OPIUM: Optimal Package Install/Uninstall Manager

Chris Tucker
UC San Diego

David Shuffelton
UC San Diego

cjtucker@cs.ucsd.edu dshuffel@cs.ucsd.edu

Abstract
Common Linux distributions often include package man-
agement tools such apt - get in Debian oryumin Red-

Sorin Lerner
UC San Diego
lerner@cs.ucsd.edu

Ranijit Jhala
UC San Diego
jhala@cs.ucsd.edu

the system back to a stable state.

In the context of Linux- and Unix-based systems, a
variety of automated tools have been developed to ad-

Hat. Using information about package dependencies anddress this configuration management problem, for exam-
conflicts, such tools can determine how to install a new ple apt - get [14] on Debian,yum[4] on RedHat, and
package (and its dependencies) on a system of already inf j nk [1] on Mac OS. Using information about package
stalled packages. Using off-the-shelf SAT solvers, pseudo dependencies and conflicts, such tools can determine how
boolean solvers, and Integer Linear Programming solvers,to install a new package, along with all its dependencies,
we have developed a new package-managementtool, calle@dn a system of already installed packages. However, be-
Opi um that improves on current tools in two ways: (1) cause of the complexity in the dependencies and conflicts,
Opi umis complete, in that if there is a solutio@pi umis such tools typically use heuristics and are therefore incom
guaranteed to find it, and (Zpi umcan optimize a user- plete, in that even if a package is installable, the tool may
provided objective function, which could for example state fajl to find a solution. Furthermore, if there are multiple
that smaller packages should be preferred over larger onesyays of installing a given package, current tools arbitrar-
We performed a comparative study of our tool against De- jly pick between them without taking any user preferences
bian's apt - get on 600 traces of real-world package in- into account. Such preferences could for example include
stallations. We show tha®pi umruns fast enough to be picking smaller packages if the user has limited download

usable, and that its completeness and optimality guaranteepandwidth, or newer packages if the user wants the newest
provides concrete benefits to end users. possible system.

Our goal in this work was to develop a uniform and
complete solution to the configuration management prob-
lem that arises from having various inter-depending pack-
ages installed on the same system. In particular, using off-
the-shelf SAT solvers, pseudo-boolean solvers, and Intege
. Lo L . Linear Programming solvers we have designed a tool called
cation. Dynamic linking has numerous benefits, including Opi umthat solves the configuration management problem,

saving memory both on disk and in RAM (since ONe€ COPY 4nd addresses the above limitations of existing package in-
of a library/package can be shared across many different

o . o . stallers: it is complete (in that if there is a solution, itlwi
applications), and allowing installed applications toigas . . . T ; S
: . : . find it) and it also allows one to optimize a given objective
benefit from updated libraries/packages. With these bene- . . L : X
! . ; function. In addressing these limitatior@i umprovides
fits, however, comes a configuration management problem . o
e : . the following benefits:
that is difficult to solve. Libraries and software packages
have dependencies that must be satisfied, and conflicts thate It improves the reliability ofapt - get . Our measure-
must be avoided, otherwise the entire system, notjusta sin- ments on 600 traces of real-world install attempts will
gle application, may become unstable. show that about 23.3% of Debian users will be affected
In the context of Windows, this configuration manage- by apt - get 's incompleteness at some point in the
ment problem has lead to what is called “DLL hell”: an lifetime of their system. This is especially concerning
application is installed with a variety of dynamically lied for companies like Linspire (where two of the authors
libraries, some of which override older versions of those worked) and distributions like Ubuntu, which are trying
libraries. Previously installed applications then bread; to make Linux usable by non-experts who don’t have the
cause they were not meant to work with the new libraries. sophistication to manually install packageajift - get

Users must typically intervene manually in order to bring fails. TheOpi umtool entirely removes these incom-

1 Introduction

Dynamic software linking is pervasive, ranging from dy-
namic linking of libraries at runtime to inter-process iAvo

pleteness failures. Uninstall Problem : Given a new package to install,
determine the minimal number of packages (possibly

e Opi umallows users to state their preferences through none) that must beemovedrom the system in order
an objective function, and guarantees that this objective to make the package installable.

function will be minimized. This can in turn have real

economic impact for Linux distributors. For example, ~ The main contribution of this paper is solutions to the
the Linspire company provides a Linux distribution that above three problems. We solve thestall Problemby

is a low-cost alternative to commercial platforms like running a SAT solver on a propositional encoding of the
Microsoft's Windows and Apple’s OS X. Their Linux distribution (Section 3.1). This encoding is similar tot bu
distribution is therefore popular in many environments independently developed from, the one presented in a forth-
where bandwidth is at a premium (and often charged coming paper [10]. Further, we show how the SAT problem
for per-byte)_ In order to provide the best experience can be extended with an ObjeCtive fUnCtion, thus becoming a
at the lowest cost for the end user it becomes essen-S0-calledoseudo-booleaproblem that solves thidinimum

tial that bandwidth not be wasted. In this context, min- Install Problem(Section 3.2). We also show how a well-
imizing the size of packages delivered has the poten_known translation can be used to generate an Integer Lin-
tial to offer a real economic benefit, while simultane- €ar Programming (ILP) problem from the pseudo-boolean
ously reducing wait times for users. In our measure- Problem. Highly tuned solvers exist for both pseudo-
ments, for example, we found a real-world install at- boolean problems and ILP problems.

tempt whereapt - get 's solution required download- We show how a SAT solver that produces a proof of

ing 129MB more thar@pi unis optimal solution. unsatisfiability can be used to solve thininstall Prob-
lem (Section 3.3). Intuitively, if a package is not instal-

o There are cases where some packages need 10 be rgsp 0 ¢rom the proof of unsatisfiability of the SAT problem,
moved from the s.ysteml 'f?ef_ore a new package is in- e can determine what packages caused the conflicts, and
stalled. Becaus@pi umminimizes the number of pack- therefore need to be removed.
ages being removed, it can find solutions that remove far We have implemented all of the above techniques in a
fewer_packages thgn existing package managers. In OUtool calledOpi um(Optimal Package Install/Uninstall Man-
_experlments, we discovered a real user trace where anager) for installing packages on the Debian syst€pi.um
install attempt for OCamI us!ngpt i ggt caused 61 . uses Pueblo [13] for the pseudo-boolean solver, the GNU
packages to removed, including the L|nu>$ kernel_. This Linear Programming Kit@LPK) [3] for the ILP solver, and
poor user would not be able to rgboot the_lr 'T”aCh'”e af- thef oci [11] theorem prover for producing unsatisfiability
ter installing OCaml. Becaus@pl umminimizes th? proofs. To evaluate the practicality and benefits of our-algo
number of packages being removed, it was able to fm_d arithms, we performed a comparative studyOpfi umversus
solution that removed only 22 packages, none of which Debian’s installerapt - get , using 600 traces of real world
were the kernel. installations (Section 4). Gathering information abow th

e By providing a completeness guarant®pj umallows runtime and results apt - get versus various configura-
Linux providers like Linspire to make quality of service tions of Qpi um we were able to quantify the benefits that
claims regarding the predictability of user systems. In Opi urris completeness and optimality provide, as well as
particular, if Linspire uses a tool likdebchecK10] to show that it runs well within the limits of usability.
check the consistency of a given distribution (which es-
sentially involves making sure that all possible packages
in the distribution are installable), then they can provide 2 Qverview
the guarantee that all install attempts usipg umfrom
that distribution will succeed on any user system. We begin with an overview of the install and uninstall prob-

context of package management. In particular, given a setPrises a set of packages, each of which has a name and a ver-

of installed packages, and information about package de-sion, distributed either on disk, or typically stored onioel
pendencies and conflicts, the three problems are: repositories. Each user has a subset of packages installed o

their machine. Many packages depend on other packages to
Ingtall Problem: Determine if a new package canbe provide some functionality. For example thpache web-
installed, and if so, determine how. server may require the system to also hayeeal inter-
preter. Thus, each distribution contains a meta-data file th
explicates the requirements of each package of the distribu
tion. For example, the meta-data for thpache package
in the Debian distributiosi d is shown in Figure 1:

Minimum Install Problem : Determine the optimal
way to install a new package, where optimality is de-
termined by an objective function whose value is to
be minimized.

Distribution Rules Constraints

Package: apache Package: a
Architecture: i386 Depends: b (—za V xb)
Version: 1.3.34-2 c, (mxa V mc)
Provides: httpd-cgi, httpd z (mza V z2)
De_pends: libc6(>=2.3.5-1), Package: b
li bdb4. 3(>=4. 3. 28- 1), Depends: d (~aw V 20)
debconf (>=0.5) | debconf-2.0,
apache- common(>=1. 3. 34- 2), Package:

perl (>=5. 8. 4-2)
Conflicts: apache-nodul es,
jserv(<=1.1-3) Pack .

| i bapache- nod- per| Cgﬁf |a|g§t s e
Description: HTTP server. ’

e,
| g (mze Vs V g)

c
Depends: d | (mxc Vx4 V e)

f

d

(—za V o)

Figure 3: Fragment of Distribution Meta-
Figure 1: Rule fompache Figure 2: Distribution Graph. Data and Corresponding Constraints

The meta-data contains details like the name, version,there is a dotted edge between pairs of conflicting packages.

size, a description of the functionality provided by thelpac Installation Profiles. We call the set of packages installed

age,etc More importantly, it containdependandconflicts on a machine thénstallation profile of that machine. A

clauses that stipulate which other packages should be onthe . . . L .
. . valid installation profile is one which meets all the depends
system. Thelepend<lauses stipulate which other pack-

agesmustbe present. Thus, in order to instalpache, and conflicts clauses of all the packages. Thus, the pro-

. . . . files and{a, b, c,d, f,z} are all valid installation
several other packages includipgr!, | i bc6, | i bdb .{}’ {y.2} {a,b,¢, L) 2} ;
X : profiles, as each package’s depends and conflict clauses are
and apache- conmon must be installed. Sometimes, a

X . met. On the other handa, b, c,d, z} is not a valid profile,
package requires any of a set of packages to be installed .
) . : asc requires one of or g to be present, but both are absent
possibly because each package in the set provides the r

quired functionality. For example, the third depends ataus e:gg t\r,];igrszﬁiesé?:iaggygt;r}ﬁsp;cgﬁas’ \l/)v’ecll’ g’sea;f:;};‘llizt-

is a disjunction that stipulates thaitherdebconf (with ing package

a version greater tha@. 5) or debconf - 2. 0 must be '

present. Theonflictsclauses stipulate which other pack-

agesmust notbe present. Thus, thapache package 21 The Install Problem

should only be installed on a system that does not also

have theapache- nodul es package, any instance of the Consider a user with the installation prof{le} who wishes

j serv package with version less thdn 1. 3 and so on. tg install the package. Theinstall problemis to determine

Thus, to installapache, the package manager must find \hether there is some set of new packagetidinga that

out which other packages must be installed such that at thecan be added to the machine, such that the resulting set of

end, the system contains a set of packages that meet all thgackages is a valid installation profile.

requirements specified in the distribution meta-data file. A tool like apt - get proceeds by traversing the depen-
We now illustrate our approach using a small distribution dency graph, and building up the set of other packages that

with the 9 packagesy,b,c,d,e.,f, g, y, andz. A distilled must be installed before. To be efficient it restricts the

version of the meta-data rules for this distribution is show number of backtracks performed due to conflicts, and thus

on the left in Figure 3. In order for the packageo be loses completeness, in the sense #Et- get may incor-
installed on the system, packagesc andz must also be rectly report that there is no suitable set of new packages
installed, while for package to be installed, one od, e even though one exists.

must be installed and one d@f g must be installed. The
conflicts clause fod says that must not be present on the
same system ak

Encoding Distributions as Constraints. Our approach to
the problem is to encode it as a system of propositional con-
straints over variables representing the packages of the di

Figure 2 shows a graph representation of the depends andkribution. We create propositional variables for each pack
conflicts clauses. Each package is shown in a square verage of the distribution and then create propositional con-
tex, and there are directed edges to the other packages thatraints over the variables for each rule in the distributio
must also be present. Whenever there is a disjunction inEvery satisfying assignment to the constraints is such that
the depends, we represent it with a circle vertex which hasthe variables that get assigne&UdEk form a valid installa-
directed edges to each package in the disjunction. Finally,tion profile for the distribution.

We create a variable, for each packageg in the distri- X, VX

bution. Next, we create constraints for each clause of the o i]—|xb v xd\

distribution. For instance, the first depends clause ipets © Ty X, V Xy
encoded ag—z, V) which stipulates that either, is Ty i x,
false,i.e., a is not in the profile or if it is, them, is true, b\,_‘x i
i.e, bis in the profile. The first disjunctive depends clause & onira

for c gets translated tq—z. V z4 V z.) which ensures that

eitherx. is false,i.e,, c is not in the profile, or if it is, then _ o

one OfId or x, must be truej_e_, one of the packageﬂ; Figure 4: Resolution Proof of Contradlctlonfstrib(R)/\

or e must also be in the profile. The conflicts clausedor (%z A e) Az,. Each leaf is a clause of the formula: the blue
gets translated toi—zq VV —z.) which ensures that botty literal is froma, the package to be installed, the green literal

andz, are not truej.e., that both are not in the profile. In IS from the pre-existing (conflicting) packaggethe white
Figure 3, each row has a distribution rule in the left column boxes are clauses from the distribution constraints. Each

; " — ; internal clause is generated by a resolution deductioneof th

and its propositional encoding in the right column. form: (A v z) A (jgx vV B) impli):es(A v B)
SAT-based Installation Checking. To determine whether
there is some set of new packages includirtat the user
can install that results in a valid installation profile, veeu ~ MB respectively and all the other packages have 5iB.
a SAT solver to find a satisfying assignment to the follow- Consider a user with the profifez} who wishes to down-
ing install formula (Distrib(R) A @, A x,) Which is the load the fewest totgl number of bytes required to install
conjunction ofDistrib(R), i.e., the conjunction of all the the package.. To find the set of packages that the user
constraints generated by the distribution (the right calum should install, we generate and solve the pseudo-boolean
in Figure 3), with the literals corresponding to the curlgnt ~ constraint:
installed packages and the package to be installed.

For every satisfying assignment to the above formula, the o
set of packages corresponding to variables assigmec=T s.t. Distrib(R) Az, A 2a
is a set of packages includingthat is a valid installation

min x, + 2Ty + Tc + Tq + Te + 525 + 225 + Ty + 2,

: . heck that th _ h IIWhich specifies the satisfying assignment to the instal for
profile. Itis easy to check that the assignment that sets al mula, with the minimum total sizes (where we interpret

the variables other thary andzy to TRUE satisfies the for- - \c o<1 and RLsE as 0). Itis easy to check that the

mula, and from it, we obtain a set of new packages including minimum assignment is the one that assigm to all

a that the user can download and safely install. variables except andy, thereby resulting in the installa-
tion of all the other packages.

2.2 The Minimum Install Problem

In our example, there are actually two distinct satisfying 2.3 The Uninstall Problem

assignments for the formula, and thus, two ways to safely Suppose that another user, with the installation profile
install a. In the first one, described above, we add all the {z e} wishes to install the package To do so, we must in-
packages except andy. Alternatively, we may instalg stallb, and therefored. Unfortunatelyd is in conflict with a
instead off as either one satisfies the depends clause.for packagee that is already installed. So, to installve must
There are many situations where we would like to bias the first uninstall the previously installed packagéhat transi-
package manager towards a particular choice — for exampletively conflicts witha. Theuninstall problemis to find the
towards the fewest number of new packages or the packageset of packages currently installed on the system that must
with the smallest total size. Theinimum install problens be removed in order to install some new package.
to find, given acostfor each package of the distribution, the Using our technique, in order to determinai€ould be
set of new packages that must be installed with the smallestinstalled, we would query a SAT solver with the install for-
total cost. mula: (Distrib(R) A z, A ze A za) The solver would report
The incompleteness of previous techniques makes it im-that the install formula was unsatisfiable, and would in addi
possible to exhaustively search the solution space to findtion return aresolution proof tregsuch as that in Figure 4,
the set of packages with the minimum total cost. We extendwhich explained why the formula implied a contradiction
our technique to the minimizing problem, by usipgeudo- and thus had no satisfying assignment.
boolean(or equivalently, integer linear) constraints to en- The leaves of the proof tree correspond to clauses from
code the problem, and then using an appropriate solver tothe install formula. The leaf clauses that are the single var
find the best solution. ables obtained from previously installed packages yiedd th
Suppose that packagé€sand g have sizes ob and 2 transitively conflicting packages that must be removed from

the system to install the new package. Thus, in our example
the only leaf in the proof tree corresponding to a previously
installed package is the, which reveals tha¢ must be re-
moved in order to instalh. As with installation, there may
be multiple sets of transitively conflicting packages, and s
we show how to extend our technique to find the set that
minimizes a given cost function.

3 Detalls

This section describes the details of our technique for
solving package management problems using SAT solvers
pseudo-boolean solvers and ILP solvers. After first formal-
izing distributions and valid installation profiles, we ffioal-

ize and present solutions to the three package manageme
problems: thdnstall Problem(Section 3.1), théinimum
Install Problem(Section 3.2), and thé&ninstall Problem
(Section 3.3). Finally, we show how our solutions are com-
bined in the tooDpium (Section 3.4).

Distributions

A distribution R is a finite set opackage ruleswhere each
package rule is a tuple of the forfp, D, C), wherep is a
packageand:

e D is a set ofdependency clausder p that stipulate
which packages must be present in order to install the
packagep. Each dependency clause is a disjunction of
package®; | ... | px. Intuitively, a dependency clause
stipulates thasomepackage from the set, ..., px
must be presentin order for the package work prop-
erly.

C' is a set ofconflict rulesfor p that stipulate which
packages must not be present on the same system as
Each conflict clause is a packagewhose presence on
the same system aswill cause problems.

For example, we formalize the distribution from Section 2
as the set of rules:
(a,{b,c,2},0), (b, {d},0), (c.{d | e, | g},0)

(d,0,{e}), (e,0,0),(£,0,0), (g, 0,0), (v.{=}, 0), (2,0,0).
Valid Installation Profiles

An installation profilefor a distribution is a subset of the
packages of the distribution, which could, for example, be
the set of packages from the distribution installed on a par-
ticular machine. To ensure the proper functioning of the
machine, we require the installation profile of the machine
to bevalid, meaning that it meets the requirements of each
package in the profile.

To formalize this notion of validity, we start by defin-

p iff either p is not present in the profile, @f is not present

in the profile. Avalid installation profilefor a distribution

is one that satisfies the dependency and conflict clauses of
each package rule of the distribution.

Readers familiar with Debian may realize that we have
simplified the definition of a distribution in several ways.
First, areal Debian distribution is in fact the union of two
pieces — a repository residing on a central server, and the ac
tual packages installed on the user’'s machine, each of which
is a set of rules. To simplify the presentation, we assume
here that the repository includes the rules from the user’s
machine. Second, associated with each packageves-a
sion and depends and conflicts clauses can refer to specific
versions of packages. We assume for simplicity that the
clauses have been expanded to include all the versions of a

rEJtarticuIar package that are included in a distributionrdhi

the rules also have jrovidesclause stipulating the set of
virtual packages provided by a package. We make these
simplifications for brevity — our implementati@pium han-

dles all these features.

3.1 The Install Problem

We now turn our attention to the problem of determining
whether (and how) a new package can be installed on a ma-
chine upon which some set of packages from a particular
distribution is already installed. This problem is fornzel

as follows:

Problem 1 (Install Problem) Given a distributionR, an
installation profile P and a new package, does there exist
a set of packageB’ containingp such thatP U P’ is a valid
installation profile forR.

If such aP’ exists, we say that can be installed or®
— by adding the packages i?, we get a valid installation
profile containing the new package If instead no suct’
exists, then itis impossible to safely instalbn the machine
already containing’.

Recall that our algorithm for solving the install problem
is to reduce it to a system of propositional constraints wehos
satisfying assignments correspond directly to valid irsta
lation profiles. We introduce one boolean variablgfor
each package to represent the presence pf Truth as-
signments for the variables then correspond to instaiiatio
profiles:z, is assigned true ifp is in the corresponding in-
stallation profile. Once the problem has been converted to
a system of propositional constraints, we use a SAT solver
to determine whether the constraints are satisfiable — if so,

ing when dependency clauses and conflict clauses are satwe can directly extract th&’ from the assignment returned

isfied. An installation profile satisfies a dependency clause
p | ... | px for piff either p is not present in the profile, or
somepackage in the sdlp, ..., pr} is present in the pro-
file. An installation profile satisfies a conflict claugefor

by the solver, if not, we conclude that the installation i$ no
possible.

The first step in our algorithm is to generate the proposi-
tional constraints for a distributio®. Our procedure for

Distrib(R) = A,cpRule(r) Algorithm 2 Minlnstall(R, P, p, Cost)
c:=5. Cost(p’) -z
Rule(p,D,C) = Aycp Depend(p,d) A f = Distrib(R) AN\ e pTpr A Tp
Nce e Conflict(p, ¢) match MinPBSolve(c, f) with
| UNSAT — return IMPOSSIBLE
Depend(p,p1 | ... | pk) = —2pVViy 4P | SAT (A) — return {p’ | A(z,/) = TRUE} \ P
Conflict(p,p’) = -z, V -p’

number of downloaded bytes. We generalize these prob-
lems as follows.

Figure 5: Propositional Distribution Constraints Problem 2 (Minimum Install Problem) Given a distribu-
tion R, an installation profileP, a new package, and a
Algorithm 1 Install(R, P, p) ;:ozt functi?nColjt ma}pping package?] to an integer Icost,
P ind a set of package®’ containingp with a minimum value
f := Distrib(E) A /\1’. ep T N Tp of Y cp CFo)st ? such that? Uglg’ is a valid installation
match SatSolve(f) with roﬂ[zé%grR
| UNSAT — return IMPOSSIBLE P
| SAT (A) — return {p’ | A(z,/) = TRUE} \ P The cost function above encodes the requirements for
the “best” install. Once we find the’ with the minimum
cost, the user can install the additional package®’irand
doing so is shown in Figure 5. Given a distributidh thereby obtain a valid installation profile containing tkesun
Distrib(R) returns a boolean formula corresponding to valid packagep.
installation profiles for the distributioR, where: Our technique of reducing the installation problem to

e Rule(p, D, C) returns a boolean formula correspond- propositional constraints extends to thgnimum Install
ing to installation profiles that satisfy the package rule Problem In addition to the propositional constraints, we
(p, D, C). The first and second conjuncts respectively create pseudo-boolean constraints representing ther linea
ensure that each of the dependency and conflict rules aréost function, and employ a pseudo-boolean solver to find a
satisfied by the installation profile. minimizing assignment.

A pseudo-boolean constraiigt a pair(} . y ¢z - 2, f)

° . ula that . " ‘ .
Depend(p, p1 .| | Pr) retu_rn.s a boole&_ln form where X is a set of propositional variables, each is
ensures that if the packages in the profile, thersome .) .

: . ' an integer, andf is a propositional formula overX.
package from the set, . . ., px is also in the profile.

The costof a truth assignmentl for the variablesX is
o Conflict(p, p’) returns a boolean formula that ensures $~ (¢ | A(z) = TRUE}. A minimum cost satisfying as-

that eitherp or p’ is not in the profile. signmentto a pseudo-boolean constraint is an assignment
Our algorithminstall for solving thelnstall Problemis A that satisfiesf, whose cost is less than or equal to the
shown in Figure 1. Making use of the abdv&trib proce- cost of every other satisfying assignmentfof

dure, it creates a boolean formula capturing valid installa ~ Our algorithmMinInstall for solving theMinimum In-
tion profiles including package® andp, and then invokes stall Problemis shown in Figure 2. Using the cost mea-
a SAT solver to find a satisfying assignment. If a satisfing sure, it creates a pseudo-boolean constraint capturiind val
assignmentd mapping boolean variables to truth values is installation profiles including® andp, and then invokes a
found, we return the set of packages whose variables argpseudo-boolean solver to find a minimum cost satisfying as-
assigned to RUE (minus those packages i), and other- signment. If one exists, it is returned by the solver, anthfro
wise, we conclude that it is not possible to safely instadl th it we extract and return the minimum cost valid installation

packagep. profile containingP andp. If no such assignment exists,
we conclude that it is not possible to safely install
3.2 The Minimum Install Problem An alternative approach to solving tiinimum Install

_ o _ _ Problemis to reduce the pseudo-boolean constraints into an
Owing to the disjunctions in the dependency rules, there |Lp problem using a standard translation [6]. One can then

are often many ways to install a new package. In these sit-yse an off-the-shelf ILP solver to find the minimupt.
uations, we would like a way to select the “best” possible

installation path. One may for example want to find the in- 3.3 The Uninstall Problem

stallation path in which the fewest number new packages

are added. Or, if the user is connected via a low-bandwidthin many configurations, a new package cannot be installed
link, one may want to find the installation path with the least because of conflicting dependencies with other packages al-

Algorithm 3 Unlnstall(R, P, p, Cost)

P() =P

f := Distrib(R)
X' =10
repeat

X :={ap} U{zp [p' € P}
X' := ConflictSatSolve(X, f)
P = P\{,Tp/ | Ty € X/}
until X’ := ()
P.:=Py\ P
Cost’ := \p. if p € P, then — Cost(p) else0
P’ := Minlnstall(R, P, p, Cost’)
return P.\ P’

ready installed on the system. In this case, we must first
uninstall the packages prohibiting the installation, before
attempting to install the new package. We would like to

then be computed from the resolution proof, by collecting
the set of leaves in the proof tree that correspond to Igeral
in X. In our setting, the literals correspond to packages —
the setX will be the set of installed packages together with
the new package that is to be installed. In this context,
the setX’ returned byConflictSatSolve will be transitive
conflict packageprohibiting the installation op.

Our algorithmUnInstall for solving theUninstall Prob-
lem is shown in Figure 3. First, we save the cur-
rently installed packages iPy,. Second, we call the
ConflictSatSolve procedure with the constraints generated
by the current packagdd and the distribution. If the con-
straints are not satisfiable, we remove the transitive ainfli
packages from the current st and repeat until the all
constraints are satisfiable (there are no transitive conflic
packages)j.e., until p can be installed on the remaining
packages. At this point, all potentially transitively cactfl
ing packages have been removed fréin and the over-

find the smallest set of packages that must be removed inapproximated set of conflict packagesis = P, \ P.

order to make the new package installable.

Problem 3 (Uninstall Problem) Given a distribution R,
an installation profileP, a new package, and a cost func-
tion Cost, find a set of package®’ with a minimum value
of 3¢ p Cost(p), such thap can be installed orP \ P’

Once a minimumP’ is found, we can remove the pack-
ages inP’ and then obtain an installation profile on which
can be installed. We can then apply the algoritidininstall
to determine the best way to install the new packagm
the system.

There are several candidate cost functions for the unin-
stall problem. By assigning the all packages a constant non
zero cost, we can ensure that feastnumber of installed

packages is removed. Another function could assign higher

Third, we callMinlnstall starting with the installation pro-
file G to determine what packages can be “added back” to
P (and therefore were not absolutely necessary to remove).
For this step, we use a modified cost function where the
transitive conflict packageB. have the negation of their
original cost, and all other packages have ¢osthe nega-
tion causedininstall to in fact maximize the transitive con-
flict packages that are added backtoThus, the transitive
conflict packages not added backMjynInstall are the min-
imum set of packages that must be removed.

The astute reader would have observed that another way
to attack the uninstall problem is avoid the loop in Algo-
rithm 3 by settingP, to the set ofall packages inP,
and then runnindMininstall. However, we choose to use
ConflictSatSolve to find the transitively conflicting pack-

costs to more important or more popular packages, thereby?9€S for two reasons. First, the set is typically quite small

ensuring that these packages do not get uninstalled.

To solve thdJninstall Problemwe will use an enhanced
SAT solver that tells us which of the currently installed
packages inP are prohibiting the installation gf. This
enhanced SAT solver will compute averapproximation
of the packages that must be removed, and then we will us
the previously describellininstall procedure to prune the
overapproximation to obtain a minimal uninstall $&t

The enhanced SAT solver we make use of is imple-
mented by a procedure call€dnflictSatSolve. Given a set
X of propositional variables and a propositional formija
the procedur€onflictSatSolve(X, f) returns the empty set
0 if the formula . = A f is satisfiable, and otherwise
returns aminimalsetX’ C X such thaf\ .y, x A f is also
unsatisfiable. Th&onflictSatSolve procedure can be im-
plemented using well-known algorithms. In particular, one
can easily extend any DPLL-based SAT solver to produce
resolution proofs of unsatisfiability [8, 17]. The s€t can

[S]

and so the optimizing problem sent Minlnstall is rel-
atively simple — the alternative would require the pseudo
boolean solver to find a solution to a more complex prob-
lem, one that involved non-trivial costs for many more pack-
ages. Second, with our current formulation, it is easy to
make the algorithninteractive where at each iteration of
the loop, the user can be asked which of the transitively con-
flicting packages inX’ she would like to be removed. We
can then only remove those packages frénin the next
line. This approach, which we leave for future work, al-
lows the user more control over which packages should be
removed, and has the flexibility of not requiring that a suit-
able cost function be designadriori.

3.4 Putting it all together: Cpi um

Figure 4 shows how the above algorithms are combined in
our toolOpium, which takes as input a distributid®, an in-

Algorithm 4 Opi um R, P, Costy, Costy, p)

R := Slice(R, P U {p}

P’ := Minlnstall(R, P, p, Costy)

if P’ # IMPOSSIBLEthen
Install the packageB’

else
Uninstall the packagésninstall(R, P, p, Costy)
Install the packageslininstall(R, P, p, Costy)

end if

stallation profileP, an install cost functiorost, an unin-
stall cost functionCost;, and a new packagethat the user
wishes to install, and updates the user’s system so that it ha
a valid installation profile containing.

First, weslice the distribution rules with respect to the
given installation profile and the package to be installed.
Intuitively, the slicing procedure returns the subset & th
input distribution rules that are relevant to the input pack
ages. This procedure includes the rules of the input pack-

ages and transitively includes the rules of the packages the

input package depends on or conflicts with. For example,
slicing the distribution shown in Figure 2 with respect to
the packages, yields the package rules for all the pack-
ages excepg. Without slicing, the times taken b@pi um

are about 15 times greater, taking several minutes to solve

one problem, rather than several seconds.
Then, we callMinlnstall to determine whether (with-

B Second solve

A Conflict resolution
EI0

O1Initial solve

W Slicing

O Distribution read

L ||

3, ,,,,,,,,, -

2, ,,,,,,,,, —

1, — - -

0
Pop | Size | Pop | Size | Pop | Size | Pop | Size

apt | ILP | ILP PB PB ILP | ILP PB PB

NC NC NC NC C C C C

out removing any existing packages), the new package CariNorld installation attempts collected by the servers at Lin

be installed. If there are no conflictee.Minlnstall re-
turns a set of new packages with the minimum install cost,
and we download and install the new packages and re-
turn. If instead,MinlInstall returns MPOSSIBLE then we
call Unlnstall to find the set of packages with the minimum
uninstall cost, which are then removed from the system. Fi-
nally, we callMinlnstall again, and this time it is guaran-
teed to find a set of new packages includpgwhich we
download and install on the system. A simpler algorithm
is to first callUnlnstall as it would return the empty set if
there were no conflicts. We choose to optimistically call
Minlnstall first as the majority of install attempts do not re-
quire uninstalls.

4 Evaluation

To evaluate the practicality of our algorithms, we perfodme
a comparative study oBpi umversus Debian’s package
installer,apt - get . The goal of this study was to quan-
tify three measures: the running time @bi um versus
apt - get , the amount of benefit provided by the complete-
ness ofOpi um and the amount of benefit provided by the
minimization capabilities o©pi um

To perform our evaluation, we used 600 traces of real

spire corporation. Each one of the 600 trace corresponds
to a particular end user performing a series of installation
attempts, and each installation attempt is a request to in-
stall a given package, which may in turn install/remove a
variety of depending/conflicting packages. The 600 traces
correspond to a total of 52,668 installation attempts, Wwhic
amounts to an average of about 87 installation attempts per
user.

We ran each installation attempt in 5 different ways.
First, we used Debianapt - get , which was the baseline
for our comparison. Then we ran each installation attempt
using Opi umin four different configurations, varying the
back-end (either a pseudo-boolean solver or an ILP solver),
and the objective function (either minimize download size
or maximize the popularity of installed packages). These
experiments took about 24 hours to run using 100 nodes of
the FWGrid cluster [2].

4.1 Runtime

Figure 4.1 shows the runtime @pi umnormalized to the
runtime ofapt - get . To get a sense of the scale, the aver-
age runtime ofipt - get was 3.14 seconds, and this shows
up as a bar of height 1 in Figure 4.1. The rightmost eight
bars of Figure 4.1 show the runtimes fggi um The labels

for these bars use the following abbreviations: (1) NC: no improved is conflict resolution. Th€onflictSatSolve oper-
conflicts occurredersus Cconflicts occurred (2) ILP: ILP ationis currently implemented in a separate theorem prover
solver was usedersusPB: pseudo-boolean solver was used which incurs additional overhead. Furthermore, because

(3) Pop: the objective function maximized populanr- ConflictSatSolve is called repeatedly on very similar prob-
susSize: the objective function minimized total download lems, using an incremental SAT solver for implementing
size. ConflictSatSolve would likely have a drastic impact on the

Each bar shows inside of it the various contributors to the performance of conflict resolution.
runtime: (1)Distribution read time to read the distribution
from disk into memory (2plicing time to perform the slic-
ing optimization described in Section 3.4 (8jtial solve

time to perform the first call thinlInstall in the Qpi umal- To quantify the benefit provided i§pi urmis completeness,
gorithm from Section 3.4 (4)0: time to write the pseudo- e Jook at the number of times thapt - get fails to find a
boolean or ILP problems to disk for the solvers to read, and way of installing a package when in fact there is a solution
time to read the results back from the solvers@@pflict (whichQpi umis guaranteed to find because it is complete).
resolution time to perform conflict resolution, whichis the - oyt of the 52,668 install attemptapt - get was not able
call to Uninstall in the Opi umalgorithm (6)Second solve {0 find a solution 357 times, and of these 357 ca®ps,um

4.2 Completeness

time to run the second call fdlininstall in the Opi umal- a5 able to find a solution 322 times. The remaining 35
gorithm. cases, on which botlipt - get andOpi umfail, are indica-
There are a variety of important points to get out of Fig- tjons of bugs in the distribution (for example, one package
ure 4.1: in the distribution depending on another one that is not in
¢ Inthe cases where there is no conflict resolution, which the distribution).
account for 84.3% of the install attemptSpi umis These numbers show thapt - get fails to find a solu-
about 3.5 times slower thapt - get . Intheremaining tion when one exists in about 0.61% of install attempts. This
casesOpi umis about 6 times slower thaapt - get . is not a large error rate, but one has to remember that users

Although this may seem high, when taking into account perform many install attempts over the lifetime of theirsys
the total time to run the installeandto download the = tem. Assuming an average of 87 install attempts over the
required packages, on avera@pj umis 34.0% slower lifetime of a user system (computed from the average size
thanapt - get assuming a 300kBps cable modem con- of our trace lengths), the chance that a user will hit an in-
nection, 11.2% slower on a 100kBps DSL line, and completeness error in the lifetime of their system can be
0.2% faster on a 10kkBps dial-up moden©Qpi umis computed to be 41.2%. The actual number collected in our
able to run faster on a modem because it optimizes forexperiments is smaller than this, but in the same ballpark:
number of bytes downloaded, and so it downloads less23.3% of the 600 traces encountered an incompleteness lim-
bytes tharapt - get). itation ofapt - get . These numbers indicate that the com-
pleteness ofpi umhas the potential to improve the end-

e The dominant components of ti@i umruntime are - :)
user experience of a large fraction of Debian users.

reading the distribution, performing the slicing opti-

mization, and performing conflict resolution. The ac-

tual time to run Pueblo or GLPK accounts for only a 4.3 Minimization

very small proportion of the total runtime @pi um

We first evaluate the impact d@pi unis ability to mini-

mize the number of packages that are removed from the

system. On our trace§pi umremoved less packages than

apt - get in 209 cases out of the 52,311 install attempts

e The runtimes of install attempts that optimize size are Whereapt - get succeeded. This is a small percentage

very similar to the runtimes for attempts that optimize of all install attempts, but the impact in those cases can
popularity, which is an indicator that the runtimes are pe significant. In 9 caseapt - get removed 10 pack-
unlikely to depend on the objective function. ages or more than what was necessary, and the worst of
There are further opportunities for optimizing the per- these cases is the example mentioned in the introduction,

formance ofOpi umthat we have not yet explored. One of whereapt - get removed 61 packages, including the ker-

them is the runtime it takes to read a distribution. Becausenel, whereasOpi umonly removed 21 packages, none of

our implementation of th€pi umparser is naiveQpi um which was the kernel.

takes about 3 times longer thapt - get to read and load We also evaluated the benefits@fi unis ability to min-

a distribution in memory, something that can be fixed with imize the number of downloaded bytes. In about 4.4%

further tuning. Another area where performance could be out of the installation attempts wheaipt - get succeeded,

e The Pueblo solver runs about twice as fast as the
GLPK solver, and it even runs slightly faster than the
apt - get backtracking solving algorithm.

Opi umfound a better solution thaapt - get . Although More broadly, our work is also related to research
this is only a small percentage of all install attempts, when projects that process dependencies automatically. In the
there is a difference between the optimal solution and thecontext of static component-based software linking, tools
apt - get solution, that difference on average is about exists for checking that dependencies between a given set
2MB, which is considerably large. There are also 7 in- of components are met, for example using typed inter-
stall attempts in whichOpi um beatapt - get by over faces [7, 5, 9]. Tools also exist for analyzing dependencies
100MB, and one case in whic@pi um beatapt - get to optimize, debug, and test programs [15, 16] In contrast
by 129MB. In about 0.2% of the installation attempts, to these projects that check or analyze dependencies, our
apt - get finds a better solution tha@i umby an aver- goal is todiscoveran optimal set of components that meet
age of about 1.6MB. This happens desg@ urmris opti- certain dependency requirements.
mality becaus@pt - get sometimes removes more pack-
ages thaOpi um and once these additional packages have
been removed, itis possible thegit - get can find a better References
solution. [1] fink. http: //fink. sourcef or ge. net.

Another interesting measure to look at is how many % E\I/_VEK”% g&%ﬁﬁg‘;&%é’g‘;ﬁ%% chis.dhtetd;:' -
downloaded byte€)pi um saves over entire user traces. gnu. or g/ sof t var e/ gl pk.
Summing the downloaded bytes over entire traces, we find [4] Yum: Yellow dog Updater, Modified.ht t p: // | i nux.
that Opi um beatsapt - get on 95.9% of the traces by duke. edu/ pr oj ect s/ yum
an average of 7.7MB (with a maximum of 185MB), and [5] J. Aldrich, C. Chambers, and D. Notkin. Archjava: conrec

. _ 0 ing software architecture to implementation. I@SE pages
it matches or does better thapt - get on 98.4% of all 187-197. 2002,

traces. The mosipt - get beatsOpi umby is 21MB, but [6] T. Cormen, C. Leiserson, R. Rivest, and C. Stdimtroduc-
it does so by removing 12 more packages than necessary. tion to Algorithms MIT Press, 1990.
[7] C.Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B.>&a
and R. Stata. Extended static checking for Jav®UBI 02:
5 Related Work Programming Language Design and Implementatipages

234-245. ACM, 2002.

. . . [8] A. V. Gelder. Extracting (easily) checkable proofs fran
One line of work that is related to ours is the research done satisfiability solver that employs both preorder and patsior

by th_e Wp2 grpup inside the _EDOS proje_Ct' The broad goal resolution. In7th International Symposium on Atrtificial In-
of this group is to address issues relating to dependency telligence and Mathematics(AMAB0O2.
managemenon the repository sid¢10], whereas our fo- [9] D. B. MacQueen. Modules for standard ml. I#SP and

i i i Functional Programmingpages 198-207, 1984.
cus h.as beel.)n the client side In the Co.meXt of helping [10] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, BuD
repository builders, the WP2 group has implemented a tool

rak, X. Leroy, and R. Treinen. Managing the complexity of
calleddebchecK10] that uses a SAT solver to check that large free and open source package-based software distribu

a repository does not contain broken packages (i.e.: pack- tions. InProceedings of the International Conference on Au-
ages that cannot be installed). As the authordedfcheck tomated Software Engineering (ASE 0B)06.
write in [10], the problem of optimizing the installation of [11] K.L.McMillan. Aninterpolating theorem prover. [FACAS:

packages on a user machine, whiohi umsolves, “is a gogltz ni”daALgSO{'éTES f;(r)otge Construction and Analysis of
task radically different, and in principle much more diffi- 12 G¥ Nien?iay%r. Smart package managet.t p: / /| abi x.

cult than verifying that a repository does not contain broke org/ smart, 2006.

packages.” In particular, our paper contributes beyond the[13] H. M. Sheini and K. A. Sakallah. Pueblo: A hybrid pseudo-
work ondebcheclin three ways, all of which are motivated poolean sat soIvegournaI on Satisfiability, Boolean Model-
by our focus on the client side of the problem: (1) our work (145 o ﬁh%ﬁgﬁ%ﬁ“ﬂgﬁ&ﬁ?’p2:0/0/6\',w\w_ debi an. or g/
adds the extra dimension of findimgtimal solutions with doc/ manual s/ apt - howt o, 2005.

respect to an objective function (2) in addition to solving [15] J. A. Stafford and A. L.Wolf. Architecture-level depggnce
the Install Problem we also optimally solve th&ninstall analysis in support of software maintenancePtnceedings

Problem(3) we perform a comparative study of our tool of the third international workshop on Software architeetu

. Lworld installati (ISAW 98) 1998.
againsapt - get on real-world installation attempts. [16] M. Vieira and D. Richardson. Analyzing dependencies in
Another project that is related to ours is the Smart Pack- large component-based systems. Pioceedings of the In-

age Manager [12], which attempts to be complete and to ternational Conference of Automated Software Engineering
find the best solution given a user policy. There is little (ASE 02)2002. , o) ,
documentation about the techniques used in Smart, and ouft”] - Zhang and S. Malik. Validating sat solvers using atiein

. o - pendent resolution-based checker: Practical implementat
|nvest|gf';1t|0n of the source code ShOWS thaF It enumerates and other applications. IDATE: Design Automation and
all possible solutions, which, as pointed out in [10], is-pro Test Europgpages 10880—10885, 2003.

hibitively expensive.

10

