hyfo Easy Start

Yuanchao Xu

2015-12-06

Contents

Introduction

1.

2.

Hydrology

1.1 Start from Raw Data
1.1.1 From File o o e
1.1.2 Mannually L 00

1.2 Raw Data Analysis L

1.3 Further Process for Model Input
1.3.1 Extract Certain Period or Months from Different Time Series
1.3.2 Fill Gaps (rainfall data gaps) L
1.3.3 Get Ensemble Hydrological Forecast from Historical Data (ESP method)
1.3.4 Resample Data

1.4 Seasonal and Monthly Precipitation Analysis

Climate Forecasting
2.1 Load, write and downscale NetCDF file
2.2 Spatial Map Plot
2.3 Add Background Information (catchment and gauging stations)
2.3.1 Add catchment shape file
2.3.2 Add station locations
2.4 Variable Bar Plot e
2.5 Bias Correction L e
2.5.1 Multi/Operational/Real Time Bias Correction
2.6 Analysis and CompariSon e
2.6.1 Spatial Map e e
2.6.2Bar Plot e
2.7 Model Input oL e
2.7.1 Extract time series from Forecasting Dataset
2.7.2 Get Bias-corrected Data.
2.7.3 Resample Data

S ot w oW W

18
18
19
22
29
30

http://yuanchao-xu.github.io/hyfo/
https://dk.linkedin.com/in/xuyuanchao37

3. Anarbe Case 74

Introduction

Official Website is http://yuanchao-xu.github.io/hyfo

hyfo is an R package, initially designed for the European Project EUPORIAS, and cooperated with DHI
Denmark, which was then extended to other uses in hydrology, hydraulics and climate.

This package mainly focuses on data process and visulization in hydrology and climate forecasting. Main
function includes NetCDF file processing, data extraction, data downscaling, data resampling, gap filler of
precipitation, bias correction of forecasting data, flexible time series plot, and spatial map generation. It is a
good pre-processing and post-processing tool for hydrological and hydraulic modellers.

If you feel hyfo is of a little help, please cite it as following:

Xu, Yuanchao(2015). hyfo: Hydrology and Climate Forecasting R Package for Data Analysis and Visualization.
Retrieved from http://yuanchao-xu.github.io/hyfo/

Author in this corner

TIPS

e For the hydrology tools part, the minimum time unit is a day, i.e., it mainly focuses on water resource
and some long term analysis. For flood analysis part, it will be added in future.

e One important characteristic by which hyfo can be distinguished from others is its convenience in
multiple plots and series plots. Most data visualization tool in hyfo provides the output that can be
directly re-plot by ggplot2, if output = 'ggplot' is assigned in the argument of the function, which
will be easier for the users to generated series/multiple plots afterwards. When output = 'ggplot'
is selected, you also have to assigne a name = 'yourname' in the argument, for the convenience of
generating multiplots in future. All the functions ending with _comb can generated series/multiple
plots, details can be found in the user mannual.

e For the forecasting tools part, hyfo mainly focuses on the post processing of the gridData derived from
forecasts or other sources. The input is a list file, usually an NetCDF file. There are getNcdfVar(),
loadNcdf () and writeNcdf () prepared in hyfo, for you to deal with NetCDF file.

e If you don’t like the tile, x axis, y axis of the plot, just set them as ”, e.g. title =

e For R beginners, R provides different functions to write to file. write.table is a popular choice, and
after write the results to a file, you can directly copy paste to your model or to other uses.

e The functions end with _anarbe are the functions designed specially for some case in Spain, those
functions mostly are about data collection of the anarbe catchment, which will be introduced in the
end of this mannual.

Installation

o Released version from CRAN, for beginners and normal users.

install.packages("hyfo")

e Development version from github, for experienced users and those who are interested in investigating.

http://yuanchao-xu.github.io/hyfo
http://yuanchao-xu.github.io/hyfo
http://yuanchao-xu.github.io/hyfo/
https://dk.linkedin.com/in/xuyuanchao37

install.packages('devtools')

Ignore the warning that Rtool is mot installed, unless you want other #function from devtools.
If you have "devtools" installed already, you just need to run the following code.

devtools: :install_github('Yuanchao-Xu/hyfo")

During the installation of the development version, if there is some error, you can just follow the error message
and reinstall the package with error. The most common message is

cannot remove previously installed XXX package.
or
error in installation of XXX package.

If so, just use install.pakcages('xxx') to reinstall XXX package. And then reinstall hyfo again. Other
errors can be solved by directly reinsalling hyfo.

e You can also go here to download installation file, and use IDE like Rstudio to install from file, both
tar.gz and zip formats are provided.

1. Hydrology

Note If you are an experienced R user, and know how to read data in R, deal with dataframe, generate
date and list, please start from next charpter, “1.2 Rainfall Analysis”

1.1 Start from Raw Data
1.1.1 From File

hyfo does provide a common tool for collecting data from different type of files, including “txt”,
“csv” and “excel”; which has to be assigned to the argument fileType.

Now let’s use internal data as an example.

library(hyfo) #load the package.

get the folder containing different csv (or other type) files.

file <- system.file("extdata", "1999.csv", package = "hyfo")
folder <- strsplit(file, '1999')[[1]1][1]

Extract and combine content from different files and in each file,

the extracted zone is from row 10 to rTow 20, Column 1 to column2.
a <- collectData(folder, fileType = 'csv', range = c(10, 20, 1, 2))

All the files in the folder should have the same format

str(a)

'data.frame': 22 obs. of 2 variables:
$ V1: Factor w/ 722 levels "","01/02/1999",..: 57 69 81 93 105 117 129 141 153 165 ...
$ V2: num O O 19.7 42.9 4.7 14.5 2 10.9 5.6 0 ...

http://yuanchao-xu.github.io/hyfo/

a cannot be directly inputed in hyfo, it still needs some process.

Check the date to see if 4t follows the format in Z?as.Date(), if not,
use as.Date to convert.

a <- data.frame(a)

#get date

date <- al[, 1]

The original format is d/m/year, convert to formal format.
date <- as.Date(date, format = '%d/%m/%Y')
al, 1] <- date

Now a has become “a’ time serties dataframe, which is the atom element of the analysts.
hyfo' deals with list containing different time series dataframe. In this example,
#there is only one dataframe, and more examples please refer to the following chapter.
datalist <- list(a)

Use getAnnual as an example, here since ‘a’ ts not a complete time series,
the result is only base on the input.

getAnnual gives the annual precipitation of each year,

and will be introduced in the next chapter.

getAnnual (datalist)

Using Year, Name as id variables

V2

0.50
0.25-
0.00+

WNNVN

—-0.25+

~0.50 o
100 - v
75-
50-
25 -

193id[enuuy

1999

Year

Year Name AnnualPreci recordNum NANum
1 1999 V2 101.5 11 0
2 2000 V2 16.0 11 0

1.1.2 Mannually

Following example shows a simple way to generate dataframe with start date, end date, and the value. Here
in the example, sample () is used to generate random values, while in real case it will be a vector containing
time series values.

Generate timeseries datalist. Each data frame consists of a Date and a value.
library (hyfo)
AAA <- data.frame(
Date = seq(as.Date('1990-10-28'), as.Date('1997-4-1'), 1), # Date column
AAA = sample(1:10, length(seq(as.Date('1990-10-28'), # wvalue column
as.Date('1997-4-1'), 1)), repl = TRUE))

BBB <- data.frame(
Date = seq(as.Date('1993-3-28'), as.Date('1999-1-1'),1),
BBB = sample(1:10, length(seq(as.Date('1993-3-28'),

as.Date('1999-1-1'),1)), repl = TRUE))
CCC <- data.frame(
Date = seq(as.Date('1988-2-2'), as.Date('1996-1-1'),1),
CCC = sample(1:10, length(seq(as.Date('1988-2-2'),
as.Date('1996-1-1'),1)), repl = TRUE))

datalist <- list(AAA, BBB, CCC)# dput() and dget() can be used to save and load list file.
a <- getAnnual(datalist)

Using Year, Name as id variables

0.50 AAA BBB CCC
0.25-
=
0.00 - =
3
-0.25
-0.50
2000 -
1500 z
1000 - 2
500 - g
0. [1 |

1.2 Raw Data Analysis

After having the raw data, usually we need to have an overview of the rainfall in order to further process the
data, getAnnual can provide the information based on annual rainfall for all the input time series.

hyfo also provides time series plot plotTS and plotTS_comb, for you to plot single time series or multiple
time series. And missing values will also be shown in the plot.

Assuming we have three gauging stations named “AAA”, “BBB”, “CCC”, the precipitation information can
be get by the following:

testdl is a datalist provided by the package as a test.
It's a list containing different time series.
data(testdl)

a <- getAnnual (testdl)

Using Year, Name as id variables

AAA BBB ccc
30-
z
20 - >
5
10 - II II
O-. =
2000 - -
>
1500 - 3
o
1000 - g
500 - I I I =
°m m
]]
OdANMION NMITOOONDOD VOOANMLO WO
DD O » D VOVHINDDDHON
NN DO OO D
AA A A A AAA A A A A A A A A A A A A

As shown above, the annual precipitation and the number of missing values are shown in the figure. Knowing
how many missing values you have is alway important when calculating the mean annual precipitation.

Now we want to get the mean annual precipitation.

a <- getAnnual (testdl, output = 'mean')
a

Year Name AnnualPreci recordNum NANum
1 1990 AAA 446.772 60 5
2 1991 AAA 1913.661 355 10
3 1992 AAA 1340.688 366 0
4 1993 AAA 2270.130 330 35
5 1994 AAA 1927.704 365 0
6 1995 AAA 1543.893 349 16
7 1996 AAA 1828.845 366 0
8 1997 AAA 454.863 91 0
9 1993 BBB 1657.080 279 0
10 1994 BBB 2090.970 365 0
11 1995 BBB 2056.230 365 0
12 1996 BBB 1838.340 366 0
13 1997 BBB 2380.500 365 0
14 1998 BBB 2024.910 365 0
15 1999 BBB 0.090 1 0
16 1988 CCC 985.200 303 31
17 1989 CCC 1375.020 365 0
18 1990 CCC 894.840 336 29
19 1991 CCC 1171.380 364 1
20 1992 CCC 1190.280 366 0
21 1993 CCC 1164 .660 365 0
22 1994 CCC 1139.640 365 0

23 1995 CCC 1006.260 365 0
24 1996 CCC 0.000 1 0
2000 -
1500 -
3}
L
a
S 1000 -
c
C
<
500 -
0_
I I I
AAA BBB ccc
Name

Mean annual precipitation is calculated, but as we can see in the figure before, it’s not reliable, since there
are a lot of missing values in AAA and CCC, especially in AAA, in 1993, there are more than 30 missing
values in a year. So we have to decide which is the threshold for the valid record. the default is 355, which
means in a year (355 or 365 days), if the valid records (not missing) exceeds 355, then this year is taken into
consideration in the mean annual preicipitation calculation.

getAnnual (testdl, output = 'mean', minRecords = 300)

##
##
##
##
##
##
##
#
##
##
##
##
#
##
##
##
##
##
##
##
##
##
##
#
##

AnnualPreci

2

1

1

© 00 ~NO O W N =

=
= O

12
13
14
15
16
17
18
19
20
21
22
23
24

000 -

500 -

000 -

500 -

]
BBB
Name

Year Name AnnualPreci recordNum NANum

1990
1991
1992
1993
1994
1995
1996
1997
1993
1994
1995
1996
1997
1998
1999
1988
1989
1990
1991
1992
1993
1994
1995
1996

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
BBB
BBB
BBB
BBB
BBB
BBB
BBB
CCC
CccC
CccC
CccC
CCC
CCC
CccC
CccC
CccC

446.
1913.
1340.
2270.
1927.
1543.
1828.

454.
1657.
2090.
2056.
1838.
2380.
2024.

0.

985.
1375.

894.
1171.
1190.
1164.
1139.
1006.

0.

772
661
688
130
704
893
845
863
080
970
230
340
500
910
090
200
020
840
380
280
660
640
260
000

60
355
366
330
365
349
366

91
279
365
365
366
365
365

1
303
365
336
364
366
365
365
365

1

5
10
0
35
0

w =
[e)}

O, OO OO0 OOoOOoOOo

N
©

O O O O O -

getAnnual (testdl, output

##
##
##
##
##
##
#
##
##
##
##
#
##
##
##
##
##
##
##
##
##
##
#
##
##

If you are not satisfied with the title and x axis and y axis, you can assign them yourself.

AnnualPreci

2

1

1

© 00 ~NO Ol W N -

=
= O

NNNNDNNDNER P2 P 2R
D WNEFP, O OOWwNO®O D WwN

'mean', minRecords

365)

000 -

500 -

000 -

500 -

I
BBB
Name

Year Name AnnualPreci recordNum NANum

1990
1991
1992
1993
1994
1995
1996
1997
1993
1994
1995
1996
1997
1998
1999
1988
1989
1990
1991
1992
1993
1994
1995
1996

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
BBB
BBB
BBB
BBB
BBB
BBB
BBB
CccC
CccC
CccC
CCC
CCC
CccC
CccC
CccC
CccC

446.
1913.
1340.
2270.
1927.
1543.
1828.

454 .
1657.
2090.
2056.
1838.
2380.
2024.

0.

985.
1375.

894.
1171.
1190.
1164.
1139.
1006.

0.

772
661
688
130
704
893
845
863
080
970
230
340
500
910
090
200
020
840
380
280
660
640
260
000

60
355
366
330
365
349
366

91
279
365
365
366
365
365

1
303
365
336
364
366
365
365
365

1

5
10
0
35
0

w =
[e)}

O, OO OO0 O0OOoOOoOOo

N
©

O O O O O -

10

a <- getAnnual (testdl, output = 'mean', title = 'aaa', x = 'aaa', y = 'aaa')

aaa
2000 -
1500 -

©
® 1000 -
500 -
0 -
I I I
AAA BBB cce
aaa

If you want to calculate annual rainfall for a single dataframe containing one time series. You can use the
argument dataframe =. NOTE, if you don’t put dataframe =, hyfo may take it as a list, which will give an
error.

a <- getAnnual(testdl[[1]])

Using Year, Name as id variables

11

AAA
30-
20 - JCE
10- 3
o
AAA
2000 - g =
1500 - =
1000 - 5
@D
500- - - 0.
0-]]]]]]]]
o — AN (9] <t Lo (o] N~
()] » ()} ()} » ()} (@)} ()]
(@)} » (o)} (@)} (@)} ()} (@)} (@)}
i i i i i i i i
Year

plotTS is a powerfull plotting tool for you to plot time series, it can plot different kinds of time series.
Sometimes when you finish processing the data, it’s very convenient to use plotTS to see your results. And
also you can use plotTS_comb to generate multiple time series plots

al <- plotTS(TS = testdl[[1]])

120-
80-
variable
— TS
40-
0 -

1991 1992 1993 1994 1995 1996 1997
Date

12

You can also choose 'bar' as time serties type, default is 'line’'. But most of time,

they are not # so different.
a2 <- plotTS(TS = testdl[[1]], type = 'bar')

Warning: position_stack requires constant width: output may be incorrect

120-
80-
variable
s
40- |
()_

1991 1992 1993 1994 1995 1996 1997
Date

If input s a datalist
plotTS(list = testdl)

13

120-

80-

variable

— AAA
— BBB
— CCC

NIk |

1993-071994-011994-07.995-011995-071996-01
Date

Or <if you want to input time series one by one
if plot = 'cum', then cumulative curve will be plotted.
plotTS(testdl1[[1]1], testdl[[2]], plot = 'cum')

7500 -
5000 _ variable
= AAA
- BBB
2500+
()_

1994 1995 1996 1997
Date

If you want to assign your own name.You can name the list first
TSlist <- list(testdl[[1]], testdl[[2]1)

14

names (TS1list) <- c('1st', '2nd')
plotTS(list = TSlist, plot = 'cum')

7500 -

5000 i variable
= 1st
== 2nd

2500 -

O 4
I I I I
1994 1995 1996 1997
Date
You can also directly plot multicolumn dataframe
dataframe <- list2Dataframe(extractPeriod(testdl, commonPeriod = TRUE))
plotTS(dataframe, plot = 'cum')
6000
4000 - -
variable
== AAA
== BBB
== CCC
2000
O 4

1993-071994-01994—-07.995-01995-07.996-01
Date

Sometimes you may want to process the dataframe and compare with the original one
dataframel <- dataframe

dataframel[, 2:4] <- dataframel[, 2:4] + 3
plotTS(dataframe, dataframel, plot = 'cum')

7500+

variable
== AAA
5000- —|°58
- CCC
== AAA.1
== BBB.1
== CCC.1

2500+

1993-071994-01994-01995-01995-01996-01
Date

But note, if your input is a multi column dataframe, it's better to plot one using plotTS,
and compare them using plotTS_comb. If all data are in one plot, there might be too messy.

And also you can use plotTS_comb to generate multiple time series plots.
To use comb function, you have to change output type to 'ggplot'

al <- plotTS(TS = testdl[[1]], output = 'ggplot', name = 1)

16

120-

80-

variable

— TS

1991 1992 1993 1994 1995 1996 1997
Date
a2 <- plotTS(TS = testdl[[2]], output = 'ggplot', name = 2)

100-

variable

— TS
50-
0_

1993 1994 1995 1996 1997 1998 1999
Date

plotTS_comb(al, a2, nrow = 2)

Check if the data list is available for rbind or cbind...
##

Data list is OK

17

100 -

variable
— TS

100-

50-

1992
1994
1996
1998

Date

1.3 Further Process for Model Input
1.3.1 Extract Certain Period or Months from Different Time Series

Now we have the general information of the precipitation, if we want to use them in a model, we have to
extract the common period of them, and use the common period precipitation to analyze.

18

testdl_new <- extractPeriod(testdl, commonPeriod = TRUE)
str(testdl_new)

If we want to extract data from a certain period, we can assgin start and end date.

Extract period of the winter of 1994
testdl_new <- extractPeriod(testdl, startDate = '1994-12-01', endDate = '1995-03-01')
str(testdl_new)

Above is for us to extract period from different datalist, if we have a single time series, and we want to extract
certain period from the single time series. We can make a small change to the argument : add TS =, a single
time series can contain more than 1 column of value, e.g. the result from list2dataframe.

First change the list from above process to dataframe

dataframe <- list2Dataframe(testdl_new)

now we have a dataframe to extract certain period.

dataframe <- extractPeriod(dataframe, startDate = '1994-12-01', endDate = '1995-03-01"')
str(testdl_new)

For some cases, certain months and years data needs to be extracted from a continuous time sereis (or
dataframe), e.g., as introduced in section 2.5, to be used in bias correction.

data(testdl)
datalist_coml <- extractPeriod(testdl, startDate = '1994-1-1', endDate = '1995-10-1"')

dataframe <- list2Dataframe(datalist_comi)
now we have a dataframe to extract certain months and years.

dataframe_new <- extractPeriod(dataframe, month = c(1,2,3))
dataframe_new <- extractPeriod(dataframe, month = c(12,1,2), year = 1995)

1.3.2 Fill Gaps (rainfall data gaps)

Although we have got the precipitation of the common period, we can still see that there are some missing
values inside, which we should fill.

testdl_new <- extractPeriod(testdl, commonPeriod = TRUE)
a <- getAnnual (testdl_new)

Using Year, Name as id variables

a

Year Name AnnualPreci recordNum NANum
1 1993 AAA 1883.157 264 15
2 1994 AAA 1927.704 365 0
3 1995 AAA 1543.893 349 16
4 1996 AAA 5.394 1 0
5 1993 BBB 1657.080 279 0
6 1994 BBB 2090.970 365 0
7 1995 BBB 2056.230 365 0

19

8 1996 BBB 3.060 1 0
9 1993 CCC 724.560 279 0
10 1994 CCC 1139.640 365 0
11 1995 CCC 1006.260 365 0
12 1996 CCC 0.000 1 0

BBB CCC

AAA

15-
10-

= Name

0- " AsA
1500 -
1000 -

500 -

0-

WNNYN

1981d[enuuy

I I I I I I I I I I I

S TS S To B (o} SP TS (o B (o} S 0 ©

(o)) (o) (@) (o)} (o)) (e} (e} (e} (@) (o)) (e}

(@)) (@)} o (@)) (@)) (@)} o (@)} (@)} (0)) (0)}

— — — — — — — — — — —
Year

First we have to transform the datalist to dataframe, which can be done by the code below:

df <- list2Dataframe(testdl_new)

head (df)

Date AAA BBB CCC
1 1993-03-28 NA 0.00 0.72
2 1993-03-29 NA 1.26 1.56
3 1993-03-30 NA 0.00 20.82
4 1993-03-31 NA 0.00 18.90
5 1993-04-01 NA 0.00 9.54
6 1993-04-02 NA 0.00 0.00

From above, we can see that in the gauging station “AAA”, there are some missing value marked as “NA”.
Now we are going to fill these gaps.

The gap filling is based on the correlation and linear regression between each two gauging stations, correlation
table, correlation Order and Linear Coefficients are also printed when doing the calculation. Details can be
found in 7£illGap.

df _filled <- f£illGap(df)

##
Correlation Coefficient

20

AAA BBB CCC
AAA 1.000000000 -0.07445112 0.008566204
BBB -0.074451120 1.00000000 0.039809765
CCC 0.008566204 0.03980976 1.000000000

##
Correlation Order
1 2

AAA "CCC" "BBB"
BBB "CCC" "AAA"
CCC "BBB" "AAA"

##
Linear Coefficients
#it 1 2

AAA 0.3308048 0.12015931
BBB 0.3756172 0.11752878
CCC 0.1094488 0.09047318

head(df_filled)

Date AAA BBB CCC
1 1993-03-28 0.238 0.00 0.72
2 1993-03-29 0.516 1.26 1.56
3 1993-03-30 6.887 0.00 20.82
4 1993-03-31 6.252 0.00 18.90
5 1993-04-01 3.156 0.00 9.54
6 1993-04-02 0.000 0.00 0.00

Default correlation period is “daily”, while sometimes the daily rainfall correlation of precipitation is not so
strong, we can also select the correlation period.

df_filled <- fillGap(df, corPeriod = 'monthly')

#it
Correlation Coefficient
AAA BBB ccc

AAA 1.00000000 -0.02020277 0.4980004
BBB -0.02020277 1.00000000 0.2513406
CCC 0.49800040 0.25134059 1.0000000

##
Correlation Order
1 2

AAA "CCC" "BBB"
BBB "CCC" "AAA"
CCC "AAA" "BBB"

##
Linear Coefficients
1 2

AAA 0.33080477 0.1201593
BBB 0.37561723 0.1175288
CCC 0.09047318 0.1094488

21

head(df_filled)

Date AAA BBB CCC
1 1993-03-28 0.238 0.00 0.72
2 1993-03-29 0.516 1.26 1.56
3 1993-03-30 6.887 0.00 20.82
4 1993-03-31 6.252 0.00 18.90
5 1993-04-01 3.156 0.00 9.54
6 1993-04-02 0.000 0.00 0.00

df_filled <- £illGap(df, corPeriod = 'yearly')

##
Correlation Coefficient
AAA BBB CcC

AAA 1.00000000 0.1894243 0.02040045
BBB 0.18942426 1.0000000 0.97659734
CCC 0.02040045 0.9765973 1.00000000

##
Correlation Order
#it 1 2

AAA "BBB" "CCC"
BBB "CCC" "AAA"
CCC "BBB" "AAA"

##
Linear Coefficients
#it 1 2

AAA 0.1201593 0.33080477
BBB 0.3756172 0.11752878
CCC 0.1094488 0.09047318

head(df _filled)

Date AAA BBB CCC
1 1993-03-28 0.000 0.00 0.72
2 1993-03-29 0.151 1.26 1.56
3 1993-03-30 0.000 0.00 20.82
4 1993-03-31 0.000 0.00 18.90
5 1993-04-01 0.000 0.00 9.54
6 1993-04-02 0.000 0.00 0.00

1.3.3 Get Ensemble Hydrological Forecast from Historical Data (ESP method)
The basic forecasts are made from the historical data, to see, how the historical data act in the same situation.
Using the same period from the historical data to generate an ensemble forcast.

E.g., we have a period of data from 2000 to 2007, we assume 2004 to be the forecast year. Then, use 2004
as an example, the data in 2000, 2001, 2002, 2003, 2005, 2006, 2007 will be taken to generate an ensemble
forecast of 6 members(except 2004).

Set example year, e.g., year 1994. mean value of each ensemble will be returned in the second column, while if
you don’t want the mean value, you can filter mean value by output[, -2], and you will get purely the output.

22

data(testdl)

a <- testdl[[1]]
al <- getHisEnsem(a, example = c('1994-1-1', '1994-12-31"'))

120-
variable

=== Mean
80 7 === QObservation
% s 1991-01-01
© = 1092-01-01
> == 1993-01-01
40+ ’ I == 1995-01-01
‘ l l' l\ ‘ | ‘\ l \ I / ‘1 1|1 11 l = 1996-01-01

‘ “ 4” IJ l[r\“ " | ‘ "‘“ | ‘“ i | ! “‘H. i
0 i o nd oy) ¢ .. « A b i 1L T I

Jan 1994 Apr1994 Jul1994 Oct1994 Jan 1995
Date

Both cumulative and normal plot are provided, default is “norm”, means normal plot without any process. If

words other that “norm”, “plot”, there will be no plot. If there are missing values inside, cumulative plot will
stop when finds missing values. As can be seen from below.

a2 <- getHisEnsem(a, example = c('1995-1-1', '1996-3-1'))# Default is plot = 'norm'
a3 <- getHisEnsem(a, example = c('1995-1-1', '1995-3-1'), plot = 'cum')

120-
variable
=== Mean
80 7 === QObservation
% e 1991-01-01
= e 1992-01-01
> | s 1093-01-01
40-) == 1994-01-01
| ‘ (| | ‘ ‘ \ l ' | | ‘ [‘ ” m— 1996-01-01
‘ il ; |
I Al | | M'l ' “‘ “l‘ | ’\ I ||‘ 1 “‘1 || (l(l
0- ‘ k8 ' VLYY WAL VA
Jan 1995 Apr 1995 Jul1995 Oct 1995 Jan 1996

Date

23

400+

value

200+

0_

Jan 01

Jan 15

Feb 01

Date

Example period can be any time, can be a year or some months.

a2 <- getHisEnsem(a, example
a3 <- getHisEnsem(a, example

c('1995-1-1",
c('1995-1-1",

'1996-3-1"))

Feb 15

'1995-8-11"'))

Mar 01

120-

80+

value

40-

O_

|
‘\ ‘(M bkl l‘\ 1‘

! 1|'A | ii' ‘]! || (H .l('

Jan i995 Apr '1995

Jul 1995

Oct 1995

Date

24

Jan 1996

variable

== Mean

=== Observation

=== 1991-01-01
1992-01-01

=== 1993-01-01

=== 1994-01-01

= 1996-01-01

= 1997-01-01

variable

= Mean

=== Observation
===1991-01-01
===1992-01-01
===1993-01-01
= 1994-01-01
= 1996-01-01

120-

variable

== Mean

80 n === Observation
=== 1991-01-01
=== 1992-01-01
=== 1993-01-01
= 1994-01-01

! »"a;l‘.‘w“f‘ i":‘ L M\‘ " \!‘ “,‘M ! lh.(.'\llf“..u,hu “ I .

value

40-

3

Jan Feb Mar Apr May Jun Jul Aug
Date

interval means the interval between each member. Check ?getHisEnsem for detailed instruction. Default
is 365, representing one year.

If interval s two years.
a2 <- getHisEnsem(a, example = c('1995-1-1', '1996-3-1'), interval = 730)

120+
variable
()] 80- === Mean
2 === Observation
('>5 === 1991-01-01
40 _ 1993-01-01
| | Tul|
0- ‘ . : 1) VL al
Jan 1995 Apr1995 Jul1995 Oct1995 Jan 1996
Date
str(a2)

If interval is three months.
a3 <- getHisEnsem(a, example = c('1995-1-1', '1995-8-11'), interval = 90)

25

1991-0/-21
1991-10-19
1992-01-17
e 1992-04-16
= 1992-07-15
== 1992-10-13
= 1993-01-11
= 1993-04-11
== 1993-07-10

, = 1993-10-08

‘ ‘ “ ‘ . ‘ ‘ w— 1994-01-06

\ — 1994-04-06

I ‘ ““ ‘\ \'u ’ | l ’ (|| ‘l‘ ' .Hl'\ —i00s-07-05
— 1994-10-03
—1995-04-01
—1995-06-30
— 1995-09-28

120-

80-

value

40-

Jan Feb Mar Apr May Jun Jul Aug
Date

str(a3)
If interval is 171 days.
a4 <- getHisEnsem(a, example = c('1995-1-1', '1995-8-11'), interval = 171)

= Mean
120 - === Observation
e 1990-11-01
1991-04-01
1991-09-01
e 1992-02-01
m 1992-07-01
e 1992-12-01
== 1993-05-01
== 1993-10-01
= 1994-03-01
= 1994-08-01
= 1995-06-01

l
|W “’ u!“m “” ‘ "‘ ‘ l\ ,'_‘ ‘l ‘\ml ﬂ ‘H "“" = i

Jan Feb Mar Apr May Jun Jul Aug w—1996-04-01
Date

80+

value

40-

str(a4)

For some models, like MIKE NAM, it’s necessary to run model a few days before the forecasting time, to
warm up the model. In this case buffer is needed to generate the “warm up period”.

If the model needs 14 days to warm up.

a2 <- getHisEnsem(a, example = c('1995-1-1', '1996-3-1'), interval = 730,
buffer = 14, plot = 'cum')

26

3000+
2000 - variable
(b} == Mean
E === QObservation
C>U === 1991-01-01
1000 - 1993-01-01
0 -

Jan 1995 Apr1995 Jul1995 Oct1995 Jan 1996
Date

str(a2)

From str(a2) we can see that the data has 14 more rows, and the start date is changed to “1994-12-18”

Also, if costomized title and xy axis are needed, you can set yourself.

a2 <- getHisEnsem(a, example = c('1995-1-1', '1996-3-1'), title = 'aaa', x = 'a')

aaa
120-
variable
= Mean
80 === Observation
% == 1991-01-01
R 1992-01-01
g J === 1993-01-01
o ‘] ’ = 1994-01-01
l| ‘ (| I‘ “ ' l ' ’ ‘ ‘ | b‘ [‘ “ d ' == 1996-01-01
0- ‘ o ' ‘ o “(“l WL yl’ [” “‘ . N ‘ “ \‘\ ‘ : L I
Jan 1995 Apr1995 Jul1995 Oct1995 Jan 1996

a

If you want to combine different ensemble together, there is a regular _comb function getEnsem_comb to
combine different plots together.

al <- getHisEnsem(a, example = c('1994-1-1', '1994-12-31'), plot = 'cum',
output = 'ggplot', name = 1)

a2 <- getHisEnsem(a, example = c('1994-3-1', '1995-3-31'), plot = 'cum',
output = 'ggplot', name = 2)
a3 <- getHisEnsem(a, example = c('1994-5-1', '1995-4-30'), plot = 'cum',

output = 'ggplot', name = 3)

27

2000-
variable
OO = Mean
15 7 === Observation
% 1991-01-01
© i 1992-01-01
> 1000 1993-01-01
= 1995-01-01
500- = 1996-01-01
0 4
Jan 1994 Apr 1994 Jul 1994 Oct 1994 Jan 1995
Date
2000- S
=== Observation
% p 1991-03-01
C_G 1992-03-01
=1000- 1993-03-01
= 1995-03-01
= 1996-03-01
O L I I I I I
Apr 1994 Jul 1994 Oct 1994 Jan 1995 Apr 1995
Date
2000- variable
= Mean
(D) == Observation
c_g 1991-05-01
=== 1992-05-01
=>1000- = 1993-05-01
== 1995-05-01
O L I I I I
Jul 1994 Oct 1994 Jan 1995 Apr 1995
Date

28

getEnsem_comb(al, a2, a3, nrow = 3)

Check if the data list is available for rbind or cbind...
##
Data list is OK

1
2000+
1000 -
variable
=== Mean
0- == Observation
2 1991-01-01
1992-01-01
1993-01-01
2000+ 1995-01-01
== 1996-01-01
A— 1991-03-01
1000- 1992-03-01
= 1993-03-01
= 1995-03-01
= 1996-03-01
0- == 1991-05-01
3 = 1992-05-01
= 1993-05-01
= 1995-05-01
2000+
1000 -
0 4

Jan 1994 Apr 1994 Jul 1994 Oct 1994 Jan 1995 Apr 1995

1.3.4 Resample Data

Sometimes you have the monthly data, and want to generate the daily data, sometimes the opposite situation.
resample can help you with the conversion. For now, hyfo provides monthly mean data to daily data
conversion, method mon2day and daily data to monthly mean data conversion, method day2mon.

If you have daily data and want to convert it to a monthly data.

29

data(testdl)
TS <- testdl[[2]] # Get daily data
TS_new <- resample(TS, method = 'day2mon')

If you have monthly data and want to convert it to a daily data.
First generate a monthly data.
TS <- data.frame(Date = seq(as.Date('1999-9-15'), length = 30, by = 'l month'),

stats::runif (30, 3, 10))
TS_new <- resample(TS, method = 'mon2day')

Not only for the time series, but also the hyfo grid data can be resampled.
filePath <- system.file("extdata", "tnc.nc", package = "hyfo")

varname <- getNcdfVar(filePath)
nc <- loadNcdf (filePath, varname)

Loading data...
Processing...

nc_new <- resample(nc, 'day2mon')

More information please check ?resample.

1.4 Seasonal and Monthly Precipitation Analysis
Sometimes we need to know not only the annual precipitation, but also the precipitation of a certain month

or certain season. getPreciBar is in charge of different analysis. It can analyze both grid file and singe
timeseries. IF the input is a time series, the argument TS = must be put.

info argument will give information about max, min, mean, and median, if selected TRUE.

data(testdl)
TS <- testdl[[1]]
a <- getPreciBar(TS, method = 'spring')

There is no plotRange for this method

Warning: Removed 2 rows containing missing values (position_stack).

30

Spring Precipitation over Whole Period

__400-
=
=300-
C
S
S200-
o
S
o
D. 100 7
()_
IO IH I(\l IC‘O Iﬂ' ILC ILO
(@)) (@)) (@) (@)) (@)) (@)] (@)
(@)) o (@) (@)) (@)) o o
i i i i i i i
Year

if info = T, the information will be given at the bottom.
a <- getPreciBar(TS, method = 'spring', info = TRUE)

There is no plotRange for this method

Warning: Removed 2 rows containing missing values (position_stack).

31

1997

Spring Precipitation over Whole Period

'=400-

E

= 300-

O

8200+

o

'S

@ 100-

al

O i]]]]]]]]
o — N (qp] <t LO (o) N~
(@)) (@)) o (@)) (@)) (@) o (@))
(@)) (@)) (@) (@)) (@)) (@) (@)) (@))
—i — —i —i — — —i —i
Year

Max = 461.19 , Min =422.03 , Mean = 446.01 , Median

If missing value is wanted, set omitNA = FALSE.

a <- getPreciBar(TS, method = 'winter', omitNA = FALSE)

There is no plotRange for this method

Warning: Removed 3 rows containing missing values (position_stack).

32

Winter Precipitation over Whole Period

~

a1

o
1

Precipitation (mm)
S
<

250 -
O n
]]]]]]]
o — (q\| o < Lo ©O
()] o o o o o o
()] (@)] o o ()] o o
i — — i — — —
Year

Get special month precipitation, e.g. march.

a <-getPreciBar (TS, method = 3)

There is no plotRange for this method

Warning: Removed 1 rows containing missing values (position_stack).

33

1997

Mar Precipitation over Whole Period

Eonn .
£ 200
(e

e

g
'S100-
(@]

o

(ol

i
1993]

1990
1991
1992
1994
1995
1996

Year

We can also get annual precipitation, plot figure and assign title ans axis.

a <- getPreciBar(TS, method = 'annual', x = 'aaa', title = 'aaa')

There is no plotRange for this method

34

1997

daa

2000
~
:
—1500-
c
9
)
£1000-
2
0
— -
£ 500
()_
I I I I I I I I
o i AN ™ < Lo O N~
(o)) o (o)) o (o)) o o o
o o (@] o (@] o (0)) o
i i i i i —i i i
aaa
If output = 'ggplot' is chosen, the the output can be used in getPreciBar_comb, to generate multiple
plots.

al <- getPreciBar (TS, method = 1, output = 'ggplot', name = 'Jan')

There is no plotRange for this method

Warning: Removed 1 rows containing missing values (position_stack).

35

Jan Precipitation over Whole Period

w

o

o
1

Precipitation (mm)
= N
o o
< <

o
1

a2 <- getPreciBar (TS, method = 2, output = 'ggplot', name = 'Feb')

There is no plotRange for this method

Warning: Removed 1 rows containing missing values (position_stack).

36

1996

1997

Feb Precipitation over Whole Period

300-
.
&
E200-
(e
O
I
S
5100-
o
’ I
()_
o — (q\| o < Lo (o] N~
()] o o o o o o o
()] (@)] o o ()] o o ()]
i — — i — — — i
Year

getPreciBar_comb(al, a2)

Check if the data list is available for rbind or cbind...
##

Data list is OK

37

Jan Feb

300+ B

200-

N (R

O L SR L U
T T T T T T T T T T T T T T T T
o O OO OO O OO OO O o OO OO OO OO OO OO O
o OO OO OO OO OO OO O o OO OO OO O OO OO O
U T e I R I B O o I | U T e I e R I e B O o B

2. Climate Forecasting

e For the climate forecasting part, hyfo mainly focuses on the post processing of the gridData derived
from forecasts or other sources. The input is a list file, usually an NetCDF file. There are getNcdfVar(),
loadNcdf () and writeNcdf () prepared in hyfo, for you to deal with NetCDF file. loadNcdf () will
give a list based hyfo output file.

Note If an ensemble forecast data is loaded, there will be one dimension called “member”, by default,
hyfo will calculate the mean of different members. If you want to see a special member, add member
argument to getSpatialMap, e.g., getSpatialMap(tgridData, method = 'meanAnnual', member = 3),
getPreciBar (tgridData, method = 'annual', member = 14)

2.1 Load, write and downscale NetCDF file

There are three main functions dealing with getNcdfVar (), loadNcdf () and writeNcdf (). getNcdfVar ()
is for get the variable name if you don’t know the name. Then you can load NetCDF file, and get a hyfo
output, from which you will use in further analysis. Maybe you want to change some thing with the original
NetCDF file. You can load first, then, make changes to hyfo output file and then write back to NetCDF file.
Following examples shows the procedure.

38

First open the test NETcDF file.
filePath <- system.file("extdata", "tnc.nc", package = "hyfo")

Then tf you don't know the wartable name, you can use \code{getNcdfVar} to
get wariable name

varname <- getNcdfVar(filePath)

nc <- loadNcdf (filePath, varname)

Loading data...
Processing...

nc is a list based hyfo output file, with this file, you can make further
analysis.

E.g. you want to make some changes to the data
nc$Data <- nc$Data - 0.3

Then write it back to file
writeNcdf (gridData = nc, filePath = 'test.nc')

hyfo can also do downscale job. When you load the file, you can directly assign the year, month, longitude
and latitude. And if you already have a hyfo list file, you can use downscaleNcdf to downscale your list file.

First open the test NETcDF file.
filePath <- system.file("extdata", "tnc.nc", package = "hyfo")

Then i1f you don't know the variable name, you can use \code{getNcdfVar} to
get wvariable name

varname <- getNcdfVar(filePath)

nc <- loadNcdf(filePath, varname, year = 2005:2006, month = c(2:9),
lon = c(-2.4, -1.6), lat = c(41, 43.5))

Loading data...
Processing...

nc_plot <- getSpatialMap(nc, 'mean')

Mean value of the members are returned.

39

Mean Daily Precipitation (mm / day)

43.507 Rainfall (mm)
(O]
©
2
©43.25-

5
43.00-
~2.50 —2.25 ~2.00 ~1.75 ~1.50
Longitude

1f you want to further downscale nc, you can use the following function.

ncl <- downscaleNcdf (nc, year = 2005, month = c(5:8), lon = c(-2.2, -1.75),
lat = c(43, 44))

ncl_plot <- getSpatialMap(ncl, 'mean')

Mean value of the members are returned.

40

Mean Daily Precipitation (mm / day)

43.507 Rainfall (mm)
6.0
(D]
go] 55
=
= 50
©43.25-
4.5
4.0
43.00-
~2.50 —2.25 ~2.00 ~1.75 ~1.50

Longitude

2.2 Spatial Map Plot

As described before, the following analysis is based the list based hyfo output file. You can call elements by $.

If we want to see the mean daily precipitation.

data(tgridData)
a <- getSpatialMap(tgridData, method = 'meanAnnual')

41

Mean Annual Precipitation (mm / year)

44.0-
Rainfall (mm)
1800
[<B)
543.5— 1600
S 1400
43.0- 1200
42.5-
2.5 2.0 -1.5 -1.0 0.5
Longitude

If a dataset is an ensemble forecast, you can use argument member to choose
filePath <- system.file("extdata", "tnc.nc", package = "hyfo")

Then tf you don't know the wariable name, you can use \code{getNcdfVar} to
get wvariable name

varname <- getNcdfVar(filePath)

nc <- loadNcdf(filePath, varname)

Loading data...
Processing...

choose the 3rd member
a <- getSpatialMap(nc, method = 'mean', member = 2)

42

Mean Daily Precipitation (mm / day)

44.0-
Raigfall (mm)

=
343'5_
©
-

43.0- 6

42.5-

2.5 2.0 -1.5 -1.0 0.5
Longitude

If member not assigned, the mean value of the members will be plotted.
a <- getSpatialMap(nc, method = 'mean')

Mean value of the members are returned.

43

Mean Daily Precipitation (mm / day)

44.0-
Rainfall (mm)
2 6.5
:'3 43-5_ 6.0
© 5.5
-
5.0
43.0- 4.5
42.5-
2.5 2.0 -1.5 -1.0 0.5
Longitude

There are several methods to be seleted in the function, details can be found by ?getSpatialMap.

Sometimes there exists a great difference in the whole map, e.g., the following value, c(100, 2, 2,6, 1,7),
since the maximum value is too large, so in the plot, by normal plot scale, we can only recognize value 100
and the rest, it’s hard for us to tell the difference between 2, 2.6, and 1.7 from the plot. In this situation, the
value needs to be processed before plotting. Here scale provides a way to decide the plot scale.

scale passes the arguments to the trans argument in ggplot2. The most common scale is “sqrt” and
“log10”, which focus more on the minutiae. Default is “identity”, which means no change to the plot scale.

a <- getSpatialMap(tgridData, method = 'meanAnnual', scale = 'sqrt')

44

Mean Annual Precipitation (mm / year)

44.0-
Rainfall (mm)
1800

(O]
543.5- 1600
S 1400

43.0- 1200

42.5-

2.5 2.0 -1.5 -1.0 0.5
Longitude

Here in our example, because the region is too small, and the differences is not so big, so it’s not so obvious
to tell from the plot. But if in a map, both dry region and wet region is included, that will be more obvious
to see the difference between the plot scales.

Also, if you are not satisfied with the title, x axis and y axis, you can assgin yourself, and also the color of
the map.

a <- getSpatialMap(tgridData, method = 'meanAnnual', scale = 'sqrt',
title = 'aaa', x = 'aaa', y = 'aaa')

45

aaa

44.0-
Rainfall (mm)
1800
c43.5- 1600
©
]
1400
43.0- 1200
42.5-
2.5 2.0 1.5 -1.0 0.5
aaa

If you want to use your own color to plot the map, add color = yourcolor
a <- getSpatialMap(tgridData, method = 'meanAnnual', scale = 'sqrt',
title = 'aaa', x = 'aaa', y = 'aaa',

color = c('blue', 'green', 'white'))

46

aaa

44.0-
Rainfall (mm)
1800
c43.5- 1600
]
@®©
1400
43.0- 1200
42.5-
2.5 2.0 1.5 -1.0 0.5
aaa

2.3 Add Background Information (catchment and gauging stations)

The default background is the world map, while if you have other backgrounds like catchment shape file and
station location file, you are welcome to import them as background.

2.3.1 Add catchment shape file

Catchment shape file needs to be processed with a very simple step. It’s based on the package rgdal, details
can be found by ?shp2cat

Use the test file provided by hyfo
file <- system.file("extdata", "testCat.shp", package = "hyfo")
cat <- shp2cat(file)

OGR data source with driver: ESRI Shapefile

Source: "C:/Users/Yuanchao/Documents/R/win-library/3.2/hyfo/extdata", layer: "testCat"
with 2 features

It has 4 fields

cat ts the catchment file.

Then the catchment file cat can be inputed as background.

47

a <- getSpatialMap(tgridData, method = 'meanAnnual', catchment = cat)

Mean Annual Precipitation (mm / year)

44.0-
Rainfall (mm)
1800

[}
343.5- 1600
S 1400

43.0- 1200

42.5-

2.5 2.0 1.5 -1.0 0.5
Longitude

2.3.2 Add station locations

Points file needs to be read into dataframe, and special column has to be assigned, details can be found by
7getSpatialMap_mat

Use the points file provided by hyfo

file <- system.file("extdata", "point.txt", package = "hyfo")

point <- read.table(file, header = TRUE, sep = ',')
getSpatialMap(tgridData, method = 'winter', point = point, catchment = cat)

48

Mean Winter Precipitation (mm / winter)

z
600
400
44.0- 200
value
() * 1600
-g 43.5- ® 2000
= ® 2400
©
— Rainfall (mm)
450
43.0-
400
350
42.5-
; ; . : . 300
-2.5 -2.0 -1.5 -1.0 -0.5
Longitude

As can be seen above, the color of the points represents the elevation, the size of the points represents the
value, e.g., rainfall value.

You can generate your own point file and use it as background, or you can also find the original file in the
package, and replace the old information with your information.

2.4 Variable Bar Plot

Bisides spatial map, bar plot can also be plotted. The value in the bar plot is spatially averaged, i.e. the
value in the bar plot is the mean value over the region.

Annual precipitation.

data(tgridData)
a <- getPreciBar(tgridData, method = 'annual')

There is no plotRange for this method

49

Annual Precipitation

1500+

E

~=1000-

c

kS

g

2

O

© 500+

o

O -
10 © ~
o o o
o o o
N N N
Year

Mean monthly precipitation over the whole period, with the ranges for each month. But not all kinds of bar
plot have a plot range.

a <- getPreciBar(tgridData, method = 'meanMonthly')

50

Mean Monthly Precipitation

300+

N

o

o
1

Precipitation (mm)
o
<

Jan

o]
(8]
LL

Mar
Apr

a <- getPreciBar(tgridData, method =

|> IU) IQ_
@© - Q
= <]

'meanMonthly', plotRange = FALSE)

ol

Oct

Nov

Mean Monthly Precipitation

200+

~150+

Precipitation (mm

o o
< < <
]
]
1
@00

Seasonal precipitation, and monthly precipitation can also be plotted.

a <- getPreciBar(tgridData, method = 'spring')# spring precipitation for each year

There is no plotRange for this method

52

Spring Precipitation over Whole Period

600
£ 400-
=4
S
IS
=t
S 200-
o
O -
10 © ™~
S S S
N N N
Year

a <- getPreciBar(tgridData, method = 3) # march precipitation for each year

There is no plotRange for this method

53

Mar Precipitation over Whole Period

300
£ 200-
=
S
IS
2
S100-
o
0 -
0 © ™~
o o o
S S S
Year

2.5 Bias Correction
Usually climate forecasting is based on global scale. if it is downscaled to certain research area, there may
exist some bias. In order to get rid of the bias, forecasts needs to be bias-corrected.

hyfo provides bias correction for both grid data and time series, among which time series bias correction can
generate time series output available for model input. More Details and principles behind the bias correction
and more biasCorrection methods can be found by type in ?biasCorrect

No need to designate input type, R will detect automatically.

For hyfo grid file bias correction.

########H hyfo grid file biascorrection
HIH

If your input %s obtained by \code{loadNcdf}, you can also directly biascorrect
the file.

First load ncdf file.

filePath <- system.file("extdata", "tnc.nc", package = "hyfo")
varname <- getNcdfVar(filePath)

nc <- loadNcdf (filePath, varname)

Loading data...
Processing...

54

data(tgridData)

Since the example data, has some NA values, the process will include some warning # message, whic

Then we will use nc data as forecasting data, and use itself as hindcast data,
use tgridData as observation.
newFrc <- biasCorrect(nc, nc, tgridData)

newFrc <- biasCorrect(nc, nc, tgridData, scaleType = 'add')

newFrc <- biasCorrect(nc, nc, tgridData, method = 'eqm', extrapolate = 'constant',
preci = TRUE)

newFrc <- biasCorrect(nc, nc, tgridData, method = 'ggm', preci = TRUE)

For time series bias correciton.

Use testdl as an example, we take frc, hindcast and obs from testdl.
data(testdl)

common period has to be extracted in order to make them have the same time period.
datalist <- extractPeriod(testdl, startDate = '1994-1-1', endDate = '1995-10-1")
frc <- datalist[[1]]

hindcast <- datalist[[2]]

obs <- datalist[[3]]

default method ts delta
frc_new <- biasCorrect(frc, hindcast, obs)

If precipitation data is input, than further process needs to be done with the data,
that you only have to simply add one argument

frc_new <- biasCorrect(frc, hindcast, obs, preci = TRUE)

For different bias correction method.
frc_new <- biasCorrect(frc, hindcast, obs, method = 'scaling', scaleType = 'multi')

frc_new <- biasCorrect(frc, hindcast, obs, method 'egm', scaleType = 'constant')
because ggqm only applys to precipitation biascorrection, you have to set 'prect = TRUE'
frc_new <- biasCorrect(frc, hindcast, obs, method = 'ggm', preci = TRUE)

If the forecasts you extracted only has incontinuous data for certain months and years, e.g., for seasonal
forecasting, forecasts only provide 3-6 months data, so the case can be for example Dec, Jan and Feb of every
year from year 1999-2005. In such case, you need to extract certain months and years from observed time
series, extractPeriod() (section 1.3.1) can be then used.

2.5.1 Multi/Operational/Real Time Bias Correction

When you do multi/operational /real time bias correction. It’s too expensive to input hindcast and obs
every time. Especially when you have a long period of hindcast and obs, but only a short period of frc, it’s
too unecessary to read and compute hindcast and obs everytime. Therefore, biasFactor is designed. Using
getBiasFactor, you can get the biasFactor with hindcast and observation, then you can use applyBiasFactor
to apply the biasFactor to different forecasts.

95

Details can be found in ?getBiasFactor or 7applyBiasFactor, for bias correction methods, details can be
found in ?biasCorrect.

For hyfo grid file real time bias correction.

######## hyfo grid file biascorrection
#H S

If your input is obtained by \code{loadNcdf}, you can also directly biascorrect
the file.

First load ncdf file.

filePath <- system.file("extdata", "tnc.nc", package = "hyfo")
varname <- getNcdfVar(filePath)

nc <- loadNcdf(filePath, varname)

Loading data...
Processing...

data(tgridData)
Since the example data, has some NA values, the process will include some warning #message, which can

Then we will use nc data as forecasting data, and use itself as hindcast data,
use tgridData as observation.

biasFactor <- getBiasFactor(nc, tgridData)
newFrc <- applyBiasFactor(nc, biasFactor)

biasFactor <- getBiasFactor(nc, tgridData, method = 'eqm', extrapolate = 'constant',
preci = TRUE)
This method needs obs input.

newFrc <- applyBiasFactor(nc, biasFactor, obs = tgridData)

biasFactor <- getBiasFactor(nc, tgridData, method = 'ggm', preci = TRUE)
newFrc <- applyBiasFactor(nc, biasFactor)

For time series real time bias correction.

######## Time series biascorrection
HHSH

Use the time series from testdl as an example, we take frc, hindcast and obs from #testdl.
data(testdl)

common period has to be extracted in order to better train the forecast.
datalist <- extractPeriod(testdl, startDate = '1994-1-1', endDate = '1995-10-1")

frc <- datalist[[1]]
hindcast <- datalist[[2]]
obs <- datalist[[3]]

The data used here is just for example, so there could be negative data.

56

default method %s scaling
biasFactor <- getBiasFactor(hindcast, obs)
frc_new <- applyBiasFactor(frc, biasFactor)

for precipitation data, extra process needs to be executed, so you have to tell
the program to it is a precipitation data.

biasFactor <- getBiasFactor(hindcast, obs, preci = TRUE)
frc_newl <- applyBiasFactor(frc, biasFactor)

You can use other methods to biascorrect, e.g. delta method.
biasFactor <- getBiasFactor(hindcast, obs, method = 'delta')
delta method needs obs input.

frc_new2 <- applyBiasFactor(frc, biasFactor, obs = obs)

biasFactor <- getBiasFactor(hindcast, obs, method = 'eqm', preci = TRUE)
eqm needs obs input
frc_new3 <- applyBiasFactor(frc, biasFactor, obs = obs)

biasFactor <- getBiasFactor(hindcast, obs, method = 'ggm', preci = TRUE)
frc_new4 <- applyBiasFactor(frc, biasFactor)
plotTS(obs, frc, frc_new, frc_newl, frc_new2, frc_new3, frc_new4, plot = 'cum')
3000
variable
2000 - — ccc
== AAA
= AAA.1
== AAA.2
== AAA.3
1000 7 — AAA.4
== AAA.5
()_

1994-01 1994-07 1995-01 1995-07
Date

57

You can also give mame to this input list.

TSlist <- list(obs, frc, frc_new, frc_newl, frc_new2, frc_new3, frc_new4d)
names (TSlist) <- c('obs', 'frc', 'delta', 'delta_preci', 'scale', 'eqm', 'ggm')
plotTS(list = TSlist, plot = 'cum')

3000+

variable
2000+ — obs

= frc

== delta

== delta_preci
== gcale

1000- —leqm

~ggm

O .
1994-01 1994-07 1995-01 1995-07
Date

If the forecasts you extracted only has incontinuous data for certain months and years, e.g., for seasonal
forecasting, forecasts only provide 3-6 months data, so the case can be for example Dec, Jan and Feb of every
year from year 1999-2005. In such case, you need to extract certain months and years from observed time
series , then you can use the extract tool extractPeriod() to do the job.

2.6 Analysis and Comparison

For some cases, analysis and comparison are necesssary, which are also provided by hyfo.

There are three different kinds of output from getSpatialMap and getPreciBar, respectively, output =
'data', output = 'ggplot' and output = 'plot'.

output = 'data' is default in the function and do not need to be declare when input. It is mainly used in
analyzing and replot the results.

output = 'ggplot' is used when combining different plots.

output = 'plot' is used when a layer output is needed. the output can be directly printed, and can be
mannually combined by the plot arrange functions, e.g., grid.arrange ()

Note: All the comparisons must be comparable, e.g.,

o8

2.6.1 Spatial Map

o For getSpatialMap_comb, the maps to be compared should be with same size and resolution, in other
words, they should be fully overlapped by each other. Check ?getSpatialMap_comb for details.

e For getPreciBar_comb, the bar plots to be compared should belong to the same kind, e.g., spring
and winter, January and December, and couldn’t be spring and annual. Details can be found by
?getPreciBar_comb

The default “data” output provides a matrix, representing the raster information of the spatial map.

a <- getSpatialMap(tgridData, method = 'meanAnnual')

Mean Annual Precipitation (mm / year)

44.0-
S
S43.5
s
=
@©
-
43.0-
42.5-
T
-2.5
a
-2.4
44.2 NA
44 NA
43 1265.663
43.2 1449.765
43.4 1406.753
43.6 NA
43.8 NA
42.8 NA
42.6 NA
-1

-2.2

NA

NA
1414.792
1533.385
NA

NA

NA

NA

NA

-0.8

2.0

1459.
1711.
1404.

-0.6

T
-1.5 -1.0
Longitude

-2 -1.8 -1.6
NA NA NA
NA NA NA
179 1331.803 1167.537
032 1683.085 1638.575
264 1420.504 1601.129
NA NA NA
NA NA NA
NA NA NA
NA NA NA

-0.4

99

-1.4

NA

NA
1515.733
1840.649
NA

NA

NA

NA

NA

-1.2

NA

NA
1476.697
NA

NA

NA

NA

NA

NA

Rainfall (mm)
1800
1600

1400

1200

44.2 NA NA NA NA

44 NA NA NA NA
43 1334.274 1377.036 NA NA
43.2 NA NA NA NA
43.4 NA NA NA NA
43.6 NA NA NA NA
43.8 NA NA NA NA
42.8 NA NA NA NA
42.6 NA NA NA NA

This matrix is upside down from what you can see from the plot. DO NOT try to change this matrix.
hyfo can deal with it.

For re-plot the matriz, input the matrixz, and then the map can be replot.
b <- getSpatialMap_mat (a)

Without title and = and y, also you can assign yourself.

b <- getSpatialMap_mat(a, title = 'aaa', x = 'aaa', y = '")
44.0-
Rainfall (mm)
1800
0435
3% 1600
ils 1400
43.0- 1200
42.5-
2.5 2.0 -1.5 -1.0 0.5
Longitude

60

aaa

44.0-
Rainfall (mm)
1800
43.5- 1600
1400
43.0- 1200
42.5-
2.5 2.0 1.5 -1.0 0.5
aaa

The matrix can be used to make different analysis and plot again.

Note If the matrix doesn’t come from getSpatialMap, dimension name of longitude and lati-
tude needs to be provided to the matrix, in order to be plotted.

al <- getSpatialMap(tgridData, method = 'mean')

To make some changes to mean wvalue.
b <-al *x 3 -1
getSpatialMap_mat(b, title = '', x = "', y = "'")

Bias, wvariation and other analysis can also be processed
the same way.

Just apply the analysis to the matriz and

use getSpatialMap_mat to plot.

61

Mean Daily Precipitation (mm / day)

44.0-

Rainfall (mm)
5.0

(D]

T43.5- 4.5

t% 4.0
35

43.0-

42.5-
2.5 2.0 -1.5 -1.0 0.5
Longitude
44.0-
Rainfall
a|{14a (mm)

13

43.5- 12
11
10
9

43.0-

42.5-

If multi-plot is needed, hyfo can also combine different plots together. Use output = ggplot, which gives

62

back the a special format that can be easily used by ggplot2

al <- getSpatialMap(tgridData, method = 'spring', output = 'ggplot', name = 'spring')
a2 <- getSpatialMap(tgridData, method = 'summer', output = 'ggplot', name = 'summer')
a3 <- getSpatialMap(tgridData, method = 'autumn', output = 'ggplot', name = 'autumn')
a4 <- getSpatialMap(tgridData, method = 'winter', output = 'ggplot', name = 'winter')
getSpatialMap_comb(al, a2, a3, a4, nrow = 2)# you cannot assign title
Check if the data list is available for rbind or cbind...
##
Data list is OK
spring summer
44.0-
43.5-
43.0-
value
42.5- 500
autumn winter 400
300
200
42'5- T T T T T T T T T
-2.5 -2.0 -1.5 -1.0 -05 -25 -2.0 -1.5 -1.0 -0.5

getSpatialMap_comb(al, a2, a3, a4, nrow

= 4)

Check if the data list is available for rbind or cbind...

##
Data list is OK

spring

44.0-
43.5-
43.0-

42.5-
44.0-
43.5-
43.0-
value
42.5- ISOO
autumn 400
300
44.0- 200
43.5-
43.0-
42.5-
winter
44.0-
43.5-
43.0-
42'5_ T T T T T
-2.5 -2.0 -15 -1.0 -0.5

getSpatialMap_comb accepts list (using 1list =) object too, which is easier for multi-plot. First list of 12

64

months are got. NOTE: If input is a list, the argument should be list =

put the list in the argument.

yourlist, not directly

c <- lapply(1:12, function(x) getSpatialMap(tgridData, method = x, output = 'ggplot',

Then they are combined.

getSpatialMap_comb(list = ¢, nrow =

4)

x))

name =

44.0-
43.5-
43.0-
42.5-

42.5-

value
200

150

44.0-
43.5-
43.0-

i
i

44.0-

43.5-

43.0-
7

42.5-

100
50

44.0-
43.5-
43.0-

42.5-

-
—
—
-

2.6.2 Bar Plot

Basically, bar plot follows the same rule as part 2.4.1 spatial map, only a few cases that needs to pay attention.

bl <- getPreciBar(tgridData, method

b2 <- getPreciBar(tgridData, method

'spring', output

'summer', output

65

'ggplot', name =

'ggplot', name =

'spring')

'summer')

'autumn')

b3 <- getPreciBar(tgridData, method = 'autumn', output = 'ggplot', name

b4 <- getPreciBar(tgridData, method = 'winter', output = 'ggplot', name = 'winter')

Warning: Removed 1 rows containing missing values (position_stack).

getPreciBar_comb(bl, b2, b3, b4, nrow = 2)

Check if the data list is available for rbind or cbind...
##
Data list is OK

600 i spring summer
400+
0 4
autumn winter
600 -

400-
200-
0 L I

¢ <- lapply(1:12, function(x) getPreciBar(tgridData, method = x, output = 'ggplot',
name = x))

2005
2006
2007
2005
2006
2007

66

getPreciBar_comb(list = c, nrow = 4)

300- 1 2 3

200-

“Im @ 0wl

. |] (]

300- 4 5 6

200-

i i . &

0- [] .] - []

300- 7 8 ¢

200-

100+ I

300- 10 11 12

200+

ol NN o ®

0_ T T T T T _ T T T
To) © N~ To) © N~ To) © N~
o o o o o o o o o
o o o o o o o o o
N N N N N N N N N

2.7 Model Input

2.7.1 Extract time series from Forecasting Dataset

If there are different members existing in the dataset, hyfo can extract them and generate a dataframe for
the easy input to the model. If the dataset doesn’t have a member part, then hyfo will extract only one
single time seres.

filePath <- system.file("extdata", "tnc.nc", package = "hyfo")
Then tf you don't know the wariable name, you can use \code{getNcdfVar} to
get wariable name

varname <- getNcdfVar(filePath)

nc <- loadNcdf (filePath, varname)

67

Loading data...
Processing...

a <- getFrcEnsem(nc)

If there is no member session in the dataset, a single time sereis will be
extracted.

al <- getFrcEnsem(tgridData)

There is no member part in the dataset, there will be only one column of value
#it returned.

25-
20+
15-
variable
g — Mean
C_G X1
=>10- X2
5-
0-

Jan 2005 Apr2005 Jul2005 Oct2005 Jan 2006
Date

68

60 -

40 - variable

— data_ensem

value

20+

ol |

N

I

2005-01 2005-07 2006-01 2006-07 2007-01 2007-07 2008-01
Date

The default output is spatially averaged, if there are more than one cells in the dataset, the mean value of the
cells will be calculated. While if you are interested in special cell, you can assign the cell value, for how to

assign, please check the details in ?getFrcEnsem. You can also directly use longitude and latitude to extract
time series, using coord =

getSpatialMap(nc, 'mean')

Mean value of the members are returned.

Mean Daily Precipitation (mm / day)

44.0-
Rainfall (mm)
2 6.5
54351 6.0
© 5.5
-
5.0
43.0- 4.5
42.5-
2.5 2.0 -1.5 -1.0 0.5
Longitude

a <- getFrcEnsem(nc, cell = c(6,2))

70

100-

variable
% — Mean
C_U X1
> X2
50-
0 i
Jan2005 Apr2005 Jul2005 Oct2005 Jan 2006

Date

From the map, cell = c(6, 2) means lon = -1.4, lat = 43.2, so you can use
corrd to locate your research area and extract time series.
b <- getFrcEnsem(nc, coord = c(-1.4, 43.2))

71

100-

value

50+

0_

Jan2005 Apr2005 Jul2005 Oct2005 Jan 2006
Date

If you want to combine different plots together, you can use _comb function to combine plots.

al <- getFrcEnsem(nc, cell = c(2,3), output = 'ggplot', name = 'al')
a2 <- getFrcEmsem(nc, cell = c(2,4), output = 'ggplot', name = 'a2')
a3 <- getFrcEnsem(nc, cell = c(2,5), output = 'ggplot', name = 'a3')

getEnsem_comb(al, a2, a3, nrow = 3)

Check if the data list is available for rbind or cbind...
##
Data list is OK

72

variable

— Mean
X1
X2

al

100 -

50-

a2

100-

variable
== Mean
— X1
X2

50-

a3

100-

50+

0_
Jan 2005 Apr 2005 Jul 2005 Oct 2005 Jan 2006

Plot rules are just the same as described in 1.3.3, please check if needed.

73

2.7.2 GGet Bias-corrected Data.

Usually time series is needed in the model. As introduced in section 2.5, in biasCorrect (), you can get bias
corrected output.

2.7.3 Resample Data

As described in section 1.3.4, resample also works for hyfo grid data.

3. Anarbe Case

The functions with anarbe case end with _anarbe, all of them are used to collect different available published
data in anarbe catchment in Spain. The data comes from two website: here and here, there are precipitation
or discharge data on those website, and can be downloaded directly.

Since the available files on those website are arranged by a year or five years, for long term data collection, a
tools is necessary for collecting data from different files.

Note: For excel files, if you have access to the dam regulation excel file of the dam anarbe, you can use
collectData_excel_anarbe in the package, but this function is commented in the original code, cannot be
used directly. Go to original file in the library or go to github here, copy the original code.

There are two csv files and txt files included in the package, which can be used as examples.

file <- system.file("extdata", "1999.csv", package = "hyfo")
folder <- strsplit(file, '1999')[[11][1]

a <- collectData_csv_anarbe(folder, output = TRUE)
str(a)
b <- collectData_txt_anarbe(folder, output = TRUE)
str(b)

74

http://meteo.navarra.es/estaciones/mapadeestaciones.cfm
http://www4.gipuzkoa.net/oohh/web/esp/02.asp
https://github.com/Yuanchao-Xu/hyfo/blob/master/R/collectData_excel.R

	Introduction
	1. Hydrology
	1.1 Start from Raw Data
	1.1.1 From File
	1.1.2 Mannually

	1.2 Raw Data Analysis
	1.3 Further Process for Model Input
	1.3.1 Extract Certain Period or Months from Different Time Series
	1.3.2 Fill Gaps (rainfall data gaps)
	1.3.3 Get Ensemble Hydrological Forecast from Historical Data (ESP method)
	1.3.4 Resample Data

	1.4 Seasonal and Monthly Precipitation Analysis

	2. Climate Forecasting
	2.1 Load, write and downscale NetCDF file
	2.2 Spatial Map Plot
	2.3 Add Background Information (catchment and gauging stations)
	2.3.1 Add catchment shape file
	2.3.2 Add station locations

	2.4 Variable Bar Plot
	2.5 Bias Correction
	2.5.1 Multi/Operational/Real Time Bias Correction

	2.6 Analysis and Comparison
	2.6.1 Spatial Map
	2.6.2 Bar Plot

	2.7 Model Input
	2.7.1 Extract time series from Forecasting Dataset
	2.7.2 Get Bias-corrected Data.
	2.7.3 Resample Data

	3. Anarbe Case

