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Abstract

This paper introduces and documents DEMO, a Dynamic Epistemic
Modelling tool. DEMO allows modelling epistemic updates, graphical
display of update results, graphical display of action models, formula
evaluation in epistemic models, translation of dynamic epistemic for-
mulas to PDL formulas. Also, DEMO implements the reduction of
dynamic epistemic logic to PDL. The paper is an exemplar of tool
building for epistemic update logic. It contains the essential code
of an implementation of DEMO in Haskell, in Knuth’s ‘literate pro-
gramming’ style.

1 Introduction

In this introduction we shall demonstrate how DEMO, which is short for
Dynamic Epistemic MOdelling,1 can be used to check semantic intuitions
about what goes on in epistemic update situations.2 For didactic purposes,
∗ The author is grateful to the Netherlands Institute for Advanced Studies (NIAS) for

providing the opportunity to complete this paper as Fellow-in-Residence. This report
and the tool that it describes were prompted by a series of questions voiced by Johan
van Benthem in his talk at the annual meeting of the Dutch Association for Theoretical
Computer Science, in Utrecht, on March 5, 2004. Thanks to Johan van Benthem,
Hans van Ditmarsch, Barteld Kooi and Ji Ruan for valuable feedback and inspiring
discussion. Two anonymous referees made suggestions for improvement, which are
herewith gracefully acknowledged.

1 Or short for DEMO of Epistemic MOdelling, for those who prefer co-recursive
acronyms.

2 The program source code is available from http://www.cwi.nl/∼jve/demo/.

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 305–363.
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the initial examples have been kept extremely simple. Although the situ-
ation of message passing about just two basic propositions with just three
epistemic agents already reveals many subtleties, the reader should bear in
mind that DEMO is capable of modelling much more complex situations.

In a situation where you and I know nothing about a particular aspect
of the state of the world (about whether p and q hold, say), our state of
knowledge is modelled by a Kripke model where the worlds are the four
different possibilities for the truth of p and q (∅, p, q, pq), your epistemic
accessibility relation ∼a is the total relation on these four possibilities, and
mine ∼b is the total relation on these four possibilities as well. There is also
c, who like the two of us, is completely ignorant about p and q. This initial
model is generated by DEMO as follows.

DEMO> showM (initE [P 0,Q 0] [a,b,c])

==> [0,1,2,3]

[0,1,2,3]

(0,[])(1,[p])(2,[q])(3,[p,q])

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

(c,[[0,1,2,3]])

Here initE generates an initial epistemic model, and showM shows that
model in an appropriate form, in this case in the partition format that is
made possible by the fact that the epistemic relations are all equivalences.

As an example of a different kind of representation, let us look at the
picture that can be generated with dot [Ga0Ko5No006] from the file pro-
duced by the DEMO command writeP "filename" (initE [P 0,Q 0]),
as represented in Figure 1.

This is a model where none of the three agents a, b or c can distinguish
between the four possibilities about p and q. DEMO shows the partitions
generated by the accessibility relations ∼a,∼b,∼c. Since these three rela-
tions are total, the three partitions each consist of a single block. Call this
model e0.

Now suppose a wants to know whether p is the case. She asks whether p
and receives a truthful answer from somebody who is in a position to know.
This answer is conveyed to a in a message. b and c have heard a’s question,
and so are aware of the fact that an answer may have reached a. b and c
have seen that an answer was delivered, but they don’t know which answer.
This is not a secret communication, for b and c know that a has inquired
about p. The situation now changes as follows:

DEMO> showM (upd e0 (message a p))

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])
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0

1:[p]

abc

2:[q]

abc

3:[p,q]

abcabc

abc

abc

Figure 1.

(a,[[0,2,3,5],[1,4]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

Note that upd is a function for updating an epistemic model with (a
representation of) a communicative action. In this case, the result is again
a model where the three accessibility relations are equivalences, but one in
which a has restricted her range of possibilities to 1, 4 (these are worlds
where p is the case), while for b and c all possibilities are still open. Note
that this epistemic model has two ‘actual worlds’: this means that there
are two possibilities that are compatible with ‘how things really are’. In
graphical display format these ‘actual worlds’ show up as double ovals, as
seen in Figure 2.

DEMO also allows us to display the action models corresponding to
the epistemic updates. For the present example (we have to indicate that
we want the action model for the case where {a, b, c} is the set of relevant
agents):

showM ((message a p) [a,b,c])

==> [0]

[0,1]

(0,p)(1,

T)

(a,[[0],[1]])
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0

1:[p]

bc

2:[p]

abc

3:[q]

abc

4:[p,q]

bc

5:[p,q]

abc

bc

bc

abc

bc

abc

bc

abcbc

abc

bc

Figure 2.

(b,[[0,1]])

(c,[[0,1]])

Notice that in the result of updating the initial situation with this message,
some subtle things have changed for b and c as well. Before the arrival of
the message, 2b(¬2ap ∧ ¬2a¬p) was true, for b knew that a did not know
about p. But now b has heard a’s question about p, and is aware of the
fact that an answer has reached a. So in the new situation b knows that a
knows about p. In other words, 2b(2ap ∨ 2a¬p) has become true. On the
other hand it is still the case that b knows that a knows nothing about q:
2b¬2aq is still true in the new situation. The situation for c is similar to
that for b. These things can be checked in DEMO as follows:
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DEMO> isTrue (upd e0 (message a p)) (K b (Neg (K a q)))

True

DEMO> isTrue (upd e0 (message a p)) (K b (Neg (K a p)))

False

If you receive the same message about p twice, the second time the
message gets delivered has no further effect. Note the use of upds for a
sequence of updates.

DEMO> showM (upds e0 [message a p, message a p])

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[[0,2,3,5],[1,4]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

Now suppose that the second action is a message informing b about p:

DEMO> showM (upds e0 [message a p, message b p])

==> [1,6]

[0,1,2,3,4,5,6,7,8,9]

(0,[])(1,[p])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[p,q])(7,[p,q])(8,[p,q])(9,[p,q])

(a,[[0,3,4,5,8,9],[1,2,6,7]])

(b,[[0,2,4,5,7,9],[1,3,6,8]])

(c,[[0,1,2,3,4,5,6,7,8,9]])

The graphical representation of this model is slightly more difficult to
fathom at a glance. See Figure 3. In this model a and b both know about p,
but they do not know about each other’s knowledge about p. c still knows
nothing, and both a and b know that c knows nothing. Both 2a2bp and
2b2ap are false in this model. 2a¬2bp and 2b¬2ap are false as well, but
2a¬2cp and 2b¬2cp are true.

DEMO> isTrue (upds e0 [message a p, message b p]) (K a (K b p))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (K a p))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K b p)))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K c p)))

True

The order in which a and b are informed does not matter:

DEMO> showM (upds e0 [message b p, message a p])

==> [1,6]

[0,1,2,3,4,5,6,7,8,9]
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0

1:[p]

c

2:[p]

bc

3:[p]

ac

4:[p]

abc

5:[q]

abc

6:[p,q]

c

7:[p,q]

bc

8:[p,q]

ac

9:[p,q]

abc

acbc

c

c

abc

ac

bc

c

c

bc

bc

ac

abc

c

bc
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ac

bc

c

abc
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c
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c
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ac

bcc
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Figure 3. Situation after second message
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(0,[])(1,[p])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[p,q])(7,[p,q])(8,[p,q])(9,[p,q])

(a,[[0,2,4,5,7,9],[1,3,6,8]])

(b,[[0,3,4,5,8,9],[1,2,6,7]])

(c,[[0,1,2,3,4,5,6,7,8,9]])

Modulo renaming this is the same as the earlier result. The example
shows that the epistemic effects of distributed message passing are quite
different from those of a public announcement or a group message.

DEMO> showM (upd e0 (public p))

==> [0,1]

[0,1]

(0,[p])(1,[p,q])

(a,[[0,1]])

(b,[[0,1]])

(c,[[0,1]])

The result of the public announcement that p is that a, b and c are
informed that p and about each other’s knowledge about p.

DEMO allows to compare the action models for public announcement and
individual message passing:

DEMO> showM ((public p) [a,b,c])

==> [0]

[0]

(0,p)

(a,[[0]])

(b,[[0]])

(c,[[0]])

DEMO> showM ((cmp [message a p, message b p, message c p]) [a,b,c])

==> [0]

[0,1,2,3,4,5,6,7]

(0,p)(1,p)(2,p)(3,p)(4,p)

(5,p)(6,p)(7,T)

(a,[[0,1,2,3],[4,5,6,7]])

(b,[[0,1,4,5],[2,3,6,7]])

(c,[[0,2,4,6],[1,3,5,7]])

Here cmp gives the sequential composition of a list of communicative
actions. This involves, among other things, computation of the appropriate
preconditions for the combined action model.

More subtly, the situation is also different from a situation where a, b
receive the same message that p, with a being aware of the fact that b
receives the message and vice versa. Such group messages create common
knowledge.

DEMO> showM (groupM [a,b] p [a,b,c])
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==> [0]

[0,1]

(0,p)(1,T)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0,1]])

The difference with the case of the two separate messages is that now a and
b are aware of each other’s knowledge that p:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (K a (K b p))

True

DEMO> isTrue (upd e0 (groupM [a,b] p)) (K b (K a p))

True

In fact, this awareness goes on, for arbitrary nestings of 2a and 2b, which
is what common knowledge means. Common knowledge can be checked
directly, as follows:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (CK [a,b] p)

True

It is also easily checked in DEMO that in the case of the separate messages
no common knowledge is achieved.

Next, look at the case where two separate messages reach a and b, one
informing a that p and the other informing b that ¬q:

DEMO> showM (upds e0 [message a p, message b (Neg q)])

==> [2]

[0,1,2,3,4,5,6,7,8]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[p])(6,[q])(7,[p,q])(8,[p,q])

(a,[[0,1,4,5,6,8],[2,3,7]])

(b,[[0,2,4],[1,3,5,6,7,8]])

(c,[[0,1,2,3,4,5,6,7,8]])

Again the order in which these messages are delivered is immaterial for the
end result, as you should expect:

DEMO> showM (upds e0 [message b (Neg q), message a p])

==> [2]

[0,1,2,3,4,5,6,7,8]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[p])(6,[q])(7,[p,q])(8,[p,q])

(a,[[0,1,3,5,6,8],[2,4,7]])

(b,[[0,2,3],[1,4,5,6,7,8]])

(c,[[0,1,2,3,4,5,6,7,8]])

Modulo a renaming of worlds, this is the same as the previous result.
The logic of public announcements and private messages is related to

the logic of knowledge, with [Hi162] as the pioneer publication. This logic
satisfies the following postulates:
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• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ) (if a knows that
ϕ implies ψ, and she knows ϕ, then she also knows ψ),

• positive introspection 2aϕ ⇒ 2a2aϕ (if a knows ϕ, then a knows
that she knows ϕ),

• negative introspection ¬2aϕ⇒ 2a¬2aϕ (if a does not know ϕ, then
she knows that she does not know),

• truthfulness 2aϕ⇒ ϕ (if a knows ϕ then ϕ is true).

As is well known, the first of these is valid on all Kripke frames, the sec-
ond is valid on precisely the transitive Kripke frames, the third is valid on
precisely the euclidean Kripke frames (a relation R is euclidean if it satis-
fies ∀x∀y∀z((xRy ∧ xRz) ⇒ yRz)), and the fourth is valid on precisely the
reflexive Kripke frames. A frame satisfies transitivity, euclideanness and
reflexivity iff it is an equivalence relation, hence the logic of knowledge is
the logic of the so-called S5 Kripke frames: the Kripke frames with an equi-
valence ∼a as epistemic accessibility relation. Multi-agent epistemic logic
extends this to multi-S5, with an equivalence ∼b for every b ∈ B, where b
is the set of epistemic agents.

Now suppose that instead of open messages, we use secret messages.
If a secret message is passed to a, b and c are not even aware that any
communication is going on. This is the result when a receives a secret
message that p in the initial situation:

DEMO> showM (upd e0 (secret [a] p))

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[([],[0,2,3,5]),([],[1,4])])

(b,[([1,4],[0,2,3,5])])

(c,[([1,4],[0,2,3,5])])

This is not an S5 model anymore. The accessibility for a is still an
equivalence, but the accessibility for b is lacking the property of reflexivity.
The worlds 1, 4 that make up a’s conceptual space (for these are the worlds
accessible for a from the actual worlds 1, 4) are precisely the worlds where
the b and c arrows are not reflexive. b enters his conceptual space from
the vantage points 1 and 4, but b does not see these vantage points itself.
Similarly for c. In the DEMO representation, the list ([1,4],[0,2,3,5])
gives the entry points [1,4] into conceptual space [0,2,3,5].

The secret message has no effect on what b and c believe about the facts
of the world, but it has effected b’s and c’s beliefs about the beliefs of a
in a disastrous way. These beliefs have become inaccurate. For instance, b
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now believes that a does not know that p, but he is mistaken! The formula
2b¬2ap is true in the actual worlds, but ¬2ap is false in the actual worlds,
for a does know that p, because of the secret message. Here is what DEMO
says about the situation (isTrue evaluates a formula in all of the actual
worlds of an epistemic model):

DEMO> isTrue (upd e0 (secret [a] p)) (K b (Neg (K a p)))

True

DEMO> isTrue (upd e0 (secret [a] p)) (Neg (K a p))

False

This example illustrates a regress from the world of knowledge to the
world of consistent belief: the result of the update with a secret propositional
message does not satisfy the postulate of truthfulness anymore.

The logic of consistent belief satisfies the following postulates:

• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ),

• positive introspection 2aϕ⇒ 2a2aϕ,

• negative introspection ¬2aϕ⇒ 2a¬2aϕ,

• consistency 2aϕ ⇒ 3aϕ (if a believes that ϕ then there is a world
where ϕ is true, i.e., ϕ is consistent).

Consistent belief is like knowledge, except for the fact that it replaces the
postulate of truthfulness 2aϕ⇒ ϕ by the weaker postulate of consistency.

Since the postulate of consistency determines the serial Kripke frames (a
relation R is serial if ∀x∃y xRy), the principles of consistent belief determine
the Kripke frames that are transitive, euclidean and serial, the so-called
KD45 frames.

In the conceptual world of secrecy, inconsistent beliefs are not far away.
Suppose that a, after having received a secret message informing her about
p, sends a message to b to the effect that 2ap. The trouble is that this is
inconsistent with what b believes.

DEMO> showM (upds e0 [secret [a] p, message b (K a p)])

==> [1,5]

[0,1,2,3,4,5,6,7]

(0,[])(1,[p])(2,[p])(3,[p])(4,[q])

(5,[p,q])(6,[p,q])(7,[p,q])

(a,([],[([],[0,3,4,7]),([],[1,2,5,6])]))

(b,([1,5],[([2,6],[0,3,4,7])]))

(c,([],[([1,2,5,6],[0,3,4,7])]))

This is not a KD45 model anymore, for it lacks the property of seriality
for b’s belief relation. b’s belief contains two isolated worlds 1, 5. Since 1 is
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the actual world, this means that b’s belief state has become inconsistent:
from now on, b will believe anything.

So we have arrived at a still weaker logic. The logic of possibly incon-
sistent belief satisfies the following postulates:

• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ),

• positive introspection 2aϕ⇒ 2a2aϕ,

• negative introspection ¬2aϕ⇒ 2a¬2aϕ.

This is the logic of K45 frames: frames that are transitive and euclidean.
In [vE104a] some results and a list of questions are given about the

possible deterioration of knowledge and belief caused by different kind of
message passing. E.g., the result of updating an S5 model with a public
announcement or a non-secret message, if defined, is again S5. The result
of updating an S5 model with a secret message to some of the agents, if
defined, need not even be KD45. One can prove that the result is KD45
iff the model we start out with satisfies certain epistemic conditions. The
update result always is K45. Such observations illustrate why S5, KD45
and K45 are ubiquitous in epistemic modelling. See [BldRVe101, Go002]
for general background on modal logic, and [Ch380, Fa+95] for specific
background on these systems.

If this introduction has convinced the reader that the logic of public
announcements, private messages and secret communications is rich and
subtle enough to justify the building of the conceptual modelling tools to
be presented in the rest of the report, then it has served its purpose.

In the rest of the report, we first fix a formal version of epistemic up-
date logic as an implementation goal. After that, we are ready for the
implementation.

Further information on various aspects of dynamic epistemic logic is
provided in [Ba402, Ba4Mo3So199, vB01b, vB06, vD00, Fa+95, Ge299a,
Ko403].

2 Design

DEMO is written in a high level functional programming language Haskell
[Jo203]. Haskell is a non-strict, purely-functional programming language
named after Haskell B. Curry. The design is modular. Operations on lists
and characters are taken from the standard Haskell List and Char modules.
The following modules are part of DEMO:

Models The module that defines general models over a number of agents.
In the present implementation these are A through E. It turns out
that more than five agents are seldom needed in epistemic modelling.
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General models have variables for their states and their state adorn-
ments. By letting the state adornments be valuations we get Kripke
models, by letting them be formulas we get update models.

MinBis The module for minimizing models under bisimulation by means
of partition refinement.

Display The module for displaying models in various formats. Not dis-
cussed in this paper.

ActEpist The module that specializes general models to action models
and epistemic models. Formulas may contain action models as oper-
ators. Action models contain formulas. The definition of formulas is
therefore also part of this module.

DPLL Implementation of Davis, Putnam, Logemann, Loveland (DPLL)
theorem proving [Da1Lo0Lo462, Da1Pu60] for propositional logic. The
implementation uses discrimination trees or tries, following [Zh0St500].
This is used for formula simplification. Not discussed in this paper.

Semantics Implementation of the key semantic notions of epistemic up-
date logic. It handles the mapping from communicative actions to
action models.

DEMO Main module.

3 Main module
module DEMO

(

module List,

module Char,

module Models,

module Display,

module MinBis,

module ActEpist,

module DPLL,

module Semantics

)

where

import List import Char import Models import Display import MinBis

import ActEpist import DPLL import Semantics

The first version of DEMO was written in March 2004. This version was
extended in May 2004 with an implementation of automata and a transla-
tion function from epistemic update logic to Automata PDL. In Septem-
ber 2004, I discovered a direct reduction of epistemic update logic to PDL
[vE104b]. This motivated a switch to a PDL-like language, with extra
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modalities for action update and automata update. I decided to leave in
the automata for the time being, for nostalgic reasons.

In Summer 2005, several example modules with DEMO programs for
epistemic puzzles (some of them contributed by Ji Ruan) and for checking
of security protocols (with contributions by Simona Orzan) were added, and
the program was rewritten in a modular fashion.

In Spring 2006, automata update was removed, and in Autumn 2006 the
code was refactored for the present report:

version :: String

version = "DEMO 1.06, Autumn 2006"

4 Definitions

4.1 Models and updates
In this section we formalize the version of dynamic epistemic logic that we
are going to implement.

Let p range over a set of basic propositions P and let a range over a set
of agents Ag. Then the language of PDL over P,Ag is given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ
π ::= a |?ϕ | π1;π2 | π1 ∪ π2 | π∗

Employ the usual abbreviations: ⊥ is shorthand for ¬>, ϕ1 ∨ ϕ2 is
shorthand for ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬(ϕ1∧ϕ2), ϕ1 ↔ ϕ2

is shorthand for (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1), and 〈π〉ϕ is shorthand for ¬[π]¬ϕ.
Also, if B ⊆ Ag and B is finite, use B as shorthand for b1 ∪ b2 ∪ · · · . Under
this convention, formulas for expressing general knowledge EBϕ take the
shape [B]ϕ, while formulas for expressing common knowledge CBϕ appear
as [B∗]ϕ, i.e., [B]ϕ expresses that it is general knowledge among agents B
that ϕ, and [B∗]ϕ expresses that it is common knowledge among agents B
that ϕ. In the special case where B = ∅, B turns out equivalent to ?⊥, the
program that always fails.

The semantics of PDL over P,Ag is given relative to labelled transition
systems M = (W,V,R), where W is a set of worlds (or states), V : W →
P(P ) is a valuation function, and R = { a→⊆ W ×W | a ∈ Ag} is a set
of labelled transitions, i.e., binary relations on W , one for each label a. In
what follows, we shall take the labelled transitions for a to represent the
epistemic alternatives of an agent a.

The formulae of PDL are interpreted as subsets of WM (the state set of
M), the actions of PDL as binary relations on WM, as follows:

[[>]]M = WM

[[p]]M = {w ∈WM | p ∈ VM(w)}
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[[¬ϕ]]M = WM − [[ϕ]]M

[[ϕ1 ∧ ϕ2]]M = [[ϕ1]]M ∩ [[ϕ2]]M

[[[π]ϕ]]M = {w ∈WM | ∀v( if (w, v) ∈ [[π]]M then v ∈ [[ϕ]]M)}

[[a]]M = a→M

[[?ϕ]]M = {(w,w) ∈WM ×WM | w ∈ [[ϕ]]M}
[[π1;π2]]M = [[π1]]M ◦ [[π2]]M

[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M = ([[π]]M)∗

If w ∈ WM then we use M |=w ϕ for w ∈ [[ϕ]]M. The paper
[Ba4Mo3So103] proposes to model epistemic actions as epistemic models,
with valuations replaced by preconditions. See also: [vB01b, vB06, vD00,
vE104b, Fa+95, Ge299a, Ko403, Ru004].
Action models for a given language L. Let a set of agents Ag and
an epistemic language L be given. An action model for L is a triple A =
([s0, . . . , sn−1],pre, T ) where [s0, . . . , sn−1] is a finite list of action states,
pre : {s0, . . . , sn−1} → L assigns a precondition to each action state, and
T : Ag → P({s0, . . . , sn−1}2) assigns an accessibility relation a→ to each
agent a ∈ Ag.

A pair A = (A, s) with s ∈ {s0, . . . , sn−1} is a pointed action model,
where s is the action that actually takes place.

The list ordering of the action states in an action model will play an
important role in the definition of the program transformations associated
with the action models.

In the definition of action models, L can be any language that can be
interpreted in PDL models. Actions can be executed in PDL models by
means of the following product construction:
Action Update. Let a PDL model M = (W,V,R), a world w ∈ W , and
a pointed action model (A, s), with A = ([s0, . . . , sn−1],pre, T ), be given.
Suppose w ∈ [[pre(s)]]M. Then the result of executing (A, s) in (M, w) is
the model (M⊗A, (w, s)), with M⊗A = (W ′, V ′, R′), where

W ′ = {(w, s) | s ∈ {s0, . . . , sn−1}, w ∈ [[pre(s)]]M}
V ′(w, s) = V (w)
R′(a) = {((w, s), (w′, s′)) | (w,w′) ∈ R(a), (s, s′) ∈ T (a)}.

In case there is a set of actual worlds and a set of actual actions, the defi-
nition is similar: those world/action pairs survive where the world satisfies
the preconditions of the action. See below.
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The language of PDLDEL (update PDL) is given by extending the PDL
language with update constructions [A, s]ϕ, where (A, s) is a pointed action
model. The interpretation of [A, s]ϕ in M is given by:

[[[A, s]ϕ]]M = {w ∈WM | if M |=w pre(s) then (w, s) ∈ [[ϕ]]M⊗A}.

Using 〈A, s〉ϕ as shorthand for ¬[A, s]¬ϕ, we see that the interpretation for
〈A, s〉ϕ turns out as:

[[〈A, s〉ϕ]]M = {w ∈WM | M |=w pre(s) and (w, s) ∈ [[ϕ]]M⊗A}.

Updating with multiple pointed update actions is also possible. A multiple
pointed action is a pair (A,S), with A an action model, and S a subset of
the state set of A. Extend the language with updates [A,S]ϕ, and interpret
this as follows:

[[[A,S]ϕ]]M = {w ∈WM | ∀s ∈ S(if M |=w pre(s)
then M⊗A |=(w,s) ϕ)}.

In [vE104b] it is shown how dynamic epistemic logic can be reduced
to PDL by program transformation. Each action model A has associated
program transformers TA

ij for all states si, sj in the action model, such that
the following hold:

Lemma 4.1 (Program Transformation, Van Eijck [vE104b]). Assume A
has n states s0, . . . , sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj ]ϕ.

This lemma allows a reduction of dynamic epistemic logic to PDL, a
reduction that we shall implement in the code below.

4.2 Operations on action models
Sequential Composition. If (A, S) and (B, T ) are multiple pointed ac-
tion models, their sequential composition (A, S) � (B, T ) is given by:

(A, S) � (B, T ) := ((W,pre, R), S × T ),

where

• W = WA ×WB,

• pre(s, t) = pre(s) ∧ 〈A, S〉pre(t),

• R is given by: (s, t) a→ (s′, t′) ∈ R iff s
a→ s′ ∈ RA and t a→ t′ ∈ RB.

The unit element for this operation is the action model

1 = (({0}, 0 7→ >, {0 a→ 0 | a ∈ Ag}), {0}).

Updating an arbitrary epistemic model M with 1 changes nothing.



0646

0647

0648

0649

0650

0651

0652

0653

0654

0655

0656

0657

0658

0659

0660

0661

0662

0663

0664

0665

0666

0667

0668

0669

0670

0671

0672

0673

0674

0675

0676

0677

0678

0679

0680

0681

0682

0683

0684

0685

0686

0687

0688

320 J. van Eijck

Non-deterministic Sum. The non-deterministic sum ⊕ of multiple poin-
ted action models (A, S) and (B, T ) is the action model (A, S)⊕ (B, T ) is
given by:

(A, S) ⊕ (B, T ) := ((W,pre, R), S ] T ),

where ] denotes disjoint union, and where

• W = WA ]WB,

• pre = preA ] preB,

• R = RA ]RB.

The unit element for this operation is called 0: the multiple pointed action
model given by ((∅,∅,∅),∅).

4.3 Logics for communication
Here are some specific action models that can be used to define various
languages of communication.

In order to model a public announcement of ϕ, we use the action
model (S, {0}) with

SS = {0}, pS = 0 7→ ϕ,RS = {0 a→ 0 | a ∈ A}.

If we wish to model an individual message to b that ϕ, we consider
the action model (S, {0}) with SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, and
RS = {0 b→ 0, 1 b→ 1} ∪ {0 ∼a 1 | a ∈ A − {b}}; similarly, for a group
message to B that ϕ, we use the action model (S, {0}) with

SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, RS = {0 ∼a 1 | a ∈ A−B}.

A secret individual communication to b that ϕ is modelled by (S, {0})
with

SS = {0, 1},
pS = 0 7→ ϕ, 1 7→ >,

RS = {0 b→ 0} ∪ {0 a→ 1 | a ∈ A− {b}} ∪ {1 a→ 1 | a ∈ A},

and a secret group communication to B that ϕ by (S, {0}) with

SS = {0, 1},
pS = 0 7→ ϕ, 1 7→ >,

RS = {0 b→ 0 | b ∈ B} ∪ {0 a→ 1 | a ∈ A−B} ∪ {1 a→ 1 | a ∈ A}.
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We model a test of ϕ by the action model (S, {0}) with

SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, RS = {0 a→ 1 | a ∈ A} ∪ {1 a→ 1 | a ∈ A},

an individual revelation to b of a choice from {ϕ1, . . . , ϕn} by the
action model (S, {1, . . . , n}) with

SS = {1, . . . , n},
pS = 1 7→ ϕ1, . . . , n 7→ ϕn,

RS = {s b→ s | s ∈ SS} ∪ {s
a→ s′ | s, s′ ∈ SS, a ∈ A− {b}},

and a group revelation to B of a choice from {ϕ1, . . . , ϕn} by the
action model (S, {1, . . . , n}) with

SS = {1, . . . , n},
pS = 1 7→ ϕ1, . . . , n 7→ ϕn,

RS = {s b→ s | s ∈ SS, b ∈ B} ∪ {s
a→ s′ | s, s′ ∈ SS, a ∈ A−B}.

Finally, transparent informedness of B about ϕ is represented by the
action model (S, {0, 1}) with SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ ¬ϕ, RS = {0 a→
0 | a ∈ A} ∪ {0 a→ 1 | a ∈ A − B} ∪ {1 a→ 0 | a ∈ A − B} ∪ {1 a→ 1 | a ∈
A}. Transparent informedness of B about ϕ is the special case of a group
revelation of B of a choice from {ϕ,¬ϕ}. Note that all but the revelation
action models and the transparent informedness action models are single
pointed (their sets of actual states are singletons).

On the syntactic side, we now define the corresponding languages. The
language for the logic of group announcements is defined by:

ϕ ::= > | p | ¬ϕ |
∧

[ϕ1, . . . , ϕn] |
∨

[ϕ1, . . . , ϕn] | 2aϕ

| EBϕ | CBϕ | [π]ϕ

π ::= 1 | 0 | public B ϕ | �[π1, . . . , πn] | ⊕[π1, . . . , πn]

We use the semantics of 1, 0, public B ϕ, and the operations on multiple
pointed action models from Section 4.2. For the logic of tests and group
announcements, we allow tests ?ϕ as basic programs and add the appro-
priate semantics. For the logic of individual messages, the basic actions
are messages to individual agents. In order to give it a semantics, we start
out from the semantics of message a ϕ. Finally, the logic of tests, group
announcements, and group revelations is as above, but now also allowing
revelations from alternatives. For the semantics, we use the semantics of
reveal B {ϕ1, . . . , ϕn}.
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5 Kripke models
module Models where

import List

5.1 Agents
data Agent = A | B | C | D | E deriving (Eq,Ord,Enum,Bounded)

Give the agents appropriate names:

a, alice, b, bob, c, carol, d, dave, e, ernie :: Agent

a = A; alice = A

b = B; bob = B

c = C; carol = C

d = D; dave = D

e = E; ernie = E

Make agents showable in an appropriate way:

instance Show Agent where

show A = "a"; show B = "b"; show C = "c"; show D = "d" ; show E = "e"

5.2 Model datatype
It will prove useful to generalize over states. We first define general models,
and then specialize to action models and epistemic models. In the following
definition, state and formula are variables over types. We assume that
each model carries a list of distinguished states.

data Model state formula = Mo

[state]

[(state,formula)]

[Agent]

[(Agent,state,state)]

[state]

deriving (Eq,Ord,Show)

Decomposing a pointed model into a list of single-pointed models:

decompose :: Model state formula -> [Model state formula]

decompose (Mo states pre agents rel points) =

[ Mo states pre agents rel [point] | point <- points ]

It is useful to be able to map the precondition table to a function. Here
is a general tool for that. Note that the resulting function is partial; if the
function argument does not occur in the table, the value is undefined.

table2fct :: Eq a => [(a,b)] -> a -> b

table2fct t = \ x -> maybe undefined id (lookup x t)

Another useful utility is a function that creates a partition out of an equi-
valence relation:
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rel2part :: (Eq a) => [a] -> (a -> a -> Bool) -> [[a]]

rel2part [] r = []

rel2part (x:xs) r = xblock : rel2part rest r

where

(xblock,rest) = partition (\ y -> r x y) (x:xs)

The domain of a model is its list of states:

domain :: Model state formula -> [state]

domain (Mo states _ _ _ _) = states

The eval of a model is its list of state/formula pairs:

eval :: Model state formula -> [(state,formula)]

eval (Mo _ pre _ _ _) = pre

The agentList of a model is its list of agents:

agentList :: Model state formula -> [Agent]

agentList (Mo _ _ ags _ _) = ags

The access of a model is its labelled transition component:

access :: Model state formula -> [(Agent,state,state)]

access (Mo _ _ _ rel _) = rel

The distinguished points of a model:

points :: Model state formula -> [state]

points (Mo _ _ _ _ pnts) = pnts

When we are looking at models, we are only interested in generated
submodels, with as their domain the distinguished state(s) plus everything
that is reachable by an accessibility path.

gsm :: Ord state => Model state formula -> Model state formula

gsm (Mo states pre ags rel points) = (Mo states’ pre’ ags rel’ points)

where

states’ = closure rel ags points

pre’ = [(s,f) | (s,f) <- pre,

elem s states’ ]

rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

elem s states’,

elem s’ states’ ]

The closure of a state list, given a relation and a list of agents:

closure :: Ord state =>

[(Agent,state,state)] -> [Agent] -> [state] -> [state]

closure rel agents xs

| xs’ == xs = xs

| otherwise = closure rel agents xs’

where

xs’ = (nub . sort) (xs ++ (expand rel agents xs))
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The expansion of a relation R given a state set S and a set of agents B is
given by {t | s b→ t ∈ R, s ∈ S, b ∈ B}. This is implemented as follows:

expand :: Ord state =>

[(Agent,state,state)] -> [Agent] -> [state] -> [state]

expand rel agnts ys =

(nub . sort . concat)

[ alternatives rel ag state | ag <- agnts,

state <- ys ]

The epistemic alternatives for agent a in state s are the states in sRa (the
states reachable through Ra from s):

alternatives :: Eq state =>

[(Agent,state,state)] -> Agent -> state -> [state]

alternatives rel ag current =

[ s’ | (a,s,s’) <- rel, a == ag, s == current ]

6 Model minimization under bisimulation
module MinBis where

import List

import Models

6.1 Partition refinement
Any Kripke model can be simplified by replacing each state s by its bisim-
ulation class [s]. The problem of finding the smallest Kripke model modulo
bisimulation is similar to the problem of minimizing the number of states in
a finite automaton [Ho471]. We will use partition refinement, in the spirit
of [Pa1Ta087]. Here is the algorithm:

• Start out with a partition of the state set where all states with the
same precondition function are in the same class. The equality relation
to be used to evaluate the precondition function is given as a parameter
to the algorithm.

• Given a partition Π, for each block b in Π, partition b into sub-blocks
such that two states s, t of b are in the same sub-block iff for all agents
a it holds that s and t have a−→ transitions to states in the same block
of Π. Update Π to Π′ by replacing each b in Π by the newly found set
of sub-blocks for b.

• Halt as soon as Π = Π′.

Looking up and checking of two formulas against a given equivalence rela-
tion:
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lookupFs :: (Eq a,Eq b) =>

a -> a -> [(a,b)] -> (b -> b -> Bool) -> Bool

lookupFs i j table r = case lookup i table of

Nothing -> lookup j table == Nothing

Just f1 -> case lookup j table of

Nothing -> False

Just f2 -> r f1 f2

The following computes the initial partition, using a particular relation for
equivalence of formulas:

initPartition :: (Eq a, Eq b) => Model a b -> (b -> b -> Bool) -> [[a]]

initPartition (Mo states pre ags rel points) r =

rel2part states (\ x y -> lookupFs x y pre r)

Refining a partition:

refinePartition :: (Eq a, Eq b) =>

Model a b -> [[a]] -> [[a]]

refinePartition m p = refineP m p p

where

refineP :: (Eq a, Eq b) => Model a b -> [[a]] -> [[a]] -> [[a]]

refineP m part [] = []

refineP m part (block:blocks) =

newblocks ++ (refineP m part blocks)

where

newblocks =

rel2part block (\ x y -> sameAccBlocks m part x y)

The following is a function that checks whether two states have the same
accessible blocks under a partition:

sameAccBlocks :: (Eq a, Eq b) =>

Model a b -> [[a]] -> a -> a -> Bool

sameAccBlocks m@(Mo states pre ags rel points) part s t =

and [ accBlocks m part s ag == accBlocks m part t ag |

ag <- ags ]

The accessible blocks for an agent from a given state, given a model and a
partition can be determined by accBlocks:

accBlocks :: (Eq a, Eq b) =>

Model a b -> [[a]] -> a -> Agent -> [[a]]

accBlocks m@(Mo states pre ags rel points) part s ag =

nub [ bl part y | (ag’,x,y) <- rel, ag’ == ag, x == s ]

The block of an object in a partition:

bl :: Eq a => [[a]] -> a -> [a]

bl part x = head (filter (elem x) part)

Initializing and refining a partition:
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initRefine :: (Eq a, Eq b) =>

Model a b -> (b -> b -> Bool) -> [[a]]

initRefine m r = refine m (initPartition m r)

The refining process:
refine :: (Eq a, Eq b) => Model a b -> [[a]] -> [[a]]

refine m part = if rpart == part

then part

else refine m rpart

where rpart = refinePartition m part

6.2 Minimization
We now use this to construct the minimal model. Notice the dependence
on relational parameter r.

minimalModel :: (Eq a, Ord a, Eq b, Ord b) =>

(b -> b -> Bool) -> Model a b -> Model [a] b

minimalModel r m@(Mo states pre ags rel points) =

(Mo states’ pre’ ags rel’ points’)

where

partition = initRefine m r

states’ = partition

f = bl partition

rel’ = (nub.sort) (map (\ (x,y,z) -> (x, f y, f z)) rel)

pre’ = (nub.sort) (map (\ (x,y) -> (f x, y)) pre)

points’ = map f points

Converting a’s into integers, using their position in a given list of a’s.
convert :: (Eq a, Show a) => [a] -> a -> Integer

convert = convrt 0

where

convrt :: (Eq a, Show a) => Integer -> [a] -> a -> Integer

convrt n [] x = error (show x ++ " not in list")

convrt n (y:ys) x | x == y = n

| otherwise = convrt (n+1) ys x

Converting an object of type Model a b into an object of type Model
Integer b:

conv :: (Eq a, Show a) =>

Model a b -> Model Integer b

conv (Mo worlds val ags acc points) =

(Mo (map f worlds)

(map (\ (x,y) -> (f x, y)) val)

ags

(map (\ (x,y,z) -> (x, f y, f z)) acc))

(map f points)

where f = convert worlds

Use this to rename the blocks into integers:
bisim :: (Eq a, Ord a, Show a, Eq b, Ord b) =>

(b -> b -> Bool) -> Model a b -> Model Integer b

bisim r = conv . (minimalModel r)
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7 Formulas, action models and epistemic models
module ActEpist where

import List

import Models

import MinBis

import DPLL

Module List is a standard Haskell module. Module Models is described
in Chapter 5, and Module MinBis in Chapter 6. Module DPLL refers to an
implementation of Davis, Putnam, Logemann, Loveland (DPLL) theorem
proving (not included in this document, but available at http://www.cwi.
nl/∼jve/demo).

7.1 Formulas
Basic propositions:

data Prop = P Int | Q Int | R Int deriving (Eq,Ord)

Show these in the standard way, in lower case, with index 0 omitted.

instance Show Prop where

show (P 0) = "p"; show (P i) = "p" ++ show i

show (Q 0) = "q"; show (Q i) = "q" ++ show i

show (R 0) = "r"; show (R i) = "r" ++ show i

Formulas, according to the definition:

ϕ ::= > | p | ¬ϕ |
∧

[ϕ1, . . . , ϕn] |
∨

[ϕ1, . . . , ϕn] | [π]ϕ | [A]ϕ

π ::= a | B |?ϕ | ©[π1, . . . , πn] |
⋃

[π1, . . . , πn] | π∗

Here, p ranges over basic propositions, a ranges over agents, B ranges
over non-empty sets of agents, and A is a multiple pointed action model
(see below) © denotes sequential composition of a list of programs. We will
often write ©[π1, π2] as π1;π2, and

⋃
[π1, π2] as π1 ∪ π2.

Note that general knowledge among agents B that ϕ is expressed in this
language as [B]ϕ, and common knowledge among agents B that ϕ as [B∗]ϕ.
Thus, [B]ϕ can be viewed as shorthand for [

⋃
b∈B b]ϕ. In case B = ∅, [B]ϕ

turns out to be equivalent to [?⊥]ϕ.
For convenience, we have also left in the more traditional way of ex-

pressing individual knowledge 2aϕ , general knowledge EBϕ and common
knowledge CBϕ.

data Form = Top

| Prop Prop

| Neg Form

| Conj [Form]
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| Disj [Form]

| Pr Program Form

| K Agent Form

| EK [Agent] Form

| CK [Agent] Form

| Up AM Form

deriving (Eq,Ord)

data Program = Ag Agent

| Ags [Agent]

| Test Form

| Conc [Program]

| Sum [Program]

| Star Program

deriving (Eq,Ord)

Some useful abbreviations:

impl :: Form -> Form -> Form

impl form1 form2 = Disj [Neg form1, form2]

equiv :: Form -> Form -> Form

equiv form1 form2 = Conj [form1 ‘impl‘ form2, form2 ‘impl‘ form1]

xor :: Form -> Form -> Form

xor x y = Disj [ Conj [x, Neg y], Conj [Neg x, y]]

The negation of a formula:

negation :: Form -> Form

negation (Neg form) = form

negation form = Neg form

Show formulas in the standard way:

instance Show Form where

show Top = "T" ; show (Prop p) = show p; show (Neg f) = ’-’:(show f);

show (Conj fs) = ’&’: show fs

show (Disj fs) = ’v’: show fs

show (Pr p f) = ’[’: show p ++ "]" ++ show f

show (K agent f) = ’[’: show agent ++ "]" ++ show f

show (EK agents f) = ’E’: show agents ++ show f

show (CK agents f) = ’C’: show agents ++ show f

show (Up pam f) = ’A’: show (points pam) ++ show f

Show programs in a standard way:

instance Show Program where

show (Ag a) = show a

show (Ags as) = show as

show (Test f) = ’?’: show f

show (Conc ps) = ’C’: show ps

show (Sum ps) = ’U’: show ps

show (Star p) = ’(’: show p ++ ")*"
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Programs can get very unwieldy very quickly. As is well known, there
is no normalisation procedure for regular expressions. Still, here are some
rewriting steps for simplification of programs:

∅ → ?⊥ ?ϕ1∪?ϕ2 → ?(ϕ1 ∨ ϕ2)
?⊥ ∪ π → π π∪?⊥ → π⋃

[] → ?⊥
⋃

[π] → π
?ϕ1; ?ϕ2 → ?(ϕ1 ∧ ϕ2) ?>;π → π
π; ?> → π ?⊥;π → ?⊥
π; ?⊥ → ?⊥ ©[] → ?>
©[π] → π (?ϕ)∗ → ?>
(?ϕ ∪ π)∗ → π∗ (π∪?ϕ)∗ → π∗

π∗∗ → π∗,

and the k +m+ n-ary rewriting steps⋃
[π1, . . . , πk,

⋃
[πk+1, . . . , πk+m], πk+m+1, . . . , πk+m+n]

→
⋃

[π1, . . . , πk+m+n]

and

© [π1, . . . , πk,©[πk+1, . . . , πk+m], πk+m+1, . . . , πk+m+n]
→ ©[π1, . . . , πk+m+n].

Simplifying unions by splitting up in test part, accessibility part and rest:
splitU :: [Program] -> ([Form],[Agent],[Program])

splitU [] = ([],[],[])

splitU (Test f: ps) = (f:fs,ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Ag x: ps) = (fs,union [x] ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Ags xs: ps) = (fs,union xs ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Sum ps: ps’) = splitU (union ps ps’)

splitU (p:ps) = (fs,ags,p:prs)

where (fs,ags,prs) = splitU ps

Simplifying compositions:
comprC :: [Program] -> [Program]

comprC [] = []

comprC (Test Top: ps) = comprC ps

comprC (Test (Neg Top):ps) = [Test (Neg Top)]

comprC (Test f: Test f’: rest) = comprC (Test (canonF (Conj [f,f’])):

rest)

comprC (Conc ps : ps’) = comprC (ps ++ ps’)

comprC (p:ps) = let ps’ = comprC ps

in if ps’ == [Test (Neg Top)]

then [Test (Neg Top)] else p: ps’
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Use this in the code for program simplification:

simpl :: Program -> Program

simpl (Ag x) = Ag x

simpl (Ags []) = Test (Neg Top)

simpl (Ags [x]) = Ag x

simpl (Ags xs) = Ags xs

simpl (Test f) = Test (canonF f)

Simplifying unions:

simpl (Sum prs) =

let (fs,xs,rest) = splitU (map simpl prs)

f = canonF (Disj fs)

in

if xs == [] && rest == [] then Test f

else if xs == [] && f == Neg Top && length rest == 1

then (head rest)

else if xs == [] && f == Neg Top then Sum rest

else if xs == []

then Sum (Test f: rest)

else if length xs == 1 && f == Neg Top

then Sum (Ag (head xs): rest)

else if length xs == 1 then Sum (Test f: Ag (head xs): rest)

else if f == Neg Top then Sum (Ags xs: rest)

else Sum (Test f: Ags xs: rest)

Simplifying sequential compositions:

simpl (Conc prs) =

let prs’ = comprC (map simpl prs)

in

if prs’== [] then Test Top

else if length prs’ == 1 then head prs’

else if head prs’ == Test Top then Conc (tail prs’)

else Conc prs’

Simplifying stars:

simpl (Star pr) = case simpl pr of

Test f -> Test Top

Sum [Test f, pr’] -> Star pr’

Sum (Test f: prs’) -> Star (Sum prs’)

Star pr’ -> Star pr’

pr’ -> Star pr’

Property of being a purely propositional formula:

pureProp :: Form -> Bool

pureProp Top = True

pureProp (Prop _) = True

pureProp (Neg f) = pureProp f

pureProp (Conj fs) = and (map pureProp fs)

pureProp (Disj fs) = and (map pureProp fs)

pureProp _ = False
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Some example formulas and formula-forming operators:

bot, p0, p, p1, p2, p3, p4, p5, p6 :: Form

bot = Neg Top

p0 = Prop (P 0); p = p0; p1 = Prop (P 1); p2 = Prop (P 2)

p3 = Prop (P 3); p4 = Prop (P 4); p5 = Prop (P 5); p6 = Prop (P 6)

q0, q, q1, q2, q3, q4, q5, q6 :: Form

q0 = Prop (Q 0); q = q0; q1 = Prop (Q 1); q2 = Prop (Q 2);

q3 = Prop (Q 3); q4 = Prop (Q 4); q5 = Prop (Q 5); q6 = Prop (Q 6)

r0, r, r1, r2, r3, r4, r5, r6:: Form

r0 = Prop (R 0); r = r0; r1 = Prop (R 1); r2 = Prop (R 2)

r3 = Prop (R 3); r4 = Prop (R 4); r5 = Prop (R 5); r6 = Prop (R 6)

u = Up :: AM -> Form -> Form

nkap = Neg (K a p)

nkanp = Neg (K a (Neg p))

nka_p = Conj [nkap,nkanp]

7.2 Reducing formulas to canonical form
For computing bisimulations, it is useful to have some notion of equiva-
lence (however crude) for the logical language. For this, we reduce formulas
to a canonical form. We will derive canonical forms that are unique up
to propositional equivalence, employing a propositional reasoning engine.
This is still rather crude, for any modal formula will be treated as a propo-
sitional literal. The DPLL (Davis, Putnam, Logemann, Loveland) engine
expects clauses represented as lists of integers, so we first have to translate
to this format. This translation should start with computing a mapping
from positive literals to integers. For the non-propositional operators we
use a little bootstrapping, by putting the formula inside the operator in
canonical form, using the function canonF to be defined below. Also, since
the non-propositional operators all behave as Box modalities, we can reduce
2> to >:

mapping :: Form -> [(Form,Integer)]

mapping f = zip lits [1..k]

where

lits = (sort . nub . collect) f

k = toInteger (length lits)

collect :: Form -> [Form]

collect Top = []

collect (Prop p) = [Prop p]

collect (Neg f) = collect f

collect (Conj fs) = concat (map collect fs)

collect (Disj fs) = concat (map collect fs)

collect (Pr pr f) = if canonF f == Top

then [] else [Pr pr (canonF f)]

collect (K ag f) = if canonF f == Top
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then [] else [K ag (canonF f)]

collect (EK ags f) = if canonF f == Top

then [] else [EK ags (canonF f)]

collect (CK ags f) = if canonF f == Top

then [] else [CK ags (canonF f)]

collect (Up pam f) = if canonF f == Top

then [] else [Up pam (canonF f)]

The following code corresponds to putting in clausal form, given a map-
ping for the literals, and using bootstrapping for formulas in the scope of a
non-propositional operator. Note that 2> is reduced to >, and ¬2> to ⊥.

cf :: (Form -> Integer) -> Form ->

[[Integer]]

cf g (Top) = []

cf g (Prop p) = [[g (Prop p)]]

cf g (Pr pr f) = if canonF f == Top then []

else [[g (Pr pr (canonF f))]]

cf g (K ag f) = if canonF f == Top then []

else [[g (K ag (canonF f))]]

cf g (EK ags f) = if canonF f == Top then []

else [[g (EK ags (canonF f))]]

cf g (CK ags f) = if canonF f == Top then []

else [[g (CK ags (canonF f))]]

cf g (Up am f) = if canonF f == Top then []

else [[g (Up am (canonF f))]]

cf g (Conj fs) = concat (map (cf g) fs)

cf g (Disj fs) = deMorgan (map (cf g) fs)

Negated formulas:
cf g (Neg Top) = [[]]

cf g (Neg (Prop p)) = [[- g (Prop p)]]

cf g (Neg (Pr pr f)) = if canonF f == Top then [[]]

else [[- g (Pr pr (canonF f))]]

cf g (Neg (K ag f)) = if canonF f == Top then [[]]

else [[- g (K ag (canonF f))]]

cf g (Neg (EK ags f)) = if canonF f == Top then [[]]

else [[- g (EK ags (canonF f))]]

cf g (Neg (CK ags f)) = if canonF f == Top then [[]]

else [[- g (CK ags (canonF f))]]

cf g (Neg (Up am f)) = if canonF f == Top then [[]]

else [[- g (Up am (canonF f))]]

cf g (Neg (Conj fs)) = deMorgan (map (\ f -> cf g (Neg f)) fs)

cf g (Neg (Disj fs)) = concat (map (\ f -> cf g (Neg f)) fs)

cf g (Neg (Neg f)) = cf g f

In order to explain the function deMorgan, we recall De Morgan’s disjunction
distribution which is the logical equivalence of the following expressions:

ϕ ∨ (ψ1 ∧ · · · ∧ ψn) ↔ (ϕ ∨ ψ1) ∧ · · · ∧ (ϕ ∨ ψn).

Now the following is the code for De Morgan’s disjunction distribution (for
the case of a disjunction of a list of clause sets):
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deMorgan :: [[[Integer]]] -> [[Integer]]

deMorgan [] = [[]]

deMorgan [cls] = cls

deMorgan (cls:clss) = deMorg cls (deMorgan clss)

where

deMorg :: [[Integer]] -> [[Integer]] -> [[Integer]]

deMorg cls1 cls2 = (nub . concat) [ deM cl cls2 | cl <- cls1 ]

deM :: [Integer] -> [[Integer]] -> [[Integer]]

deM cl cls = map (fuseLists cl) cls

Function fuseLists keeps the literals in the clauses ordered.

fuseLists :: [Integer] -> [Integer] -> [Integer]

fuseLists [] ys = ys

fuseLists xs [] = xs

fuseLists (x:xs) (y:ys) | abs x < abs y = x:(fuseLists xs (y:ys))

| abs x == abs y = if x == y

then x:(fuseLists xs ys)

else if x > y

then x:y:(fuseLists xs ys)

else y:x:(fuseLists xs ys)

| abs x > abs y = y:(fuseLists (x:xs) ys)

Given a mapping for the positive literals, the satisfying valuations of a
formula can be collected from the output of the DPLL process. Here dp is
the function imported from the module DPLL.

satVals :: [(Form,Integer)] -> Form -> [[Integer]]

satVals t f = (map fst . dp) (cf (table2fct t) f)

Two formulas are propositionally equivalent if they have the same sets
of satisfying valuations, computed on the basis of a literal mapping for their
conjunction:

propEquiv :: Form -> Form -> Bool

propEquiv f1 f2 = satVals g f1 == satVals g f2

where g = mapping (Conj [f1,f2])

A formula is a (propositional) contradiction if it is propositionally equiv-
alent to Neg Top, or equivalently, to Disj []:

contrad :: Form -> Bool

contrad f = propEquiv f (Disj [])

A formula is (propositionally) consistent if it is not a propositional contra-
diction:

consistent :: Form -> Bool

consistent = not . contrad

Use the set of satisfying valuations to derive a canonical form:
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canonF :: Form -> Form

canonF f = if (contrad (Neg f))

then Top

else if fs == []

then Neg Top

else if length fs == 1

then head fs

else Disj fs

where g = mapping f

nss = satVals g f

g’ = \ i -> head [ form | (form,j) <- g, i == j ]

h = \ i -> if i < 0 then Neg (g’ (abs i)) else g’ i

h’ = \ xs -> map h xs

k = \ xs -> if xs == []

then Top

else if length xs == 1

then head xs

else Conj xs

fs = map k (map h’ nss)

This gives:

ActEpist> canonF p

p

ActEpist> canonF (Conj [p,Top])

p

ActEpist> canonF (Conj [p,q,Neg r])

&[p,q,-r]

ActEpist> canonF (Neg (Disj [p,(Neg p)]))

-T

ActEpist> canonF (Disj [p,q,Neg r])

v[p,&[-p,q],&[-p,-q,-r]]

ActEpist> canonF (K a (Disj [p,q,Neg r]))

[a]v[p,&[-p,q],&[-p,-q,-r]]

ActEpist> canonF (Conj [p, Conj [q,Neg r]])

&[p,q,-r]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Disj []))]])

v[&[p,q],&[p,-q,-[a]-T]]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Conj []))]])

&[p,q]

7.3 Action models and epistemic models
Action models and epistemic models are built from states. We assume states
are represented by integers:

type State = Integer

Epistemic models are models where the states are of type State, and
the precondition function assigns lists of basic propositions (this specializes
the precondition function to a valuation).

type EM = Model State [Prop]



1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

DEMO — A Demo of Epistemic Modelling 335

Find the valuation of an epistemic model:

valuation :: EM -> [(State,[Prop])]

valuation = eval

Action models are models where the states are of type State, and the
precondition function assigns objects of type Form. The only difference
between an action model and a static model is in the fact that action models
have a precondition function that assigns a formula instead of a set of basic
propositions.

type AM = Model State Form

The preconditions of an action model:

preconditions :: AM -> [Form]

preconditions (Mo states pre ags acc points) =

map (table2fct pre) points

Sometimes we need a single precondition:

precondition :: AM -> Form

precondition am = canonF (Conj (preconditions am))

The zero action model 0:

zero :: [Agent] -> AM

zero ags = (Mo [] [] ags [] [])

The purpose of action models is to define relations on the class of all
static models. States with precondition ⊥ can be pruned from an action
model. For this we define a specialized version of the gsm function:

gsmAM :: AM -> AM

gsmAM (Mo states pre ags acc points) =

let

points’ = [ p | p <- points, consistent (table2fct pre p) ]

states’ = [ s | s <- states, consistent (table2fct pre s) ]

pre’ = filter (\ (x,_) -> elem x states’) pre

f = \ (_,s,t) -> elem s states’ && elem t states’

acc’ = filter f acc

in

if points’ == []

then zero ags

else gsm (Mo states’ pre’ ags acc’ points’)
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7.4 Program transformation
For every action model A with states s0, . . . , sn−1 we define a set of n2

program transformers TA
i,j (0 ≤ i < n, 0 ≤ j < n), as follows [vE104b]:

TA
ij (a) =

{
?pre(si); a if si

a→ sj ,

?⊥ otherwise

TA
ij (?ϕ) =

{
?(pre(si) ∧ [A, si]ϕ) if i = j,

?⊥ otherwise

TA
ij (π1;π2) =

n−1⋃
k=0

(TA
ik(π1);TA

kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2)

TA
ij (π∗) = KA

ijn(π)

where KA
ijk(π) is a (transformed) program for all the π∗ paths from si to sj

that can be traced through A while avoiding a pass through intermediate
states sk and higher. Thus, KA

ijn(π) is a program for all the π∗ paths from
si to sj that can be traced through A, period.

KA
ijk(π) is defined by recursing on k, as follows:

KA
ij0(π) =

{
?> ∪ TA

ij (π) if i = j,

TA
ij (π) otherwise

KA
ij(k+1)(π) =


(KA

kkk(π))∗ if i = k = j,

(KA
kkk(π))∗;KA

kjk(π) if i = k 6= j,

KA
ikk(π); (KA

kkk(π))∗ if i 6= k = j,

KA
ijk(π) ∪ (KA

ikk(π); (KA
kkk(π))∗;KA

kjk(π)) otherwise.

Lemma 7.1 (Kleene Path). Suppose (w,w′) ∈ [[TA
ij (π)]]M iff there is a π

path from (w, si) to (w′, sj) in M⊗A. Then (w,w′) ∈ [[KA
ijn(π)]]M iff there

is a π∗ path from (w, si) to (w′, sj) in M⊗A.

The Kleene path lemma is the key ingredient in the proof of the following
program transformation lemma.

Lemma 7.2 (Program Transformation). Assume A has n states s0, . . . ,
sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj ]ϕ.
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The implementation of the program transformation functions is given here:

transf :: AM -> Integer -> Integer -> Program -> Program

transf am@(Mo states pre allAgs acc points) i j (Ag ag) =

let

f = table2fct pre i

in

if elem (ag,i,j) acc && f == Top then Ag ag

else if elem (ag,i,j) acc && f /= Neg Top then Conc [Test f, Ag ag]

else Test (Neg Top)

transf am@(Mo states pre allAgs acc points) i j (Ags ags) =

let ags’ = nub [ a | (a,k,m) <- acc, elem a ags, k == i, m == j ]

ags1 = intersect ags ags’

f = table2fct pre i

in

if ags1 == [] || f == Neg Top then Test (Neg Top)

else if f == Top && length ags1 == 1 then Ag (head ags1)

else if f == Top then Ags ags1

else Conc [Test f, Ags ags1]

transf am@(Mo states pre allAgs acc points) i j (Test f) =

let

g = table2fct pre i

in

if i == j

then Test (Conj [g,(Up am f)])

else Test (Neg Top)

transf am@(Mo states pre allAgs acc points) i j (Conc []) =

transf am i j (Test Top)

transf am@(Mo states pre allAgs acc points) i j (Conc [p]) =

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Conc (p:ps)) =

Sum [ Conc [transf am i k p, transf am k j (Conc ps)] | k <- [0..n] ]

where n = toInteger (length states - 1)

transf am@(Mo states pre allAgs acc points) i j (Sum []) =

transf am i j (Test (Neg Top))

transf am@(Mo states pre allAgs acc points) i j (Sum [p]) =

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Sum ps) =

Sum [ transf am i j p | p <- ps ]

transf am@(Mo states pre allAgs acc points) i j (Star p) =

kleene am i j n p

where n = toInteger (length states)

The following is the implementation of KA
ijk:

kleene :: AM -> Integer -> Integer -> Integer -> Program -> Program

kleene am i j 0 pr =

if i == j

then Sum [Test Top, transf am i j pr]

else transf am i j pr

kleene am i j k pr

| i == j && j == pred k = Star (kleene am i i i pr)

| i == pred k =

Conc [Star (kleene am i i i pr), kleene am i j i pr]



1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

338 J. van Eijck

| j == pred k =

Conc [kleene am i j j pr, Star (kleene am j j j pr)]

| otherwise =

Sum [kleene am i j k’ pr,

Conc [kleene am i k’ k’ pr,

Star (kleene am k’ k’ k’ pr), kleene am k’ j k’ pr]]

where k’ = pred k

Transformation plus simplification:

tfm :: AM -> Integer -> Integer -> Program -> Program

tfm am i j pr = simpl (transf am i j pr)

The program transformations can be used to translate Update PDL to PDL,
as follows:

t(>) = > t(p) = p
t(¬ϕ) = ¬t(ϕ) t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)
t([π]ϕ) = [r(π)]t(ϕ) t([A, s]>) = >

t([A, s]p) = t(pre(s)) → p
t([A, s]¬ϕ) = t(pre(s)) → ¬t([A, s]ϕ)

t([A, s](ϕ1 ∧ ϕ2)) = t([A, s]ϕ1) ∧ t([A, s]ϕ2)
t([A, si][π]ϕ) =

∧n−1
j=0 [TA

ij (r(π))]t([A, sj ]ϕ)
t([A, s][A′, s′]ϕ) = t([A, s]t([A′, s′]ϕ))

t([A,S]ϕ) =
∧

s∈S t[A, s]ϕ)

r(a) = a r(B) = B
r(?ϕ) = ?t(ϕ) r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2) r(π∗) = (r(π))∗.

The correctness of this translation follows from direct semantic inspec-
tion, using the program transformation lemma for the translation of formu-
las of type [A, si][π]ϕ.

The crucial clauses in this translation procedure are those for formulas
of the forms [A,S]ϕ and [A, s]ϕ, and more in particular the one for formulas
of the form [A, s][π]ϕ. It makes sense to give separate functions for the steps
that pull the update model through program π given formula ϕ.

step0, step1 :: AM -> Program -> Form -> Form

step0 am@(Mo states pre allAgs acc []) pr f = Top

step0 am@(Mo states pre allAgs acc [i]) pr f = step1 am pr f

step0 am@(Mo states pre allAgs acc is) pr f =

Conj [ step1 (Mo states pre allAgs acc [i]) pr f | i <- is ]

step1 am@(Mo states pre allAgs acc [i]) pr f =

Conj [ Pr (transf am i j (rpr pr))

(Up (Mo states pre allAgs acc [j]) f) | j <- states ]
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Perform a single step, and put in canonical form:

step :: AM -> Program -> Form -> Form

step am pr f = canonF (step0 am pr f)

t :: Form -> Form

t Top = Top

t (Prop p) = Prop p

t (Neg f) = Neg (t f)

t (Conj fs) = Conj (map t fs)

t (Disj fs) = Disj (map t fs)

t (Pr pr f) = Pr (rpr pr) (t f)

t (K x f) = Pr (Ag x) (t f)

t (EK xs f) = Pr (Ags xs) (t f)

t (CK xs f) = Pr (Star (Ags xs)) (t f)

Translations of formulas starting with an action model update:

t (Up am@(Mo states pre allAgs acc [i]) f) = t’ am f

t (Up am@(Mo states pre allAgs acc is) f) =

Conj [ t’ (Mo states pre allAgs acc [i]) f | i <- is ]

Translations of formulas starting with a single pointed action model update
are performed by t’:

t’ :: AM -> Form -> Form

t’ am Top = Top

t’ am (Prop p) = impl (precondition am) (Prop p)

t’ am (Neg f) = Neg (t’ am f)

t’ am (Conj fs) = Conj (map (t’ am) fs)

t’ am (Disj fs) = Disj (map (t’ am) fs)

t’ am (K x f) = t’ am (Pr (Ag x) f)

t’ am (EK xs f) = t’ am (Pr (Ags xs) f)

t’ am (CK xs f) = t’ am (Pr (Star (Ags xs)) f)

t’ am (Up am’f) = t’ am (t (Up am’ f))

The crucial case is an update action having scope over a program. We may
assume that the update action is single pointed.

t’ am@(Mo states pre allAgs acc [i]) (Pr pr f) =

Conj [ Pr (transf am i j (rpr pr))

(t’ (Mo states pre allAgs acc [j]) f) | j <- states ]

t’ am@(Mo states pre allAgs acc is) (Pr pr f) =

error "action model not single pointed"

Translations for programs:

rpr :: Program -> Program

rpr (Ag x) = Ag x

rpr (Ags xs) = Ags xs

rpr (Test f) = Test (t f)

rpr (Conc ps) = Conc (map rpr ps)

rpr (Sum ps) = Sum (map rpr ps)

rpr (Star p) = Star (rpr p)
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Translating and putting in canonical form:

tr :: Form -> Form

tr = canonF . t

Some example translations:

ActEpist> tr (Up (public p) (Pr (Star (Ags [b,c])) p))

T

ActEpist> tr (Up (public (Disj [p,q])) (Pr (Star (Ags [b,c])) p))

[(U[?T,C[?v[p,q],[b,c]]])*]v[p,&[-p,-q]]

ActEpist> tr (Up (groupM [a,b] p) (Pr (Star (Ags [b,c])) p))

[C[C[(U[?T,C[?p,[b,c]]])*,C[?p,[c]]],(U[U[?T,[b,c]],

C[c,(U[?T,C[?p,[b,c]]])*,C[?p,[c]]]])*]]p

ActEpist> tr (Up (secret [a,b] p) (Pr (Star (Ags [b,c])) p))

[C[C[(U[?T,C[?p,[b]]])*,C[?p,[c]]],(U[U[?T,[b,c]],

C[?-T,(U[?T,C[?p,[b]]])*,C[?p,[c]]]])*]]p

8 Semantics
module Semantics

where

import List

import Char

import Models

import Display

import MinBis

import ActEpist

import DPLL

8.1 Semantics implementation
The group alternatives of group of agents a are the states that are reachable
through

⋃
a∈ARa.

groupAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]

groupAlts rel agents current =

(nub . sort . concat) [ alternatives rel a current | a <- agents ]

The common knowledge alternatives of group of agents a are the states
that are reachable through a finite number of Ra links, for a ∈ A.

commonAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]

commonAlts rel agents current =

closure rel agents (groupAlts rel agents current)

The model update function takes a static model and and action model
and returns an object of type Model (State,State) [Prop]. The up func-
tion takes an epistemic model and an action model and returns an epistemic
model. Its states are the (State,State) pairs that result from the cartesian
product construction described in [Ba4Mo3So199]. Note that the update
function uses the truth definition (given below as isTrueAt).
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We will set up matters in such way that updates with action models get
their list of agents from the epistemic model that gets updated. For this,
we define:

type FAM = [Agent] -> AM

up :: EM -> FAM -> Model (State,State) [Prop]

up m@(Mo worlds val ags acc points) fam =

Mo worlds’ val’ ags acc’ points’

where

am@(Mo states pre _ susp actuals) = fam ags

worlds’ = [ (w,s) | w <- worlds, s <- states,

formula <- maybe [] (\ x -> [x]) (lookup s pre),

isTrueAt w m formula ]

val’ = [ ((w,s),props) | (w,props) <- val,

s <- states,

elem (w,s) worlds’ ]

acc’ = [ (ag1,(w1,s1),(w2,s2)) | (ag1,w1,w2) <- acc,

(ag2,s1,s2) <- susp,

ag1 == ag2,

elem (w1,s1) worlds’,

elem (w2,s2) worlds’ ]

points’ = [ (p,a) | p <- points, a <- actuals,

elem (p,a) worlds’ ]

An action model is tiny if its action list is empty or a singleton list:

tiny :: FAM -> Bool

tiny fam = length actions <= 1

where actions = domain (fam [minBound..maxBound])

The appropriate notion of equivalence for the base case of the bisimulation
for epistemic models is “having the same valuation”.

sameVal :: [Prop] -> [Prop] -> Bool

sameVal ps qs = (nub . sort) ps == (nub . sort) qs

Bisimulation minimal version of generated submodel of update result for
epistemic model and pointed action models:

upd :: EM -> FAM -> EM

upd sm fam = if tiny fam then conv (up sm fam)

else bisim (sameVal) (up sm fam)

Non-deterministic update with a list of pointed action models:

upds :: EM -> [FAM] -> EM

upds = foldl upd

At last we have all ingredients for the truth definition.
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isTrueAt :: State -> EM -> Form -> Bool

isTrueAt w m Top = True

isTrueAt w m@(Mo worlds val ags acc pts) (Prop p) =

elem p (concat [ props | (w’,props) <- val, w’==w ])

isTrueAt w m (Neg f) = not (isTrueAt w m f)

isTrueAt w m (Conj fs) = and (map (isTrueAt w m) fs)

isTrueAt w m (Disj fs) = or (map (isTrueAt w m) fs)

The clauses for individual knowledge, general knowledge and common
knowledge use the functions alternatives, groupAlts and commonAlts to
compute the relevant accessible worlds:

isTrueAt w m@(Mo worlds val ags acc pts) (K ag f) =

and (map (flip ((flip isTrueAt) m) f) (alternatives acc ag w))

isTrueAt w m@(Mo worlds val ags acc pts) (EK agents f) =

and (map (flip ((flip isTrueAt) m) f) (groupAlts acc agents w))

isTrueAt w m@(Mo worlds val ags acc pts) (CK agents f) =

and (map (flip ((flip isTrueAt) m) f) (commonAlts acc agents w))

In the clause for [M]ϕ, the result of updating the static model M with
action model M may be undefined, but in this case the precondition P (s0)
of the designated state s0 of M will fail in the designated world w0 of M . By
making the clause for [M]ϕ check for M |=w0 P (s0), truth can be defined
as a total function.

isTrueAt w m@(Mo worlds val ags rel pts) (Up am f) =

and [ isTrue m’ f |

m’ <- decompose (upd (Mo worlds val ags rel [w]) (\ ags -> am))]

Checking for truth in all the designated points of an epistemic model:

isTrue :: EM -> Form -> Bool

isTrue (Mo worlds val ags rel pts) form =

and [ isTrueAt w (Mo worlds val ags rel pts) form | w <- pts ]

8.2 Tools for constructing epistemic models
The following function constructs an initial epistemic model where the
agents are completely ignorant about their situation, as described by a list
of basic propositions. The input is a list of basic propositions used for
constructing the valuations.

initE :: [Prop] -> [Agent] -> EM

initE allProps ags = (Mo worlds val ags accs points)

where

worlds = [0..(2^k - 1)]

k = length allProps

val = zip worlds (sortL (powerList allProps))

accs = [ (ag,st1,st2) | ag <- ags,

st1 <- worlds,

st2 <- worlds ]

points = worlds
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This uses the following utilities:
powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

sortL :: Ord a => [[a]] -> [[a]]

sortL = sortBy (\ xs ys -> if length xs < length ys then LT

else if length xs > length ys then GT

else compare xs ys)

Some initial models:
e00 :: EM

e00 = initE [P 0] [a,b]

e0 :: EM

e0 = initE [P 0,Q 0] [a,b,c]

8.3 From communicative actions to action models
Computing the update for a public announcement:

public :: Form -> FAM

public form ags =

(Mo [0] [(0,form)] ags [ (a,0,0) | a <- ags ] [0])

Public announcements are S5 models:
DEMO> showM (public p [a,b,c])

==> [0]

[0]

(0,p)

(a,[[0]])

(b,[[0]])

(c,[[0]])

Computing the update for passing a group announcement to a list of
agents: the other agents may or may not be aware of what is going on. In
the limit case where the message is passed to all agents, the message is a
public announcement.

groupM :: [Agent] -> Form -> FAM

groupM gr form agents =

if sort gr == sort agents

then public form agents

else

(Mo

[0,1]

[(0,form),(1,Top)]

agents

([ (a,0,0) | a <- agents ]

++ [ (a,0,1) | a <- agents \\ gr ]

++ [ (a,1,0) | a <- agents \\ gr ]

++ [ (a,1,1) | a <- agents ])

[0])
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Group announcements are S5 models:

Semantics> showM (groupM [a,b] p [a,b,c,d,e])

=> [0]

[0,1]

(0,p)(1,T)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0,1]])

(d,[[0,1]])

(e,[[0,1]])

Computing the update for an individual message to b that ϕ:

message :: Agent -> Form -> FAM

message agent = groupM [agent]

Another special case of a group message is a test. Tests are updates that
messages to the empty group:

test :: Form -> FAM

test = groupM []

Computing the update for passing a secret message to a list of agents:
the other agents remain unaware of the fact that something goes on. In the
limit case where the secret is divulged to all agents, the secret becomes a
public update.

secret :: [Agent] -> Form -> FAM

secret agents form all_agents =

if sort agents == sort all_agents

then public form agents

else

(Mo

[0,1]

[(0,form),(1,Top)]

all_agents

([ (a,0,0) | a <- agents ]

++ [ (a,0,1) | a <- all_agents \\ agents ]

++ [ (a,1,1) | a <- all_agents ])

[0])

Secret messages are KD45 models:

DEMO> showM (secret [a,b] p [a,b,c])

==> [0]

[0,1]

(0,p)(1,T)

(a,[([],[0]),([],[1])])

(b,[([],[0]),([],[1])])

(c,[([0],[1])])
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Here is a multiple pointed action model for the communicative action of
revealing one of a number of alternatives to a list of agents, in such a way
that it is common knowledge that one of the alternatives gets revealed (in
[Ba4Mo3So103] this is called common knowledge of alternatives).

reveal :: [Agent] -> [Form] -> FAM

reveal ags forms all_agents =

(Mo

states

(zip states forms)

all_agents

([ (ag,s,s) | s <- states, ag <- ags ]

++

[ (ag,s,s’) | s <- states, s’ <- states, ag <- others ])

states)

where states = map fst (zip [0..] forms)

others = all_agents \\ ags

Here is an action model for the communication that reveals to a one of
p1, q1, r1.

Semantics> showM (reveal [a] [p1,q1,r1] [a,b])

==> [0,1,2]

[0,1,2]

(0,p1)(1,q1)(2,r1)

(a,[[0],[1],[2]])

(b,[[0,1,2]])

A group of agents B gets (transparently) informed about a formula ϕ
if B get to know ϕ when ϕ is true, and B get to know the negation of
ϕ otherwise. Transparency means that all other agents are aware of the
fact that B get informed about ϕ, i.e., the other agents learn that (ϕ →
CBϕ)∧(¬ϕ→ CB¬ϕ). This action model can be defined in terms of reveal,
as follows:

info :: [Agent] -> Form -> FAM

info agents form =

reveal agents [form, negation form]

An example application:
Semantics> showM (upd e0 (info [a,b] q))

==> [0,1,2,3]

[0,1,2,3]

(0,[])(1,[p])(2,[q])(3,[p,q])

(a,[[0,1],[2,3]])

(b,[[0,1],[2,3]])

(c,[[0,1,2,3]])

Semantics> isTrue (upd e0 (info [a,b] q)) (CK [a,b] q)

False

Semantics> isTrue (upd e0 (groupM [a,b] q)) (CK [a,b] q)

True
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Slightly different is informing a set of agents about what is actually the case
with respect to formula ϕ:

infm :: EM -> [Agent] -> Form -> FAM

infm m ags f = if isTrue m f

then groupM ags f

else if isTrue m (Neg f)

then groupM ags (Neg f)

else one

And the corresponding thing for public announcement:

publ :: EM -> Form -> FAM

publ m f = if isTrue m f

then public f

else if isTrue m (Neg f)

then public (Neg f)

else one

8.4 Operations on action models
The trivial update action model is a special case of public announcement.
Call this the one action model, for it behaves as 1 for the operation ⊗ of
action model composition.

one :: FAM

one = public Top

Composition ⊗ of multiple pointed action models.

cmpP :: FAM -> FAM -> [Agent] -> Model (State,State) Form

cmpP fam1 fam2 ags =

(Mo nstates npre ags nsusp npoints)

where m@(Mo states pre _ susp ss) = fam1 ags

(Mo states’ pre’ _ susp’ ss’) = fam2 ags

npoints = [ (s,s’) | s <- ss, s’ <- ss’ ]

nstates = [ (s,s’) | s <- states, s’ <- states’ ]

npre = [ ((s,s’), g) | (s,f) <- pre,

(s’,f’) <- pre’,

g <- [computePre m f f’] ]

nsusp = [ (ag,(s1,s1’),(s2,s2’)) | (ag,s1,s2) <- susp,

(ag’,s1’,s2’) <- susp’,

ag == ag’ ]

The utility function for this can be described as follows: compute the
new precondition of a state pair. If the preconditions of the two states are
purely propositional, we know that the updates at the states commute and
that their combined precondition is the conjunction of the two preconditions,
provided this conjunction is not a contradiction. If one of the states has a
precondition that is not purely propositional, we have to take the epistemic
effect of the update into account in the new precondition.
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computePre :: AM -> Form -> Form -> Form

computePre m g g’ | pureProp conj = conj

| otherwise = Conj [ g, Neg (Up m (Neg g’)) ]

where conj = canonF (Conj [g,g’])

Compose pairs of multiple pointed action models, and reduce the result to
its simplest possible form under action emulation.

cmpFAM :: FAM -> FAM -> FAM

-- cmpFAM fam fam’ ags = aePmod (cmpP fam fam’ ags)

cmpFAM fam fam’ ags = conv (cmpP fam fam’ ags)

Use one as unit for composing lists of FAMs:

cmp :: [FAM] -> FAM

cmp = foldl cmpFAM one

Here is the result of composing two messages:

Semantics> showM (cmp [groupM [a,b] p, groupM [b,c] q] [a,b,c])

==> [0]

[0,1,2,3]

(0,&[p,q])(1,p)(2,q)(3,T)

(a,[[0,1],[2,3]])

(b,[[0],[1],[2],[3]])

(c,[[0,2],[1,3]])

This gives the resulting action model. Here is the result of composing the
messages in the reverse order. The two action models are bisimilar under
the renaming 1 7→ 2, 2 7→ 1.

==> [0]

[0,1,2,3]

(0,&[p,q])(1,q)(2,p)(3,T)

(a,[[0,2],[1,3]])

(b,[[0],[1],[2],[3]])

(c,[[0,1],[2,3]])

The following is an illustration of an observation from [vE104a]:

m2 = initE [P 0,Q 0] [a,b,c]

psi = Disj[Neg(K b p),q]

Semantics> showM (upds m2 [message a psi, message b p])

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[[0,1,2,3,4,5]])

(b,[[0,2,3,5],[1,4]])

(c,[[0,1,2,3,4,5]])
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Semantics> showM (upds m2 [message b p, message a psi])

==> [7]

[0,1,2,3,4,5,6,7,8,9,10]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[q])(7,[p,q])(8,[p,q])(9,[p,q])

(10,[p,q])

(a,[[0,3,5,7,9],[1,2,4,6,8,10]])

(b,[[0,1,3,4,5,6,9,10],[2,7,8]])

(c,[[0,1,2,3,4,5,6,7,8,9,10]])

Power of action models:

pow :: Int -> FAM -> FAM

pow n fam = cmp (take n (repeat fam))

Non-deterministic sum ⊕ of multiple-pointed action models:

ndSum’ :: FAM -> FAM -> FAM

ndSum’ fam1 fam2 ags = (Mo states val ags acc ss)

where

(Mo states1 val1 _ acc1 ss1) = fam1 ags

(Mo states2 val2 _ acc2 ss2) = fam2 ags

f = \ x -> toInteger (length states1) + x

states2’ = map f states2

val2’ = map (\ (x,y) -> (f x, y)) val2

acc2’ = map (\ (x,y,z) -> (x, f y, f z)) acc2

ss = ss1 ++ map f ss2

states = states1 ++ states2’

val = val1 ++ val2’

acc = acc1 ++ acc2’

Example action models:

am0 = ndSum’ (test p) (test (Neg p)) [a,b,c]

am1 = ndSum’ (test p) (ndSum’ (test q) (test r)) [a,b,c]

Examples of minimization for action emulation:

Semantics> showM am0

==> [0,2]

[0,1,2,3]

(0,p)(1,T)(2,-p)(3,T)

(a,[([0],[1]),([2],[3])])

(b,[([0],[1]),([2],[3])])

(c,[([0],[1]),([2],[3])])

Semantics> showM (aePmod am0)

==> [0]

[0]

(0,T)

(a,[[0]])

(b,[[0]])

(c,[[0]])
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Semantics> showM am1

==> [0,2,4]

[0,1,2,3,4,5]

(0,p)(1,T)(2,q)(3,T)(4,r)

(5,T)

(a,[([0],[1]),([2],[3]),([4],[5])])

(b,[([0],[1]),([2],[3]),([4],[5])])

(c,[([0],[1]),([2],[3]),([4],[5])])

Semantics> showM (aePmod am1)

==> [0]

[0,1]

(0,v[p,&[-p,q],&[-p,-q,r]])(1,T)

(a,[([0],[1])])

(b,[([0],[1])])

(c,[([0],[1])])

Non-deterministic sum ⊕ of multiple-pointed action models, reduced for
action emulation:

ndSum :: FAM -> FAM -> FAM

ndSum fam1 fam2 ags = (ndSum’ fam1 fam2) ags

Notice the difference with the definition of alternative composition of Kripke
models for processes given in [Ho398, Ch 4]. The zero action model is the
0 for the ⊕ operation, so it can be used as the base case in the following list
version of the ⊕ operation:

ndS :: [FAM] -> FAM

ndS = foldl ndSum zero

Performing a test whether ϕ and announcing the result:

testAnnounce :: Form -> FAM

testAnnounce form = ndS [ cmp [ test form, public form ],

cmp [ test (negation form),

public (negation form)] ]

testAnnounce form is equivalent to info all_agents form:

Semantics> showM (testAnnounce p [a,b,c])

==> [0,1]

[0,1]

(0,p)(1,-p)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0],[1]])

Semantics> showM (info [a,b,c] p [a,b,c])

==> [0,1]

[0,1]

(0,p)(1,-p)
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(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0],[1]])

The function testAnnounce gives the special case of revelations where
the alternatives are a formula and its negation, and where the result is
publicly announced.
Note that DEMO correctly computes the result of the sequence and the
sum of two contradictory propositional tests:

Semantics> showM (cmp [test p, test (Neg p)] [a,b,c])

==> []

[]

(a,[])

(b,[])

(c,[])

Semantics> showM (ndS [test p, test (Neg p)] [a,b,c])

==> [0]

[0]

(0,T)

(a,[[0]])

(b,[[0]])

(c,[[0]])

9 Examples

9.1 The riddle of the caps
Picture a situation3 of four people a, b, c, d standing in line, with a, b, c
looking to the left, and d looking to the right. a can see no-one else; b can
see a; c can see a and b, and d can see no-one else. They are all wearing
caps, and they cannot see their own cap. If it is common knowledge that
there are two white and two black caps, then in the situation depicted in
Figure 4, c knows what colour cap she is wearing.

If c now announces that she knows the colour of her cap (without re-
vealing the colour), b can infer from this that he is wearing a white cap, for
b can reason as follows: “c knows her colour, so she must see two caps of
the same colour. The cap I can see is white, so my own cap must be white
as well.” In this situation b draws a conclusion from the fact that c knows
her colour.

In the situation depicted in Figure 5, b can draw a conclusion from the
fact that c does not know her colour.

In this case c announces that she does not know her colour, and b can
infer from this that he is wearing a black cap, for b can reason as follows:
3 See [vE1Or05].
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Figure 4.

“c does not know her colour, so she must see two caps of different colours
in front of her. The cap I can see is white, so my own cap must be black.”

To account for this kind of reasoning, we use model checking for epis-
temic updating, as follows. Proposition pi expresses the fact that the i-th
cap, counting from the left, is white. Thus, the facts of our first example
situation are given by p1 ∧ p2 ∧¬p3 ∧¬p4, and those of our second example
by p1 ∧ ¬p2 ∧ ¬p3 ∧ p4.
Here is the DEMO code for this example (details to be explained below):

module Caps where

import DEMO

capsInfo :: Form capsInfo = Disj [Conj [f, g, Neg h, Neg j] |

f <- [p1, p2, p3, p4],

g <- [p1, p2, p3, p4] \\ [f],

h <- [p1, p2, p3, p4] \\ [f,g],

j <- [p1, p2, p3, p4] \\ [f,g,h],

f < g, h < j ]

awarenessFirstCap = info [b,c] p1 awarenessSecondCap = info [c]

p2

cK = Disj [K c p3, K c (Neg p3)]

bK = Disj [K b p2, K b (Neg p2)]

mo0 = upd (initE [P 1, P 2, P 3, P 4] [a,b,c,d]) (test capsInfo)

mo1 = upd mo0 (public capsInfo)

mo2 = upds mo1 [awarenessFirstCap, awarenessSecondCap]
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Figure 5.

mo3a = upd mo2 (public cK)

mo3b = upd mo2 (public (Neg cK))

An initial situation with four agents a, b, c, d and four propositions p1,
p2, p3, p4, with exactly two of these true, where no-one knows anything
about the truth of the propositions, and everyone is aware of the ignorance
of the others, is modelled like this:

Caps> showM mo0

==> [5,6,7,8,9,10]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(d,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

The first line indicates that worlds 5, 6, 7, 8, 9, 10 are compatible with the
facts of the matter (the facts being that there are two white and two black
caps). E.g., 5 is the world where a and b are wearing the white caps. The
second line lists all the possible worlds; there are 24 of them, since every
world has a different valuation. The third through sixth lines give the valu-
ations of worlds. The last four lines represent the accessibility relations for
the agents. All accessibilities are total relations, and they are represented
here as the corresponding partitions on the set of worlds. Thus, the igno-
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rance of the agents is reflected in the fact that for all of them all worlds are
equivalent: none of the agents can tell any of them apart.

The information that two of the caps are white and two are black is
expressed by the formula

(p1 ∧ p2 ∧ ¬p3 ∧ ¬p4) ∨ (p1 ∧ p3 ∧ ¬p2 ∧ ¬p4) ∨ (p1 ∧ p4 ∧ ¬p2 ∧ ¬p3)
∨ (p2 ∧ p3 ∧ ¬p1 ∧ ¬p4) ∨ (p2 ∧ p4 ∧ ¬p1 ∧ ¬p3) ∨ (p3 ∧ p4 ∧ ¬p1 ∧ ¬p2).

A public announcement with this information has the following effect:

Caps> showM (upd mo0 (public capsInfo))

==> [0,1,2,3,4,5]

[0,1,2,3,4,5]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])

(a,[[0,1,2,3,4,5]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

(d,[[0,1,2,3,4,5]])

Let this model be called mo1. The representation above gives the partitions
for all the agents, showing that nobody knows anything. A perhaps more
familiar representation for this multi-agent Kripke model is given in Figure
6. In this picture, all worlds are connected for all agents, all worlds are
compatible with the facts of the matter (indicated by the double ovals).

Next, we model the fact that (everyone is aware that) b can see the first
cap and that c can see the first and the second cap, as follows:

Caps> showM (upds mo1 [info [b,c] p1, info [c] p2])

==> [0,1,2,3,4,5]

[0,1,2,3,4,5]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])

(a,[[0,1,2,3,4,5]])

(b,[[0,1,2],[3,4,5]])

(c,[[0],[1,2],[3,4],[5]])

(d,[[0,1,2,3,4,5]])

Notice that this model reveals that in case a, b wear caps of the same colour
(situations 0 and 5), c knows the colour of all the caps, and in case a, b wear
caps of different colours, she does not (she confuses the cases 1, 2 and the
cases 3, 4). Figure 7 gives a picture representation.

Let this model be called mo2. Knowledge of c about her situation is
expressed by the epistemic formula Kcp3 ∨ Kc¬p3, ignorance of c about
her situation by the negation of this formula. Knowledge of b about his
situation is expresed by Kbp2 ∨ Kb¬p2. Let bK, cK express that b, c know
about their situation. Then updating with public announcement of cK and
with public announcement of the negation of this have different effects:



2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

354 J. van Eijck

0:[p1,p2]

1:[p1,p3]

abcd

2:[p1,p4]

abcd

3:[p2,p3]

abcd
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abcd
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abcd

abcd

abcd
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abcd

abcd

abcd

abcdabcd

abcd

abcd

Figure 6. Caps situation where nobody knows anything about
p1, p2, p3, p4.

Caps> showM (upd mo2 (public cK))

==> [0,1]

[0,1]

(0,[p1,p2])(1,[p3,p4])

(a,[[0,1]])

(b,[[0],[1]])

(c,[[0],[1]])

(d,[[0,1]])

Caps> showM (upd mo2 (public (Neg cK)))

==> [0,1,2,3]

[0,1,2,3]

(0,[p1,p3])(1,[p1,p4])(2,[p2,p3])(3,[p2,p4])

(a,[[0,1,2,3]])

(b,[[0,1],[2,3]])

(c,[[0,1],[2,3]])

(d,[[0,1,2,3]])

In both results, b knows about his situation, though:
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0:[p1,p2]

1:[p1,p3]

abd

2:[p1,p4]

abd

3:[p2,p3]

ad

4:[p2,p4]

ad

5:[p3,p4]

ad

abcd

ad

ad

ad

ad

ad

adabcd

abd

abd

Figure 7. Caps situation after updating with awareness of what b and c
can see.

Caps> isTrue (upd mo2 (public cK)) bK

True

Caps> isTrue (upd mo2 (public (Neg cK))) bK

True

9.2 Muddy children
For this example we need four agents a, b, c, d. Four children a, b, c, d are
sitting in a circle. They have been playing outside, and they may or may
not have mud on their foreheads. Their father announces: “At least one
child is muddy!” Suppose in the actual situation, both c and d are muddy.

a b c d
◦ ◦ • •
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Then at first, nobody knows whether he is muddy or not. After public
announcement of these facts, c(d) can reason as follows. “Suppose I am
clean. Then d(c) would have known in the first round that she was dirty.
But she didn’t. So I am muddy.” After c, d announce that they know
their state, a(b) can reason as follows: “Suppose I am dirty. Then c and d
would not have known in the second round that they were dirty. But they
knew. So I am clean.” Note that the reasoning involves awareness about
perception.

In the actual situation where b, c, d are dirty, we get:

a b c d
◦ • • •
? ? ? ?
? ? ? ?
? ! ! !
! ! ! !

Reasoning of b: “Suppose I am clean. Then c and d would have known
in the second round that they are dirty. But they didn’t know. So I am
dirty. Similarly for c and d.” Reasoning of a: “Suppose I am dirty. Then b,
c and d would not have known their situation in the third round. But they
did know. So I am clean.” And so on . . . [Fa+95].
Here is the DEMO implementation of the second case of this example, with
b, c, d dirty.

module Muddy where

import DEMO

bcd_dirty = Conj [Neg p1, p2, p3, p4]

awareness = [info [b,c,d] p1,

info [a,c,d] p2,

info [a,b,d] p3,

info [a,b,c] p4 ]

aK = Disj [K a p1, K a (Neg p1)]

bK = Disj [K b p2, K b (Neg p2)]

cK = Disj [K c p3, K c (Neg p3)]

dK = Disj [K d p4, K d (Neg p4)]

mu0 = upd (initE [P 1, P 2, P 3, P 4] [a,b,c,d]) (test bcd_dirty)

mu1 = upds mu0 awareness

mu2 = upd mu1 (public (Disj [p1, p2, p3, p4]))

mu3 = upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))

mu4 = upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))

mu5 = upds mu4 [public (Conj[bK, cK, dK])]
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The initial situation, where nobody knows anything, and they are all
aware of the common ignorance (say, all children have their eyes closed, and
they all know this) looks like this:

Muddy> showM mu0

==> [14]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(d,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

The awareness of the children about the mud on the foreheads of the others
is expressed in terms of update models.
Here is the update model that expresses that b, c, d can see whether a is
muddy or not:

Muddy> showM (info [b,c,d] p1)

==> [0,1]

[0,1]

(0,p1)(1,-p1)

(a,[[0,1]])

(b,[[0],[1]])

(c,[[0],[1]])

(d,[[0],[1]])

Let awareness be the list of update models expressing what happens when
they all open their eyes and see the foreheads of the others. Then updating
with this has the following result:

Muddy> showM (upds mu0 awareness)

==> [14]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1],[2,5],[3,6],[4,7],[8,11],[9,12],[10,13],[14,15]])

(b,[[0,2],[1,5],[3,8],[4,9],[6,11],[7,12],[10,14],[13,15]])

(c,[[0,3],[1,6],[2,8],[4,10],[5,11],[7,13],[9,14],[12,15]])

(d,[[0,4],[1,7],[2,9],[3,10],[5,12],[6,13],[8,14],[11,15]])

Call the result mu1. An update of mu1 with the public announcement that
at least one child is muddy gives:

Muddy> showM (upd mu1 (public (Disj [p1, p2, p3, p4])))

==> [13]
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0:[p1]

4:[p1,p2]

b

5:[p1,p3]

c

6:[p1,p4]

d

1:[p2]

a

7:[p2,p3]

c

8:[p2,p4]

d

2:[p3]

a b

9:[p3,p4]

d

3:[p4]

a bc

10:[p1,p2,p3]

c

11:[p1,p2,p4]

d b

12:[p1,p3,p4]

d bc a

13:[p2,p3,p4]

da ca b

14:[p1,p2,p3,p4]

dcb a

Figure 8.

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]

(0,[p1])(1,[p2])(2,[p3])(3,[p4])(4,[p1,p2])

(5,[p1,p3])(6,[p1,p4])(7,[p2,p3])(8,[p2,p4])(9,[p3,p4])

(10,[p1,p2,p3])(11,[p1,p2,p4])(12,[p1,p3,p4])(13,[p2,p3,p4])

(14,[p1,p2,p3,p4])

(a,[[0],[1,4],[2,5],[3,6],[7,10],[8,11],[9,12],[13,14]])

(b,[[0,4],[1],[2,7],[3,8],[5,10],[6,11],[9,13],[12,14]])

(c,[[0,5],[1,7],[2],[3,9],[4,10],[6,12],[8,13],[11,14]])

(d,[[0,6],[1,8],[2,9],[3],[4,11],[5,12],[7,13],[10,14]])

Figure 8 represents this situation where the double oval indicates the actual
world). Call this model mu2, and use aK, bK,cK, dK for the formulas express-
ing that a, b, c, d know whether they are muddy (see the code above). Then
we get:

Muddy> showM (upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK,

Neg dK])))

==> [9]

[0,1,2,3,4,5,6,7,8,9,10]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])(6,[p1,p2,p3])(7,[p1,p2,p4])(8,[p1,p3,p4])

(9,[p2,p3,p4])(10,[p1,p2,p3,p4])

(a,[[0],[1],[2],[3,6],[4,7],[5,8],[9,10]])

(b,[[0],[1,6],[2,7],[3],[4],[5,9],[8,10]])

(c,[[0,6],[1],[2,8],[3],[4,9],[5],[7,10]])

(d,[[0,7],[1,8],[2],[3,9],[4],[5],[6,10]])

This situation is represented in Figure 9. We call this model mu3, and
update again with the same public announcement of general ignorance:
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Muddy> showM (upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK,

Neg dK])))

==> [3]

[0,1,2,3,4]

(0,[p1,p2,p3])(1,[p1,p2,p4])(2,[p1,p3,p4])(3,[p2,p3,p4])

(4,[p1,p2,p3,p4])

(a,[[0],[1],[2],[3,4]])

(b,[[0],[1],[2,4],[3]])

(c,[[0],[1,4],[2],[3]])

(d,[[0,4],[1],[2],[3]])

0:[p1,p2]

6:[p1,p2,p3]

c

7:[p1,p2,p4]

d

1:[p1,p3]

b

8:[p1,p3,p4]

d

2:[p1,p4]

b c

3:[p2,p3]

a

9:[p2,p3,p4]

d

4:[p2,p4]

a c

5:[p3,p4]

a b

10:[p1,p2,p3,p4]

d c b a

Figure 9.

0:[p1,p2,p3]

4:[p1,p2,p3,p4]

d

1:[p1,p2,p4]

c

2:[p1,p3,p4]

b

3:[p2,p3,p4]

a

Figure 10.

Finally, this situation is represented in Figure 10, and the model is called
mu4. In this model, b, c, d know about their situation:

Muddy> isTrue mu4 (Conj [bK, cK, dK])

True

Updating with the public announcement of this information determines ev-
erything:
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Muddy> showM (upd mu4 (public (Conj[bK, cK, dK])))

==> [0]

[0]

(0,[p2,p3,p4])

(a,[[0]])

(b,[[0]])

(c,[[0]])

(d,[[0]])

10 Conclusion and further work

DEMO was used for solving Hans Freudenthal’s Sum and Product puzzle by
means of epistemic modelling in [vDRu0Ve205]. There are many variations
of this. See the DEMO documentation at http://www.cwi.nl/∼jve/demo/
for descriptions and for DEMO solutions. DEMO is also good at modelling
the kind of card problems described in [vD03], such as the Russian card
problem. A DEMO solution to this was published in [vD+06]. DEMO was
used for checking a version of the Dining Cryptographers protocol [Ch288],
in [vE1Or05]. All of these examples are part of the DEMO documentation.

The next step is to employ DEMO for more realistic examples, such
as checking security properties of communication protocols. To develop
DEMO into a tool for blackbox cryptographic analysis — where the cryp-
tographic primitives such as one-way functions, nonces, public and private
key encryption are taken as given. For this, a propositional base language
is not sufficient. We should be able to express that an agent A generates a
nonce nA, and that no-one else knows the value of the nonce, without falling
victim to a combinatorial explosion. If nonces are 10-digit numbers then
not knowing a particular nonce means being confused between 1010 different
worlds. Clearly, it does not make sense to represent all of these in an im-
plementation. What could be done, however, is represent epistemic models
as triples (W,R, V ), where V now assigns a non-contradictory proposition
to each world. Then uncertainty about the value of nA, where the actual
value is N , can be represented by means of two worlds, one where na = N
and one where na 6= N . This could be done with basic propositions of the
form e = M and e 6= M , where e ranges over cryptographic expressions,
and M ranges over ‘big numerals’. Implementing these ideas, and putting
DEMO to the test of analysing real-life examples is planned as future work.
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