (Corollary 1), we arrive at the following conclusion: our epidemic thresh-
old for NLDS subsumes or performs better than those for other models.

5.3 (Q3) Exponential Decay of Infection Under Threshold

Figure 7 demonstrates the rate of decay of the infection when the system is
below the threshold (s < 1). The number of infected nodes is plotted against
time on a log-linear scale We see that in all cases, the decay is exponential
(because the plot looks linear on a log-linear scale). This is exactly as predicted
by Theorem 4.

Thus, the infection dies out exponentially quickly below the threshold (s < 1).

6. APPLICATIONS

How can we suppress the propagation of a virus? Our epidemic threshold results
allow us to analyze many different virus suppression schemes under the same
theoretical framework. Two of the most commonly used schemes are throttling
and immunization; we discuss these below.

6.1 Throttling

Throttling is a method of slowing down the spread of a worm by limiting the
maximum rate of transmission of every node. In our framework, this corre-
sponds to capping the value of the birth rate β to a maximum βmax. Thus, by
Theorem 1, the epidemic dies out if the worm can be eliminated at a rate of at
least δ > βmax · λ1, A, where A represents the adjacency matrix of the graph.

6.2 Immunization

If we have a budget of k nodes that can be immunized, which nodes should
we pick? The “targeted” immunization policy would choose the nodes with the
highest degrees. However, in light of Theorem 1, we should choose the ones that
cause the maximal reduction in λ1, A, because these are the ones that will cause
maximal increase of the epidemic threshold τ . Let’s refer to the above policy as
“max − �λ” Will “max − �λ” and “targeted” ever disagree? The answer is yes,
and we illustrate it with an example.

Consider the graph of Figure 8, a “bar-bell” graph consisting of two equal-size
cliques connected with a bridge (node C). Note the “gateway” node B has one
edge to the clique missing so that it has the same degree as other nodes in the
clique (e.g., node A). For simplicity, assume that k=1, that is, we are allowed to
immunize only one node.

On this graph, intuitively, the single best node to immunize would be the
bridge node C. The “targeted” immunization policy will clearly fail, picking
any one of the clique members, but not the bridge C. Let’s see the eigenvalues:
Without immunization, the original graph has the first eigenvalue of magnitude
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Fig. 7. Exponential decay below the threshold. The number of infected nodes is plotted versus
time for various values of the score s < 1 (log-linear scales). Clearly, the decay is exponentially
quick (because it is linear on a log-linear plot). This matches the predictions of Theorem 4.

λ1 = 6.803. Immunizing node A gives a drop of 0.0153, with a drop of 0.0155
for A′, 0.0160 for B, and 0.0315 for C.

This example demonstrates that the intuitive “targeted” immunization pol-
icy (and its popular approximation, the “acquaintance” immunization policy) is
not necessarily the best. Instead, it is the “ max − �λ ” policy that creates the
toughest obstacles for the virus.
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B

A’

CA

Fig. 8. The “bar-bell” graph. Two cliques of the same size connected with a bridge.

6.3 SIS versus SIR Models

Does our threshold condition extend to the SIR model? The SIR model stands
for susceptible-infectious-recovered, and models viruses like the mumps, where
people obtain lifetime immunity. This is an interesting research direction. Our
preliminary analysis (not included here) shows that the same threshold con-
dition also governs the SIR model. Of course, in the SIR model, the virus will
eventually become extinct; above threshold, it will infect a significant portion of
the population, while below threshold it will not spread. The intuition is that,
for the virus to spread further, an infected person should be able to infect at
least one more person, before she recovers. The average recovery time is 1/δ,
and thus the expected number of infected nodes would be β ∗ λ1/δ. Thus, we
conjecture that our threshold condition also carries over to the SIR model.

7. CONCLUSIONS

How will a virus propagate in a real computer network? What is the epidemic
threshold for a finite graph, if any? Which nodes should we immunize first? In
this paper we answer these questions by providing a new analytical model that
accurately models the propagation of viruses on arbitrary graphs. The primary
contributions of this paper are:
� We propose a new model for virus propagation in networks (Eq. 7) and show

that our model is more precise and general than previous models. We demon-
strate the accuracy of our model on both real and synthetic networks.

� We show that we can capture the virus-propagation properties of an arbitrary
graph in a single parameter, namely, the largest eigenvalue λ1, A of the adja-
cency matrix A. We propose a precise epidemic threshold, τ = 1/λ1, A, which
holds irrespective of the network topology; an epidemic is prevented when
δ > δc = β ∗ λ1, A. We show that our epidemic threshold is more general and
more precise than previous models for special-case graphs (e.g., Erdös–Rényi,
homogeneous).

� We show that, below the epidemic threshold, the number of infected nodes
in the network decays exponentially.

� We show how our threshold condition can be used to guide antivirus policies.
In particular, we show how to predict the effectiveness of throttling mecha-
nisms, as well as we propose a new immunization policy (“ max − �λ ”), so
as to maximally slow down the spread of a virus.
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Future research directions abound, both for theoretical as well as experi-
mental work. One extension is to study the SIR model, where we conjecture
that the threshold condition is still the same. Another direction is to derive an
analytical formula for the size of the epidemic ηt at time t, or at the steady
state; in either case, we conjecture that the first eigenvalue should be involved,
again.

APPENDIX

A. DETAILS OF THE PROOFS

THEOREM 1 EPIDEMIC THRESHOLD. In NLDS, the epidemic threshold τ for an
undirected graph is

τ = 1
λ1, A

(A1)

where λ1, A is the largest eigenvalue of the adjacency matrix A of the network.

PROOF. This follows from Theorems 1 and 3 proved below.

THEOREM 2 (PART A: NECESSITY OF EPIDEMIC THRESHOLD). In order to ensure
that over time, the infection probability of each node in the graph goes to zero
(that is, the epidemic dies out), we must have β

δ
< τ = 1

λ1, A
, where β is the birth

rate, δ is the death rate, and λ1, A is the largest eigenvalue of the adjacency matrix
A.

PROOF. We have modeled viral propagation as a discrete dynamical system,
with the following nonlinear dynamical equation:

1 − pi,t = (1 − pi,t−1)ζi,t

+ δ pi,t−1ζi,t (from Eq. 7)

or, �Pt = g ( �Pt−1)
where

gi( �Pt−1) = 1 − (1 − pi,t−1)ζi,t − δ pi,t−1ζi,t (A2)

and gi(·) is the ith element of the vector g (·).
The infection dies out when pi = 0 for all i. We can easily check that the

�P = �0 vector is a fixed point of the system; when pi,t−1 = 0 for all i (all nodes
healthy), the equation above results in pi,t = 0 for all i, and so all nodes remain
healthy forever. The question we need to answer is: If the infection probabilities
of all nodes in the graph come close to zero, will the dynamical system push
them even closer to zero? In other words, is the �P = �0 fixed point asymptotically
stable? If yes, the infection probabilities will go to zero and the infection will
die out, but, if not, the infection could survive and become an epidemic.

Using dynamical systems theory, the required condition is:

LEMMA 1 (ASYMPTOTIC STABILITY). The system is asymptotically stable at
�P = �0 if the eigenvalues of ∇ g (�0) are less than 1 in absolute value, where
[∇ g (�0)]i, j = ∂ gi

∂pj
| �P=�0 A proof is shown in [Hirsch and Smale 1974], (pp. 278 −

−281).
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From Eq A2, we can calculate ∇ g (�0):[
∇ g (�0)

]
i, j

=
{

βA j ,i for j �= i
1 − δ for j = i

Thus, ∇ g (�0) = βA′ + (1 − δ)I
= βA + (1 − δ)I (A3)

where the last step follows because A = A′ (since the graph is undirected).
This matrix describes the behavior of the virus when it is very close to dying

out; we call it the system matrix S:

S = ∇ g (�0) = βA + (1 − δ)I (A4)

As shown in Lemma 2 following this proof, the matrices A and S have the same
eigenvectors �ui,S, and their eigenvalues, λi, A and λi,S , are closely related:

λi,S = 1 − δ + βλi, A ∀i (A5)

Hence, using the stability condition above, the system is asymptotically sta-
ble when

|λi,S| < 1 ∀i (A6)

that is, all eigenvalues of S have absolute value less than one.
Now, since A is a real symmetric matrix (because the graph is undirected),

its eigenvalues λi, A are real. Thus, the eigenvalues of S are also real. Since the
graph G is a connected undirected graph, the matrix A is also a real, nonnega-
tive, irreducible, square matrix. Under these conditions, the Perron–Frobenius
Theorem [MacCluer 2000] says that the largest eigenvalue is a positive real
number and also has the largest magnitude among all eigenvalues. Thus,

λ1,S = |λ1,S| ≥ |λi,S| ∀i

(A7)

Using this in Eq. (A6):

λ1,S < 1
that is, 1 − δ + βλ1, A < 1

which means that an epidemic is prevented if β/δ < 1/λ1, A. Also, if β/δ > 1/λ1, A,
the probabilities of infection may diverge from zero, and an epidemic could occur.

Thus, the epidemic threshold is τ = 1
λ1, A

LEMMA 2 (EIGENVALUES OF THE SYSTEM MATRIX). The ith eigenvalue of S is of
the form λi,S = 1 − δ + βλi, A, and the eigenvectors of S are the same as those of
A.

PROOF. Let ui,A be the eigenvector of A corresponding to eigenvalue λi, A.
Then, by definition, A�ui,A = λi, A · �ui,A Now,

S�ui,A = (1 − δ)ui,A + βA�ui,A

= (1 − δ)�ui,A + βλi, A �ui,A

= (1 − δ + βλi, A)�ui,A (A8)
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Thus, �ui,A is also an eigenvector of S, and the corresponding eigenvalue is
(1 − δ + βλi, A).

Conversely, suppose λi,S is an eigenvalue of S and ui,S is the corresponding
eigenvector. Then,

λi,S �ui,S = S�ui,S

= (1 − δ)�ui,S + βA�ui,S

⇒
(

λi,S + δ − 1
β

)
�ui,S = A�ui,S

Thus, �ui,S is also an eigenvector of A, and the corresponding eigenvalue of A is
λi, A = (λi,S + δ − 1)/β.

THEOREM 3 (PART B: SUFFICIENCY OF EPIDEMIC THRESHOLD). If β

δ
< τ = 1

λ1, A
,

then the epidemic will die out over time (the infection probabilities will go to
zero), irrespective of the size of the initial outbreak of infection. Here β is the
birth rate, δ is the death rate, and λ1, A is the largest eigenvalue of the adjacency
matrix A.

PROOF.

ζi,t =
∏

j :neighbor of i

(1 − β ∗ pj ,t−1) (from Eq. 6)

≥ 1 − β ∗
∑

j :neighbor of i

pj ,t−1 (A9)

where the last step follows because all terms are positive.
Now, for i = 1 . . . N ,

1 − pi,t = (1 − pi,t−1)ζi,t + δ · pi,t−1 · ζi,t

= (
1 − (

1 − δ
)

pi,t−1
)
ζi,t

≥ (
1 − (

1 − δ
)

pi,t−1
) ×

(
1 − β

∑
j :neighbor of i

pj ,t−1

)

(using Eq. A9)

≥ (
1 − (

1 − δ
)

pi,t−1
) ×

(
1 − β

N∑
j=1

A j ,i · pj ,t−1

)

(because A j ,i = 1 for neighbors only)
≥ 1 − (1 − δ)pi,t−1

−β
∑

j

A j ,i · pj ,t−1 + β(1 − δ)pi,t−1

∑
j

A j ,i · pj ,t−1

≥ 1 − (1 − δ)pi,t−1 − β
∑

j

A j ,i · pj ,t−1 (A10)

No assumptions were required in this.
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Thus,

pi,t ≤ (1 − δ)pi,t−1 + β
∑

j

A j ,i · pj ,t−1 (A11)

Writing this in vector form, we observe that this uses the same system matrix
S from Eq. A4:

P ≤ S �Pt−1 (using the definition of S from Eq. A4)

≤ S2 �Pt−2 ≤ . . .

≤ St �P0

≤
∑

i

λt
i,S �ui,S �u′

i,S
�P0 (A12)

where the last step is the spectral decomposition of St . Using Eq. (A5)

λi,S = 1 − δ + βλi, A

< 1 − δ + β
δ

β
(the sufficiency condition)

< 1
and so, λt

i,S ≈ 0 for all i and large t

Thus, the right-hand side of Eq. (A12) goes to zero, implying that

P ; 0 as t increases

implying that the infection dies out over time.

THEOREM 4 (EXPONENTIAL DECAY). When an epidemic is diminishing (there-
fore β/δ < 1

λ1, A
), the probability of infection decays at least exponentially over

time.

PROOF. We have:

Pt ≤
∑

i

λt
i,S �ui,S �u′

i,S
�P0 (from Eq. A12)

≤ λt
1,S ∗ C (A13)

where C is a constant vector. Since the value of λ1,S is less than 1 (because the
epidemic is diminishing), the values of pi,t are decreasing exponentially over
time.

COROLLARY 1. NLDS subsumes the KW model for homogeneous or random
Erdös–Rényi graphs.

PROOF. According to the KW model, the epidemic threshold in a random
Erdös–Rényi graph is τK W = 1/〈k〉, where 〈k〉 is the average degree [Kephart
and White 1991]. It is easily shown that, in a homogeneous or random network,
the largest eigenvalue of the adjacency matrix is 〈k〉. Therefore, our model yields
the same threshold condition for random graphs, and thus, our NLDS model
subsumes the KW model.
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COROLLARY 2. The epidemic threshold τ for a star topology, is exactly 1√
d

,
where

√
d is the square root of the degree of the central node.

PROOF. The eigenvalue of the adjacency matrix, λ1, is simply
√

d . Thus, the
epidemic threshold is τ = 1√

d
.

COROLLARY 3. Below the epidemic threshold (score s < 1), the expected num-
ber of infected nodes ηt at time t decays exponentially over time.

PROOF.

ηt =
N∑

i=1

pi,t

=
∑

i

λt
1,S ∗ Ci (from Theorem 4)

= λt
1,S ∗

∑
i

Ci

where Ci are the individual elements of the matrix C in Eq. (A13). Since
∑

i Ci

is a constant and λ1,S < 1 (from Theorem 1), we see that nt decays exponentially
with time.

B. OTHER METHODS

In a recent paper, Ganesh et al. [2005] found the same threshold condition for
fast extinction of the virus, but without needing the independence assumption
that we use. Instead, they found an upper bound for the expected number of
infected nodes using a linearized dynamical system, which was easy to analyze.
How do these two approaches compare to each other?

In the following paragraphs, we will show that the two approaches are com-
plimentary to each other. In a nutshell, Ganesh et al. [2005] use a (perhaps
weak) upper bound, while we use a point estimate. It should be noted, how-
ever, that both approaches give the same result, giving more confidence in its
accuracy.

1. A system of random variables: We will first model the viral propagation
solely using binary random variables; this requires no assumptions. Let Ii(t),
Di(t) and Bji(t) be 1/0 random variables; Ii(t) is 1 if node i is infected at time
t, Di(t) is 1 if node i has a “virus death” event between time-steps t − 1 and
t, and Bji(t) is 1 if node j is successful in transmitting the virus to node i in
between time-steps t − 1 and t.

The equation for infection is:

Ii(t) = Ii(t − 1)(1 − Di(t)) + (1 − Ii(t − 1))

×[B1i(t) · A1i · I1(t − 1) OR

B2i(t) · A2i · I2(t − 1) OR . . .

BNi(t) · ANi · IN (t − 1)]

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 13, Pub. date: January 2008.



13:24 • D. Chakrabarti et al.

Taking expectations on both sides, and using
E[A OR B] ≤ E[A + B] = E[A] + E[B]:

E[Ii(t)] ≤ E[Ii(t − 1)(1 − Di(t))]

+E
[
(1 − Ii(t − 1)) ·

N∑
j=1

Bji(t)Aji I j (t − 1)
]

= E[Ii(t − 1)](1 − δ)

+E

[(
N∑

j=1

Bji(t)Aji I j (t − 1)

)

−
(

Ii(t − 1) ·
N∑

j=1

Bji(t)Aji I j (t − 1)

)]

= E[Ii(t − 1)](1 − δ) + β

N∑
j=1

Aji E[I j (t − 1)]

−β

N∑
j=1

Aji E[Ii(t − 1)I j (t − 1)] (B1)

Thus,

E[Ii(t)] ≤ X + Y − Z (B2)
where, X = E[Ii(t − 1)]

(
1 − δ

)
Y = β

N∑
j=1

Aji E[I j (t − 1)]

Z = β

N∑
j=1

Aji E[Ii(t − 1)I j (t − 1)]

Note that X , Y, Z ≥ 0, and that only Z contains the nonlinear terms.

2. Linearized system: Here, we neglect Z to get an upper-bounding linear sys-
tem:

E[Ii(t)] ≤ X + Y − Z (from Eq. B2)
≤ X + Y
= E[Ii(t − 1)](1 − δ)

+β

N∑
j=1

Aji E[I j (t − 1)] (B3)

which is a linear equation. Summing over all i, we get an upper-bound on
the expected number of infected nodes. This is exactly the method being used
in Ganesh et al. [2005] to find the epidemic threshold below which the infection
dies out.
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3. Independence assumption: Instead of neglecting Z, we approximate it using
a point estimate:

Z = β

N∑
j=1

Aji E[Ii(t − 1)I j (t − 1)]

≈ β

N∑
j=1

Aji E[Ii(t − 1)] · E[I j (t − 1)] (B4)

Summing over all i gives exactly the dynamical system that we studied in the
preceding sections (that is, Eq. 7).

We can say more about this point estimate. Consider the correlation between
the random variables Ii(t − 1) and I j (t − 1):

ρ = E[Ii(t − 1)I j (t − 1)] − E[Ii(t − 1)] · E[I j (t − 1)]
SD(Ii(t − 1)) · SD(I j (t − 1))

Now,
− 1 ≤ ρ ≤ 1

⇒ − 1 ≤ E[Ii(t − 1)I j (t − 1)] − E[Ii(t − 1)] · E[I j (t − 1)]
SD(Ii(t − 1)) · SD(I j (t − 1))

≤ 1

Thus, the independence assumption approximates E[Ii(t − 1)I j (t − 1)] as
E[Ii(t − 1)] · E[I j (t − 1)], using the midpoint of this interval as a point esti-
mate. Neglecting the E[Ii(t − 1)I j (t − 1)] term completely leads to the upper
bound. Thus, the independence assumption can be considered to be “closer”
to the truth, while the linearized system gives the harder guarantees. Which
approach is chosen depends on the needs of the user.
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