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Abstract

In this paper we investigate Kripke models, used to model knowl-
edge or belief in a static situation, and action models, used to model
communicative actions that change this knowledge or belief. The appro-
priate notion for structural equivalence between modal structures such
as Kripke models is bisimulation: Kripke models that are bisimilar are
modally equivalent. We would like to find a structural relation that can
play the same role for the action models that play a prominent role in
information updating. Two action models are equivalent if they yield the
same results when updating Kripke models. More precisely, two action
models are equivalent if it holds for all Kripke models that the result of
updating with one action model is bisimilar to the result of updating with
the other action model. We propose a new notion of action emulation that
characterizes the structural equivalence of the important class of canoni-
cal action models. Since every action model has an equivalent canonical
action model, this gives a method to decide the equivalence of any pair of
action models. We also give a partial result that holds for the class of all
action models. Our results extend the work in [4].

1 Introduction

In Dynamic Epistemic Logic (or: DEL), Kripke models are used to model the
knowledge of a group of agents in a certain situation, and action models to
update these models as a result of information flow and/or factual change. In
this paper we address an important technical question concerning these models,
namely: when are two action models equivalent? And how can one detect such
an equivalence?

Kripke models may be used to interpret any modal logic and they are well
studied. In particular, it is well known (see e.g. [2]) that two Kripke models are
semantically equivalent if and only if there exists a relation between them that
is a bisimulation.

Action models were introduced in [1] as a way to model communicative ac-
tions rather than static situations. Two action models are considered equivalent
if they have the same effect on all possible Kripke models. The next step would
be to find a notion corresponding to bisimulation for action models. In other
words, finding an easy way to tell whether two action models are equivalent
just by looking at their structure. This paper is dedicated to finding the right
definition of a relation between action models called action emulation, such that
there exists an action emulation between two action models if and only if they
are equivalent.



The problem we study has been addressed before in [4]. There, a partial
solution is provided. A notion of action emulation parametrized by a world
from a canonical Kripke model is constructed (henceforth: parametrized action
emulation). The union of all these relations is shown to coincide with action
model equivalence. This cannot be the final word, for using this notion of action
emulation one would have to construct a relation between the action models for
every world from a canonical Kripke model, which is tedious work. We would
like to improve on this result by giving a direct definition of action emulation
between action models. The definition we propose here is simpler than the one
from [4] because it does not involve worlds from a canonical Kripke model and
is constructed as one single relation, rather than being the union of multiple
relations.

This paper is a revised version of [3, Chapter 7]. It is set up as follows. First
we give some established definitions related to Kripke models and action models.
Then we introduce the class of canonical action models and show that every
action model has an equivalent canonical action model. We give a definition of
action emulation and show that the existence of an action emulation between
two action models implies their equivalence. Then we prove that the converse
holds for the class of canonical action models. Because any action model has
an equivalent canonical action model, this way any two action models can be
compared.

2 Models and Action Models

Let P be a countable set of proposition letters an let A be a finite set of labels.
The modal language £ over P and A is given by:

¢u=pl=¢[dVe[Qap

where p ranges over P and a over A. This is very similar to the language of epis-
temic logic, only instead of epistemic programs we use a modality, {,¢. It may
stand for knowledge, obligation, or any other of a wide range of interpretations.

We will employ the usual shorthands: ¢ A for =(¢ V), ¢ — ) for =d V1),
¢+ ¢ for (¢ = ) A (Y — ¢), and O, ¢ for =O,—¢). The modality O, ¢ is the
dual of $g0.

We will interpret the formulas from £M on Kripke models. They are defined
as follows:

Definition 1 A Kripke model M over a label set A and an proposition set
P is a triple (W, Val, R,Wy), where W is a non-empty set of worlds, Val is a
function that assigns to every world w € W a set Val(w) C P, R is a function
that assigns to every label a € A a binary relation R, C W2 and Wy is the set of
actual worlds. We will sometimes use Wy, Val p, Raq to denote the elements
of the Kripke model M.

In epistemic logic it is common to view the R, as agent accessibilities, but
we will not insist on this in the present context. Our results also apply if
the modalities ¢, and [, do not represent the knowledge of an agent. In
particular, we will not assume that the R, are equivalence relations. As an
alternate notation for R,, we will use —.



The semantics of LM is given by the following truth definition in a model
M = (W, Val, R,Wy):

Definition 2 (Truth)

MEy,p iff pe Val(w)
M ):w ﬁ(ﬁ Zﬁ M %w(b
M|:w¢1v¢2 ’Lﬁ M’:w(bl OrM’:w¢2
ME, Oud  iff F eW:w 3w andw' = ¢.

The semantics of the modality ¢, is straightforward: {,¢ holds if it is
possible to do an a-step to a world where ¢ holds. Dually, (,¢ holds if every
world that is reachable with an a-step satisfies ¢.

A Kripke model is a description of a certain situation. When the situation
changes, the Kripke model needs to be updated. For this purpose one can use
action models. An action model is like a Kripke model, only instead of possible
worlds it has possible events which have a formula called a precondition instead
of a valuation. Also, we will assume that the event set of an action model is
finite.

Formally, an action model is defined as follows:

Definition 3 An action model over a label set A and an proposition set P
isis a tuple A = (E, Pre,R, Ey) where E is a non-empty finite set of events,
Pre is a function that assigns to each event in E an LM -formula over P (its
precondition), R is a function that assigns to every label a € A a binary relation
R, C E? and Ey C E is the set of actual events. We will sometimes use
E 4, Prey, R4 to denote the elements of the action model.

When a Kripke model is updated with an action model, every world from the
Kripke model gets matched with every event from the action model, provided
that the world satisfies the precondition of the event. This operation is called
the product update. If there is a relation between two worlds in the Kripke
model and these worlds are matched with two events in the action model, then
the relation is only preserved if there is also a relation between the two events
in the action model. The formal definition of the product update is as follows:

Definition 4 (Update) Given a Kripke model M = (W, Val, R,Wy) and an
action model A = (E, Pre, S, Ey), the result of updating M with A is the model
M@ A= (W' Val',R',W{) given by

W' = {(w,e)|weW,ee E,M =, Pre(e)},
(w,d)R,(v,e) ff wRev and dS,e,
Val'(w,e)) = Val(w),
Wy = {(w,e) e W' |we Wy and e € Eg}

Action models model events that change the situation that is modeled by a
Kripke model. For example, in an epistemic interpretation of the Kripke model,
an action model can be seen as a communicative event changing the knowledge
of the agents.



3 Canonical Models

Given a formula ¢, we define its single negation as follows: if ¢ is of the
form —), then ~¢ = 1, and otherwise ~¢ = —¢. We will implicitly use the
equivalences of =J,¢ and Qy~¢, =Oq¢ and Oy~e, =(d A1) and ~¢ V ~1) and
(¢ V¥) and ~¢ A~

The definition of single negation allows us to define the closure of a formula
or a set of formulas.

Definition 5 Given a formula ¢, we define its closure C(¢) as the smallest

set containing ¢ that is closed under taking subformulas and single negations.
Given a finite set of formulas @, we define C(®) 1= yeq C(9)-

The following example shows how this definition works out.
Example 1 p A {,—p has the following closure:
Cp A Oa=p) ={p A Qa=p,=pV Oap, p, =p, Oa=p, Hap}-

Definition 6 An atom over a finite set of formulas ® is a maximal consistent
subset of C(P).

An atom over ® can be seen as a complete description of a possible state of
the world, if one only considers the formulas in ®. We will use these atoms to
construct canonical models.

Example 2 {p A O,—p} has four atoms:
o {pAQa=p,p; Qamp},
o {-pVUOuwp,—p,0ap},
o {=pVUOup,p,Tap},
o {=pVOap, —p,0ap}.

A canonical Kripke model is a model that has a world for every possible atom
over a certain set of formulas. Therefore it models all possible truth values of
these formulas and their subformulas.

Definition 7 Let @ is a finite set of formulas, let ¥ be the set of atoms over ®
and let {p, | 0 € L} be a set of unique propositions not occurring in formulas
in ®. Then the canonical Kripke model M¢ = (W¢, Val¢, R, W§) over ®
is defined as

we = X

Val¢(o) = (PNo)U{ps}

o %0 iff NoAO.N\o is consistent
W = ¥

Note that every world in the canonical model has a unique valuation, due to the
propositions {p, | ¢ € L}.

Every world in the canonical model corresponds to an atom, and there is
an a-relation from one atom to another if the formulas in the first atom are
consistent with ¢, ¢, for any formula ¢ in the second atom. The following is
shown in [2].



Theorem 3 Let M€ be the canonical model over a set of formulas ®. Then for
any atom o over ® and for any formula ¢ € C(P),

M= iff ¢ €0

4 Action Models and Bisimulation

Two Kripke models are considered equivalent when they are bisimilar. If they
are bisimilar, they satisfy exactly the same modal formulas. They can be viewed
as two different representations of the exact same situation. For the record:

Definition 8 (Bisimulation) Let M, N be Kripke models. A relation Z C
Wy x Wi is a bisimulation if for all w € Wy and v € Wy such that wZv the
following hold:

Invariance Valp(w) = Valy(v),

Zig for all a € A and all worlds w' € Wy with w = w' there is a world
v e Wy with v v and w'Zv',

Zag for all a € A and all worlds v € Wy with v =% ' there is a world
w' € Wy with w = w' and w' Zv'.

For w € Wy and v € Wy we write (M,w) < (N,v) if there is a bisimulation
between M and N connecting w and v.

We write M © N and say that M and N are bisimilar if there is a bisimu-
lation connecting every point in Wy with some point in Wy and vice versa.

An important property of bisimulation is that if (M, w) € (N, v) then w and
v satisfy the same formulas of L (for a proof, see [2]).

Action models model a communicative event. Just like Kripke models, some-
times two different action models model the same thing. In the case of action
models, this means they model the same communicative event. This is signified
by the fact that they have the same effect on all Kripke models. That is, if we
apply the two different action models on the same Kripke model, the resulting
models will be bisimilar.

Definition 9 We will say that two action models A and B are equivalent,
notation A = B, if for any Kripke model M,

MRAL MRB.

Note that if two action models are equivalent, then the result of updating a
Kripke model with one of them is bisimilar to the result of the update with the
other, even if the model mentions propositions that are not mentioned in the
action models.

The problem we face in this paper is to find a structural relation between
action models that signifies their equivalence, just like bisimulation does for
Kripke models. When two action models A and B are equivalent, every world
that matches an event of A should also match an event of B and vice versa.
Furthermore, the results of these matchings should be bisimilar.



The first solution that comes to mind is to apply bisimulation to action mod-
els. One could replace the requirement that the worlds have the same valuation
with the requirement that their preconditions are semantically equivalent. This
gives the following definition:

Definition 10 Two action models A and B are bisimilar if there is a relation
7 : EA x EB which is total on Eg' x EF, such that the following conditions hold
for any x,y such that xZy:

Invariance Pre’(z) = PreP(y),

A
Zig for any label a € A, if there is a world ¥’ such that x 5~ ' then there
B
must be a world y' such that y >y’ and (z',y') € Z,

B
Zag for any label a € A, if there is a world y' such that y = 1 then there
A
must be a world =’ such that x %" 2’ and (2',y') € Z.

Here = signifies logical equivalence.

However, this bisimulation for action models does not have the required
properties. The following example, which is inspired by [4], shows why not.

Example 4 Consider the following two action models, where all relations are
symmetric and reflexive relations are present for all events but not drawn in the
picture. Gray shading indicates the actual event.

Tz p z°:p
A a B: a a
a
y* T yr i p Y3 P

These two models are not bisimilar: there is no event in B that has a precon-
dition which is logically equivalent to the precondition of y# in A. Therefore
the a-step from the actual event 2! to y* cannot be matched by an a-step from
2B to an event that is bisimilar to y*.

However, they are equivalent. One can see this as follows. Clearly any
world that matches event z# in A will match event B in B and vice versa.
Furthermore, any world that matches event y* in A will match y? in B if it
satisfies p, and 5 in B if it does not satisfy p. Since the relations between 28
and y2 and 3% in B are the same as the relations between 2 and y* in A, the
results of these matchings are bisimilar.

More formally, if M is a Kripke model then we define the relation Z on
WMBA  WMBB a5 follows. For any w € WM,

(w, 2)Z (w, 2®),
(w,y*)Z(w,y7)  ifw=p,
(w,y)Z(w,y8)  otherwise.

It is not hard to check that Z is indeed a bisimulation between M ® A and
M B.



The above example shows that the problem of detecting equivalence between
action models is not solved by simply adapting the definition of bisimulation.
Therefore we would like to find a more sophisticated relation between action
models. We will define such a relation later in this paper, but first we will show
that there is a way to detect action model equivalence by looking at canonical
Kripke models.

Definition 11 Given an action model A, we define its language A 4 as the
closure of the union of the preconditions of all its events.

We start with a useful lemma.

Lemma 1 Toke two action models A and B such that ® = A4 U Ag and let
ME be the canonical Kripke model over ®. Let w,v be atoms of M. Then
Val¢(w) = Val¢(v) implies w = v.

Proor. Every world in M€ has a unique valuation by the definition of a
canonical Kripke model. O

In [4], the following useful observation is made about canonical Kripke mod-
els and action model equivalence. We rephrase the proof here.

Theorem 5 Take two action models A and B such that ® = A4 U Ag and let
ME€ be the canonical Kripke model over ®. Then the following holds:

A=Biff M@ Ao M @ B.

PROOF. The proof for the left to right direction is immediate by the definition
of action model equivalence. For the right to left direction, suppose M¢® A €
M @ B. Then there is a bisimulation Z : WM ®A » WM ®B_ Gince the
valuation of M€ is preserved in M°¢® A and M ® B, by Lemma 1 we have for
any (w,z) € M°® A and (v,y) € M°® B that (w,z)Z(v,y) implies w = v.

Take any Kripke model M. For any world w € WM, let o, be the set of
formulas in C(®) that are satisfied in w. Observe that o, is an atom: for every
¢ that is in C(®), either ¢ or ~¢ is satisfied in w. The union of all such formulas
is a maximal consistent subset of C(®). Define a relation Y : WM®A x jyMeB
as follows:

(w,2)Y (v,y) iff w=v and (0w, z)Z(0w,y).

We will show that Y is a bisimulation.

Suppose (w, 2)Y (w,y). Then (o4, 2)Z (0w, y).

To see that Invariance is satisfied, observe that the valuations of (w,x) and
of (w,y) are both inherited from w and therefore identical.

For Zig, suppose (w,r) = (w',x'). Because Pre(z) € Aa, Pre(z) € ®.
Because M =, Pre(z), then we have Pre(z) € o,. By a similar reasoning,
Pre(z") € o,. Therefore, (0, ) and (0,,2’) are in the domain of M® ® A.
From (w,z) % (w’, ') we infer that w % w’ and 2 % 2. Because M =y, A 0w
and M =y A\ ow, then Aoy A Oa(/\ 0w ) is consistent, so oy, 2 gu. This
implies that (o, ) % (04, 2'). Because (0, 2)Z(0w, ), there must be (v,y’)
such that (oy,y) = (v,y") and (0w, 2')Z(v,y'). By Lemma 1 (0, 2")Z(v,y")



implies that v = oy, 80 (0w ,2")Z(0w,y'). Then Pre(y’) € ou so M =y
Pre(y’). Then (w',y’) is in the domain of M ® B and (w’,2")Y (w',y’). Since
(0w, y) = (0u,y) it holds that y % 3. Since we already knew that w % w’,
this shows that (w,y) % (w’,y').

The proof for Zag is analogous.

To see that Y is total, take some (w,z) € WM®4. Then M =, Pre(z) so
Pre(z) € 0. Then M€ =, Pre(x), so (04,z) € M®® A. Then there is some
(0w,y) such that (oy,x)Z(0y,y). By Lemma 1 this implies that o, = 0y, s0
(0w, x)Z(0w,y). So M® =, Pre(y), and then Pre(y) € o, so M =, Pre(y)
and (w,y) is in the domain of M ® B. So (w, )Y (w,y). The proof for totality
in the other direction is analogous. O

This theorem demonstrates a straightforward procedure to check whether
two action models are equivalent: simply construct the canonical Kripke model
for the set of formulas consisting of their preconditions, and see whether the
update results on this model bisimulate. Even though this is not complicated, it
is a very ineflicient method: the size of the canonical Kripke model is exponential
in the number of subformulas of the preconditions.

5 Parametrized Action Emulation

Theorem 5 is the motivation, in [4], to construct a relation which is parametrized
by worlds in the canonical Kripke model. This parametrized action emulation
does not yet lead to an efficient method for deciding action model equivalence,
because every world in the canonical Kripke model has to be computed. How-
ever, we take it as a starting point for further investigations. It is defined as
follows.

Definition 12 Given two action models A and B, let ¥ be the set of atoms
over Ay U Ag. Given some v € EAUE®, let S(z) = {0 € X | Pre(x) € 0}. A
parametrized action emulation between A and B is a set of indexed relations
{Es}ses such that whenever xE,y the following conditions hold:

Invariance Pre(x) € o and Pre(y) € 0.

Zig If v % 2 then for any o' € S(2') such that o % o there is y' € EB with
y =1y and 2'Eyy'. In a picture:

Zag Ify % 4 then for any o' € S(y') such that ¢ = o' there is 2’ € EA with
z 35 2 and 2'E . In a picture:



We say that A and B emulate parametrized by the canonical model if for every
T € Eé“ and for every o € S(x) there is y € ES with xE,y, and vice versa.
Notation: A Sg B.

It is shown in [4] that this relation indeed characterizes action model equiv-
alence:

Theorem 6 For any two action models A and B,

To see why this definition works, observe that any world w from any Kripke
model M has a corresponding atom w*. Then if A g B, there must be for
every © € E 4 such that M =, Pre(z) some event y € Eg such that zFEy-y.
Then M =, Pre(y), and it is not hard to show that (w, z) is bisimilar to (w, y).

6 Non-parametrized Action Emulation

Rather than constructing the canonical Kripke model, we would like to find a
definition of a direct relation between action models that signifies their equiva-
lence.

However, Definition 12 leaves us with the same problem as before: it requires
the computation of a large number of atoms. One even has to compute a
separate relation for every possible atom. We want to improve on this by finding
a non-parametrized notion of action emulation.

Checking whether two action models are equivalent is complicated because
one world from a Kripke model may match multiple events in the action model
and one event in the action model may match multiple worlds in the Kripke
model. Moreover, usually there is no direct mapping between A and B such
that an event in A4 matches the exact same worlds in the Kripke model as the
related event in . To circumvent these complications we consider canonical
action models.

Definition 13 An action model A is canonical over a finite set of LM formu-
las @ if every precondition is the conjunction of an atom over ® and for every
x,2' € B such that © % 2, Pre(z) A OqPre(z’) is consistent.

Note the difference between canonical Kripke models and canonical action
models: a canonical Kripke model has a world for every possible atom, and a
relation between two worlds if and only if this relation is consistent with the



contents of the atoms. On the other hand, a canonical action model may be
incomplete in the sense that there may be some atom that is not represented as
the precondition of an event in the model. Also, a relation between two events
may not be present even though it would be consistent with the preconditions
of the events.

Example 7 Counsider the following action model (reflexive relations present but

omitted in the picture):
g p AOgp

A a

\4
yA S W

This action model is not canonical over any set of formulas. The reason for this
is that the precondition of world y# is not the conjunction of an atom over the
set of formulas {p,0,p}. It is not even an atom over the set of formulas {O,p},
because p is a subformula of [, p.

On the other hand, in the following action model all preconditions are con-
junctions of atoms over {p,0,p}:

a
y® :pA=Oap <—>| ZB—p A -Oap

However, this model is still not canonical because there is an a-relation from x5

to 2B, even though p A Oup A Oa(—p A =,p) is inconsistent.
The following model does not have any of these inconsistent relations:

This model is canonical. All its preconditions are conjunctions of atoms over
{p,0ap} and all its relations are consistent. Note that not all atoms are repre-
sented in the model: —p A Ogp is not present. Also, not all consistent relations
are present: for example, there is no relation from y¢ to z€, even though this
would be allowed.

10



The nice thing about canonical action models is that each event completely
determines the truth value of all formulas in ®. In this section we will construct
a notion of action emulation that corresponds to action model equivalence for
canonical action models. But first we show that every action model has an
equivalent canonical action model.

Theorem 8 FEwvery action model has an equivalent canonical action model.

PROOF. Take an action model A = (F, Pre, R, Ey). Let X be the set of atoms
over A 4. We construct a new action model A® = (E€, Pre®, R, E§) as follows:

E- = {(z,0)|z € E,o0€eX, Pre(x) € g},
Pref(z,0) = Ao,

(z,0) 5 (2',0") iff =52 and Ao A O, \o’ is consistent,
E§ = {(z,0) € E° |z € Ey}.

It follows from this definition that A€ is canonical. We claim that A = A°.
Take some model M. Define a relation Z on M @ A x M ® A€ as follows:

(w,2)Z (v, (y,0)) iff w=vand z =y.

We will start out by showing that Z is total. Take some (w,z) € Waga. Let
o={{p € Ay | M =, ¢}. Then o € ¥ and Pre(z) € o so (z,0) € E°.
Clearly, M E, N\o so (w,(z,0)) € Wamgae and (w,z)Z(w, (x,0)). Now take
some (w, (z,0)) € Wpgae. By definition of A, M =, A\ o and Pre(z) € o so
M =y Pre(z) and (w, z)Z(w, (z,0)).

Now we will show that Z is a bisimulation. Suppose (w,z)Z(w, (x,0)).
Invariance is satisfied because both (w, z) and (w, (z,0)) inherit their valuation
from w. For Zig, suppose (w,z) = (w',2'). Let 0/ = {p € Ag | M =0 ©}.
By definition of Z, M |, Ao and clearly M [, Ao’ so Ao A Q. \o’ is
consistent. Then by definition of R® we have (x,0) % (2/,0') so (w, (z,0)) %
(w', (2',0")). Furthermore, (w', 2")Z(w’, (2',0’)). This shows satisfaction of Zig.

For Zag, suppose (w, (x,0)) = (w',(z',0")). Then w % w’ and z % 2’ so
(w,z) % (w’, ). Furthermore, (w',2’)Z(w’, (z’,0")). This shows the satisfac-
tion of Zag. O

So for every world in the original model, we construct the possible atoms
corresponding to that world. We preserve only the relations from the original
model that are consistent. This way we construct an equivalent canonical action
model. Note that in the previous example, the action model C would be the
result of constructing equivalent canonical models for A and B in this manner.

Now we will define a new notion of action emulation, using some abbrevia-
tions introduced in [4]:

oIf&isarelationonXxZ,a:eXandYthhenwewritea:tho

mean that  — y for every y € Y,

o If Eis a relation on X x Z, x € X and Y C Z then we write zEY to
mean that zFEy for every y € Y,

o If Eisarelationon Z xY, X C Z and y € Y then we write XFEy to
mean that zFEy for every x € X.

11



Definition 14 Given two action models A and B, a relation E : EA x EB is
an action emulation if for any v € EA,y € EB such that xEy the following
hold:

Consistency Pre(x) A Pre(y) is consistent.

Zig If v % 2’ then there is Y' C Eg such that y = Y', 2’EY’ and

Pre(z) A Pre(y) = Ou(Pre(x \/ Pre(y
y' ey’
In a picture:

E

T Y

a L a

E v

1:1 ,,,,,,,,,,,, Y/

Zag Ify %y then there is X' C E4 such that x — X, X’Ey’ and

Pre(z) A\ Pre(y) = Og(Pre(y \/ Pre(x
z'e X’
In a picture:

E

T Y

T a
v E
X/ ,,,,,,,,,,,, y/

We say that A and B emulate, notation A = B, if for every x € E3' there is
Y C EB such that xEY and Pre(z) = Vyey Pre(y), and vice versa.

So every event in one action model is linked to a number of events in the
other action model. The precondition of the event in the first model is equivalent
to the disjunction of the set of events in the second model. Then if there is a
relation to a second world in the first model, for every world in the set there
should be a relation to a new set such that the conjunction of the preconditions
of the first two worlds implies that any successor that matches the second world
in the first action model, also matches one of the worlds in the new set.

This notion of action emulation is sufficient for action model equivalence.

Theorem 9 For any two action models A and B, if A= B then A= B.

12



PROOF. Suppose A S B and let E be an action emulation between A and B.
Let M be an arbitrary Kripke model. We define a relation Z on M@ AXx M® B
as follows:

(w,2)Z(v,y) iff w=v and xFy.

We will first show that this relation is total on the actual worlds of M ® A and
M@ B. Suppose (w,z) € Umga. Then x € E3' so there must be some Y C EF
such that *EY and Pre(z) = \/, ¢y Pre(y). Then M =y, \/, oy Pre(y), so there
is some y € Y such that M =, Pre(y). But then (w,z)Z(w,y). The proof for
the other direction is analogous, so we conclude that Z is total.

Next, we will show that Z is a bisimulation. Suppose (w,x)Z(w,y). Then
xPEy. Invariance is satisfied because both (w, z) and (w, y) inherit their valuation
from w. For zig, suppose (w,z) % (w’,2’). Then 2 % z’. By the fact that 2 Ey

there must be Y/ C E® such that y 4 Y’ xEY’ and

Pre(x) A Pre(y) = Oy (Pre(z') — \/ Pre(y")).
y' ey’

We have that M =, Pre(z) A Pre(y) and M =, Pre(z') and this gives
M Ew ey Pre(y’), so there must be some y' € Y such that M =, Pre(y’).
Because ' € Y’ it holds that y % ¢ and 2/Ey’ so (w,y) — (w',y’) and
(w,2")Z(w,y"). This shows the satisfaction of zig. The proof for zag is anal-
ogous, so we conclude that M ® A ¢ M ® B and, because M was arbitrary,
A=B. O

This result gives one half of a correspondence between action emulation and
action model equivalence.

Turning to the other half, we will show that for canonical action models,
action emulation is also necessary for action model equivalence.

Theorem 10 If A and B are canonical and A= B then A = B.

PROOF. Suppose A and B are canonical and A = B. Let M be the canonical
Kripke model over A4 U Ag. Since A = B there is a bisimulation Z between
M® A and M ® B. Because every world in a canonical Kripke model has a
unique valuation, (w,z)Z(v,y) implies w = v. Define a relation E : E4 X Ep
as follows:
By iff Jw € Wy« (w,z)Z(w,y).

We will show that E is an action emulation. Suppose xEy and (w,x)Z(w,y).
We know that Pre(z) A Pre(y) is consistent because M |=,, Pre(x) A Pre(y).
Suppose = — z’.

We need to show that there is a set Y’ such that y — Y’, 2/EY’ and
Pre(z) A Pre(y) | Oa(Pre(z’) = V,cy: Pre(y’)). Let

Yii={y €Ep| I e€Wn: (w,x)> W, ),
(w,y) = (W', y),
(w',2")Z(w',y')}

It follows from the definition of Y’ that y = Y’ and 2/EY”.
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Now we need to show that Pre(x) A Pre(y) = Oa(Pre(z') = ey Pre(y’)).
Suppose there is some model A" and worlds v, v’ € W such that N |=,, Pre(z)A
Pre(y), v % o' and N |z, Pre(z'). Let w’:= J{p € C(A4UAp) | N Eu 0}
Then w' € Wy and Pre(x) A Pre(y) A Oq \ w' is consistent. Note that w is an
atom over C'(A 4UA), and Pre(x) and Pre(y) are conjunctions of atoms over A 4
and Ap, respectively. Therefore, M |=,, Pre(z) A Pre(y) implies that Pre(x) A
Pre(y) b ¢ for any ¢ € w. So wAQ,w’ is consistent, and because M is canonical,
w % w'. Since Pre(z') € w' then (w,z) % (w',). Since (w,z)Z(w,y) then
there must be g such that (w,y) = (w’,y') and (w’,2')Z(w’,y’). Then y € Y’
and Pre(y’) € w', so N [y Pre(y’) and N =y ey Pre(y’). We conclude
that Pre(z) A Pre(y) & Oo(Pre(z') — V ey Pre(y’)). The proof for Zag is
analogous. This shows that F is an action emulation.

To see that E is total on the actual events of A and B, suppose z € Ej.
Let W, = {w € Wx | M [Ew Pre(z)}. By totality of Z and the fact that
(w,2z)Z(v,y) implies w = v we have that for every w € W there is an y such
that (w,z)Z(w,y). Let Y = {y € Eg | 3w € W, : (w,z)Z(w,y)}. Then zEY

and
Pre(x) E Vwpew w and
Vwew @ F Vyey Pre(y), so
Pre(z) FVyey Pre(y)-

The proof for totality in the other direction is analogous. This shows that
AS B. |

Together this gives:
Theorem 11 For any two canonical action models A and B,
A=Biff AS B.

So for canonical action models, non-parametrized action emulation charac-
terizes action model equivalence. This gives a procedure to check whether any
two action models are equivalent: just compute the corresponding canonical ac-
tion models and check whether there is an emulation between them. This is less
work than computing the canonical Kripke model as is necessary for checking
the existence of a parametrized action emulation, since not all atoms are repre-
sented in the canonical action model. Sometimes it may not even be necessary
to compute the canonical action model: We have shown that action emulation
is sufficient for action equivalence in the general case. So if there is already an
action emulation between two non-canonical action models, there is no need to
compute the corresponding canonical action models.

7 Comparison to Propositional Action Emula-
tion

In this section, we will compare our notion of action emulation to the notion of

propositional action emulation presented in [4]. It is shown there that proposi-

tional action emulation corresponds to action model equivalence for a restricted
class of action models, namely the propositional action models.

14



Definition 15 An action model is propositional if all preconditions of its
events are formulas of classical propositional logic.

Unlike the class of canonical action models, this is a proper subclass of the
class of all action models modulo action model equivalence. In other words, it
is not possible to find for every non-propositional action model an equivalent
propositional one.

Example 12 Consider the following action model:

This action model selects all worlds that have an a-successor that satisfies p.
There is no way to construct an equivalent action model that has only proposi-
tional preconditions, for propositional preconditions cannot express constraints
on the successors of worlds. There is also no way to use relations between ac-
tion model events to construct an equivalent action model: the only thing the
relations between events do is select the relations that will be present in the
resulting Kripke model. They do not test the relations in the original Kripke
model.

This example shows that the class of propositional action models is indeed
a proper subclass of the class of all action models.
Here is the definition of propositional action emulation from [4].

Definition 16 Given two action models A and B, a relation Ep : EA x EB
is a propositional action emulation if for any x € EA,y € EB such that
xEpy the following hold:

Consistency Pre(x) A Pre(y) is consistent.

Zig Ifz % 2’ then there is a non-empty set Y' C Eg such thaty = Y', 2/EpY’

and
Pre(z') = \/ Pre(y').

yleyl
Zag If yf% y' then there is a non-empty set X' C E4 such that x KN X/,
X'Epy’ and
Pre(y') = \/ Pre(x').

r’eX’

We say that A and B propositionally emulate, notation A Sp B, if for every
x € E there is Y C EB such that xEpY and Pre(z) = V,ey Pre(y), and vice
versa.

It is shown in [4] that for propositional action models, propositional action
emulation corresponds to action model equivalence.

Theorem 13 For propositional action models A and B,

Also, propositional action emulation is sufficient for action model equiva-
lence, not only for propositional action models, but for action models in general:

Theorem 14 For any action models A and B,
A Sp B implies A = B.
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PrROOF. Let A, B be action models, and suppose A Sp B. Let E be a propo-
sitional action emulation between A and B, such that for every x € Eg' there is
Y C EF such that zEpY and Pre(z) = Vyey Pre(y), and vice versa.

Let M be an arbitrary Kripke model. Let C be the relation between the
worlds of M ® A and M ® B given by (w,d)C(v,e) iff w = v and dFe.

We show that C is a bisimulation. Let (w,d)C(v,e). Then w = v, and
invariance holds by the fact the pairs in the update results inherit their valuation
from their first component.

Now assume (w,d) % (w’,d’). Then w - w’ and d % d’, and we get
from d % d' plus dEe that there is a nonempty set Y of events in B with
Pre(d') =V, ey Pre(y) and d'Ey and e % y for each y € Y.

It follows from Pre(d’) = V, ¢y Pre(y) and M |5, Pre(d’) that there is
some y € Y with M =, Pre(y). Thus, (w',y) is a world in M ® B. Since
d’ Ey this establishes (w,e) % (w’,y) and (w’,d)C(w’,y). The proof of Zag is
analogous. O

Can we turn this around? Does equivalence of (canonical) action models
imply the existence of a propositional action emulation between them? It turns
out it does not. The main difference between propositional action emulation
and non-parametrized action emulation as in Definition 14 is in the Zig and Zag
conditions, more specifically in the constraint on the preconditions of the events
in the sets X’ and Y’. For propositional action emulation, the constraint for
the Zig case is:

Pre(z') E \/ Pre(y').

y/ey/

So every world that matches 3’ should also match one of the events in X'.
This condition assures that whenever a world is matched by a successor z’ of x
then it is also matched by a successor in Y of 3y'. However, this condition also
constrains worlds that match z’ but are not a successor of a world that matches
. We will show now that this condition is too strong.

Definition 14 uses a weaker condition:

Pre(z) A Pre(y) = Oy (Pre(z') — \/ Pre(y")).
y' ey’

This condition says that if a world matches = and y then all its successors
that match z’ match one of the worlds in Y’. This way it only constrains
the worlds that are successors of worlds that match both x and y. This more
subtle condition says exactly what is needed to define action equivalence between
canonical models. The fact that the first condition is too strong is shown by the
following example.

Example 15 Consider the following two action models:
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yi 'p
a
A
a
y3'
a/'y{S:pADap
28 pAO.p
\»
y5 :p A—Oap
B: :p/\Dap
:p A —Uap
x?:p/\—'Dap
B:ﬂp/\ljap

Y&+ —p A —Oap

These action models are canonical and equivalent, but they do not proposition-
ally emulate.

To see that these models are equivalent, suppose that some world w matches
the event 2! in the first model A. If w satisfies (,p, then it will match 2% in
B and otherwise it will match z% in B. Suppose w has some successor that
matches y{l. Then this successor satisfies p so it will match either ¥ or 5 if w
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matched z%, or yf or y¥ if w matched 5. Suppose w has some successor that
matches yé“ Then this successor does not satisfy p, so w does not satisfy [, p,
so w matched x%5. In this case the successor of w will match y2 or 5.

Another way to see that these canonical models are equivalent is by checking
that the relation given by

B B B B B B B B
E={(x*,25), ' o), i, v), (2, 28), (wi, o5, (i, vE). (s, vB), (w3 w6}

is an action emulation between A and B.

To see that the models do not propositionally emulate, observe that 2% does
not emulate with 4 (or any other event in .A). Because from x4 there is a
relation to ', while there is no set of successors of z¥ such that the precondition
—p implies the disjunction of preconditions of events in this set.

This shows that propositional action emulation does not characterize ac-
tion equivalence between canonical action models, nor action model equivalence
between action models in general.

8 Conclusion

In this paper we studied the properties of action models. Action models are
applied to Kripke models and they are equivalent if they give equivalent results
for all possible Kripke models. Our aim was to find a relation between action
models that signifies when they are equivalent, just like bisimulation does for
Kripke models.

Finding an appropriate relation that signifies equivalence of action models
is complicated by the fact that multiple worlds in the Kripke model may match
one world in the action model, and vice versa. We circumvent this complication
by considering canonical action models. Our main result is a new notion of
(non-parametrized) action emulation that is necessary and sufficient for action
model equivalence for canonical action models. Because every action model has
an equivalent canonical action model this gives a method to determine whether
any two action models are equivalent.

Since our new notion of action emulation is sufficient for actiom model equiv-
alence, even if the action models are not canonical, and since the notion of propo-
sitional action emulation from [4] is sufficient for action model equivalence, we
can propose the following procedure for finding out if two action models are
equivalent.

e First try to find a propositional action emulation between the models. If
this works, the models are equivalent.

e If this does not work, try to find a (non-parametrized) action emulation
between the models. If this works, the models are equivalent.

e If this does not work either, check whether there is a (non-parametrized)
action emulation between the canonical models. This gives a conclusive
answer.

We leave for future research whether our notion of action emulation is equivalent
to action model equivalence on the full class of all action models, not just the
canonical ones.
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We compared our notion of action emulation to two notions given in [4]:
that of parametrized action emulation and that of propositional action emu-
lation. Our notion of action emulation has a clear advantage to parametrized
action emulation: there is no need to compute a separate relation for every
world in the canonical Kripke model. The advantage compared to propositional
action emulation is that on the class of canonical action models, propositional
action emulation can only show equivalence, not non-equivalence. Our method
using non-parametrized action emulation works for all canonical action models.
Because every action model has an equivalent canonical action model, this gives
a solution for the entire class of action models.
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