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Abstract

Variable selection in high-dimensional space charaatenmany contemporary problems in scien-
tific discovery and decision making. Many frequently-usechniques are based on independence
screening; examples include correlation ranking (Fan &2008) or feature selection using a two-
samplet-test in high-dimensional classification (Tibshirani et 2003). Within the context of the
linear model, Fan & Lv (2008) showed that this simple cotiefaranking possesses a sure inde-
pendence screening property under certain conditionstaatdts revision, called iteratively sure
independent screening (ISIS), is needed when the feattgamarginally unrelated but jointly re-
lated to the response variable. In this paper, we extend V@tBout explicit definition of residuals,
to a general pseudo-likelihood framework, which includesegalized linear models as a special
case. Even in the least-squares setting, the new methodwe®lSIS by allowing feature deletion
in the iterative process. Our technique allows us to sefepbitant features in high-dimensional
classification where the popularly used two-santpieethod fails. A new technique is introduced
to reduce the false selection rate in the feature screetagg sSeveral simulated and two real data
examples are presented to illustrate the methodology.

Keywords: classification, feature screening, generalized linearatspdobust regression, feature
selection

1. Introduction

The remarkable development of computing power and other technologgllbasgd scientists to

collect data of unprecedented size and complexity. Examples include datarficroarrays, pro-

teomics, brain images, videos, functional data and high-frequencycfalatata. Such a demand
from applications presents many new challenges as well as opportunitib®$e in statistics and
machine learning, and while some significant progress has been maderihyears, there remains
a great deal to do.
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A very common statistical problem is to model the relationship between one or ontvet
variablesY and their associated covariates (or featurgs). ., X,, based on a sample of sine A
characteristic feature of many of the modern problems mentioned in the psgyaoagraph is that
the dimensionalityp is large, potentially much larger than Mathematically, it makes sense to
considerp as a function oh, which diverges to infinity. The dimensionality grows very rapidly
when interactions of the features are considered, which is necessamahy scientific endeavors.
For example, in disease classification using microarray gene expresséofTibshirani et al., 2003;
Fan & Ren, 2006), the number of arrays is usually in the order of tengrairbds while the number
of gene expression profiles is in the order of tens of thousands; in thg sfuprotein-protein
interactions, the sample size may be in the order of thousands, but the noffdéstures can be in
the order of millions.

The phenomenon of noise accumulation in high-dimensional classificatioregression has
long been observed by statisticians and computer scientists (see VapbikH&&tie et al. 2009
and references therein) and has been analytically demonstrated by Fam @008). Various fea-
ture selection techniques have been proposed in both the statistics anderiaahming literature,
and introductions and overviews written for the machine learning communitpedound in, for
example, Liu & Motoda (1998), Guyon & Elisseeff (2003) and Guyon.e{a006). Specific algo-
rithms proposed include but are not restricted to FCBF (Yu & Li, 2003% QHrall, 2000), ReliefF
(Kononenko, 1994), FOCUS (Almuallim & Dietterich, 1994) and INTERAZNao & Liu, 2007).
See also the special issue published by JMLR on “variable and feaferigr”, including Bi et
al. (2003), Bengio & Chapados (2003) and Guyon & Elisseeff (2003)

One particularly popular family of methods is based on penalized leastesgomore gener-
ally, penalized pseudo-likelihood. Examples include the LASSO (Tibshit896), SCAD (Fan &
Li, 2001), the Dantzig selector (Candes & Tao, 2007), and their relatédoa® These methods
have attracted a great deal of theoretical study and algorithmic developuently. See Donoho &
Elad (2003), Efron et al. (2004), Zou (2006), MeinshausenilBiann (2006), Zhao & Yu (2006),
Zou & Li (2008), Bickel et al. (2009), and references therein. ldegr, computation inherent in
those methods makes them hard to apply directly to ultrahigh-dimensional sthlésticeng prob-
lems, which involve the simultaneous challenges of computational expedgtatigtical accuracy,
and algorithmic stability.

A method that takes up the aforementioned three challenges is the idea cnddeplearning,
proposed and demonstrated by Fan & Lv (2008) in the regression ¢ont&e method can be
derived from an empirical likelihood point of view (Hall et al., 2009) andedkated to supervised
principal component analysis (Bair et al., 2006; Paul et al., 2008). drintiportant, but limited,
context of the linear model, Fan & Lv (2008) proposed a two-stage droeeto deal with this
problem. First, so-called independence screening is used as a fastitheitmethod of reducing the
dimensionality to a more moderate size (usually below the sample size); then, aophbisticated
technique, such as a penalized likelihood method based on the smoothly cipgpmdte deviation
(SCAD) penalty, can be applied to perform the final feature selectionpar@imeter estimation
simultaneously.

Independence screening recruits those features having the beghahatdity, which corre-
sponds to the largest marginal correlation with the response in the cofifesistsquares regres-
sion. Under certain regularity conditions, Fan & Lv (2008) show suirgylg that this fast feature
selection method has a ‘sure screening property’; that is, with probabdity close to 1, the in-
dependence screening technique retains all of the important featuress nmotiel. A remarkable
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feature of this theoretical result is that the dimensionality of the model is alltovgbw exponen-
tially in the sample size; for this reason, we refer to the method as an ‘ultratiiglnsional feature
selection technique, to distinguish it from other ‘high’ dimensional methodsenie dimension-
ality can grow only polynomially in the sample size. The sure screening pyoedescribed in
greater detail in Section 3.2, and as a result of this theoretical justificatemmekthod is referred to
as Sure Independence Screening (SIS).

An important methodological extension, called Iterated Sure Indepeadgtreening (ISIS),
covers cases where the regularity conditions may fail, for instance iftaréeis marginally uncor-
related, but jointly correlated with the response, or the reverse situatierevehfeature is jointly
uncorrelated but has higher marginal correlation than some importantdeaRoughly, ISIS works
by iteratively performing feature selection to recruit a small number of feaf@omputing residuals
based on the model fitted using these recruited features, and then usimgykineg residuals as the
response variable to continue recruiting new features. The crucialsstecompute the working
residuals, which is easy for the least-squares regression probleratimiivious for other problems.
The improved performance of ISIS has been documented in Fan & L\8j200

Independence screening is a commonly used techniques for featutiosell has been widely
used for gene selection or disease classification in bioinformatics. In #ppdieations, the genes
or proteins are called statistically significant if their associated expresisidhe treatment group
differ statistically from the control group, resulting in a large and activeditee on the multiple
testing problem. See, for example, Dudoit et al. (2003) and Efron (200 selected features are
frequently used for tumor/disease classification. See, for example,ifEibsét al. (2003), and Fan
& Ren (2006). This screening method is indeed a form of independemeersng and has been
justified by Fan & Fan (2008) under some ideal situations. However, consemse can carry us
only so far. As indicated above and illustrated further in Section 4.1, it isteasonstruct features
that are marginally unrelated, but jointly related with the response. Sutiirésawill be screened
out by independent learning methods such as the two-santgde. In other words, genes that are
screened out by test statistics can indeed be important in disease cldgnifical understanding
molecular mechanisms of the disease. How can we construct better fegiereos procedures
in ultrahigh dimensional feature space than the independence screepiniginy used in feature
selection?

The first goal of this paper is to extend SIS and ISIS to much more genedglsnoOne
challenge here is to make an appropriate definition of a residual in this ¢ontéx describe a
procedure that effectively sidesteps this issue and therefore permiiesired extension of ISIS.
In fact, our method even improves the original ISIS of Fan & Lv (2008) at thallows variable
deletion in the recruiting process. Our methodology applies to a very dgysmado-likelihood
framework, in which the aim is to find the parameter ve@ot (B1,...,Bp)" that is sparse and
minimizes an objective function of the form

Q(BO? B) = ZLL(Yl ) BO + XiT B)a

where(x[,Y;) are the covariate vector and response forithmdividual. Important applications of
this methodology, which is outlined in greater detail in Section 2, include the fwltpw

1. Generalized linear models All generalized linear models, including logistic regression and
Poisson log-linear models, fit very naturally into our methodological framevw®ee McCul-
lagh & Nelder (1989) for many applications of generalized linear model$e Maarticular
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that logistic regression models yield a popular approach for studyingfaation problems.
In Section 4, we present simulations in which our approach comparesafyaowith the
competing LASSO technique (Tibshirani, 1996).

2. Classification Other common approaches to classification assume the response takes val-
ues in{—1,1} and also fit into our framework. For instance, support vector machirse cla
sifiers (Vapnik, 1995) use the hinge loss functiofY;,Bo + x{ B) = {1 —Yi(Bo + % B)}+,
while the boosting algorithm AdaBoost (Freund & Schapire, 1997) u§ésBo + X' B) =
exp{—Yi(Bo+X B)}.

3. Robust fitting: In a high-dimensional linear model setting, it is advisable to be cautious
about the assumed relationship between the features and the respbosein$tead of the
conventional least squares loss function, we may prefer a robudulosson such as thi;
lossL(Y;,Bo+x"B) = |Yi — Bo — X{ B| or the Huber loss (Huber, 1964), which also fits into
our framework.

Any screening method, by default, has a large false selection rate (R&R&ly, many unim-
portant features are selected after screening. A second aim of tleg papered in Section 3, is to
present two variants of the SIS methodology, which reduce significantlF$iie Both are based
on partitioning the data into (usually) two groups. The first has the desipabjeerty that in high-
dimensional problems the probability of incorrectly selecting unimportant fiegis small. Thus
this method is particularly useful as a means of quickly identifying featurésktivalld be included
in the final model. The second method is less aggressive, and for the hoekal has the same
sure screening property as the original SIS technique. The applicatians proposed methods
are illustrated in Section 5.

2. ISIS Methodology in a General Framework

Lety =(Yg,... ,Yn)T be a vector of responses andXegf. . ., x,, be their associated covariate (column)
vectors, each taking valuesRP. The vectorgx{,Y1),..., (X1, Yn) are assumed to be independent
and identically distributed realizations from the populaiip . .. ,Xp,Y)T. Then x p design matrix
isX = (X1,...,%n) .

2.1 Feature Ranking by Marginal Utilities

The relationship betweevi and (Xl,...,Xp)T is often modeled through a parameter veqice
(B1,..-,Bp)T, and the fitting of the model amounts to minimizing a negative pseudo-likelihood
function of the form

Qo ) =3 LY. Fo+ )

Here,L can be regarded as the loss of usfagr x' B to predictY;. The marginal utility of thejt"
feature is

n
Lj = minn~! ZlL(Yi,BO+Xiij)a
Bo,Bj i=

which minimizes the loss function, whexg= (Xil,...,Xip)T. The idea of SIS in this framework
is to compute the vector of marginal utilitiés= (Ll,...,Lp)T and rank them according to the
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marginal utilities: the smaller the more important. Note that in order to coniputee need only
fit a model with two parameterg andf3j, so computing the vectdr can be done very quickly and
stably, even for an ultrahigh dimensional problem. The feaXjiie selected by SIS if ; is one of
thed smallest components &f. Typically, we may takel = |n/logn|, though the choice a is
discussed in greater detail in Section 4.

The procedure above is an independence screening method. Itniges marginal relation
between features and the response variable to screen variables. dN$éarge enough, it has
high probability of selecting all of the important features. For this reasergall the metho&ure
Independence Screenif8lS). For classification problems with quadratic laséan & Lv (2008)
show that SIS reduces to feature screening using a two-sarataéstic. See also Hall et al. (2009)
for a derivation from an empirical likelihood point of view and 83.2 for sdheoretical results on
the sure screening property.

2.2 Penalized Pseudo-likelihood

With features crudely selected by SIS, variable selection and paramgteatisn can further be
carried out simultaneously using a more refined penalized (pseudo)-tikdlimethod, as we now
describe. The approach takes joint information into consideration. Byledag the features if
necessary, we may assume without loss of generalitydhat. , X4 are the features recruited by SIS.
We letxi g = (Xi1,...,%a)" and redefing® = (B1,...,Bq4)". In the penalized likelihood approach,
we seek to minimize

d

((Bo,B) = n*l_;L<Yi,Bo+xIdB>+ > p(IBj)- (1)

=1

Here, p)(-) is a penalty function and > 0O is a regularization parameter, which may be chosen
by five-fold cross-validation, for example. The penalty function shoaltsfy certain conditions
in order for the resulting estimates to have desirable properties, and inupartic yield sparse
solutions in which some of the coefficients may be set to zero; see Fan 80DiLjZXor further
details.

Commonly used examples of penalty functions includelthpenalty p, (|B]) = A|B| (Tibshi-
rani, 1996; Park & Hastie, 2007), the smoothly clipped absolute deviatiGALS penalty (Fan &
Li, 2001), which is a quadratic spline with, (0) = 0 and

/ aA —
P (Bl = )‘{H{BQ} + mﬂ{m»}}v

for somea > 2 and|B| > 0, and the minimum concavity penalty (MCRY,(|B|) = (A — |B| /a)+
(Zhang, 2009). The choica = 3.7 has been recommended in Fan & Li (2001). Unlike the
penalty, SCAD and MC penalty functions have flat tails, which are fundéahenreducing biases
due to penalization (Antoniadis & Fan, 2001; Fan & Li, 2001). Park & Ha&@)7) describe

an iterative algorithm for minimizing the objective function for the penalty, and Zhang (2009)
propose a PLUS algorithm for finding solution paths to the penalized leaatesproblem with

a general penalty, (-). On the other hand, Fan & Li (2001) have shown that the SCAD-type of
penalized loss function can be minimized iteratively using a local quadratioxipgation, whereas
Zou & Li (2008) propose a local linear approximation, taking the advantdgecently developed
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algorithms for penalizetl; optimization (Efron et al., 2004). Starting froﬁﬂo) = 0 as suggested
by Fan & Lv (2008), using the local linear approximation

PA(1B1) ~ pa(1BY]) + p (1IBY ) (1B - 1BY)),
in (1), at the(k+ 1)™" iteration we minimize the weighted; penalty

n d
N3 LOYBo+X[gB) + 3 w|B;|. )
i= =1

wherew! = p; (IB]). Note that with initial valug® = 0, 3*) is indeed a LASSO estimate for
the SCAD and MC penalties, singg(0+) = A. In other words, zero is not an absorbing state.
Though motivated slightly differently, a WEIghtd‘.ﬁi penalty is also the basis of the adaptive Lasso
(Zou, 2006); in that casw( K = =Wwj = l/\[3,|V Where[3 ([31, Bd)T may be taken to be the
maximum likelihood estlmator, ang> 0 is chosen by the user. The drawback of such an approach
is that zero is an absorbing state when (2) is iteratively used—comporentsdstimated as zero

at one iteration will never escape from zero.

For a class of penalty functions that includes the SCAD penalty and wherfixed asn
diverges, Fan & Li (2001) established an oracle property; that ispémalized estimates per-
form asymptotically as well as if an oracle had told us in advance which coemp®f(3 were
non-zero. Fan & Peng (2004) extended this result to cover situatiorsedhmay diverge with
d = dy = o(n/®). Zou (2006) shows that the adaptive LASSO possesses the orapkrtyrtoo,
whend is finite. See also further theoretical studies by Zhang & Huang (20G8Yhang (2009).
We refer to the two-stage procedures described above as SIS-E4SsSCAD and SIS-AdalLasso.

2.3 lterative Feature Selection

The SIS methodology may break down if a feature is marginally unrelateghihtly related with
the response, or if a feature is jointly uncorrelated with the responseabutigher marginal corre-
lation with the response than some important features. In the former cagmpibrtant feature has
already been screened at the first stage, whereas in the latter casgintpertant feature is ranked
too high by the independent screening technique. ISIS seeks to owetbese difficulties by using
more fully the joint covariate information while retaining computational expediamcl stability as
in SIS.

In the first step, we apply SIS to pick a sAéI[of indices of size&kq, and then employ a pengﬂzed
(pseudo)-likelihood method such as Lasso, SCAD, MCP or the adapasolto select a subsef
of these indices. This is our initial estimate of the set of indices of importantrfsatiihe screening
stage solves only bivariate optimizations (2.1) and the fitting part solves opiyraization problem
(1) with moderate sizk;. This is an attractive feature in ultrahigh dimensional statistical learning.

Instead of computing residuals, as could be done in the linear model, we tmmpu

2)

(2) _ T B— 4 X:B:
L Bog:,n n- ZlL Bo+x, 2 B +%iBi), 3)

for j € ME = {1,....p}\ ﬂl, wherex, i is the sub-vector ok; consisting of those elements in

ﬂl. This is again a low-dimensional optimization problem which can easily be soNet that
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[after subtracting the constant rmrp;A n1 Sita (Y,,[30+x —~ BA ) and changing the sign of
the dn‘ference] can be interpreted as the addltlonal contrlbutlon of ‘arkbgiven the existence
of variables li. After orderlng{Lj (je Mf}, we form the setd, consisting of the indices
corresponding to the smalld@telements say. In this screening stage, an alternative approach is to
substitute the fitted vaIuBA from the first stage into (3) and the optimization problem (3) would
only be bivariate. This approach is exactly an extension of Fan & Lvgpae we have

L%, Bo+xT 5 B, +4B1) = (Fi —Bo—XyB1)°,

for the quadratic loss, whemg =Y, —x —~ B% is the residual from the previous step of fitting.

The conditional contributions of features are more relevant in recruitanabies at the second
stage, but the computation is more expensive. Our numerical experimergstiars4.4 shows the
improvement of such a deviation from Fan & Lv (2008).

After the prescreening step, we use penalized likelihood to obtain

- n
B,= argminn‘lZL(\G,BoerIgT{lBﬂA[lJrXIﬁzBﬁz)+ Z PA(IBj])-

Bo.Bs;, B, i= jeMUA,

Again, the penalty term encourages a sparse solution. The indi@stknat are non-zero yield a
new estimated set, of active indices. This step also deviates importantly from the approach in
Fan & Lv (2008) even in the Ieast—squarei case. It allows the proed¢dldelete variables from the
previously selected features with indicesifi.

The process, \ which iteratively recruits and deletes features, candehep@at/eg un'ﬂl\ we obtain
a set of indicesM; which either has reached the prescribed sizer satisfiesM; = M, ;. Of
course, we also obtain a final estimated parameter vég:to‘fhe above method can be considered
as an analogue of the least squares ISIS procedure (Fan & Lv) 2@d@ut explicit definition of
the residuals. In fact, it is an improvement even for the least-squarkkepro

In general, choosing larger values of edghdecreases the computational cost and the prob-
ability that the ISIS procedure will terminate prematurely. However, it alsoemdke procedure
more like its non-iterated counterpart, and so may offer less improvement awtheard cases for
SIS described in Section 1. In our implementation, we ctigse |2d/3|, and thereafter at theh
iteration, we tookk, = d — |M;_1|. This ensures that the iterated versions of SIS take at least two
iterations to terminate; another possibility would be to take, for exarkptemin(5,d — | M, _1]).

Fan & Lv (2008) showed empirically that for the linear model ISIS improvgsicantly the
performance of SIS in the difficult cases described above. Themaadhat the fitting of the
residuals from th¢r — 1)t iteration on the remaining features significantly weakens the priority of
those unimp(ﬂant features that are highly correlated with the rg\spommgthmeir associations
with {X; : j € M;_1}. This is due to the fact that the featufes§ : j € M;_1} have lower correlation
with the residuals than with the original responses. It also gives those tampdeatures that are
missed in the previous step a chance to survive.
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2.4 Generalized Linear Models

Recall that we say that is of exponential dispersion family form if its density can be written in
terms of its meap and a dispersion parametgas

fy(yn9) = exp{ ye(“)_(pb(e(“)) +c(y, <p)},

from some known function8(-), b(-) andc(-,-). In a generalized linear model for independent
responseyi,..., Y, we assert that the conditional densityyp@iven the covariate vectot; = x; is
of exponential dispersion family form, with the conditional mean resppnsslated tox; through
g(1) = x' B for some known link functiom(-), and where the dispersion parameters are constrained
by requiring thatg = @a;, for some unknown dispersion paramepand known constants, . .., an.
For simplicity, throughout the paper, we take a constant dispersion pmame

It is immediate from the form of the likelihood function for a generalized lineadehthat such
a model fits within the pseudo-likelihood framework of Section 4. In fact, axehn general that

L(Yi,Bo+X/B) = .Zl{b(e(g‘l(BoeriTB)) ~Yi8(g ™ (Bo+x/ B)) }- (4)
If we make the canonical choice of link functiag,;) = 6(-), then (4) simplifies to
L Bo+TB) = 3 {B(Bo-+TB) (B 7B

An elegant way to handle classification problems is to assume the class ladmeitdkes O or 1,
and fit a logistic regression model. For this particular generalized linearlmveeldave

n
L(Y.o-+xTB) = 3 {log(1-+¢"P) (B + B}
i=
while for Poisson log-linear models, we may take

L Bo+ 5T B) = 5 {0 P Yo D))

3. Reduction of False Selection Rates

Sure independence screening approaches are simple and quick miettsmdsen out irrelevant
features. They are usually conservative and include many unimpoeatrés. In this section, we
outline two possible variants of SIS and ISIS that have attractive thedrptmgerties in terms of
reducing the FSRs. The first is an aggressive feature selection metitad fharticularly useful
when the dimensionality is very large relative to the sample size; the second i @omservative
procedure.

3.1 First Variant of ISIS

It is convenient to introduce some new notation. We wHdtéor the set of active indices—that is,
the set containing those indicg$or which 3; # 0 in the true model. Writ&z = {X; : j € 4} and
Xge = {Xj : ] € A°} for the corresponding sets of active and inactive variables respbctiv
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Assume for simplicity thah is even, and split the sample into two halves at random. Apply
SIS or ISIS separately to the data in each partition (dith [n/logn| or larger, say), yielding two
estimates2? and 2@ of the set of active indiced. Both of them should have large FSRs, as they
are constructed from a crude screening method. Assume that both eethéaatisfy

P(acal)y—1, forj=1and?2.

Then, the active features should appear in both sets with probability tetwlorge. We thus con-
struct4 = 20 N 4 as an estimate of.. This estimate also satisfies

P(AcCAd)—1

However, this estimate contains many fewer indices corresponding to mdetitures, as such
indices have to appear twice at random in the Sétsand 2. This is indeed shown in Theorem 1
below.

Just as in the original formulation of SIS in Section 2, we can now use dipethgpseudo)-
likelihood method such as SCAD to perform final feature selection ffbamd parameter estima-
tion. We can even proceed without the penalization since the false seleattas small.

In our theoretical support for this variant of SIS, we will make use oftfiewing condition:

(Al) Letr € N, the set of natural numbers. We say the model satisfies the exchangeatitiition
at levelr if the set of random vectors

{(Y,Xa2,Xj.,---,X},) : j1,-.., r are distinct elements o1°}
is exchangeable.

This condition ensures that each inactive feature is equally likely to beitedry SIS. Note that
(A1) certainly allows inactive features to be correlated with the responséplestimply that each
inactive feature has the same marginal distribution. In Theorem 1 belowa#iee = 1 is particu-
larly important, as it gives an upper bound on the probability of recruitiygraarctive features into
the model. Note that this upper bound requires only the weakest versieh {)eof the exchange-
ability condition.

Theorem 1 Letr € N, and assume the model satisfies the exchangeability con¢itigrat level r.
If 4 denotes the estimator ¢f from the above variant of SIS, then

dy2 2
- () L1 & v
PIANAT 20 < 5y <7 (p=rm) -

where, for the second inequality, we requifed p— | 4| and d is the prescribed number of selected
features in2M) or 2.

Proof Fixr e N, and lety = {(j1,...,jr) : j1,-.., jr are distinct elements oi°}. Then

P(ana%>n< S P(1€a,,j€A)
(jlv“‘ajl’)ej

= z P(jle;r;l(l)f"ajreﬁ(l))zv



FAN, SAMWORTH AND WU

in which we use the random splitting in the last equality. Obviously, the lasgpitity is bounded

by
max P(jicAY, ... j, eaW) S P(jre AV, j, € aV). (5)
(i) (11 5Tes

Since there are at modtinactive features fronf® in the setﬁ(”, the numbgr of r-tuples frormi
falling in the seta® can not be more than the total number of such r-tupleg#, that is,

d
(11-~-~er)e] Hsean iy = (f>

Thus, we have
Pl e A0, oo e A0) < (7). ©

Substituting this into (5), we obtain

P(lana’|>r) < (d) max P(j;ea® ... j eaW).
I/ (j1,....ir)esg

Now, under the exchangeability conditioh), eachr-tuple of distinct indices imC is equally
likely to be recruited into2V). Hence, it follows from (6) that

max P(jrea®, ... j,ea®)< :
(ixniir)€d (I r )< (pflﬂl)

and the first result follows. The second result follows from the simpletfet

N2 2
@=0)" 9 ralo<i<d,
pP—i —p

wherep* = p— | 4|, and the simple calculation that

(?)Z_1d2(d—1)2-~(d—r+1)2<1 N
(F;*) _I’!p*(p*_l)...<p*_r+1)_r!<> _

p*
This completes the proof. |

Theorem 1 gives a nonasymptotic bound, using only the symmetry arguraadtthis bound
is expected to be reasonably tight especially wpés large. From Theorem 1, we see that if the
exchangeability condition at level 1 is satisfied ang i§ large by comparison with?, then when
the number of selected featurdss smaller tham, we have with high probability this variant of
SIS reports no ‘false positives’; that is, it is very likely that any index ia dstimated active set
also belongs to the active set in the true model. Intuitively i§ large, then each inactive feature
has small probability of being included in the estimated active set, so it is vékglyrindeed that
it will appear in the estimated active sets from both partitions. The nature ofethigt is a little
unusual in that it suggests a ‘blessing of dimensionality’—the bound onribtgapility of false
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positives decreases witn However, this is only part of the full story, because the probability of
missing elements of the true active set is expected to increasgwith

Of course, it is possible to partition the data in€o> 2 groups, say, each of sizg¢K, and
estimated by 249 N 2@ n...n 2K, wherea® represents the estimated set of active indices
from thekth partition. Such a variable selection procedure would be even moresaggréhan the
K = 2 version; improved bounds in Theorem 1 could be obtained, but thalpitiip of missing true
active indices would be increased. As te- 2 procedure is already quite aggressive, we consider
this to be the most natural choice in practice.

In the iterated version of this first variant of SIS, we apply SIS to eactitipa separately to
obtain two sets of indiceﬁil) andﬁf), each having, elements. After forming the intersection
4= ﬁﬁl) ﬂﬁf), we carry out penalized likelihood estimation as before to give a firsbappation
M; to the true active set of features. We then perform a second stage Bl @rocedure, as

outlined in Section 2, to each partition separately to obtain sets of ina\{@esﬁél) andﬂluﬁf).
Taking the intersection of these sets and re-estimating parameters usidigguefikelihood as

in Section 2 gives a second approximati®f to the true active set. This process can be continued
until we reach an iteratioAwith 2, = M,_4, or we have recruited indices.

3.2 Second Variant of ISIS

Our second variant of SIS is a more conservative feature selecti@edue and also relies on
random partitioning the data int¢ = 2 groups as before. Again, we apply SIS to each partition
separately, but now we recruit as many features into equal-sized settvefindices2? and.2(?

as are required to ensure that the intersection 4 1 2(2 hasd elements. We then apply a
penalized pseudo-likelihood method to the featutgs= {X; : j € A4} for final feature selection
and parameter estimation.

Theoretical support for this method can be provided in the case of the limedel; namely,
under certain regularity conditions, this variant of SIS possesses ithaa@ening property. More
precisely, if Conditions (1)—(4) of Fan & Lv (2008) hold witlkx2-t < 1, and we choosd =
|n/logn]|, then there exist€ > 0 such that

P(4C 4) =1—O{exp(—Cn*"*/logn+logp)}.

The parametex > 0 controls the rate at which the minimum signal fain|B3;| is allowed to con-
verge to zero, while > 0 controls the rate at which the maximal eigenvalue of the covariance matrix
2 = CoV(Xy,...,Xp) is allowed to diverge to infinity. In fact, we insist that min |3;| > n™* and
Amax(Z) < n® for largen, whereAnax(Z) denotes the maximal eigenvalueXfThus, these technical
conditions ensure that any non-zero signal is not too small, and thatathede are not too close to
being collinear, and the dimensionality is also controlled viagego(n*~2¢/logn), which is still
of an exponential order. See Fan & Lv (2008) for further discussidhe sure screening property.
Recently, Fan & Song (2009) extended the result of Fan & Lv (2008)ktterlized linear
models. Let g = ming, n-1s" ,L(Yi,Bo) be the baseline value to (2.1). The feature ranking pro-

cedure is equivalent to the thresholding meth@;n ={j:Lj—Lo > vn}, in whichvy is a given
thresholding value. Under certainly regularity conditions, if

mi2|cov(xj,Y)] >cin X, for somec; > 0 andk < 1/2
je
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andv,, = con— % for a sufficiently smaltg, then we have
P(AC 9,) — 1,

exponentially fast, provided that Igg = o(n'~2¢). The sure screening property does not depend
on the correlation of the features, as expected. However, the selectiedi sire does depend on the
correlation structure: The more correlated the features, the largerldotesbmodel size. In fact,
Fan & Song (2009) demonstrated further that with probability tending to gperentially fast,
| M, | = O(Vr2Amax(Z)). WhenAmax(Z) = O(nY) andAmax(Z) = O(n~%), the selected model size
is | M, | = O(n?*1). In particularly, if the condition 41 < 1 is imposed as in Fan & Lv (2008),
we can reduce safely the model sizeota) by independence learning.

An iterated version of this second variant of SIS is also available. At thediage we apply
SIS, taking enough features in equal-sized sets of active in&l&ésand %2) to ensure that the
intersectiond; = ﬁil) ﬂ;‘iiz) hask; elements. Applying penalized likelihood to the features with

indices in4, gives a first approximatiofd/; to the true set of active indices. We then carry out a
second stage of the ISIS procedure of Section 2 to each partition s&pdcaobtain equal-sized

new sets of indicegztél) and félf), taking enough features to ensure tiat—= ,Elél) ﬁféléz) hask

elements. Penalized likelihood appliedﬂtﬁﬁﬁz gives a second approximatiov, toAt/he true set

of active indices. As with the first variant, we continue until we reach aatitat¢ with M; = M;_1,
or we have recruited indices.

4. Numerical Results

We illustrate the breadth of applicability of (1)SIS and its variants by studyingatéormance on
simulated data in four different contexts: logistic regression, Poissoasgign, robust regression
(with a least absolute deviation criterion) and multi-class classification withastuppctor ma-
chines. We will consider three different configurations of phe 1000 featureXy, ..., Xp:

Case 1: Xy,...,Xp are independent and identically distribute(D, 1) random variables

Case 2: Xq,..., X, are jointly Gaussian, marginally(0, 1), and with cortX, Xs) = 1/+/2 for all
i # 4 and cor(X;,X;) =1/2if i and | are distinct elements dfL, ..., p} \ {4}

Case 3: Xy,...,Xp are jointly Gaussian, marginaly(0, 1), and with cor(X;, Xs) = 0 for all i # 5,
corr(%, Xs) = 1/v/2 for alli ¢ {4,5}, and cor(X, X;) = 1/2 if i and j are distinct elements

of {1,...,p}\ {4,5}.

Case 1, with independent features, is the most straightforward foblasalection. In Cases 2
and 3, however, we have serial correlation such tha{¥giX;) does not decay g5— j| increases.
We will see later that for both Case 2 and Case 3 the true coefficients asercisuch that the
response is marginally uncorrelated with We therefore expect feature selection in these situations
to be more challenging, especially for the non-iterated versions of Si&:eéNbat in the asymptotic
theory of SIS in Fan & Lv (2008), this type of dependence is ruled ouhbir Condition (4).
Regarding the choice af, the asymptotic theory of Fan & Lv (2008) shows that in the linear
model there exist®* > 0 such that we may obtain the sure screening property Wwith® | <
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d < n. However,6* is unknown in practice, and therefore Fan and Lv recommukad|n/logn|

as a sensible choice. Of course, choosing a larger valukinfreases the probability that SIS
will include all of the correct variables, but including more inactive vddalwill tend to have a
slight detrimental effect on the performance of the final variable seleatidrparameter estimation
method. We have found that this latter effect is most noticeable in models wheredponse
provides less information. In particular, the binary response of a logegiession model and, to a
lesser extent, the integer-valued response in a Poisson regressidraneddss informative than the
real-valued response in a linear model. We therefore dsedjw"gnj in the logistic regression and
multicategory classification settings of Sections 4.1 andoﬂé,LW"gnj in the Poisson regression
settings of Section 4.2 ardl= | 5| in Section 4.4. These model-based, rather than data-adaptive,
choices ofd seem to be satisfactory, as the performance of the procedures is duist todifferent
choices ofd (in fact usingd = L%J for all models would still give good performance).

4.1 Logistic Regression

In this example, the dat&],Y1),...,(x[,Y,) are independent copies of a p&k’,Y), whereY
is distributed, conditional oiX = x, as Bin(1, p(x)), with Iog(lf’(pf;()) =Bo+x'B. We choose
n=400.

As explained above, we chose= | 7o | = 16 in both the vanilla version of SIS outlined in
Section 2 (Van-SIS), and the second variant (Var2-SIS) in SectionFd2the first variant (Varl-

SIS), however, we usetdl= | 2 | = 66; note that since this means the selected features are in the

intersection of two sets of silgiganwe typically end up with far fewer thashfeatures selected by this
method.

For the logistic regression example, the choice of final regularizatiomyzdea for the SCAD
penalty (after all (1)SIS steps) was made by means of an independatdtien data set of siza
(generated from the same model as the original data, used only for tuinmthmeters), rather
than by cross-validation. This also applies for the LASSO and Nearesh&mn Centroid (NSC,
Tibshirani et al., 2003) methods which we include for comparison; insteasimg SIS, this method
regularizes the log-likelihood with dm-penalty. The reason for using the independent tuning data
set is that the lack of information in the binary response means that cabidation is particularly
prone to overfitting in logistic regression, and therefore perfoms poorlglf methods.

The coefficients used in each of the three cases were as follows:

Case 1: Bo =0, 31 = 1.2439,3, = —1.3416,33 = —1.3500,34 = —1.7971,35 = —1.5810,B¢ =
—1.5967, and3; = 0 for j > 6. The corresponding Bayes test error .is35b8.

Case2:Bo=0,B1=4,B2=4,B3=4,Ps=—6V2, andB; = 0 for j > 4. The Bayes test error is
0.1074.

Case 3:Bo=0,P1=4,B2=4,Bs=4,Bs= —6V2,Bs =4/3, andB; = 0 for j > 5. The Bayes
test error is (L040.

In Case 1, the coefficients were chosen randomly, and were genastétbgn/\/n+ |Z|/4)U

with Z ~ N(0,1) andU = 1 with probability 05 and—1 with probability —0.5, independent of

Z. For Cases 2 and 3, the choices ensure that even thbwegh0, we have thaX, andY are
independent. The fact thay, is marginally independent of the response is designed to make it
difficult for a popular method such as the two-santplest or other independent learning methods
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to recognize this important feature. Furthermore, for Case 3, we addearimportant variabls

with a small coefficient to make it even more difficult to identify the true model. Case 2, the
ideal variables picked up by the two sample test or independence sa@deaimique are, X,
andXs. Using these variables to build the ideal classifier, the Bayes rislB#43, which is much
larger than the Bayes errorl®74 of the true model witiy, X2, X3, X4. In fact one may exaggerate
Case 2 to make the Bayes error using the independence screening tectlosg to &, which
corresponds to random guessing, by setflpg=0,B1=B>=PB3=a, Bm=aform=5,6,---,],

Bs= —a(j —1)v/2/2, andBy, = 0 form> j. For example, the Bayes error using the mdependence
screening technique, which deletég is 0.4290 whenj = 20 anda = 4 while the corresponding
Bayes error usingm, m=1,2,---,20 is Q0445.

In the tables below, we report several performance measures, ahiohware based on 100
Monte Carlo repetltlons The first two rows give the mediarand squared., estimation errors
IIB— [3Hl = ZJ olBi — [3]] and || — [3”2 = 21 _o(Bj — [3-)2. The third row gives the proportion
of times that the (1)SIS procedure under consideration includes all afrthertant features in the
model, while the fourth reports the corresponding proportion of times théitidldeatures selected,
after application of the SCAD or LASSO penalty as appropriate, includd glleoimportant ones.
The fifth row gives the median final number of features selected. Mesisiifit to the training data
are provided in the sixth, seventh and eighth rows, namely the median v:ﬁlﬁ@@a,ﬁ), defined
in (2.1), Akaike’s information criterion (Akaike, 1974), which adds twice ttumber of features in
the final model, and the Bayesian information criterion (Schwarz, 19#8yhmadds the product of
logn and the number of features in the final model. Finally, an independenttestet of size 100
was used to evaluate the median value(@f@oﬁ) on the test data (Row 9), as well as to report the
median 0-1 test error (Row 10), where we observe an error if theggsonse differs from the fitted
response by more than'2.

Table 1 compares five methods, Van-SIS, Varl-SIS, Var2-SIS, IAS®Hd NSC. The most
noticeable observation is that while the LASSO always includes all of the tarpideatures, it does
so by selecting very large models—a median of 94 variables, as opposeddortbct number, 6,
which is the median model size reported by all three SIS-based methodss @his to the bias of
the LASSO, as pointed out by Fan & Li (2001) and Zou (2006), whiatbarages the choice of a
small regularization parameter to make the overall mean squared error soadeqtiently, many
unwanted features are also recruited. This is also evidenced by comfaidifferences between
L, andL; losses in the first two rows. Thus the LASSO method has large estimationserdowhile
2Q(f30, B) is small on the training data set, this is a result of overfit, as seen by the kges\of
AIC/BIC, 2Q(Bo, [3) on the test data and the 0-1 test error.

As the features are independent in Case 1, it is unsurprising to seeahI8 has the best
performance of the three SIS-based methods. Even with the larger Yadugsed for Varl-SIS, it
tends to miss important features more often than the other methods. Although tloelrapgiears
to have value as a means of obtaining a minimal set of features that shouldilmdenh in a final
model, we will not consider Var1-SIS further in our simulation study.

Table 2 displays the results of repeating the Case 1 simulations for VamM@8ISSIS and Var2-
SIS under the same conditions, but using the LASSO penalty function tadrethe SCAD penalty
function after the SIS step. These versions are called Van-SIS-LASS0-SIS-LASSO and Var2-
SIS-LASSO respectively. We see that, as well as decreasing the cdiopak&ost, using any of
the three versions of SIS before the LASSO improves performancéastilbdly compared with
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applying the LASSO to the full set of features. On the other hand, thétseme less successful
than applying SIS and its variants in conjuction with the SCAD penalty for fieatufre selection
and parameter estimation. We therefore do not consider Van-SIS-LAZ30O-SIS-LASSO and
Var2-SIS-LASSO further.

Van-SIS Varl-SIS Var2-SIS LASSO NSC
IIB—Bll1 1.1093  1.2495 1.2134 8.4821 N/A
HB—EH% 0.4861 0.5237 0.5204 1.7029 N/A
Prop. incl. ()SIS models 0.99 0.84 0.91 N/A N/A
Prop. incl. final models | 0.99 0.84 0.91 1.00 0.34
Median final model size| 6 6 6 94 3
ZQ(BO,E) (training) 237.21  247.00 242.85 163.64 N/A
AlIC 250.43  259.87 256.26 352.54 N/A
BIC 277.77  284.90 282.04 724.70 N/A
ZQ(BO,E) (test) 27181  273.08 272.91 318.52 N/A
0-1 test error 0.1421  0.1425 0.1426 0.1720 0.3585

Table 1: Logistic regression, Case 1

Van-SIS-LASSO Varl-SIS-LASSO Var2-SIS-LASSO

IB—Bllx 3.8500 2.1050 3.0055
IB— B2 1.0762 0.7536 0.9227
Prop. incl. (I)SIS models 0.99 0.84 0.91

Prop. incl. final models | 0.99 0.84 0.91

Median final model size| 16.0 9.0 145

2Q([§o,[§) (training) 207.86 240.44 226.95
AIC 239.69 260.49 255.99
BIC 302.98 295.40 316.36
2Q(ﬁo,[A3) (test) 304.79 280.95 291.79
0-1 test error 0.1621 0.1476 0.1552

Table 2: Logistic regression, Case 1

In Cases 2 and 3, we also consider the iterated versions of Van-SI8aa21S, which we
denote Van-ISIS and Var2-ISIS respectively. At each intermediage sihthe ISIS procedures,
the Bayesian information criterion was used as a fast way of choosingGA® Segularization
parameter.

From Tables 3 and 4, we see that the non-iterated SIS methods fail badlgsie slwkward
cases. Their performance is similar to that of the LASSO method. On the athdr both of the
iterated methods Van-ISIS and Var2-ISIS perform extremely well (andesly to each other).

4.2 Poisson Regression

In our second example, the generic respofisedistributed, conditional oK = X, as Poissofu(x)),
where logp(x) = Bo+x"B.
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Table 4: Logistic regression, Case 3

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
IB—Bll1 20.0504 1.9445 20.1100 1.8450 21.6437 NI/A
HB—EH% 9.4101  1.0523 9.3347 0.9801 9.1123 N/A
Prop. incl. (I)SIS models 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models | 0.00 1.00 0.00 1.00 0.00 0.21
Median final model size | 16 4 16 4 91 16.5
2Q([§0,ﬁ) (training) 307.15  187.58 309.63 187.42 127.05 N/A
AlC 333.79  195.58 340.77 195.58 311.10 N/A
BIC 386.07 211.92 402.79 211.55 672.34 N/A
2Q([§o,ﬁ) (test) 344.25  204.23 335.21 204.28 258.65 N/A
0-1 test error 0.1925 0.1092 0.1899 0.1092 0.1409 0.3765

Table 3: Logistic regression, Case 2

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
IB— Bl 20.5774 2.6938 20.6967 3.2461 23.1661 N/A
1B— B2 9.4568 1.3615  9.3821  1.5852 9.1057 N/A
Prop. incl. (I)SIS models 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models | 0.00 0.90 0.00 0.98 0.00 0.17
Median final model size | 16 5 16 5 101.5 10
2Q(Bo, B) (training) 269.20 187.89  296.18  187.89 109.32 N/A
AIC 289.20 197.59 327.66 198.65 310.68 N/A
BIC 337.05 218.10 389.17 219.18 713.78 N/A
2Q([§o,ﬁ) (test) 360.89 225.15 358.13 226.25 275,55 N/A
0-1 test error 0.1933  0.1120 0.1946 0.1119 0.1461 0.3866

Due to the extra information in the count response, we choes200, and apply all versions of

(hSIS withd = | 5"

2logn

parameter for the SCAD and LASSO penalties. The coefficients usedasdoiows:

Case 1: Bo =5, B]_ = —0.5423,[32 = 0.5314,B3 = —0.5012,[34 = —0.4850,B5 = —0.4133,[36 =
0.5234, and3; =0 for j > 6.

Case 2: Bo=5,P1=0.6,B2 = 0.6, B3 = 0.6, B4 = —0.9v/2, andB; = 0 for j > 4.
Case 3:Bo=5,P1=0.6,B2 = 0.6, B3 = 0.6, B4 = —0.9v/2, Bs = 0.15, andB; = 0 for j > 5.

| =37. We also use 10-fold cross-validation to choose the final regularizatio

In Case 1, the magnitudes of the coefficigBits . . , 3 were generated a(é‘% +12]/8)U with Z ~
N(0,1) andU = 1 with probability 05 and—1 with probability 05, independently of. Again, the

choices in Cases 2 and 3 ensure that, even thBugh0, we have colXs,Y) = 0. The coefficients
are a re-scaled version of those in the logistic regression model, exaeefy$ th 5 is used to control
an appropriate signal-to-noise ratio.

The results are shown in Tables 5, 6 and 7. Even in Case 1, with indepdedgures, the ISIS
methods outperform SIS, so we chose not to present the results fortBEother two cases. Again,
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both Van-1SIS and Var2-1SIS perform extremely well, almost alwaysuthing all the important
features in relatively small final models. The LASSO method continues terdudfim overfitting,
particularly in the difficult Cases 2 and 3.

Table 5: Poisson regression, Case 1

Van-ISIS Var2-ISIS LASSO
IB— Bl 0.2705 0.2252  3.0710
IB— B2 0.0719  0.0667  1.2856
Prop. incl. (1)SIS models 1.00 0.97 N/A
Prop. incl. final models | 1.00 0.97 0.00
Median final model size | 18 16 174
2Q(Po, B) (training) 149453 1509.40  1369.96
AIC 1530.53 1541.17 1717.91
BIC 1589.90 1595.74 2293.29
2Q(Bo, B) (test) 1629.49 161457  2213.10

Table 6: Poisson regression, Case 2

Van-ISIS Var2-ISIS LASSO
IB—Bll1 0.2541  0.2319 3.0942
HB—ﬁH% 0.0682 0.0697 1.2856
Prop. incl. (1)SIS models 0.97 0.91 0.00
Prop. incl. final models | 0.97 0.91 0.00
Median final model size| 18 16 174
2Q(PRo, B) (training) 1500.03 1516.14  1366.63
AlC 1536.03 1546.79 1715.35
BIC 1595.40 1600.17 2293.60
2Q(ﬁo,[§) (test) 1640.27 1630.58  2389.09

Table 7: Poisson regression, Case 3
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Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO
IIB— Bl 0.0695 0.1239 1.1773 0.1222 0.1969
||B—EH§ 0.0225 0.0320 0.4775 0.0330 0.0537
Prop. incl. (I)SIS models 0.76 1.00 0.45 1.00 N/A
Prop. incl. final models | 0.76 1.00 0.45 1.00 1.00
Median final model size| 12 18 13 17 27
2Q(f30,§) (training) 1560.85 1501.80 7735.51 1510.38 1534(19
AIC 1586.32 1537.80 7764.51 1542.14 1587(23
BIC 1627.06 1597.17 7812.34  1595.30 1674(49
ZQ(EBO,E) (test) 1557.74 1594.10 14340.26 1589.51 164463
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4.3 Robust Regression

We have also conducted similar numerical experiments usiaggression for the three cases in
an analogous manner to the previous two examples. We obtain similar resutts véBsions of
ISIS are effective in selecting important features with relatively low fatsstiye rates. Hence, the
prediction errors are also small. On the other hand, LASSO missed theltifciables in cases 2
and 3 and also selected models with a large number of features to attenuatestbttbe variable
selection procedure. As a result, its prediction errors are much largesave space, we omit the
details of the results.

4.4 Linear Regression

Note that our new ISIS procedure allows feature deletion in each stepartimportant improve-
ment over the original proposal of Fan & Lv (2008) even in the orditeagt-squares setting. To
demonstrate this, we choose Case 3, the most difficult one, with coeffigigatsas follows.

Case 3:Bo=0,PB1=5,B2=5,B3=5,Bs= —152/2,B5 = 1, andBj = 0 for j > 5.

The respons¥ is set asy = x' B + ¢ with independent ~ N(0,1). This model is the same as
Example 4.2.3 of Fan & Lv (2008). Using= 70 andd = n/2, our new ISIS method includes
all five important variables for 91 out of the 100 repetitions, while the orldBiks without feature
deletion includes all the important features for only 36 out of the 100 rep&titibhe median model
size of our new variable selection procedure with variable deletion is 2dresk the median model
size corresponding to the original ISIS of Fan & Lv (2008) is 19.

We have also conducted the numerical experiment with a different sampla siZL00 and
d =n/2=50. For 97 out of 100 repetitions, our new ISIS includes all the importattifes while
ISIS without variable deletion includes all the important features for onlyefiztitions. Their
median model sizes are both 26. This clearly demonstrates the improvemdioinafg feature
deletion in this example.

4.5 Multicategory Classification

Our final example in this section is a four-class classification problem. Hemwdy two different
feature conflguratlons both of which depend on first generatlng ercEntXy, . . )N(p such that
X1, ..., %q are uniformly distributed ofi-+/3,1/3], andXs, ... ., X, are distributed aBI(O 1). We use
these random variables to generate the following cases:

Case 1:Xj=Xforj=1,....p

Case 2: X1 = X3 — v2Xs, Xo = Xo + /25, X3 = X3 — v/2Xs5, Xg = Xg + v/2Xs, andX; = +/3X; for
J_ 9y 7p

Conditional onX = x, the respons¥ was generated accordingR¢Y = k|X = %) O exp{ fi(X)}, for
k= 1,....4, Wherefl(f() = —a¥Xy +aXy, fz()~() = a¥Xy — aXo, f3()~() = aX, —aXz and f4( ) aXz — aXy
with a=5/+/3.

In both Case 1 and Case 2, all features have the same standard deviat@sdX;) = 1 for
j=1,2,---,pin Case 1 and s&j) = V3forj=1,2,---,pin Case 2. Moreover, for this case, the
variableXs is marginally unimportant, but jointly significant, so it represents a challengeiifg
this as an important variable. For both Case 1 and Case 2, the Bayers €rfi@&73.
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For the multicategory classification we use the loss function proposed hyLlreand Wahba
(2004). Denote the coefficients for tih class byBox and By for k = 1,2,3,4, and letB =
((Box, BI%T

(Boz,B3) 7’([3037 BT, (Boa,B2)T). Let fi(X) = fi(X, Bok, Bi) = Bok + X" By, k= 1,2,3,4, and

f(x) = f(x,B) = (f1(x), f2(x), f3(x), f4(x))T.

The loss function is given bl(Y,f(x)) = 3 jy [1+ fj(X)],, where[], = Y if Y > 0 and O oth-
erwise. Deviating slightly from our standard procedure, the marginal utifithe jt" feature is
defined by

L v 1g
Lj= mE!ni;L(\ﬁ,f(KJaB))JfékZlBjk

to avoid possible unidentifiablity issues due to the hinge loss function. Anasogodification is
applied to (3) in the iterative feature selection step. With estimated coefﬁ(ﬁanmd Ek, and
fiu(X) = ok + XTB, for k = 1,2,3,4, the estimated classification rule is given by argpfi).
There are some other appropriate multi-category loss functions such asdh@oposed by Liu,
Shen and Doss (2005).

As with the logistic regression example in Section 4.1, weruse400,d = Lwngnj =16 and
an independent validation data set of si@e pick the final regularization parameter for the SCAD

penalty.
The results are given in Table 8. The mean estimated testing error wasdmeadarther testing

data set of size 200 and we also report the standard error of this mean estimate. In the case of

independent features, all (1)SIS methods have similar performanae béitefits of using iterated
versions of the ISIS methodology are again clear for Case 2, with depefehtures.

Van-SIS Van-ISIS Var2-SIS Var2-1SIS LASSO NSC
Casel
Prop. incl. (1)SIS models 1.00 1.00 0.99 1.00 N/A N/A
Prop. incl. final model | 1.00 1.00 0.99 1.00 0.00 0.68
Median modal size 2.5 4 10 5 19 4
0-1 test error 0.3060 0.3010 0.2968 0.2924 0.3296 0.4524
Test error standard errorr 0.0067 0.0063 0.0067 0.0061 0.0078 0.0214
Case 2
Prop. incl. (1)SIS models 0.10 1.00 0.03 1.00 N/A N/A
Prop. incl. final models | 0.10 1.00 0.03 1.00 0.33 0.30
Median modal size 4 11 5 9 54 9
0-1 test error 0.4362  0.3037 0.4801 0.2983 0.4296 0.6242
Test error standard errorf 0.0073 0.0065 0.0083 0.0063 0.0043 0.0084

Table 8: Multicategory classification

5. Real Data Examples

In this section, we apply our proposed methods to two real data sets. $herfe has a binary
response while the second is multi-category. We treat both as classificatiolerps and use the
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hinge loss discussed in Section 4.5. We compare our methods with two altesndtie LASSO
and NSC.

5.1 Neuroblastoma Data

We first consider the neuroblastoma data used in Oberthuer et al. (20@63tudy consists of 251
patients of the German Neuroblastoma Trials NB90-NB2004, diagnose@dett©89 and 2004.
At diagnosis, patients’ ages range from 0 to 296 months with a median agerabdths. They
analyzed 251 neuroblastoma specimens using a customized oligonucleotidarnaigwith the
goal of developing a gene expression-based classification ruledooliastoma patients to reliably
predict courses of the disease. This also provides a compreheisiven which set of genes is
responsible for neuroblastoma.

The complete data set, obtained via the MicroArray Quality Control phg8&AQC-II) project,
includes gene expression over 10,707 probe sites. Of particular inietespredict the response
labeled “3-year event-free survival” (3-year EFS) which is a bimvanjable indicating whether each
patient survived 3 years after the diagnosis of neuroblastoma. Exgléidenoutlier arrays, there
are 246 subjects out of which 239 subjects have 3-year EFS informatdatde with 49 positives
and 190 negatives. We apply SIS and ISIS to reduce dimensionalitydrerh0, 707 tod = 50. On
the other hand, our competitive methods LASSO and NSC are applied direpty i@, 707 genes.
Whenever appropriate, five-fold cross validation is used to select tyrarggmeters. We randomly
select 125 subjects (25 positives and 100 negatives) to be the traihemgstne remainder are used
as the testing set. Results are reported in the top half of Table 9. Seledbed fwo LASSO and all
different (1)SIS methods are reported in Table 10.

In MAQC-II, a specially designed end point is the gender of each syhjdich should be an
easy classification. The goal of this specially designed end point is to certipa performance
of different classifiers for simple classification jobs. The gender inftionds available for all
the non-outlier 246 arrays with 145 males and 101 females. We randomly g6letales and 50
females to be in the training set and use the others as the testing set. d\e S6tfor our SIS and
ISIS as in the case of the 3-year EFS end point. The results are givemtotiom half of Table 9.
Selected probes for all different methods are reported in Table 11.

End point SIS ISIS var2-SIS var2-ISIS LASSO NSC

3-year EFS No. _of features] 5 23 10 12 57 9413
Testing error | 19/114 22/114 22/114 21/114 22/114 24/114

Gender No. pf featuress 6 2 4 2 42 3
Testing error | 4/126  4/126 4/126 4/126 5/126  4/126

Table 9: Results from analyzing two endpoints of the neuroblastoma data

We can see from Table 9 that our (1)SIS methods compare favorably withbABSO and NSC.
Especially for the end point 3-year EFS, our methods use fewer featidniée giving smaller testing
error. For the end point GENDER, Table 11 indicates that the most parsiosomodel given by
ISIS and Var2-1SIS is a sub model of others.

5.2 SRBCT Data

In this section, we apply our method to the children cancer data set refoiénn et al. (2001).
Khan et al. (2001) used artificial neural networks to develop a methddssgifying the small, round
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Probe SIS ISIS var2-SIS var2-ISIS LASSO
‘A_23P160638' X
‘A_23P168916' X X
‘A_23.P42882' X

‘A _23.P145669’ X
‘A _32.P50522’ X
‘A _23.P34800’ X
‘A_23.P86774 X

‘A_23.P417918’ X X
‘A_23.P100711’ X
‘A _23.P145569' X
‘A _23.P337201' X
‘A_23.P56630’ X X X
‘A_23.P208030’ X X
‘A_23P211738 X

‘A_23P153692' X
‘A_24P148811 X

‘A_23P126844’ X X
‘A _23.P25194’ X
‘A_24.P399174' X
‘A_24 P183664 X
‘A _23.P59051’ X
‘A_24.P14464 X
‘A_23.P501831’ X X

‘A_23.P103631’ X

‘A _23.P32558’ X

‘A _23.P25873’ X

‘A 23 P95553' X
‘A 24 P227230 X X
‘A_23.P5131’ X
‘A_23P218841 X
‘A_23.P58036’ X
‘A_23.P89910° X

‘A_24.P98783 X
‘A_23P121987 X X
‘A_32.P365452' X
‘A_23P109682' X

‘Hs58251.2 X
‘A_23P121102' X

‘A_23.P3242' X
‘A_32.P177667" X
‘Hs6806.2’ X
‘Hs376840.2 X
‘A_24.P136691’ X
‘Pro25G.B35.D.7 X X

‘A _23.P87401° X

‘A_32.P302472' X
‘Hs343026.1 X
‘A_23P216225' X X X
‘A_23P203419 X X
‘A_24 P22163 X X
‘A_24 P187706' X
‘C1.QC’ X
‘Hs190380.1° X X
‘Hs117120.1° X
‘A_32.P133518' X
‘EQCPLPro25GTS’ X
‘A_24.P111061’ X

‘A _23.P20823’ X X X X
‘A_24.P211151’ X

‘Hs265827.1’ X X
‘Pro25G.B12D.7’ X
‘Hs156406.1 X
‘A _24.P902509' X
‘A_32.P32653' X
‘Hs42896.1' X

‘A_32.P143793 X X X
‘A_23P391382' X
‘A_23P327134 X
‘Pro25GEQCP1TS’ X
‘A _24.P351451' X

‘Hs170298.1" X
‘A 23 P159390’ X
‘Hs272191.1° X

‘r60_a135’ X
‘Hs439489.1’ X
‘A_23.P107295 X
‘A_23.P100764’ X X X X X
‘A_23.P157027 X

‘A _24.P342055' X
‘A_23.P1387 X

‘Hs6911.1 X
‘r60-1’ X

Table 10: Selected probes for the 3-year EFS end point
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Probe SIS ISIS var2-SIS var2-ISIS LASSO NSC
‘A 23.P201035’ X

‘A 24 P167642’ X

‘A 24 P55295’ X

‘A 24.P82200’ X

‘A _23.P109614’ X

‘A 24 P102053’ X

‘A _23.P170551’ X

‘A 23.P329835’ X
‘A 23.P70571’

‘A 23.P259901’

‘A 24 P222000’

‘A _23.P160729’

‘A 23.P95553’ X X
‘A _23.P100315’

‘A_23.P10172

‘A 23.P137361’

‘A 23.P202484’

‘A 24 P56240’

‘A _32.P104448’

‘(-)3xSLvl’

‘A 24 P648880’

‘Hs446389.2’

‘A _23.P259314’ X X X X
‘Hs386420.1’

‘Pro25GB32.D_7’

‘Hs116364.2’

‘A 32 P375286’ X

‘A _32.P152400’

‘A _32.P105073’

‘Hs147756.1’ X

‘Hs110039.1’

‘r60.a107’

‘Hs439208.1’

‘A _32.P506090’

‘A 24 P706312’ X
‘Hs58042.1’

‘A _23.P128706’

‘Hs3569.1

‘A 24 .P182900’

‘A 23.P92042’

‘Hs170499.1’

‘A 24 P500584’ X X X X
‘A _32.P843590’

‘Hs353080.1’

‘A 23.P388200’

‘C1.QC

‘Hs452821.1°

X X X X

X X X X X X X X X X ><><><><><><><><><><><><><><><><
x

x
x

X X X X X

Table 11: Selected probe for Gender end point

blue cell tumors (SRBCTSs) of childhood to one of the four categoriestofbdastoma (NB), rhab-
domyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and the Ewing familjuofors (EWS)
using cDNA gene expression profiles. Accurate diagnosis of SRBCires® four distinct diag-
nostic categories is important in that the treatment options and responsesajoythes different
from one category to another.

After filtering, 2308 gene profiles out of 6567 genes are given in thB(GRdata set. It is
available online at http://research.nhgri.nih.gov/microarray/Supplement/.lutdex a training set
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of size 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS) and an indepenetgrget of size 20 (6 NBs,
5 RMSs, 3 NHLs, and 6 EWS).

Before performing classification, we standardize the data sets by applgingple linear trans-
formation to both the training set and the test set. The linear transformatiosad ba the training
data so that, after standardizing, the training data have mean zero anardtdadiation one. Our
()SIS reduces dimensionality from= 2308 tod = |63/10og 63| = 15 first while alternative meth-
ods LASSO and NSC are applied po= 2308 gene directly. Whenever appropriate, a four-fold
cross validation is used to select tuning parameters.

ISIS, var2-1SIS, LASSO and NSC all achieve zero test error on theaples in the test set.
NSC uses 343 genes and LASSO requires 71 genes. However I&MaeISIS use 15 and 14
genes, respectively.

This real data application delivers the same message that our new ISI&r2AEIS methods
can achieve competitive classification performance using fewer features
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