
0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

DEMO — A Demo of Epistemic Modelling∗

Jan van Eijck

Centrum voor Wiskunde en Informatica
Kruislaan 413
1098 SJ Amsterdam, The Netherlands

Utrecht Instituut voor Lingüıstiek / Onderzoeksinstituut voor Taal en Spraak
Universiteit Utrecht
P.O. Box 85253
3508 AG Utrecht, The Netherlands

Netherlands Institute for Advanced Study in the Humanities and Social Sciences
Meijboomlaan 1
2242 PR Wassenaar, The Netherlands

jve@cwi.nl

Abstract

This paper introduces and documents DEMO, a Dynamic Epistemic
Modelling tool. DEMO allows modelling epistemic updates, graphical
display of update results, graphical display of action models, formula
evaluation in epistemic models, translation of dynamic epistemic for-
mulas to PDL formulas. Also, DEMO implements the reduction of
dynamic epistemic logic to PDL. The paper is an exemplar of tool
building for epistemic update logic. It contains the essential code
of an implementation of DEMO in Haskell, in Knuth’s ‘literate pro-
gramming’ style.

1 Introduction

In this introduction we shall demonstrate how DEMO, which is short for
Dynamic Epistemic MOdelling,1 can be used to check semantic intuitions
about what goes on in epistemic update situations.2 For didactic purposes,
∗ The author is grateful to the Netherlands Institute for Advanced Studies (NIAS) for

providing the opportunity to complete this paper as Fellow-in-Residence. This report
and the tool that it describes were prompted by a series of questions voiced by Johan
van Benthem in his talk at the annual meeting of the Dutch Association for Theoretical
Computer Science, in Utrecht, on March 5, 2004. Thanks to Johan van Benthem,
Hans van Ditmarsch, Barteld Kooi and Ji Ruan for valuable feedback and inspiring
discussion. Two anonymous referees made suggestions for improvement, which are
herewith gracefully acknowledged.

1 Or short for DEMO of Epistemic MOdelling, for those who prefer co-recursive
acronyms.

2 The program source code is available from http://www.cwi.nl/∼jve/demo/.

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 305–363.

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

0070

0071

0072

0073

0074

0075

0076

0077

0078

0079

0080

0081

0082

0083

0084

0085

0086

306 J. van Eijck

the initial examples have been kept extremely simple. Although the situ-
ation of message passing about just two basic propositions with just three
epistemic agents already reveals many subtleties, the reader should bear in
mind that DEMO is capable of modelling much more complex situations.

In a situation where you and I know nothing about a particular aspect
of the state of the world (about whether p and q hold, say), our state of
knowledge is modelled by a Kripke model where the worlds are the four
different possibilities for the truth of p and q (∅, p, q, pq), your epistemic
accessibility relation ∼a is the total relation on these four possibilities, and
mine ∼b is the total relation on these four possibilities as well. There is also
c, who like the two of us, is completely ignorant about p and q. This initial
model is generated by DEMO as follows.

DEMO> showM (initE [P 0,Q 0] [a,b,c])

==> [0,1,2,3]

[0,1,2,3]

(0,[])(1,[p])(2,[q])(3,[p,q])

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

(c,[[0,1,2,3]])

Here initE generates an initial epistemic model, and showM shows that
model in an appropriate form, in this case in the partition format that is
made possible by the fact that the epistemic relations are all equivalences.

As an example of a different kind of representation, let us look at the
picture that can be generated with dot [Ga0Ko5No006] from the file pro-
duced by the DEMO command writeP "filename" (initE [P 0,Q 0]),
as represented in Figure 1.

This is a model where none of the three agents a, b or c can distinguish
between the four possibilities about p and q. DEMO shows the partitions
generated by the accessibility relations ∼a,∼b,∼c. Since these three rela-
tions are total, the three partitions each consist of a single block. Call this
model e0.

Now suppose a wants to know whether p is the case. She asks whether p
and receives a truthful answer from somebody who is in a position to know.
This answer is conveyed to a in a message. b and c have heard a’s question,
and so are aware of the fact that an answer may have reached a. b and c
have seen that an answer was delivered, but they don’t know which answer.
This is not a secret communication, for b and c know that a has inquired
about p. The situation now changes as follows:

DEMO> showM (upd e0 (message a p))

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

0087

0088

0089

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

0116

0117

0118

0119

0120

0121

0122

0123

0124

0125

0126

0127

0128

0129

DEMO — A Demo of Epistemic Modelling 307

0

1:[p]

abc

2:[q]

abc

3:[p,q]

abcabc

abc

abc

Figure 1.

(a,[[0,2,3,5],[1,4]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

Note that upd is a function for updating an epistemic model with (a
representation of) a communicative action. In this case, the result is again
a model where the three accessibility relations are equivalences, but one in
which a has restricted her range of possibilities to 1, 4 (these are worlds
where p is the case), while for b and c all possibilities are still open. Note
that this epistemic model has two ‘actual worlds’: this means that there
are two possibilities that are compatible with ‘how things really are’. In
graphical display format these ‘actual worlds’ show up as double ovals, as
seen in Figure 2.

DEMO also allows us to display the action models corresponding to
the epistemic updates. For the present example (we have to indicate that
we want the action model for the case where {a, b, c} is the set of relevant
agents):

showM ((message a p) [a,b,c])

==> [0]

[0,1]

(0,p)(1,

T)

(a,[[0],[1]])

0130

0131

0132

0133

0134

0135

0136

0137

0138

0139

0140

0141

0142

0143

0144

0145

0146

0147

0148

0149

0150

0151

0152

0153

0154

0155

0156

0157

0158

0159

0160

0161

0162

0163

0164

0165

0166

0167

0168

0169

0170

0171

0172

308 J. van Eijck

0

1:[p]

bc

2:[p]

abc

3:[q]

abc

4:[p,q]

bc

5:[p,q]

abc

bc

bc

abc

bc

abc

bc

abcbc

abc

bc

Figure 2.

(b,[[0,1]])

(c,[[0,1]])

Notice that in the result of updating the initial situation with this message,
some subtle things have changed for b and c as well. Before the arrival of
the message, 2b(¬2ap ∧ ¬2a¬p) was true, for b knew that a did not know
about p. But now b has heard a’s question about p, and is aware of the
fact that an answer has reached a. So in the new situation b knows that a
knows about p. In other words, 2b(2ap ∨ 2a¬p) has become true. On the
other hand it is still the case that b knows that a knows nothing about q:
2b¬2aq is still true in the new situation. The situation for c is similar to
that for b. These things can be checked in DEMO as follows:

0173

0174

0175

0176

0177

0178

0179

0180

0181

0182

0183

0184

0185

0186

0187

0188

0189

0190

0191

0192

0193

0194

0195

0196

0197

0198

0199

0200

0201

0202

0203

0204

0205

0206

0207

0208

0209

0210

0211

0212

0213

0214

0215

DEMO — A Demo of Epistemic Modelling 309

DEMO> isTrue (upd e0 (message a p)) (K b (Neg (K a q)))

True

DEMO> isTrue (upd e0 (message a p)) (K b (Neg (K a p)))

False

If you receive the same message about p twice, the second time the
message gets delivered has no further effect. Note the use of upds for a
sequence of updates.

DEMO> showM (upds e0 [message a p, message a p])

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[[0,2,3,5],[1,4]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

Now suppose that the second action is a message informing b about p:

DEMO> showM (upds e0 [message a p, message b p])

==> [1,6]

[0,1,2,3,4,5,6,7,8,9]

(0,[])(1,[p])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[p,q])(7,[p,q])(8,[p,q])(9,[p,q])

(a,[[0,3,4,5,8,9],[1,2,6,7]])

(b,[[0,2,4,5,7,9],[1,3,6,8]])

(c,[[0,1,2,3,4,5,6,7,8,9]])

The graphical representation of this model is slightly more difficult to
fathom at a glance. See Figure 3. In this model a and b both know about p,
but they do not know about each other’s knowledge about p. c still knows
nothing, and both a and b know that c knows nothing. Both 2a2bp and
2b2ap are false in this model. 2a¬2bp and 2b¬2ap are false as well, but
2a¬2cp and 2b¬2cp are true.

DEMO> isTrue (upds e0 [message a p, message b p]) (K a (K b p))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (K a p))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K b p)))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K c p)))

True

The order in which a and b are informed does not matter:

DEMO> showM (upds e0 [message b p, message a p])

==> [1,6]

[0,1,2,3,4,5,6,7,8,9]

0216

0217

0218

0219

0220

0221

0222

0223

0224

0225

0226

0227

0228

0229

0230

0231

0232

0233

0234

0235

0236

0237

0238

0239

0240

0241

0242

0243

0244

0245

0246

0247

0248

0249

0250

0251

0252

0253

0254

0255

0256

0257

0258

310 J. van Eijck

0

1:[p]

c

2:[p]

bc

3:[p]

ac

4:[p]

abc

5:[q]

abc

6:[p,q]

c

7:[p,q]

bc

8:[p,q]

ac

9:[p,q]

abc

acbc

c

c

abc

ac

bc

c

c

bc

bc

ac

abc

c

bc

ac

ac

bc

c

abc

ac

abc

c

bc

ac

abc

c

bc

ac

abc

ac

bcc
cbc

ac

Figure 3. Situation after second message

0259

0260

0261

0262

0263

0264

0265

0266

0267

0268

0269

0270

0271

0272

0273

0274

0275

0276

0277

0278

0279

0280

0281

0282

0283

0284

0285

0286

0287

0288

0289

0290

0291

0292

0293

0294

0295

0296

0297

0298

0299

0300

0301

DEMO — A Demo of Epistemic Modelling 311

(0,[])(1,[p])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[p,q])(7,[p,q])(8,[p,q])(9,[p,q])

(a,[[0,2,4,5,7,9],[1,3,6,8]])

(b,[[0,3,4,5,8,9],[1,2,6,7]])

(c,[[0,1,2,3,4,5,6,7,8,9]])

Modulo renaming this is the same as the earlier result. The example
shows that the epistemic effects of distributed message passing are quite
different from those of a public announcement or a group message.

DEMO> showM (upd e0 (public p))

==> [0,1]

[0,1]

(0,[p])(1,[p,q])

(a,[[0,1]])

(b,[[0,1]])

(c,[[0,1]])

The result of the public announcement that p is that a, b and c are
informed that p and about each other’s knowledge about p.

DEMO allows to compare the action models for public announcement and
individual message passing:

DEMO> showM ((public p) [a,b,c])

==> [0]

[0]

(0,p)

(a,[[0]])

(b,[[0]])

(c,[[0]])

DEMO> showM ((cmp [message a p, message b p, message c p]) [a,b,c])

==> [0]

[0,1,2,3,4,5,6,7]

(0,p)(1,p)(2,p)(3,p)(4,p)

(5,p)(6,p)(7,T)

(a,[[0,1,2,3],[4,5,6,7]])

(b,[[0,1,4,5],[2,3,6,7]])

(c,[[0,2,4,6],[1,3,5,7]])

Here cmp gives the sequential composition of a list of communicative
actions. This involves, among other things, computation of the appropriate
preconditions for the combined action model.

More subtly, the situation is also different from a situation where a, b
receive the same message that p, with a being aware of the fact that b
receives the message and vice versa. Such group messages create common
knowledge.

DEMO> showM (groupM [a,b] p [a,b,c])

0302

0303

0304

0305

0306

0307

0308

0309

0310

0311

0312

0313

0314

0315

0316

0317

0318

0319

0320

0321

0322

0323

0324

0325

0326

0327

0328

0329

0330

0331

0332

0333

0334

0335

0336

0337

0338

0339

0340

0341

0342

0343

0344

312 J. van Eijck

==> [0]

[0,1]

(0,p)(1,T)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0,1]])

The difference with the case of the two separate messages is that now a and
b are aware of each other’s knowledge that p:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (K a (K b p))

True

DEMO> isTrue (upd e0 (groupM [a,b] p)) (K b (K a p))

True

In fact, this awareness goes on, for arbitrary nestings of 2a and 2b, which
is what common knowledge means. Common knowledge can be checked
directly, as follows:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (CK [a,b] p)

True

It is also easily checked in DEMO that in the case of the separate messages
no common knowledge is achieved.

Next, look at the case where two separate messages reach a and b, one
informing a that p and the other informing b that ¬q:

DEMO> showM (upds e0 [message a p, message b (Neg q)])

==> [2]

[0,1,2,3,4,5,6,7,8]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[p])(6,[q])(7,[p,q])(8,[p,q])

(a,[[0,1,4,5,6,8],[2,3,7]])

(b,[[0,2,4],[1,3,5,6,7,8]])

(c,[[0,1,2,3,4,5,6,7,8]])

Again the order in which these messages are delivered is immaterial for the
end result, as you should expect:

DEMO> showM (upds e0 [message b (Neg q), message a p])

==> [2]

[0,1,2,3,4,5,6,7,8]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[p])(6,[q])(7,[p,q])(8,[p,q])

(a,[[0,1,3,5,6,8],[2,4,7]])

(b,[[0,2,3],[1,4,5,6,7,8]])

(c,[[0,1,2,3,4,5,6,7,8]])

Modulo a renaming of worlds, this is the same as the previous result.
The logic of public announcements and private messages is related to

the logic of knowledge, with [Hi162] as the pioneer publication. This logic
satisfies the following postulates:

0345

0346

0347

0348

0349

0350

0351

0352

0353

0354

0355

0356

0357

0358

0359

0360

0361

0362

0363

0364

0365

0366

0367

0368

0369

0370

0371

0372

0373

0374

0375

0376

0377

0378

0379

0380

0381

0382

0383

0384

0385

0386

0387

DEMO — A Demo of Epistemic Modelling 313

• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ) (if a knows that
ϕ implies ψ, and she knows ϕ, then she also knows ψ),

• positive introspection 2aϕ ⇒ 2a2aϕ (if a knows ϕ, then a knows
that she knows ϕ),

• negative introspection ¬2aϕ⇒ 2a¬2aϕ (if a does not know ϕ, then
she knows that she does not know),

• truthfulness 2aϕ⇒ ϕ (if a knows ϕ then ϕ is true).

As is well known, the first of these is valid on all Kripke frames, the sec-
ond is valid on precisely the transitive Kripke frames, the third is valid on
precisely the euclidean Kripke frames (a relation R is euclidean if it satis-
fies ∀x∀y∀z((xRy ∧ xRz) ⇒ yRz)), and the fourth is valid on precisely the
reflexive Kripke frames. A frame satisfies transitivity, euclideanness and
reflexivity iff it is an equivalence relation, hence the logic of knowledge is
the logic of the so-called S5 Kripke frames: the Kripke frames with an equi-
valence ∼a as epistemic accessibility relation. Multi-agent epistemic logic
extends this to multi-S5, with an equivalence ∼b for every b ∈ B, where b
is the set of epistemic agents.

Now suppose that instead of open messages, we use secret messages.
If a secret message is passed to a, b and c are not even aware that any
communication is going on. This is the result when a receives a secret
message that p in the initial situation:

DEMO> showM (upd e0 (secret [a] p))

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[([],[0,2,3,5]),([],[1,4])])

(b,[([1,4],[0,2,3,5])])

(c,[([1,4],[0,2,3,5])])

This is not an S5 model anymore. The accessibility for a is still an
equivalence, but the accessibility for b is lacking the property of reflexivity.
The worlds 1, 4 that make up a’s conceptual space (for these are the worlds
accessible for a from the actual worlds 1, 4) are precisely the worlds where
the b and c arrows are not reflexive. b enters his conceptual space from
the vantage points 1 and 4, but b does not see these vantage points itself.
Similarly for c. In the DEMO representation, the list ([1,4],[0,2,3,5])
gives the entry points [1,4] into conceptual space [0,2,3,5].

The secret message has no effect on what b and c believe about the facts
of the world, but it has effected b’s and c’s beliefs about the beliefs of a
in a disastrous way. These beliefs have become inaccurate. For instance, b

0388

0389

0390

0391

0392

0393

0394

0395

0396

0397

0398

0399

0400

0401

0402

0403

0404

0405

0406

0407

0408

0409

0410

0411

0412

0413

0414

0415

0416

0417

0418

0419

0420

0421

0422

0423

0424

0425

0426

0427

0428

0429

0430

314 J. van Eijck

now believes that a does not know that p, but he is mistaken! The formula
2b¬2ap is true in the actual worlds, but ¬2ap is false in the actual worlds,
for a does know that p, because of the secret message. Here is what DEMO
says about the situation (isTrue evaluates a formula in all of the actual
worlds of an epistemic model):

DEMO> isTrue (upd e0 (secret [a] p)) (K b (Neg (K a p)))

True

DEMO> isTrue (upd e0 (secret [a] p)) (Neg (K a p))

False

This example illustrates a regress from the world of knowledge to the
world of consistent belief: the result of the update with a secret propositional
message does not satisfy the postulate of truthfulness anymore.

The logic of consistent belief satisfies the following postulates:

• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ),

• positive introspection 2aϕ⇒ 2a2aϕ,

• negative introspection ¬2aϕ⇒ 2a¬2aϕ,

• consistency 2aϕ ⇒ 3aϕ (if a believes that ϕ then there is a world
where ϕ is true, i.e., ϕ is consistent).

Consistent belief is like knowledge, except for the fact that it replaces the
postulate of truthfulness 2aϕ⇒ ϕ by the weaker postulate of consistency.

Since the postulate of consistency determines the serial Kripke frames (a
relation R is serial if ∀x∃y xRy), the principles of consistent belief determine
the Kripke frames that are transitive, euclidean and serial, the so-called
KD45 frames.

In the conceptual world of secrecy, inconsistent beliefs are not far away.
Suppose that a, after having received a secret message informing her about
p, sends a message to b to the effect that 2ap. The trouble is that this is
inconsistent with what b believes.

DEMO> showM (upds e0 [secret [a] p, message b (K a p)])

==> [1,5]

[0,1,2,3,4,5,6,7]

(0,[])(1,[p])(2,[p])(3,[p])(4,[q])

(5,[p,q])(6,[p,q])(7,[p,q])

(a,([],[([],[0,3,4,7]),([],[1,2,5,6])]))

(b,([1,5],[([2,6],[0,3,4,7])]))

(c,([],[([1,2,5,6],[0,3,4,7])]))

This is not a KD45 model anymore, for it lacks the property of seriality
for b’s belief relation. b’s belief contains two isolated worlds 1, 5. Since 1 is

0431

0432

0433

0434

0435

0436

0437

0438

0439

0440

0441

0442

0443

0444

0445

0446

0447

0448

0449

0450

0451

0452

0453

0454

0455

0456

0457

0458

0459

0460

0461

0462

0463

0464

0465

0466

0467

0468

0469

0470

0471

0472

0473

DEMO — A Demo of Epistemic Modelling 315

the actual world, this means that b’s belief state has become inconsistent:
from now on, b will believe anything.

So we have arrived at a still weaker logic. The logic of possibly incon-
sistent belief satisfies the following postulates:

• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ),

• positive introspection 2aϕ⇒ 2a2aϕ,

• negative introspection ¬2aϕ⇒ 2a¬2aϕ.

This is the logic of K45 frames: frames that are transitive and euclidean.
In [vE104a] some results and a list of questions are given about the

possible deterioration of knowledge and belief caused by different kind of
message passing. E.g., the result of updating an S5 model with a public
announcement or a non-secret message, if defined, is again S5. The result
of updating an S5 model with a secret message to some of the agents, if
defined, need not even be KD45. One can prove that the result is KD45
iff the model we start out with satisfies certain epistemic conditions. The
update result always is K45. Such observations illustrate why S5, KD45
and K45 are ubiquitous in epistemic modelling. See [BldRVe101, Go002]
for general background on modal logic, and [Ch380, Fa+95] for specific
background on these systems.

If this introduction has convinced the reader that the logic of public
announcements, private messages and secret communications is rich and
subtle enough to justify the building of the conceptual modelling tools to
be presented in the rest of the report, then it has served its purpose.

In the rest of the report, we first fix a formal version of epistemic up-
date logic as an implementation goal. After that, we are ready for the
implementation.

Further information on various aspects of dynamic epistemic logic is
provided in [Ba402, Ba4Mo3So199, vB01b, vB06, vD00, Fa+95, Ge299a,
Ko403].

2 Design

DEMO is written in a high level functional programming language Haskell
[Jo203]. Haskell is a non-strict, purely-functional programming language
named after Haskell B. Curry. The design is modular. Operations on lists
and characters are taken from the standard Haskell List and Char modules.
The following modules are part of DEMO:

Models The module that defines general models over a number of agents.
In the present implementation these are A through E. It turns out
that more than five agents are seldom needed in epistemic modelling.

0474

0475

0476

0477

0478

0479

0480

0481

0482

0483

0484

0485

0486

0487

0488

0489

0490

0491

0492

0493

0494

0495

0496

0497

0498

0499

0500

0501

0502

0503

0504

0505

0506

0507

0508

0509

0510

0511

0512

0513

0514

0515

0516

316 J. van Eijck

General models have variables for their states and their state adorn-
ments. By letting the state adornments be valuations we get Kripke
models, by letting them be formulas we get update models.

MinBis The module for minimizing models under bisimulation by means
of partition refinement.

Display The module for displaying models in various formats. Not dis-
cussed in this paper.

ActEpist The module that specializes general models to action models
and epistemic models. Formulas may contain action models as oper-
ators. Action models contain formulas. The definition of formulas is
therefore also part of this module.

DPLL Implementation of Davis, Putnam, Logemann, Loveland (DPLL)
theorem proving [Da1Lo0Lo462, Da1Pu60] for propositional logic. The
implementation uses discrimination trees or tries, following [Zh0St500].
This is used for formula simplification. Not discussed in this paper.

Semantics Implementation of the key semantic notions of epistemic up-
date logic. It handles the mapping from communicative actions to
action models.

DEMO Main module.

3 Main module
module DEMO

(

module List,

module Char,

module Models,

module Display,

module MinBis,

module ActEpist,

module DPLL,

module Semantics

)

where

import List import Char import Models import Display import MinBis

import ActEpist import DPLL import Semantics

The first version of DEMO was written in March 2004. This version was
extended in May 2004 with an implementation of automata and a transla-
tion function from epistemic update logic to Automata PDL. In Septem-
ber 2004, I discovered a direct reduction of epistemic update logic to PDL
[vE104b]. This motivated a switch to a PDL-like language, with extra

0517

0518

0519

0520

0521

0522

0523

0524

0525

0526

0527

0528

0529

0530

0531

0532

0533

0534

0535

0536

0537

0538

0539

0540

0541

0542

0543

0544

0545

0546

0547

0548

0549

0550

0551

0552

0553

0554

0555

0556

0557

0558

0559

DEMO — A Demo of Epistemic Modelling 317

modalities for action update and automata update. I decided to leave in
the automata for the time being, for nostalgic reasons.

In Summer 2005, several example modules with DEMO programs for
epistemic puzzles (some of them contributed by Ji Ruan) and for checking
of security protocols (with contributions by Simona Orzan) were added, and
the program was rewritten in a modular fashion.

In Spring 2006, automata update was removed, and in Autumn 2006 the
code was refactored for the present report:

version :: String

version = "DEMO 1.06, Autumn 2006"

4 Definitions

4.1 Models and updates
In this section we formalize the version of dynamic epistemic logic that we
are going to implement.

Let p range over a set of basic propositions P and let a range over a set
of agents Ag. Then the language of PDL over P,Ag is given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ
π ::= a |?ϕ | π1;π2 | π1 ∪ π2 | π∗

Employ the usual abbreviations: ⊥ is shorthand for ¬>, ϕ1 ∨ ϕ2 is
shorthand for ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬(ϕ1∧ϕ2), ϕ1 ↔ ϕ2

is shorthand for (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1), and 〈π〉ϕ is shorthand for ¬[π]¬ϕ.
Also, if B ⊆ Ag and B is finite, use B as shorthand for b1 ∪ b2 ∪ · · · . Under
this convention, formulas for expressing general knowledge EBϕ take the
shape [B]ϕ, while formulas for expressing common knowledge CBϕ appear
as [B∗]ϕ, i.e., [B]ϕ expresses that it is general knowledge among agents B
that ϕ, and [B∗]ϕ expresses that it is common knowledge among agents B
that ϕ. In the special case where B = ∅, B turns out equivalent to ?⊥, the
program that always fails.

The semantics of PDL over P,Ag is given relative to labelled transition
systems M = (W,V,R), where W is a set of worlds (or states), V : W →
P(P) is a valuation function, and R = { a→⊆ W ×W | a ∈ Ag} is a set
of labelled transitions, i.e., binary relations on W , one for each label a. In
what follows, we shall take the labelled transitions for a to represent the
epistemic alternatives of an agent a.

The formulae of PDL are interpreted as subsets of WM (the state set of
M), the actions of PDL as binary relations on WM, as follows:

[[>]]M = WM

[[p]]M = {w ∈WM | p ∈ VM(w)}

0560

0561

0562

0563

0564

0565

0566

0567

0568

0569

0570

0571

0572

0573

0574

0575

0576

0577

0578

0579

0580

0581

0582

0583

0584

0585

0586

0587

0588

0589

0590

0591

0592

0593

0594

0595

0596

0597

0598

0599

0600

0601

0602

318 J. van Eijck

[[¬ϕ]]M = WM − [[ϕ]]M

[[ϕ1 ∧ ϕ2]]M = [[ϕ1]]M ∩ [[ϕ2]]M

[[[π]ϕ]]M = {w ∈WM | ∀v(if (w, v) ∈ [[π]]M then v ∈ [[ϕ]]M)}

[[a]]M = a→M

[[?ϕ]]M = {(w,w) ∈WM ×WM | w ∈ [[ϕ]]M}
[[π1;π2]]M = [[π1]]M ◦ [[π2]]M

[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M = ([[π]]M)∗

If w ∈ WM then we use M |=w ϕ for w ∈ [[ϕ]]M. The paper
[Ba4Mo3So103] proposes to model epistemic actions as epistemic models,
with valuations replaced by preconditions. See also: [vB01b, vB06, vD00,
vE104b, Fa+95, Ge299a, Ko403, Ru004].
Action models for a given language L. Let a set of agents Ag and
an epistemic language L be given. An action model for L is a triple A =
([s0, . . . , sn−1],pre, T) where [s0, . . . , sn−1] is a finite list of action states,
pre : {s0, . . . , sn−1} → L assigns a precondition to each action state, and
T : Ag → P({s0, . . . , sn−1}2) assigns an accessibility relation a→ to each
agent a ∈ Ag.

A pair A = (A, s) with s ∈ {s0, . . . , sn−1} is a pointed action model,
where s is the action that actually takes place.

The list ordering of the action states in an action model will play an
important role in the definition of the program transformations associated
with the action models.

In the definition of action models, L can be any language that can be
interpreted in PDL models. Actions can be executed in PDL models by
means of the following product construction:
Action Update. Let a PDL model M = (W,V,R), a world w ∈ W , and
a pointed action model (A, s), with A = ([s0, . . . , sn−1],pre, T), be given.
Suppose w ∈ [[pre(s)]]M. Then the result of executing (A, s) in (M, w) is
the model (M⊗A, (w, s)), with M⊗A = (W ′, V ′, R′), where

W ′ = {(w, s) | s ∈ {s0, . . . , sn−1}, w ∈ [[pre(s)]]M}
V ′(w, s) = V (w)
R′(a) = {((w, s), (w′, s′)) | (w,w′) ∈ R(a), (s, s′) ∈ T (a)}.

In case there is a set of actual worlds and a set of actual actions, the defi-
nition is similar: those world/action pairs survive where the world satisfies
the preconditions of the action. See below.

0603

0604

0605

0606

0607

0608

0609

0610

0611

0612

0613

0614

0615

0616

0617

0618

0619

0620

0621

0622

0623

0624

0625

0626

0627

0628

0629

0630

0631

0632

0633

0634

0635

0636

0637

0638

0639

0640

0641

0642

0643

0644

0645

DEMO — A Demo of Epistemic Modelling 319

The language of PDLDEL (update PDL) is given by extending the PDL
language with update constructions [A, s]ϕ, where (A, s) is a pointed action
model. The interpretation of [A, s]ϕ in M is given by:

[[[A, s]ϕ]]M = {w ∈WM | if M |=w pre(s) then (w, s) ∈ [[ϕ]]M⊗A}.

Using 〈A, s〉ϕ as shorthand for ¬[A, s]¬ϕ, we see that the interpretation for
〈A, s〉ϕ turns out as:

[[〈A, s〉ϕ]]M = {w ∈WM | M |=w pre(s) and (w, s) ∈ [[ϕ]]M⊗A}.

Updating with multiple pointed update actions is also possible. A multiple
pointed action is a pair (A,S), with A an action model, and S a subset of
the state set of A. Extend the language with updates [A,S]ϕ, and interpret
this as follows:

[[[A,S]ϕ]]M = {w ∈WM | ∀s ∈ S(if M |=w pre(s)
then M⊗A |=(w,s) ϕ)}.

In [vE104b] it is shown how dynamic epistemic logic can be reduced
to PDL by program transformation. Each action model A has associated
program transformers TA

ij for all states si, sj in the action model, such that
the following hold:

Lemma 4.1 (Program Transformation, Van Eijck [vE104b]). Assume A
has n states s0, . . . , sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj]ϕ.

This lemma allows a reduction of dynamic epistemic logic to PDL, a
reduction that we shall implement in the code below.

4.2 Operations on action models
Sequential Composition. If (A, S) and (B, T) are multiple pointed ac-
tion models, their sequential composition (A, S) � (B, T) is given by:

(A, S) � (B, T) := ((W,pre, R), S × T),

where

• W = WA ×WB,

• pre(s, t) = pre(s) ∧ 〈A, S〉pre(t),

• R is given by: (s, t) a→ (s′, t′) ∈ R iff s
a→ s′ ∈ RA and t a→ t′ ∈ RB.

The unit element for this operation is the action model

1 = (({0}, 0 7→ >, {0 a→ 0 | a ∈ Ag}), {0}).

Updating an arbitrary epistemic model M with 1 changes nothing.

0646

0647

0648

0649

0650

0651

0652

0653

0654

0655

0656

0657

0658

0659

0660

0661

0662

0663

0664

0665

0666

0667

0668

0669

0670

0671

0672

0673

0674

0675

0676

0677

0678

0679

0680

0681

0682

0683

0684

0685

0686

0687

0688

320 J. van Eijck

Non-deterministic Sum. The non-deterministic sum ⊕ of multiple poin-
ted action models (A, S) and (B, T) is the action model (A, S)⊕ (B, T) is
given by:

(A, S) ⊕ (B, T) := ((W,pre, R), S] T),

where] denotes disjoint union, and where

• W = WA]WB,

• pre = preA] preB,

• R = RA]RB.

The unit element for this operation is called 0: the multiple pointed action
model given by ((∅,∅,∅),∅).

4.3 Logics for communication
Here are some specific action models that can be used to define various
languages of communication.

In order to model a public announcement of ϕ, we use the action
model (S, {0}) with

SS = {0}, pS = 0 7→ ϕ,RS = {0 a→ 0 | a ∈ A}.

If we wish to model an individual message to b that ϕ, we consider
the action model (S, {0}) with SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, and
RS = {0 b→ 0, 1 b→ 1} ∪ {0 ∼a 1 | a ∈ A − {b}}; similarly, for a group
message to B that ϕ, we use the action model (S, {0}) with

SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, RS = {0 ∼a 1 | a ∈ A−B}.

A secret individual communication to b that ϕ is modelled by (S, {0})
with

SS = {0, 1},
pS = 0 7→ ϕ, 1 7→ >,

RS = {0 b→ 0} ∪ {0 a→ 1 | a ∈ A− {b}} ∪ {1 a→ 1 | a ∈ A},

and a secret group communication to B that ϕ by (S, {0}) with

SS = {0, 1},
pS = 0 7→ ϕ, 1 7→ >,

RS = {0 b→ 0 | b ∈ B} ∪ {0 a→ 1 | a ∈ A−B} ∪ {1 a→ 1 | a ∈ A}.

0689

0690

0691

0692

0693

0694

0695

0696

0697

0698

0699

0700

0701

0702

0703

0704

0705

0706

0707

0708

0709

0710

0711

0712

0713

0714

0715

0716

0717

0718

0719

0720

0721

0722

0723

0724

0725

0726

0727

0728

0729

0730

0731

DEMO — A Demo of Epistemic Modelling 321

We model a test of ϕ by the action model (S, {0}) with

SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, RS = {0 a→ 1 | a ∈ A} ∪ {1 a→ 1 | a ∈ A},

an individual revelation to b of a choice from {ϕ1, . . . , ϕn} by the
action model (S, {1, . . . , n}) with

SS = {1, . . . , n},
pS = 1 7→ ϕ1, . . . , n 7→ ϕn,

RS = {s b→ s | s ∈ SS} ∪ {s
a→ s′ | s, s′ ∈ SS, a ∈ A− {b}},

and a group revelation to B of a choice from {ϕ1, . . . , ϕn} by the
action model (S, {1, . . . , n}) with

SS = {1, . . . , n},
pS = 1 7→ ϕ1, . . . , n 7→ ϕn,

RS = {s b→ s | s ∈ SS, b ∈ B} ∪ {s
a→ s′ | s, s′ ∈ SS, a ∈ A−B}.

Finally, transparent informedness of B about ϕ is represented by the
action model (S, {0, 1}) with SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ ¬ϕ, RS = {0 a→
0 | a ∈ A} ∪ {0 a→ 1 | a ∈ A − B} ∪ {1 a→ 0 | a ∈ A − B} ∪ {1 a→ 1 | a ∈
A}. Transparent informedness of B about ϕ is the special case of a group
revelation of B of a choice from {ϕ,¬ϕ}. Note that all but the revelation
action models and the transparent informedness action models are single
pointed (their sets of actual states are singletons).

On the syntactic side, we now define the corresponding languages. The
language for the logic of group announcements is defined by:

ϕ ::= > | p | ¬ϕ |
∧

[ϕ1, . . . , ϕn] |
∨

[ϕ1, . . . , ϕn] | 2aϕ

| EBϕ | CBϕ | [π]ϕ

π ::= 1 | 0 | public B ϕ | �[π1, . . . , πn] | ⊕[π1, . . . , πn]

We use the semantics of 1, 0, public B ϕ, and the operations on multiple
pointed action models from Section 4.2. For the logic of tests and group
announcements, we allow tests ?ϕ as basic programs and add the appro-
priate semantics. For the logic of individual messages, the basic actions
are messages to individual agents. In order to give it a semantics, we start
out from the semantics of message a ϕ. Finally, the logic of tests, group
announcements, and group revelations is as above, but now also allowing
revelations from alternatives. For the semantics, we use the semantics of
reveal B {ϕ1, . . . , ϕn}.

0732

0733

0734

0735

0736

0737

0738

0739

0740

0741

0742

0743

0744

0745

0746

0747

0748

0749

0750

0751

0752

0753

0754

0755

0756

0757

0758

0759

0760

0761

0762

0763

0764

0765

0766

0767

0768

0769

0770

0771

0772

0773

0774

322 J. van Eijck

5 Kripke models
module Models where

import List

5.1 Agents
data Agent = A | B | C | D | E deriving (Eq,Ord,Enum,Bounded)

Give the agents appropriate names:

a, alice, b, bob, c, carol, d, dave, e, ernie :: Agent

a = A; alice = A

b = B; bob = B

c = C; carol = C

d = D; dave = D

e = E; ernie = E

Make agents showable in an appropriate way:

instance Show Agent where

show A = "a"; show B = "b"; show C = "c"; show D = "d" ; show E = "e"

5.2 Model datatype
It will prove useful to generalize over states. We first define general models,
and then specialize to action models and epistemic models. In the following
definition, state and formula are variables over types. We assume that
each model carries a list of distinguished states.

data Model state formula = Mo

[state]

[(state,formula)]

[Agent]

[(Agent,state,state)]

[state]

deriving (Eq,Ord,Show)

Decomposing a pointed model into a list of single-pointed models:

decompose :: Model state formula -> [Model state formula]

decompose (Mo states pre agents rel points) =

[Mo states pre agents rel [point] | point <- points]

It is useful to be able to map the precondition table to a function. Here
is a general tool for that. Note that the resulting function is partial; if the
function argument does not occur in the table, the value is undefined.

table2fct :: Eq a => [(a,b)] -> a -> b

table2fct t = \ x -> maybe undefined id (lookup x t)

Another useful utility is a function that creates a partition out of an equi-
valence relation:

0775

0776

0777

0778

0779

0780

0781

0782

0783

0784

0785

0786

0787

0788

0789

0790

0791

0792

0793

0794

0795

0796

0797

0798

0799

0800

0801

0802

0803

0804

0805

0806

0807

0808

0809

0810

0811

0812

0813

0814

0815

0816

0817

DEMO — A Demo of Epistemic Modelling 323

rel2part :: (Eq a) => [a] -> (a -> a -> Bool) -> [[a]]

rel2part [] r = []

rel2part (x:xs) r = xblock : rel2part rest r

where

(xblock,rest) = partition (\ y -> r x y) (x:xs)

The domain of a model is its list of states:

domain :: Model state formula -> [state]

domain (Mo states _ _ _ _) = states

The eval of a model is its list of state/formula pairs:

eval :: Model state formula -> [(state,formula)]

eval (Mo _ pre _ _ _) = pre

The agentList of a model is its list of agents:

agentList :: Model state formula -> [Agent]

agentList (Mo _ _ ags _ _) = ags

The access of a model is its labelled transition component:

access :: Model state formula -> [(Agent,state,state)]

access (Mo _ _ _ rel _) = rel

The distinguished points of a model:

points :: Model state formula -> [state]

points (Mo _ _ _ _ pnts) = pnts

When we are looking at models, we are only interested in generated
submodels, with as their domain the distinguished state(s) plus everything
that is reachable by an accessibility path.

gsm :: Ord state => Model state formula -> Model state formula

gsm (Mo states pre ags rel points) = (Mo states’ pre’ ags rel’ points)

where

states’ = closure rel ags points

pre’ = [(s,f) | (s,f) <- pre,

elem s states’]

rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

elem s states’,

elem s’ states’]

The closure of a state list, given a relation and a list of agents:

closure :: Ord state =>

[(Agent,state,state)] -> [Agent] -> [state] -> [state]

closure rel agents xs

| xs’ == xs = xs

| otherwise = closure rel agents xs’

where

xs’ = (nub . sort) (xs ++ (expand rel agents xs))

0818

0819

0820

0821

0822

0823

0824

0825

0826

0827

0828

0829

0830

0831

0832

0833

0834

0835

0836

0837

0838

0839

0840

0841

0842

0843

0844

0845

0846

0847

0848

0849

0850

0851

0852

0853

0854

0855

0856

0857

0858

0859

0860

324 J. van Eijck

The expansion of a relation R given a state set S and a set of agents B is
given by {t | s b→ t ∈ R, s ∈ S, b ∈ B}. This is implemented as follows:

expand :: Ord state =>

[(Agent,state,state)] -> [Agent] -> [state] -> [state]

expand rel agnts ys =

(nub . sort . concat)

[alternatives rel ag state | ag <- agnts,

state <- ys]

The epistemic alternatives for agent a in state s are the states in sRa (the
states reachable through Ra from s):

alternatives :: Eq state =>

[(Agent,state,state)] -> Agent -> state -> [state]

alternatives rel ag current =

[s’ | (a,s,s’) <- rel, a == ag, s == current]

6 Model minimization under bisimulation
module MinBis where

import List

import Models

6.1 Partition refinement
Any Kripke model can be simplified by replacing each state s by its bisim-
ulation class [s]. The problem of finding the smallest Kripke model modulo
bisimulation is similar to the problem of minimizing the number of states in
a finite automaton [Ho471]. We will use partition refinement, in the spirit
of [Pa1Ta087]. Here is the algorithm:

• Start out with a partition of the state set where all states with the
same precondition function are in the same class. The equality relation
to be used to evaluate the precondition function is given as a parameter
to the algorithm.

• Given a partition Π, for each block b in Π, partition b into sub-blocks
such that two states s, t of b are in the same sub-block iff for all agents
a it holds that s and t have a−→ transitions to states in the same block
of Π. Update Π to Π′ by replacing each b in Π by the newly found set
of sub-blocks for b.

• Halt as soon as Π = Π′.

Looking up and checking of two formulas against a given equivalence rela-
tion:

0861

0862

0863

0864

0865

0866

0867

0868

0869

0870

0871

0872

0873

0874

0875

0876

0877

0878

0879

0880

0881

0882

0883

0884

0885

0886

0887

0888

0889

0890

0891

0892

0893

0894

0895

0896

0897

0898

0899

0900

0901

0902

0903

DEMO — A Demo of Epistemic Modelling 325

lookupFs :: (Eq a,Eq b) =>

a -> a -> [(a,b)] -> (b -> b -> Bool) -> Bool

lookupFs i j table r = case lookup i table of

Nothing -> lookup j table == Nothing

Just f1 -> case lookup j table of

Nothing -> False

Just f2 -> r f1 f2

The following computes the initial partition, using a particular relation for
equivalence of formulas:

initPartition :: (Eq a, Eq b) => Model a b -> (b -> b -> Bool) -> [[a]]

initPartition (Mo states pre ags rel points) r =

rel2part states (\ x y -> lookupFs x y pre r)

Refining a partition:

refinePartition :: (Eq a, Eq b) =>

Model a b -> [[a]] -> [[a]]

refinePartition m p = refineP m p p

where

refineP :: (Eq a, Eq b) => Model a b -> [[a]] -> [[a]] -> [[a]]

refineP m part [] = []

refineP m part (block:blocks) =

newblocks ++ (refineP m part blocks)

where

newblocks =

rel2part block (\ x y -> sameAccBlocks m part x y)

The following is a function that checks whether two states have the same
accessible blocks under a partition:

sameAccBlocks :: (Eq a, Eq b) =>

Model a b -> [[a]] -> a -> a -> Bool

sameAccBlocks m@(Mo states pre ags rel points) part s t =

and [accBlocks m part s ag == accBlocks m part t ag |

ag <- ags]

The accessible blocks for an agent from a given state, given a model and a
partition can be determined by accBlocks:

accBlocks :: (Eq a, Eq b) =>

Model a b -> [[a]] -> a -> Agent -> [[a]]

accBlocks m@(Mo states pre ags rel points) part s ag =

nub [bl part y | (ag’,x,y) <- rel, ag’ == ag, x == s]

The block of an object in a partition:

bl :: Eq a => [[a]] -> a -> [a]

bl part x = head (filter (elem x) part)

Initializing and refining a partition:

0904

0905

0906

0907

0908

0909

0910

0911

0912

0913

0914

0915

0916

0917

0918

0919

0920

0921

0922

0923

0924

0925

0926

0927

0928

0929

0930

0931

0932

0933

0934

0935

0936

0937

0938

0939

0940

0941

0942

0943

0944

0945

0946

326 J. van Eijck

initRefine :: (Eq a, Eq b) =>

Model a b -> (b -> b -> Bool) -> [[a]]

initRefine m r = refine m (initPartition m r)

The refining process:
refine :: (Eq a, Eq b) => Model a b -> [[a]] -> [[a]]

refine m part = if rpart == part

then part

else refine m rpart

where rpart = refinePartition m part

6.2 Minimization
We now use this to construct the minimal model. Notice the dependence
on relational parameter r.

minimalModel :: (Eq a, Ord a, Eq b, Ord b) =>

(b -> b -> Bool) -> Model a b -> Model [a] b

minimalModel r m@(Mo states pre ags rel points) =

(Mo states’ pre’ ags rel’ points’)

where

partition = initRefine m r

states’ = partition

f = bl partition

rel’ = (nub.sort) (map (\ (x,y,z) -> (x, f y, f z)) rel)

pre’ = (nub.sort) (map (\ (x,y) -> (f x, y)) pre)

points’ = map f points

Converting a’s into integers, using their position in a given list of a’s.
convert :: (Eq a, Show a) => [a] -> a -> Integer

convert = convrt 0

where

convrt :: (Eq a, Show a) => Integer -> [a] -> a -> Integer

convrt n [] x = error (show x ++ " not in list")

convrt n (y:ys) x | x == y = n

| otherwise = convrt (n+1) ys x

Converting an object of type Model a b into an object of type Model
Integer b:

conv :: (Eq a, Show a) =>

Model a b -> Model Integer b

conv (Mo worlds val ags acc points) =

(Mo (map f worlds)

(map (\ (x,y) -> (f x, y)) val)

ags

(map (\ (x,y,z) -> (x, f y, f z)) acc))

(map f points)

where f = convert worlds

Use this to rename the blocks into integers:
bisim :: (Eq a, Ord a, Show a, Eq b, Ord b) =>

(b -> b -> Bool) -> Model a b -> Model Integer b

bisim r = conv . (minimalModel r)

0947

0948

0949

0950

0951

0952

0953

0954

0955

0956

0957

0958

0959

0960

0961

0962

0963

0964

0965

0966

0967

0968

0969

0970

0971

0972

0973

0974

0975

0976

0977

0978

0979

0980

0981

0982

0983

0984

0985

0986

0987

0988

0989

DEMO — A Demo of Epistemic Modelling 327

7 Formulas, action models and epistemic models
module ActEpist where

import List

import Models

import MinBis

import DPLL

Module List is a standard Haskell module. Module Models is described
in Chapter 5, and Module MinBis in Chapter 6. Module DPLL refers to an
implementation of Davis, Putnam, Logemann, Loveland (DPLL) theorem
proving (not included in this document, but available at http://www.cwi.
nl/∼jve/demo).

7.1 Formulas
Basic propositions:

data Prop = P Int | Q Int | R Int deriving (Eq,Ord)

Show these in the standard way, in lower case, with index 0 omitted.

instance Show Prop where

show (P 0) = "p"; show (P i) = "p" ++ show i

show (Q 0) = "q"; show (Q i) = "q" ++ show i

show (R 0) = "r"; show (R i) = "r" ++ show i

Formulas, according to the definition:

ϕ ::= > | p | ¬ϕ |
∧

[ϕ1, . . . , ϕn] |
∨

[ϕ1, . . . , ϕn] | [π]ϕ | [A]ϕ

π ::= a | B |?ϕ | ©[π1, . . . , πn] |
⋃

[π1, . . . , πn] | π∗

Here, p ranges over basic propositions, a ranges over agents, B ranges
over non-empty sets of agents, and A is a multiple pointed action model
(see below) © denotes sequential composition of a list of programs. We will
often write ©[π1, π2] as π1;π2, and

⋃
[π1, π2] as π1 ∪ π2.

Note that general knowledge among agents B that ϕ is expressed in this
language as [B]ϕ, and common knowledge among agents B that ϕ as [B∗]ϕ.
Thus, [B]ϕ can be viewed as shorthand for [

⋃
b∈B b]ϕ. In case B = ∅, [B]ϕ

turns out to be equivalent to [?⊥]ϕ.
For convenience, we have also left in the more traditional way of ex-

pressing individual knowledge 2aϕ , general knowledge EBϕ and common
knowledge CBϕ.

data Form = Top

| Prop Prop

| Neg Form

| Conj [Form]

0990

0991

0992

0993

0994

0995

0996

0997

0998

0999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

328 J. van Eijck

| Disj [Form]

| Pr Program Form

| K Agent Form

| EK [Agent] Form

| CK [Agent] Form

| Up AM Form

deriving (Eq,Ord)

data Program = Ag Agent

| Ags [Agent]

| Test Form

| Conc [Program]

| Sum [Program]

| Star Program

deriving (Eq,Ord)

Some useful abbreviations:

impl :: Form -> Form -> Form

impl form1 form2 = Disj [Neg form1, form2]

equiv :: Form -> Form -> Form

equiv form1 form2 = Conj [form1 ‘impl‘ form2, form2 ‘impl‘ form1]

xor :: Form -> Form -> Form

xor x y = Disj [Conj [x, Neg y], Conj [Neg x, y]]

The negation of a formula:

negation :: Form -> Form

negation (Neg form) = form

negation form = Neg form

Show formulas in the standard way:

instance Show Form where

show Top = "T" ; show (Prop p) = show p; show (Neg f) = ’-’:(show f);

show (Conj fs) = ’&’: show fs

show (Disj fs) = ’v’: show fs

show (Pr p f) = ’[’: show p ++ "]" ++ show f

show (K agent f) = ’[’: show agent ++ "]" ++ show f

show (EK agents f) = ’E’: show agents ++ show f

show (CK agents f) = ’C’: show agents ++ show f

show (Up pam f) = ’A’: show (points pam) ++ show f

Show programs in a standard way:

instance Show Program where

show (Ag a) = show a

show (Ags as) = show as

show (Test f) = ’?’: show f

show (Conc ps) = ’C’: show ps

show (Sum ps) = ’U’: show ps

show (Star p) = ’(’: show p ++ ")*"

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

DEMO — A Demo of Epistemic Modelling 329

Programs can get very unwieldy very quickly. As is well known, there
is no normalisation procedure for regular expressions. Still, here are some
rewriting steps for simplification of programs:

∅ → ?⊥ ?ϕ1∪?ϕ2 → ?(ϕ1 ∨ ϕ2)
?⊥ ∪ π → π π∪?⊥ → π⋃

[] → ?⊥
⋃

[π] → π
?ϕ1; ?ϕ2 → ?(ϕ1 ∧ ϕ2) ?>;π → π
π; ?> → π ?⊥;π → ?⊥
π; ?⊥ → ?⊥ ©[] → ?>
©[π] → π (?ϕ)∗ → ?>
(?ϕ ∪ π)∗ → π∗ (π∪?ϕ)∗ → π∗

π∗∗ → π∗,

and the k +m+ n-ary rewriting steps⋃
[π1, . . . , πk,

⋃
[πk+1, . . . , πk+m], πk+m+1, . . . , πk+m+n]

→
⋃

[π1, . . . , πk+m+n]

and

© [π1, . . . , πk,©[πk+1, . . . , πk+m], πk+m+1, . . . , πk+m+n]
→ ©[π1, . . . , πk+m+n].

Simplifying unions by splitting up in test part, accessibility part and rest:
splitU :: [Program] -> ([Form],[Agent],[Program])

splitU [] = ([],[],[])

splitU (Test f: ps) = (f:fs,ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Ag x: ps) = (fs,union [x] ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Ags xs: ps) = (fs,union xs ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Sum ps: ps’) = splitU (union ps ps’)

splitU (p:ps) = (fs,ags,p:prs)

where (fs,ags,prs) = splitU ps

Simplifying compositions:
comprC :: [Program] -> [Program]

comprC [] = []

comprC (Test Top: ps) = comprC ps

comprC (Test (Neg Top):ps) = [Test (Neg Top)]

comprC (Test f: Test f’: rest) = comprC (Test (canonF (Conj [f,f’])):

rest)

comprC (Conc ps : ps’) = comprC (ps ++ ps’)

comprC (p:ps) = let ps’ = comprC ps

in if ps’ == [Test (Neg Top)]

then [Test (Neg Top)] else p: ps’

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

330 J. van Eijck

Use this in the code for program simplification:

simpl :: Program -> Program

simpl (Ag x) = Ag x

simpl (Ags []) = Test (Neg Top)

simpl (Ags [x]) = Ag x

simpl (Ags xs) = Ags xs

simpl (Test f) = Test (canonF f)

Simplifying unions:

simpl (Sum prs) =

let (fs,xs,rest) = splitU (map simpl prs)

f = canonF (Disj fs)

in

if xs == [] && rest == [] then Test f

else if xs == [] && f == Neg Top && length rest == 1

then (head rest)

else if xs == [] && f == Neg Top then Sum rest

else if xs == []

then Sum (Test f: rest)

else if length xs == 1 && f == Neg Top

then Sum (Ag (head xs): rest)

else if length xs == 1 then Sum (Test f: Ag (head xs): rest)

else if f == Neg Top then Sum (Ags xs: rest)

else Sum (Test f: Ags xs: rest)

Simplifying sequential compositions:

simpl (Conc prs) =

let prs’ = comprC (map simpl prs)

in

if prs’== [] then Test Top

else if length prs’ == 1 then head prs’

else if head prs’ == Test Top then Conc (tail prs’)

else Conc prs’

Simplifying stars:

simpl (Star pr) = case simpl pr of

Test f -> Test Top

Sum [Test f, pr’] -> Star pr’

Sum (Test f: prs’) -> Star (Sum prs’)

Star pr’ -> Star pr’

pr’ -> Star pr’

Property of being a purely propositional formula:

pureProp :: Form -> Bool

pureProp Top = True

pureProp (Prop _) = True

pureProp (Neg f) = pureProp f

pureProp (Conj fs) = and (map pureProp fs)

pureProp (Disj fs) = and (map pureProp fs)

pureProp _ = False

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

DEMO — A Demo of Epistemic Modelling 331

Some example formulas and formula-forming operators:

bot, p0, p, p1, p2, p3, p4, p5, p6 :: Form

bot = Neg Top

p0 = Prop (P 0); p = p0; p1 = Prop (P 1); p2 = Prop (P 2)

p3 = Prop (P 3); p4 = Prop (P 4); p5 = Prop (P 5); p6 = Prop (P 6)

q0, q, q1, q2, q3, q4, q5, q6 :: Form

q0 = Prop (Q 0); q = q0; q1 = Prop (Q 1); q2 = Prop (Q 2);

q3 = Prop (Q 3); q4 = Prop (Q 4); q5 = Prop (Q 5); q6 = Prop (Q 6)

r0, r, r1, r2, r3, r4, r5, r6:: Form

r0 = Prop (R 0); r = r0; r1 = Prop (R 1); r2 = Prop (R 2)

r3 = Prop (R 3); r4 = Prop (R 4); r5 = Prop (R 5); r6 = Prop (R 6)

u = Up :: AM -> Form -> Form

nkap = Neg (K a p)

nkanp = Neg (K a (Neg p))

nka_p = Conj [nkap,nkanp]

7.2 Reducing formulas to canonical form
For computing bisimulations, it is useful to have some notion of equiva-
lence (however crude) for the logical language. For this, we reduce formulas
to a canonical form. We will derive canonical forms that are unique up
to propositional equivalence, employing a propositional reasoning engine.
This is still rather crude, for any modal formula will be treated as a propo-
sitional literal. The DPLL (Davis, Putnam, Logemann, Loveland) engine
expects clauses represented as lists of integers, so we first have to translate
to this format. This translation should start with computing a mapping
from positive literals to integers. For the non-propositional operators we
use a little bootstrapping, by putting the formula inside the operator in
canonical form, using the function canonF to be defined below. Also, since
the non-propositional operators all behave as Box modalities, we can reduce
2> to >:

mapping :: Form -> [(Form,Integer)]

mapping f = zip lits [1..k]

where

lits = (sort . nub . collect) f

k = toInteger (length lits)

collect :: Form -> [Form]

collect Top = []

collect (Prop p) = [Prop p]

collect (Neg f) = collect f

collect (Conj fs) = concat (map collect fs)

collect (Disj fs) = concat (map collect fs)

collect (Pr pr f) = if canonF f == Top

then [] else [Pr pr (canonF f)]

collect (K ag f) = if canonF f == Top

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

332 J. van Eijck

then [] else [K ag (canonF f)]

collect (EK ags f) = if canonF f == Top

then [] else [EK ags (canonF f)]

collect (CK ags f) = if canonF f == Top

then [] else [CK ags (canonF f)]

collect (Up pam f) = if canonF f == Top

then [] else [Up pam (canonF f)]

The following code corresponds to putting in clausal form, given a map-
ping for the literals, and using bootstrapping for formulas in the scope of a
non-propositional operator. Note that 2> is reduced to >, and ¬2> to ⊥.

cf :: (Form -> Integer) -> Form ->

[[Integer]]

cf g (Top) = []

cf g (Prop p) = [[g (Prop p)]]

cf g (Pr pr f) = if canonF f == Top then []

else [[g (Pr pr (canonF f))]]

cf g (K ag f) = if canonF f == Top then []

else [[g (K ag (canonF f))]]

cf g (EK ags f) = if canonF f == Top then []

else [[g (EK ags (canonF f))]]

cf g (CK ags f) = if canonF f == Top then []

else [[g (CK ags (canonF f))]]

cf g (Up am f) = if canonF f == Top then []

else [[g (Up am (canonF f))]]

cf g (Conj fs) = concat (map (cf g) fs)

cf g (Disj fs) = deMorgan (map (cf g) fs)

Negated formulas:
cf g (Neg Top) = [[]]

cf g (Neg (Prop p)) = [[- g (Prop p)]]

cf g (Neg (Pr pr f)) = if canonF f == Top then [[]]

else [[- g (Pr pr (canonF f))]]

cf g (Neg (K ag f)) = if canonF f == Top then [[]]

else [[- g (K ag (canonF f))]]

cf g (Neg (EK ags f)) = if canonF f == Top then [[]]

else [[- g (EK ags (canonF f))]]

cf g (Neg (CK ags f)) = if canonF f == Top then [[]]

else [[- g (CK ags (canonF f))]]

cf g (Neg (Up am f)) = if canonF f == Top then [[]]

else [[- g (Up am (canonF f))]]

cf g (Neg (Conj fs)) = deMorgan (map (\ f -> cf g (Neg f)) fs)

cf g (Neg (Disj fs)) = concat (map (\ f -> cf g (Neg f)) fs)

cf g (Neg (Neg f)) = cf g f

In order to explain the function deMorgan, we recall De Morgan’s disjunction
distribution which is the logical equivalence of the following expressions:

ϕ ∨ (ψ1 ∧ · · · ∧ ψn) ↔ (ϕ ∨ ψ1) ∧ · · · ∧ (ϕ ∨ ψn).

Now the following is the code for De Morgan’s disjunction distribution (for
the case of a disjunction of a list of clause sets):

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

DEMO — A Demo of Epistemic Modelling 333

deMorgan :: [[[Integer]]] -> [[Integer]]

deMorgan [] = [[]]

deMorgan [cls] = cls

deMorgan (cls:clss) = deMorg cls (deMorgan clss)

where

deMorg :: [[Integer]] -> [[Integer]] -> [[Integer]]

deMorg cls1 cls2 = (nub . concat) [deM cl cls2 | cl <- cls1]

deM :: [Integer] -> [[Integer]] -> [[Integer]]

deM cl cls = map (fuseLists cl) cls

Function fuseLists keeps the literals in the clauses ordered.

fuseLists :: [Integer] -> [Integer] -> [Integer]

fuseLists [] ys = ys

fuseLists xs [] = xs

fuseLists (x:xs) (y:ys) | abs x < abs y = x:(fuseLists xs (y:ys))

| abs x == abs y = if x == y

then x:(fuseLists xs ys)

else if x > y

then x:y:(fuseLists xs ys)

else y:x:(fuseLists xs ys)

| abs x > abs y = y:(fuseLists (x:xs) ys)

Given a mapping for the positive literals, the satisfying valuations of a
formula can be collected from the output of the DPLL process. Here dp is
the function imported from the module DPLL.

satVals :: [(Form,Integer)] -> Form -> [[Integer]]

satVals t f = (map fst . dp) (cf (table2fct t) f)

Two formulas are propositionally equivalent if they have the same sets
of satisfying valuations, computed on the basis of a literal mapping for their
conjunction:

propEquiv :: Form -> Form -> Bool

propEquiv f1 f2 = satVals g f1 == satVals g f2

where g = mapping (Conj [f1,f2])

A formula is a (propositional) contradiction if it is propositionally equiv-
alent to Neg Top, or equivalently, to Disj []:

contrad :: Form -> Bool

contrad f = propEquiv f (Disj [])

A formula is (propositionally) consistent if it is not a propositional contra-
diction:

consistent :: Form -> Bool

consistent = not . contrad

Use the set of satisfying valuations to derive a canonical form:

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

334 J. van Eijck

canonF :: Form -> Form

canonF f = if (contrad (Neg f))

then Top

else if fs == []

then Neg Top

else if length fs == 1

then head fs

else Disj fs

where g = mapping f

nss = satVals g f

g’ = \ i -> head [form | (form,j) <- g, i == j]

h = \ i -> if i < 0 then Neg (g’ (abs i)) else g’ i

h’ = \ xs -> map h xs

k = \ xs -> if xs == []

then Top

else if length xs == 1

then head xs

else Conj xs

fs = map k (map h’ nss)

This gives:

ActEpist> canonF p

p

ActEpist> canonF (Conj [p,Top])

p

ActEpist> canonF (Conj [p,q,Neg r])

&[p,q,-r]

ActEpist> canonF (Neg (Disj [p,(Neg p)]))

-T

ActEpist> canonF (Disj [p,q,Neg r])

v[p,&[-p,q],&[-p,-q,-r]]

ActEpist> canonF (K a (Disj [p,q,Neg r]))

[a]v[p,&[-p,q],&[-p,-q,-r]]

ActEpist> canonF (Conj [p, Conj [q,Neg r]])

&[p,q,-r]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Disj []))]])

v[&[p,q],&[p,-q,-[a]-T]]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Conj []))]])

&[p,q]

7.3 Action models and epistemic models
Action models and epistemic models are built from states. We assume states
are represented by integers:

type State = Integer

Epistemic models are models where the states are of type State, and
the precondition function assigns lists of basic propositions (this specializes
the precondition function to a valuation).

type EM = Model State [Prop]

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

DEMO — A Demo of Epistemic Modelling 335

Find the valuation of an epistemic model:

valuation :: EM -> [(State,[Prop])]

valuation = eval

Action models are models where the states are of type State, and the
precondition function assigns objects of type Form. The only difference
between an action model and a static model is in the fact that action models
have a precondition function that assigns a formula instead of a set of basic
propositions.

type AM = Model State Form

The preconditions of an action model:

preconditions :: AM -> [Form]

preconditions (Mo states pre ags acc points) =

map (table2fct pre) points

Sometimes we need a single precondition:

precondition :: AM -> Form

precondition am = canonF (Conj (preconditions am))

The zero action model 0:

zero :: [Agent] -> AM

zero ags = (Mo [] [] ags [] [])

The purpose of action models is to define relations on the class of all
static models. States with precondition ⊥ can be pruned from an action
model. For this we define a specialized version of the gsm function:

gsmAM :: AM -> AM

gsmAM (Mo states pre ags acc points) =

let

points’ = [p | p <- points, consistent (table2fct pre p)]

states’ = [s | s <- states, consistent (table2fct pre s)]

pre’ = filter (\ (x,_) -> elem x states’) pre

f = \ (_,s,t) -> elem s states’ && elem t states’

acc’ = filter f acc

in

if points’ == []

then zero ags

else gsm (Mo states’ pre’ ags acc’ points’)

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

336 J. van Eijck

7.4 Program transformation
For every action model A with states s0, . . . , sn−1 we define a set of n2

program transformers TA
i,j (0 ≤ i < n, 0 ≤ j < n), as follows [vE104b]:

TA
ij (a) =

{
?pre(si); a if si

a→ sj ,

?⊥ otherwise

TA
ij (?ϕ) =

{
?(pre(si) ∧ [A, si]ϕ) if i = j,

?⊥ otherwise

TA
ij (π1;π2) =

n−1⋃
k=0

(TA
ik(π1);TA

kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2)

TA
ij (π∗) = KA

ijn(π)

where KA
ijk(π) is a (transformed) program for all the π∗ paths from si to sj

that can be traced through A while avoiding a pass through intermediate
states sk and higher. Thus, KA

ijn(π) is a program for all the π∗ paths from
si to sj that can be traced through A, period.

KA
ijk(π) is defined by recursing on k, as follows:

KA
ij0(π) =

{
?> ∪ TA

ij (π) if i = j,

TA
ij (π) otherwise

KA
ij(k+1)(π) =


(KA

kkk(π))∗ if i = k = j,

(KA
kkk(π))∗;KA

kjk(π) if i = k 6= j,

KA
ikk(π); (KA

kkk(π))∗ if i 6= k = j,

KA
ijk(π) ∪ (KA

ikk(π); (KA
kkk(π))∗;KA

kjk(π)) otherwise.

Lemma 7.1 (Kleene Path). Suppose (w,w′) ∈ [[TA
ij (π)]]M iff there is a π

path from (w, si) to (w′, sj) in M⊗A. Then (w,w′) ∈ [[KA
ijn(π)]]M iff there

is a π∗ path from (w, si) to (w′, sj) in M⊗A.

The Kleene path lemma is the key ingredient in the proof of the following
program transformation lemma.

Lemma 7.2 (Program Transformation). Assume A has n states s0, . . . ,
sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj]ϕ.

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

DEMO — A Demo of Epistemic Modelling 337

The implementation of the program transformation functions is given here:

transf :: AM -> Integer -> Integer -> Program -> Program

transf am@(Mo states pre allAgs acc points) i j (Ag ag) =

let

f = table2fct pre i

in

if elem (ag,i,j) acc && f == Top then Ag ag

else if elem (ag,i,j) acc && f /= Neg Top then Conc [Test f, Ag ag]

else Test (Neg Top)

transf am@(Mo states pre allAgs acc points) i j (Ags ags) =

let ags’ = nub [a | (a,k,m) <- acc, elem a ags, k == i, m == j]

ags1 = intersect ags ags’

f = table2fct pre i

in

if ags1 == [] || f == Neg Top then Test (Neg Top)

else if f == Top && length ags1 == 1 then Ag (head ags1)

else if f == Top then Ags ags1

else Conc [Test f, Ags ags1]

transf am@(Mo states pre allAgs acc points) i j (Test f) =

let

g = table2fct pre i

in

if i == j

then Test (Conj [g,(Up am f)])

else Test (Neg Top)

transf am@(Mo states pre allAgs acc points) i j (Conc []) =

transf am i j (Test Top)

transf am@(Mo states pre allAgs acc points) i j (Conc [p]) =

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Conc (p:ps)) =

Sum [Conc [transf am i k p, transf am k j (Conc ps)] | k <- [0..n]]

where n = toInteger (length states - 1)

transf am@(Mo states pre allAgs acc points) i j (Sum []) =

transf am i j (Test (Neg Top))

transf am@(Mo states pre allAgs acc points) i j (Sum [p]) =

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Sum ps) =

Sum [transf am i j p | p <- ps]

transf am@(Mo states pre allAgs acc points) i j (Star p) =

kleene am i j n p

where n = toInteger (length states)

The following is the implementation of KA
ijk:

kleene :: AM -> Integer -> Integer -> Integer -> Program -> Program

kleene am i j 0 pr =

if i == j

then Sum [Test Top, transf am i j pr]

else transf am i j pr

kleene am i j k pr

| i == j && j == pred k = Star (kleene am i i i pr)

| i == pred k =

Conc [Star (kleene am i i i pr), kleene am i j i pr]

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

338 J. van Eijck

| j == pred k =

Conc [kleene am i j j pr, Star (kleene am j j j pr)]

| otherwise =

Sum [kleene am i j k’ pr,

Conc [kleene am i k’ k’ pr,

Star (kleene am k’ k’ k’ pr), kleene am k’ j k’ pr]]

where k’ = pred k

Transformation plus simplification:

tfm :: AM -> Integer -> Integer -> Program -> Program

tfm am i j pr = simpl (transf am i j pr)

The program transformations can be used to translate Update PDL to PDL,
as follows:

t(>) = > t(p) = p
t(¬ϕ) = ¬t(ϕ) t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)
t([π]ϕ) = [r(π)]t(ϕ) t([A, s]>) = >

t([A, s]p) = t(pre(s)) → p
t([A, s]¬ϕ) = t(pre(s)) → ¬t([A, s]ϕ)

t([A, s](ϕ1 ∧ ϕ2)) = t([A, s]ϕ1) ∧ t([A, s]ϕ2)
t([A, si][π]ϕ) =

∧n−1
j=0 [TA

ij (r(π))]t([A, sj]ϕ)
t([A, s][A′, s′]ϕ) = t([A, s]t([A′, s′]ϕ))

t([A,S]ϕ) =
∧

s∈S t[A, s]ϕ)

r(a) = a r(B) = B
r(?ϕ) = ?t(ϕ) r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2) r(π∗) = (r(π))∗.

The correctness of this translation follows from direct semantic inspec-
tion, using the program transformation lemma for the translation of formu-
las of type [A, si][π]ϕ.

The crucial clauses in this translation procedure are those for formulas
of the forms [A,S]ϕ and [A, s]ϕ, and more in particular the one for formulas
of the form [A, s][π]ϕ. It makes sense to give separate functions for the steps
that pull the update model through program π given formula ϕ.

step0, step1 :: AM -> Program -> Form -> Form

step0 am@(Mo states pre allAgs acc []) pr f = Top

step0 am@(Mo states pre allAgs acc [i]) pr f = step1 am pr f

step0 am@(Mo states pre allAgs acc is) pr f =

Conj [step1 (Mo states pre allAgs acc [i]) pr f | i <- is]

step1 am@(Mo states pre allAgs acc [i]) pr f =

Conj [Pr (transf am i j (rpr pr))

(Up (Mo states pre allAgs acc [j]) f) | j <- states]

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

DEMO — A Demo of Epistemic Modelling 339

Perform a single step, and put in canonical form:

step :: AM -> Program -> Form -> Form

step am pr f = canonF (step0 am pr f)

t :: Form -> Form

t Top = Top

t (Prop p) = Prop p

t (Neg f) = Neg (t f)

t (Conj fs) = Conj (map t fs)

t (Disj fs) = Disj (map t fs)

t (Pr pr f) = Pr (rpr pr) (t f)

t (K x f) = Pr (Ag x) (t f)

t (EK xs f) = Pr (Ags xs) (t f)

t (CK xs f) = Pr (Star (Ags xs)) (t f)

Translations of formulas starting with an action model update:

t (Up am@(Mo states pre allAgs acc [i]) f) = t’ am f

t (Up am@(Mo states pre allAgs acc is) f) =

Conj [t’ (Mo states pre allAgs acc [i]) f | i <- is]

Translations of formulas starting with a single pointed action model update
are performed by t’:

t’ :: AM -> Form -> Form

t’ am Top = Top

t’ am (Prop p) = impl (precondition am) (Prop p)

t’ am (Neg f) = Neg (t’ am f)

t’ am (Conj fs) = Conj (map (t’ am) fs)

t’ am (Disj fs) = Disj (map (t’ am) fs)

t’ am (K x f) = t’ am (Pr (Ag x) f)

t’ am (EK xs f) = t’ am (Pr (Ags xs) f)

t’ am (CK xs f) = t’ am (Pr (Star (Ags xs)) f)

t’ am (Up am’f) = t’ am (t (Up am’ f))

The crucial case is an update action having scope over a program. We may
assume that the update action is single pointed.

t’ am@(Mo states pre allAgs acc [i]) (Pr pr f) =

Conj [Pr (transf am i j (rpr pr))

(t’ (Mo states pre allAgs acc [j]) f) | j <- states]

t’ am@(Mo states pre allAgs acc is) (Pr pr f) =

error "action model not single pointed"

Translations for programs:

rpr :: Program -> Program

rpr (Ag x) = Ag x

rpr (Ags xs) = Ags xs

rpr (Test f) = Test (t f)

rpr (Conc ps) = Conc (map rpr ps)

rpr (Sum ps) = Sum (map rpr ps)

rpr (Star p) = Star (rpr p)

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

340 J. van Eijck

Translating and putting in canonical form:

tr :: Form -> Form

tr = canonF . t

Some example translations:

ActEpist> tr (Up (public p) (Pr (Star (Ags [b,c])) p))

T

ActEpist> tr (Up (public (Disj [p,q])) (Pr (Star (Ags [b,c])) p))

[(U[?T,C[?v[p,q],[b,c]]])*]v[p,&[-p,-q]]

ActEpist> tr (Up (groupM [a,b] p) (Pr (Star (Ags [b,c])) p))

[C[C[(U[?T,C[?p,[b,c]]])*,C[?p,[c]]],(U[U[?T,[b,c]],

C[c,(U[?T,C[?p,[b,c]]])*,C[?p,[c]]]])*]]p

ActEpist> tr (Up (secret [a,b] p) (Pr (Star (Ags [b,c])) p))

[C[C[(U[?T,C[?p,[b]]])*,C[?p,[c]]],(U[U[?T,[b,c]],

C[?-T,(U[?T,C[?p,[b]]])*,C[?p,[c]]]])*]]p

8 Semantics
module Semantics

where

import List

import Char

import Models

import Display

import MinBis

import ActEpist

import DPLL

8.1 Semantics implementation
The group alternatives of group of agents a are the states that are reachable
through

⋃
a∈ARa.

groupAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]

groupAlts rel agents current =

(nub . sort . concat) [alternatives rel a current | a <- agents]

The common knowledge alternatives of group of agents a are the states
that are reachable through a finite number of Ra links, for a ∈ A.

commonAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]

commonAlts rel agents current =

closure rel agents (groupAlts rel agents current)

The model update function takes a static model and and action model
and returns an object of type Model (State,State) [Prop]. The up func-
tion takes an epistemic model and an action model and returns an epistemic
model. Its states are the (State,State) pairs that result from the cartesian
product construction described in [Ba4Mo3So199]. Note that the update
function uses the truth definition (given below as isTrueAt).

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

DEMO — A Demo of Epistemic Modelling 341

We will set up matters in such way that updates with action models get
their list of agents from the epistemic model that gets updated. For this,
we define:

type FAM = [Agent] -> AM

up :: EM -> FAM -> Model (State,State) [Prop]

up m@(Mo worlds val ags acc points) fam =

Mo worlds’ val’ ags acc’ points’

where

am@(Mo states pre _ susp actuals) = fam ags

worlds’ = [(w,s) | w <- worlds, s <- states,

formula <- maybe [] (\ x -> [x]) (lookup s pre),

isTrueAt w m formula]

val’ = [((w,s),props) | (w,props) <- val,

s <- states,

elem (w,s) worlds’]

acc’ = [(ag1,(w1,s1),(w2,s2)) | (ag1,w1,w2) <- acc,

(ag2,s1,s2) <- susp,

ag1 == ag2,

elem (w1,s1) worlds’,

elem (w2,s2) worlds’]

points’ = [(p,a) | p <- points, a <- actuals,

elem (p,a) worlds’]

An action model is tiny if its action list is empty or a singleton list:

tiny :: FAM -> Bool

tiny fam = length actions <= 1

where actions = domain (fam [minBound..maxBound])

The appropriate notion of equivalence for the base case of the bisimulation
for epistemic models is “having the same valuation”.

sameVal :: [Prop] -> [Prop] -> Bool

sameVal ps qs = (nub . sort) ps == (nub . sort) qs

Bisimulation minimal version of generated submodel of update result for
epistemic model and pointed action models:

upd :: EM -> FAM -> EM

upd sm fam = if tiny fam then conv (up sm fam)

else bisim (sameVal) (up sm fam)

Non-deterministic update with a list of pointed action models:

upds :: EM -> [FAM] -> EM

upds = foldl upd

At last we have all ingredients for the truth definition.

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

342 J. van Eijck

isTrueAt :: State -> EM -> Form -> Bool

isTrueAt w m Top = True

isTrueAt w m@(Mo worlds val ags acc pts) (Prop p) =

elem p (concat [props | (w’,props) <- val, w’==w])

isTrueAt w m (Neg f) = not (isTrueAt w m f)

isTrueAt w m (Conj fs) = and (map (isTrueAt w m) fs)

isTrueAt w m (Disj fs) = or (map (isTrueAt w m) fs)

The clauses for individual knowledge, general knowledge and common
knowledge use the functions alternatives, groupAlts and commonAlts to
compute the relevant accessible worlds:

isTrueAt w m@(Mo worlds val ags acc pts) (K ag f) =

and (map (flip ((flip isTrueAt) m) f) (alternatives acc ag w))

isTrueAt w m@(Mo worlds val ags acc pts) (EK agents f) =

and (map (flip ((flip isTrueAt) m) f) (groupAlts acc agents w))

isTrueAt w m@(Mo worlds val ags acc pts) (CK agents f) =

and (map (flip ((flip isTrueAt) m) f) (commonAlts acc agents w))

In the clause for [M]ϕ, the result of updating the static model M with
action model M may be undefined, but in this case the precondition P (s0)
of the designated state s0 of M will fail in the designated world w0 of M . By
making the clause for [M]ϕ check for M |=w0 P (s0), truth can be defined
as a total function.

isTrueAt w m@(Mo worlds val ags rel pts) (Up am f) =

and [isTrue m’ f |

m’ <- decompose (upd (Mo worlds val ags rel [w]) (\ ags -> am))]

Checking for truth in all the designated points of an epistemic model:

isTrue :: EM -> Form -> Bool

isTrue (Mo worlds val ags rel pts) form =

and [isTrueAt w (Mo worlds val ags rel pts) form | w <- pts]

8.2 Tools for constructing epistemic models
The following function constructs an initial epistemic model where the
agents are completely ignorant about their situation, as described by a list
of basic propositions. The input is a list of basic propositions used for
constructing the valuations.

initE :: [Prop] -> [Agent] -> EM

initE allProps ags = (Mo worlds val ags accs points)

where

worlds = [0..(2^k - 1)]

k = length allProps

val = zip worlds (sortL (powerList allProps))

accs = [(ag,st1,st2) | ag <- ags,

st1 <- worlds,

st2 <- worlds]

points = worlds

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

DEMO — A Demo of Epistemic Modelling 343

This uses the following utilities:
powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

sortL :: Ord a => [[a]] -> [[a]]

sortL = sortBy (\ xs ys -> if length xs < length ys then LT

else if length xs > length ys then GT

else compare xs ys)

Some initial models:
e00 :: EM

e00 = initE [P 0] [a,b]

e0 :: EM

e0 = initE [P 0,Q 0] [a,b,c]

8.3 From communicative actions to action models
Computing the update for a public announcement:

public :: Form -> FAM

public form ags =

(Mo [0] [(0,form)] ags [(a,0,0) | a <- ags] [0])

Public announcements are S5 models:
DEMO> showM (public p [a,b,c])

==> [0]

[0]

(0,p)

(a,[[0]])

(b,[[0]])

(c,[[0]])

Computing the update for passing a group announcement to a list of
agents: the other agents may or may not be aware of what is going on. In
the limit case where the message is passed to all agents, the message is a
public announcement.

groupM :: [Agent] -> Form -> FAM

groupM gr form agents =

if sort gr == sort agents

then public form agents

else

(Mo

[0,1]

[(0,form),(1,Top)]

agents

([(a,0,0) | a <- agents]

++ [(a,0,1) | a <- agents \\ gr]

++ [(a,1,0) | a <- agents \\ gr]

++ [(a,1,1) | a <- agents])

[0])

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

344 J. van Eijck

Group announcements are S5 models:

Semantics> showM (groupM [a,b] p [a,b,c,d,e])

=> [0]

[0,1]

(0,p)(1,T)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0,1]])

(d,[[0,1]])

(e,[[0,1]])

Computing the update for an individual message to b that ϕ:

message :: Agent -> Form -> FAM

message agent = groupM [agent]

Another special case of a group message is a test. Tests are updates that
messages to the empty group:

test :: Form -> FAM

test = groupM []

Computing the update for passing a secret message to a list of agents:
the other agents remain unaware of the fact that something goes on. In the
limit case where the secret is divulged to all agents, the secret becomes a
public update.

secret :: [Agent] -> Form -> FAM

secret agents form all_agents =

if sort agents == sort all_agents

then public form agents

else

(Mo

[0,1]

[(0,form),(1,Top)]

all_agents

([(a,0,0) | a <- agents]

++ [(a,0,1) | a <- all_agents \\ agents]

++ [(a,1,1) | a <- all_agents])

[0])

Secret messages are KD45 models:

DEMO> showM (secret [a,b] p [a,b,c])

==> [0]

[0,1]

(0,p)(1,T)

(a,[([],[0]),([],[1])])

(b,[([],[0]),([],[1])])

(c,[([0],[1])])

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

DEMO — A Demo of Epistemic Modelling 345

Here is a multiple pointed action model for the communicative action of
revealing one of a number of alternatives to a list of agents, in such a way
that it is common knowledge that one of the alternatives gets revealed (in
[Ba4Mo3So103] this is called common knowledge of alternatives).

reveal :: [Agent] -> [Form] -> FAM

reveal ags forms all_agents =

(Mo

states

(zip states forms)

all_agents

([(ag,s,s) | s <- states, ag <- ags]

++

[(ag,s,s’) | s <- states, s’ <- states, ag <- others])

states)

where states = map fst (zip [0..] forms)

others = all_agents \\ ags

Here is an action model for the communication that reveals to a one of
p1, q1, r1.

Semantics> showM (reveal [a] [p1,q1,r1] [a,b])

==> [0,1,2]

[0,1,2]

(0,p1)(1,q1)(2,r1)

(a,[[0],[1],[2]])

(b,[[0,1,2]])

A group of agents B gets (transparently) informed about a formula ϕ
if B get to know ϕ when ϕ is true, and B get to know the negation of
ϕ otherwise. Transparency means that all other agents are aware of the
fact that B get informed about ϕ, i.e., the other agents learn that (ϕ →
CBϕ)∧(¬ϕ→ CB¬ϕ). This action model can be defined in terms of reveal,
as follows:

info :: [Agent] -> Form -> FAM

info agents form =

reveal agents [form, negation form]

An example application:
Semantics> showM (upd e0 (info [a,b] q))

==> [0,1,2,3]

[0,1,2,3]

(0,[])(1,[p])(2,[q])(3,[p,q])

(a,[[0,1],[2,3]])

(b,[[0,1],[2,3]])

(c,[[0,1,2,3]])

Semantics> isTrue (upd e0 (info [a,b] q)) (CK [a,b] q)

False

Semantics> isTrue (upd e0 (groupM [a,b] q)) (CK [a,b] q)

True

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

346 J. van Eijck

Slightly different is informing a set of agents about what is actually the case
with respect to formula ϕ:

infm :: EM -> [Agent] -> Form -> FAM

infm m ags f = if isTrue m f

then groupM ags f

else if isTrue m (Neg f)

then groupM ags (Neg f)

else one

And the corresponding thing for public announcement:

publ :: EM -> Form -> FAM

publ m f = if isTrue m f

then public f

else if isTrue m (Neg f)

then public (Neg f)

else one

8.4 Operations on action models
The trivial update action model is a special case of public announcement.
Call this the one action model, for it behaves as 1 for the operation ⊗ of
action model composition.

one :: FAM

one = public Top

Composition ⊗ of multiple pointed action models.

cmpP :: FAM -> FAM -> [Agent] -> Model (State,State) Form

cmpP fam1 fam2 ags =

(Mo nstates npre ags nsusp npoints)

where m@(Mo states pre _ susp ss) = fam1 ags

(Mo states’ pre’ _ susp’ ss’) = fam2 ags

npoints = [(s,s’) | s <- ss, s’ <- ss’]

nstates = [(s,s’) | s <- states, s’ <- states’]

npre = [((s,s’), g) | (s,f) <- pre,

(s’,f’) <- pre’,

g <- [computePre m f f’]]

nsusp = [(ag,(s1,s1’),(s2,s2’)) | (ag,s1,s2) <- susp,

(ag’,s1’,s2’) <- susp’,

ag == ag’]

The utility function for this can be described as follows: compute the
new precondition of a state pair. If the preconditions of the two states are
purely propositional, we know that the updates at the states commute and
that their combined precondition is the conjunction of the two preconditions,
provided this conjunction is not a contradiction. If one of the states has a
precondition that is not purely propositional, we have to take the epistemic
effect of the update into account in the new precondition.

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

DEMO — A Demo of Epistemic Modelling 347

computePre :: AM -> Form -> Form -> Form

computePre m g g’ | pureProp conj = conj

| otherwise = Conj [g, Neg (Up m (Neg g’))]

where conj = canonF (Conj [g,g’])

Compose pairs of multiple pointed action models, and reduce the result to
its simplest possible form under action emulation.

cmpFAM :: FAM -> FAM -> FAM

-- cmpFAM fam fam’ ags = aePmod (cmpP fam fam’ ags)

cmpFAM fam fam’ ags = conv (cmpP fam fam’ ags)

Use one as unit for composing lists of FAMs:

cmp :: [FAM] -> FAM

cmp = foldl cmpFAM one

Here is the result of composing two messages:

Semantics> showM (cmp [groupM [a,b] p, groupM [b,c] q] [a,b,c])

==> [0]

[0,1,2,3]

(0,&[p,q])(1,p)(2,q)(3,T)

(a,[[0,1],[2,3]])

(b,[[0],[1],[2],[3]])

(c,[[0,2],[1,3]])

This gives the resulting action model. Here is the result of composing the
messages in the reverse order. The two action models are bisimilar under
the renaming 1 7→ 2, 2 7→ 1.

==> [0]

[0,1,2,3]

(0,&[p,q])(1,q)(2,p)(3,T)

(a,[[0,2],[1,3]])

(b,[[0],[1],[2],[3]])

(c,[[0,1],[2,3]])

The following is an illustration of an observation from [vE104a]:

m2 = initE [P 0,Q 0] [a,b,c]

psi = Disj[Neg(K b p),q]

Semantics> showM (upds m2 [message a psi, message b p])

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[[0,1,2,3,4,5]])

(b,[[0,2,3,5],[1,4]])

(c,[[0,1,2,3,4,5]])

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

348 J. van Eijck

Semantics> showM (upds m2 [message b p, message a psi])

==> [7]

[0,1,2,3,4,5,6,7,8,9,10]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[q])(7,[p,q])(8,[p,q])(9,[p,q])

(10,[p,q])

(a,[[0,3,5,7,9],[1,2,4,6,8,10]])

(b,[[0,1,3,4,5,6,9,10],[2,7,8]])

(c,[[0,1,2,3,4,5,6,7,8,9,10]])

Power of action models:

pow :: Int -> FAM -> FAM

pow n fam = cmp (take n (repeat fam))

Non-deterministic sum ⊕ of multiple-pointed action models:

ndSum’ :: FAM -> FAM -> FAM

ndSum’ fam1 fam2 ags = (Mo states val ags acc ss)

where

(Mo states1 val1 _ acc1 ss1) = fam1 ags

(Mo states2 val2 _ acc2 ss2) = fam2 ags

f = \ x -> toInteger (length states1) + x

states2’ = map f states2

val2’ = map (\ (x,y) -> (f x, y)) val2

acc2’ = map (\ (x,y,z) -> (x, f y, f z)) acc2

ss = ss1 ++ map f ss2

states = states1 ++ states2’

val = val1 ++ val2’

acc = acc1 ++ acc2’

Example action models:

am0 = ndSum’ (test p) (test (Neg p)) [a,b,c]

am1 = ndSum’ (test p) (ndSum’ (test q) (test r)) [a,b,c]

Examples of minimization for action emulation:

Semantics> showM am0

==> [0,2]

[0,1,2,3]

(0,p)(1,T)(2,-p)(3,T)

(a,[([0],[1]),([2],[3])])

(b,[([0],[1]),([2],[3])])

(c,[([0],[1]),([2],[3])])

Semantics> showM (aePmod am0)

==> [0]

[0]

(0,T)

(a,[[0]])

(b,[[0]])

(c,[[0]])

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

DEMO — A Demo of Epistemic Modelling 349

Semantics> showM am1

==> [0,2,4]

[0,1,2,3,4,5]

(0,p)(1,T)(2,q)(3,T)(4,r)

(5,T)

(a,[([0],[1]),([2],[3]),([4],[5])])

(b,[([0],[1]),([2],[3]),([4],[5])])

(c,[([0],[1]),([2],[3]),([4],[5])])

Semantics> showM (aePmod am1)

==> [0]

[0,1]

(0,v[p,&[-p,q],&[-p,-q,r]])(1,T)

(a,[([0],[1])])

(b,[([0],[1])])

(c,[([0],[1])])

Non-deterministic sum ⊕ of multiple-pointed action models, reduced for
action emulation:

ndSum :: FAM -> FAM -> FAM

ndSum fam1 fam2 ags = (ndSum’ fam1 fam2) ags

Notice the difference with the definition of alternative composition of Kripke
models for processes given in [Ho398, Ch 4]. The zero action model is the
0 for the ⊕ operation, so it can be used as the base case in the following list
version of the ⊕ operation:

ndS :: [FAM] -> FAM

ndS = foldl ndSum zero

Performing a test whether ϕ and announcing the result:

testAnnounce :: Form -> FAM

testAnnounce form = ndS [cmp [test form, public form],

cmp [test (negation form),

public (negation form)]]

testAnnounce form is equivalent to info all_agents form:

Semantics> showM (testAnnounce p [a,b,c])

==> [0,1]

[0,1]

(0,p)(1,-p)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0],[1]])

Semantics> showM (info [a,b,c] p [a,b,c])

==> [0,1]

[0,1]

(0,p)(1,-p)

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

350 J. van Eijck

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0],[1]])

The function testAnnounce gives the special case of revelations where
the alternatives are a formula and its negation, and where the result is
publicly announced.
Note that DEMO correctly computes the result of the sequence and the
sum of two contradictory propositional tests:

Semantics> showM (cmp [test p, test (Neg p)] [a,b,c])

==> []

[]

(a,[])

(b,[])

(c,[])

Semantics> showM (ndS [test p, test (Neg p)] [a,b,c])

==> [0]

[0]

(0,T)

(a,[[0]])

(b,[[0]])

(c,[[0]])

9 Examples

9.1 The riddle of the caps
Picture a situation3 of four people a, b, c, d standing in line, with a, b, c
looking to the left, and d looking to the right. a can see no-one else; b can
see a; c can see a and b, and d can see no-one else. They are all wearing
caps, and they cannot see their own cap. If it is common knowledge that
there are two white and two black caps, then in the situation depicted in
Figure 4, c knows what colour cap she is wearing.

If c now announces that she knows the colour of her cap (without re-
vealing the colour), b can infer from this that he is wearing a white cap, for
b can reason as follows: “c knows her colour, so she must see two caps of
the same colour. The cap I can see is white, so my own cap must be white
as well.” In this situation b draws a conclusion from the fact that c knows
her colour.

In the situation depicted in Figure 5, b can draw a conclusion from the
fact that c does not know her colour.

In this case c announces that she does not know her colour, and b can
infer from this that he is wearing a black cap, for b can reason as follows:
3 See [vE1Or05].

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

DEMO — A Demo of Epistemic Modelling 351

Figure 4.

“c does not know her colour, so she must see two caps of different colours
in front of her. The cap I can see is white, so my own cap must be black.”

To account for this kind of reasoning, we use model checking for epis-
temic updating, as follows. Proposition pi expresses the fact that the i-th
cap, counting from the left, is white. Thus, the facts of our first example
situation are given by p1 ∧ p2 ∧¬p3 ∧¬p4, and those of our second example
by p1 ∧ ¬p2 ∧ ¬p3 ∧ p4.
Here is the DEMO code for this example (details to be explained below):

module Caps where

import DEMO

capsInfo :: Form capsInfo = Disj [Conj [f, g, Neg h, Neg j] |

f <- [p1, p2, p3, p4],

g <- [p1, p2, p3, p4] \\ [f],

h <- [p1, p2, p3, p4] \\ [f,g],

j <- [p1, p2, p3, p4] \\ [f,g,h],

f < g, h < j]

awarenessFirstCap = info [b,c] p1 awarenessSecondCap = info [c]

p2

cK = Disj [K c p3, K c (Neg p3)]

bK = Disj [K b p2, K b (Neg p2)]

mo0 = upd (initE [P 1, P 2, P 3, P 4] [a,b,c,d]) (test capsInfo)

mo1 = upd mo0 (public capsInfo)

mo2 = upds mo1 [awarenessFirstCap, awarenessSecondCap]

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

352 J. van Eijck

Figure 5.

mo3a = upd mo2 (public cK)

mo3b = upd mo2 (public (Neg cK))

An initial situation with four agents a, b, c, d and four propositions p1,
p2, p3, p4, with exactly two of these true, where no-one knows anything
about the truth of the propositions, and everyone is aware of the ignorance
of the others, is modelled like this:

Caps> showM mo0

==> [5,6,7,8,9,10]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(d,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

The first line indicates that worlds 5, 6, 7, 8, 9, 10 are compatible with the
facts of the matter (the facts being that there are two white and two black
caps). E.g., 5 is the world where a and b are wearing the white caps. The
second line lists all the possible worlds; there are 24 of them, since every
world has a different valuation. The third through sixth lines give the valu-
ations of worlds. The last four lines represent the accessibility relations for
the agents. All accessibilities are total relations, and they are represented
here as the corresponding partitions on the set of worlds. Thus, the igno-

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

DEMO — A Demo of Epistemic Modelling 353

rance of the agents is reflected in the fact that for all of them all worlds are
equivalent: none of the agents can tell any of them apart.

The information that two of the caps are white and two are black is
expressed by the formula

(p1 ∧ p2 ∧ ¬p3 ∧ ¬p4) ∨ (p1 ∧ p3 ∧ ¬p2 ∧ ¬p4) ∨ (p1 ∧ p4 ∧ ¬p2 ∧ ¬p3)
∨ (p2 ∧ p3 ∧ ¬p1 ∧ ¬p4) ∨ (p2 ∧ p4 ∧ ¬p1 ∧ ¬p3) ∨ (p3 ∧ p4 ∧ ¬p1 ∧ ¬p2).

A public announcement with this information has the following effect:

Caps> showM (upd mo0 (public capsInfo))

==> [0,1,2,3,4,5]

[0,1,2,3,4,5]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])

(a,[[0,1,2,3,4,5]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

(d,[[0,1,2,3,4,5]])

Let this model be called mo1. The representation above gives the partitions
for all the agents, showing that nobody knows anything. A perhaps more
familiar representation for this multi-agent Kripke model is given in Figure
6. In this picture, all worlds are connected for all agents, all worlds are
compatible with the facts of the matter (indicated by the double ovals).

Next, we model the fact that (everyone is aware that) b can see the first
cap and that c can see the first and the second cap, as follows:

Caps> showM (upds mo1 [info [b,c] p1, info [c] p2])

==> [0,1,2,3,4,5]

[0,1,2,3,4,5]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])

(a,[[0,1,2,3,4,5]])

(b,[[0,1,2],[3,4,5]])

(c,[[0],[1,2],[3,4],[5]])

(d,[[0,1,2,3,4,5]])

Notice that this model reveals that in case a, b wear caps of the same colour
(situations 0 and 5), c knows the colour of all the caps, and in case a, b wear
caps of different colours, she does not (she confuses the cases 1, 2 and the
cases 3, 4). Figure 7 gives a picture representation.

Let this model be called mo2. Knowledge of c about her situation is
expressed by the epistemic formula Kcp3 ∨ Kc¬p3, ignorance of c about
her situation by the negation of this formula. Knowledge of b about his
situation is expresed by Kbp2 ∨ Kb¬p2. Let bK, cK express that b, c know
about their situation. Then updating with public announcement of cK and
with public announcement of the negation of this have different effects:

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

354 J. van Eijck

0:[p1,p2]

1:[p1,p3]

abcd

2:[p1,p4]

abcd

3:[p2,p3]

abcd

4:[p2,p4]

abcd

5:[p3,p4]

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcdabcd

abcd

abcd

Figure 6. Caps situation where nobody knows anything about
p1, p2, p3, p4.

Caps> showM (upd mo2 (public cK))

==> [0,1]

[0,1]

(0,[p1,p2])(1,[p3,p4])

(a,[[0,1]])

(b,[[0],[1]])

(c,[[0],[1]])

(d,[[0,1]])

Caps> showM (upd mo2 (public (Neg cK)))

==> [0,1,2,3]

[0,1,2,3]

(0,[p1,p3])(1,[p1,p4])(2,[p2,p3])(3,[p2,p4])

(a,[[0,1,2,3]])

(b,[[0,1],[2,3]])

(c,[[0,1],[2,3]])

(d,[[0,1,2,3]])

In both results, b knows about his situation, though:

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

DEMO — A Demo of Epistemic Modelling 355

0:[p1,p2]

1:[p1,p3]

abd

2:[p1,p4]

abd

3:[p2,p3]

ad

4:[p2,p4]

ad

5:[p3,p4]

ad

abcd

ad

ad

ad

ad

ad

adabcd

abd

abd

Figure 7. Caps situation after updating with awareness of what b and c
can see.

Caps> isTrue (upd mo2 (public cK)) bK

True

Caps> isTrue (upd mo2 (public (Neg cK))) bK

True

9.2 Muddy children
For this example we need four agents a, b, c, d. Four children a, b, c, d are
sitting in a circle. They have been playing outside, and they may or may
not have mud on their foreheads. Their father announces: “At least one
child is muddy!” Suppose in the actual situation, both c and d are muddy.

a b c d
◦ ◦ • •

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

356 J. van Eijck

Then at first, nobody knows whether he is muddy or not. After public
announcement of these facts, c(d) can reason as follows. “Suppose I am
clean. Then d(c) would have known in the first round that she was dirty.
But she didn’t. So I am muddy.” After c, d announce that they know
their state, a(b) can reason as follows: “Suppose I am dirty. Then c and d
would not have known in the second round that they were dirty. But they
knew. So I am clean.” Note that the reasoning involves awareness about
perception.

In the actual situation where b, c, d are dirty, we get:

a b c d
◦ • • •
? ? ? ?
? ? ? ?
? ! ! !
! ! ! !

Reasoning of b: “Suppose I am clean. Then c and d would have known
in the second round that they are dirty. But they didn’t know. So I am
dirty. Similarly for c and d.” Reasoning of a: “Suppose I am dirty. Then b,
c and d would not have known their situation in the third round. But they
did know. So I am clean.” And so on . . . [Fa+95].
Here is the DEMO implementation of the second case of this example, with
b, c, d dirty.

module Muddy where

import DEMO

bcd_dirty = Conj [Neg p1, p2, p3, p4]

awareness = [info [b,c,d] p1,

info [a,c,d] p2,

info [a,b,d] p3,

info [a,b,c] p4]

aK = Disj [K a p1, K a (Neg p1)]

bK = Disj [K b p2, K b (Neg p2)]

cK = Disj [K c p3, K c (Neg p3)]

dK = Disj [K d p4, K d (Neg p4)]

mu0 = upd (initE [P 1, P 2, P 3, P 4] [a,b,c,d]) (test bcd_dirty)

mu1 = upds mu0 awareness

mu2 = upd mu1 (public (Disj [p1, p2, p3, p4]))

mu3 = upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))

mu4 = upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))

mu5 = upds mu4 [public (Conj[bK, cK, dK])]

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

DEMO — A Demo of Epistemic Modelling 357

The initial situation, where nobody knows anything, and they are all
aware of the common ignorance (say, all children have their eyes closed, and
they all know this) looks like this:

Muddy> showM mu0

==> [14]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(d,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

The awareness of the children about the mud on the foreheads of the others
is expressed in terms of update models.
Here is the update model that expresses that b, c, d can see whether a is
muddy or not:

Muddy> showM (info [b,c,d] p1)

==> [0,1]

[0,1]

(0,p1)(1,-p1)

(a,[[0,1]])

(b,[[0],[1]])

(c,[[0],[1]])

(d,[[0],[1]])

Let awareness be the list of update models expressing what happens when
they all open their eyes and see the foreheads of the others. Then updating
with this has the following result:

Muddy> showM (upds mu0 awareness)

==> [14]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1],[2,5],[3,6],[4,7],[8,11],[9,12],[10,13],[14,15]])

(b,[[0,2],[1,5],[3,8],[4,9],[6,11],[7,12],[10,14],[13,15]])

(c,[[0,3],[1,6],[2,8],[4,10],[5,11],[7,13],[9,14],[12,15]])

(d,[[0,4],[1,7],[2,9],[3,10],[5,12],[6,13],[8,14],[11,15]])

Call the result mu1. An update of mu1 with the public announcement that
at least one child is muddy gives:

Muddy> showM (upd mu1 (public (Disj [p1, p2, p3, p4])))

==> [13]

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

358 J. van Eijck

0:[p1]

4:[p1,p2]

b

5:[p1,p3]

c

6:[p1,p4]

d

1:[p2]

a

7:[p2,p3]

c

8:[p2,p4]

d

2:[p3]

a b

9:[p3,p4]

d

3:[p4]

a bc

10:[p1,p2,p3]

c

11:[p1,p2,p4]

d b

12:[p1,p3,p4]

d bc a

13:[p2,p3,p4]

da ca b

14:[p1,p2,p3,p4]

dcb a

Figure 8.

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]

(0,[p1])(1,[p2])(2,[p3])(3,[p4])(4,[p1,p2])

(5,[p1,p3])(6,[p1,p4])(7,[p2,p3])(8,[p2,p4])(9,[p3,p4])

(10,[p1,p2,p3])(11,[p1,p2,p4])(12,[p1,p3,p4])(13,[p2,p3,p4])

(14,[p1,p2,p3,p4])

(a,[[0],[1,4],[2,5],[3,6],[7,10],[8,11],[9,12],[13,14]])

(b,[[0,4],[1],[2,7],[3,8],[5,10],[6,11],[9,13],[12,14]])

(c,[[0,5],[1,7],[2],[3,9],[4,10],[6,12],[8,13],[11,14]])

(d,[[0,6],[1,8],[2,9],[3],[4,11],[5,12],[7,13],[10,14]])

Figure 8 represents this situation where the double oval indicates the actual
world). Call this model mu2, and use aK, bK,cK, dK for the formulas express-
ing that a, b, c, d know whether they are muddy (see the code above). Then
we get:

Muddy> showM (upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK,

Neg dK])))

==> [9]

[0,1,2,3,4,5,6,7,8,9,10]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])(6,[p1,p2,p3])(7,[p1,p2,p4])(8,[p1,p3,p4])

(9,[p2,p3,p4])(10,[p1,p2,p3,p4])

(a,[[0],[1],[2],[3,6],[4,7],[5,8],[9,10]])

(b,[[0],[1,6],[2,7],[3],[4],[5,9],[8,10]])

(c,[[0,6],[1],[2,8],[3],[4,9],[5],[7,10]])

(d,[[0,7],[1,8],[2],[3,9],[4],[5],[6,10]])

This situation is represented in Figure 9. We call this model mu3, and
update again with the same public announcement of general ignorance:

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

DEMO — A Demo of Epistemic Modelling 359

Muddy> showM (upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK,

Neg dK])))

==> [3]

[0,1,2,3,4]

(0,[p1,p2,p3])(1,[p1,p2,p4])(2,[p1,p3,p4])(3,[p2,p3,p4])

(4,[p1,p2,p3,p4])

(a,[[0],[1],[2],[3,4]])

(b,[[0],[1],[2,4],[3]])

(c,[[0],[1,4],[2],[3]])

(d,[[0,4],[1],[2],[3]])

0:[p1,p2]

6:[p1,p2,p3]

c

7:[p1,p2,p4]

d

1:[p1,p3]

b

8:[p1,p3,p4]

d

2:[p1,p4]

b c

3:[p2,p3]

a

9:[p2,p3,p4]

d

4:[p2,p4]

a c

5:[p3,p4]

a b

10:[p1,p2,p3,p4]

d c b a

Figure 9.

0:[p1,p2,p3]

4:[p1,p2,p3,p4]

d

1:[p1,p2,p4]

c

2:[p1,p3,p4]

b

3:[p2,p3,p4]

a

Figure 10.

Finally, this situation is represented in Figure 10, and the model is called
mu4. In this model, b, c, d know about their situation:

Muddy> isTrue mu4 (Conj [bK, cK, dK])

True

Updating with the public announcement of this information determines ev-
erything:

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

360 J. van Eijck

Muddy> showM (upd mu4 (public (Conj[bK, cK, dK])))

==> [0]

[0]

(0,[p2,p3,p4])

(a,[[0]])

(b,[[0]])

(c,[[0]])

(d,[[0]])

10 Conclusion and further work

DEMO was used for solving Hans Freudenthal’s Sum and Product puzzle by
means of epistemic modelling in [vDRu0Ve205]. There are many variations
of this. See the DEMO documentation at http://www.cwi.nl/∼jve/demo/
for descriptions and for DEMO solutions. DEMO is also good at modelling
the kind of card problems described in [vD03], such as the Russian card
problem. A DEMO solution to this was published in [vD+06]. DEMO was
used for checking a version of the Dining Cryptographers protocol [Ch288],
in [vE1Or05]. All of these examples are part of the DEMO documentation.

The next step is to employ DEMO for more realistic examples, such
as checking security properties of communication protocols. To develop
DEMO into a tool for blackbox cryptographic analysis — where the cryp-
tographic primitives such as one-way functions, nonces, public and private
key encryption are taken as given. For this, a propositional base language
is not sufficient. We should be able to express that an agent A generates a
nonce nA, and that no-one else knows the value of the nonce, without falling
victim to a combinatorial explosion. If nonces are 10-digit numbers then
not knowing a particular nonce means being confused between 1010 different
worlds. Clearly, it does not make sense to represent all of these in an im-
plementation. What could be done, however, is represent epistemic models
as triples (W,R, V), where V now assigns a non-contradictory proposition
to each world. Then uncertainty about the value of nA, where the actual
value is N , can be represented by means of two worlds, one where na = N
and one where na 6= N . This could be done with basic propositions of the
form e = M and e 6= M , where e ranges over cryptographic expressions,
and M ranges over ‘big numerals’. Implementing these ideas, and putting
DEMO to the test of analysing real-life examples is planned as future work.

References

[Ba402] A. Baltag. A logic for suspicious players: epistemic ac-
tion and belief-updates in games. Bulletin of Economic
Research 54(1):1–45, 2002.

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

DEMO — A Demo of Epistemic Modelling 361

[Ba4Mo3So199] A. Baltag, L. Moss & S. Solecki. The logic of public an-
nouncements, common knowledge, and private suspicions.
SEN-R9922, CWI, Amsterdam, 1999.

[Ba4Mo3So103] A. Baltag, L. Moss & S. Solecki. The logic of public an-
nouncements, common knowledge, and private suspicions.
Dept of Cognitive Science, Indiana University and Dept of
Computing, Oxford University, 2003.

[BldRVe101] P. Blackburn, M. de Rijke & Y. Venema. Modal Logic,
Cambridge Tracts in Theoretical Computer Science 53.
Cambridge University Press, 2001.

[Ch1Ko0Po006] Z. Chatzidakis, P. Koepke & W. Pohlers, eds. Logic Collo-
quium ’02, Lecture Notes in Logic 27. Association for Sym-
bolic Logic, 2006.

[Ch288] D. Chaum. The dining cryptographers problem: uncondi-
tional sender and receiver untraceability. Journal of Cryp-
tology 1(1):65–75, 1988.

[Ch380] B. Chellas. Modal Logic: An Introduction. Cambridge Uni-
versity Press, 1980.

[Da1Lo0Lo462] M. Davis, G. Logemann & D. Loveland. A machine pro-
gram for theorem proving. Communications of the ACM
5(7):394–397, 1962.

[Da1Pu60] M. Davis & H. Putnam. A computing procedure for quan-
tification theory. Journal of the ACM 7(3):201–215, 1960.

[Fa+95] R. Fagin, J. Halpern, Y. Moses & M. Vardi. Reasoning
about Knowledge. The MIT Press, 1995.

[Ga0Ko5No006] E. Gansner, E. Koutsofios & S. North. Drawing graphs with
dot. Graphviz project, 2006. URL http://www.graphviz.
org.

[Ge299a] J. Gerbrandy. Bisimulations on planet Kripke. Ph.D. the-
sis, Universiteit van Amsterdam, 1999. ILLC Publications
DS-1999-01.

[Go002] R. Goldblatt. Logics of Time and Computation, Second
Edition, Revised and Expanded, CSLI Lecture Notes 7.
CSLI, Stanford, 1992.

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

362 J. van Eijck

[Hi162] J. Hintikka. Knowledge and Belief: An Introduction to the
Logic of the Two Notions. Cornell University Press, 1962.

[Ho398] M. Hollenberg. Logic and Bisimulation. Ph.D. thesis,
Utrecht University, 1998.

[Ho471] J.E. Hopcroft. An n log n algorithm for minimizing states
in a finite automaton. In [Ko1Pa871, pp. 189–196].

[Jo203] S.P. Jones. Haskell 98. Language and Libraries. The Re-
vised Report. Cambridge University Press, 2003.

[Ko1Pa871] Z. Kohavi & A. Paz, eds. Theory of Machines and Com-
putations. Academic Press, 1971.

[Ko403] B. Kooi. Knowledge, Chance and Change. Ph.D. thesis,
University of Groningen, 2003. ILLC Publications DS-
2003-01.

[Mo3Gi1dR99] L.S. Moss, J. Ginzburg & M. de Rijke, eds. Logic, Language
and Information, 2. CSLI Publications, 1999.

[Pa1Ta087] R. Paige & R.E. Tarjan. Three partition refinement algo-
rithms. SIAM Journal on Computing 16(6):973–989, 1987.

[Ru004] J. Ruan. Exploring the update universe. Master’s the-
sis, Universiteit van Amsterdam, 2004. ILLC Publications
MoL-2004-08.

[vB01b] J. van Benthem. Language, logic, and communication. In
[vB+01, pp. 7–25].

[vB06] J. van Benthem. ‘One is a Lonely Number’: On the logic
of communication. In [Ch1Ko0Po006, pp. 96–129].

[vB+01] J. van Benthem, P. Dekker, J. van Eijck, M. de Rijke &
Y. Venema, eds. Logic in Action. ILLC, 2001.

[vD00] H. van Ditmarsch. Knowledge Games. Ph.D. thesis, Uni-
versity of Groningen, 2000. ILLC Publications DS-2000-06.

[vD03] H. van Ditmarsch. The Russian cards problem. Studia
Logica 75(1):31–62, 2003.

[vDRu0Ve205] H. van Ditmarsch, J. Ruan & R. Verbrugge. Model checking
sum and product. In [Zh1Ja305, pp. 790–795].

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

DEMO — A Demo of Epistemic Modelling 363

[vD+06] H. van Ditmarsch, W. van der Hoek, R. van der Meyden &
J. Ruan. Model checking Russian cards. Electronic Notes
in Theoretical Computer Science 149(2):105–123, 2006.

[vE005] M. van Eekelen, ed. 6th Symposium on Trends in Func-
tional Programming, TFP 2005: Proceedings. Institute of
Cybernetics, Tallinn, 2005.

[vE104a] J. van Eijck. Communicative actions, 2004. Preprint.

[vE104b] J. van Eijck. Reducing dynamic epistemic logic to PDL by
program transformation. SEN-E0423, CWI, Amsterdam,
December 2004.

[vE1Or05] J. van Eijck & S. Orzan. Modelling the epistemics of com-
munication with functional programming. In [vE005, pp.
44–59].

[Zh0St500] H. Zhang & M.E. Stickel. Implementing the Davis-Putnam
method. Journal of Automated Reasoning 24(1–2):277–296,
2000.

[Zh1Ja305] S. Zhang & R. Jarvis, eds. AI 2005: Advances in Ar-
tificial Intelligence, 18th Australian Joint Conference on
Artificial Intelligence, Sydney, Australia, December 5–9,
2005, Proceedings, Lecture Notes in Computer Science
3809. Springer, 2005.

