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Abstract

Variable selection in high-dimensional space characterizes many contemporary problems in scien-
tific discovery and decision making. Many frequently-used techniques are based on independence
screening; examples include correlation ranking (Fan & Lv,2008) or feature selection using a two-
samplet-test in high-dimensional classification (Tibshirani et al., 2003). Within the context of the
linear model, Fan & Lv (2008) showed that this simple correlation ranking possesses a sure inde-
pendence screening property under certain conditions and that its revision, called iteratively sure
independent screening (ISIS), is needed when the features are marginally unrelated but jointly re-
lated to the response variable. In this paper, we extend ISIS, without explicit definition of residuals,
to a general pseudo-likelihood framework, which includes generalized linear models as a special
case. Even in the least-squares setting, the new method improves ISIS by allowing feature deletion
in the iterative process. Our technique allows us to select important features in high-dimensional
classification where the popularly used two-samplet-method fails. A new technique is introduced
to reduce the false selection rate in the feature screening stage. Several simulated and two real data
examples are presented to illustrate the methodology.

Keywords: classification, feature screening, generalized linear models, robust regression, feature
selection

1. Introduction

The remarkable development of computing power and other technology hasallowed scientists to
collect data of unprecedented size and complexity. Examples include data from microarrays, pro-
teomics, brain images, videos, functional data and high-frequency financial data. Such a demand
from applications presents many new challenges as well as opportunities for those in statistics and
machine learning, and while some significant progress has been made in recent years, there remains
a great deal to do.
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A very common statistical problem is to model the relationship between one or moreoutput
variablesY and their associated covariates (or features)X1, . . . ,Xp, based on a sample of sizen. A
characteristic feature of many of the modern problems mentioned in the previous paragraph is that
the dimensionalityp is large, potentially much larger thann. Mathematically, it makes sense to
considerp as a function ofn, which diverges to infinity. The dimensionality grows very rapidly
when interactions of the features are considered, which is necessary for many scientific endeavors.
For example, in disease classification using microarray gene expression data (Tibshirani et al., 2003;
Fan & Ren, 2006), the number of arrays is usually in the order of tens or hundreds while the number
of gene expression profiles is in the order of tens of thousands; in the study of protein-protein
interactions, the sample size may be in the order of thousands, but the numberof features can be in
the order of millions.

The phenomenon of noise accumulation in high-dimensional classification andregression has
long been observed by statisticians and computer scientists (see Vapnik 1995, Hastie et al. 2009
and references therein) and has been analytically demonstrated by Fan &Fan (2008). Various fea-
ture selection techniques have been proposed in both the statistics and machine learning literature,
and introductions and overviews written for the machine learning community canbe found in, for
example, Liu & Motoda (1998), Guyon & Elisseeff (2003) and Guyon et al. (2006). Specific algo-
rithms proposed include but are not restricted to FCBF (Yu & Li, 2003), CFS (Hall, 2000), ReliefF
(Kononenko, 1994), FOCUS (Almuallim & Dietterich, 1994) and INTERACT(Zhao & Liu, 2007).
See also the special issue published by JMLR on “variable and feature selection”, including Bi et
al. (2003), Bengio & Chapados (2003) and Guyon & Elisseeff (2003).

One particularly popular family of methods is based on penalized least-squares or, more gener-
ally, penalized pseudo-likelihood. Examples include the LASSO (Tibshirani,1996), SCAD (Fan &
Li, 2001), the Dantzig selector (Candes & Tao, 2007), and their related methods. These methods
have attracted a great deal of theoretical study and algorithmic developmentrecently. See Donoho &
Elad (2003), Efron et al. (2004), Zou (2006), Meinshausen & Bühlmann (2006), Zhao & Yu (2006),
Zou & Li (2008), Bickel et al. (2009), and references therein. However, computation inherent in
those methods makes them hard to apply directly to ultrahigh-dimensional statistical learning prob-
lems, which involve the simultaneous challenges of computational expediency,statistical accuracy,
and algorithmic stability.

A method that takes up the aforementioned three challenges is the idea of independent learning,
proposed and demonstrated by Fan & Lv (2008) in the regression context. The method can be
derived from an empirical likelihood point of view (Hall et al., 2009) and isrelated to supervised
principal component analysis (Bair et al., 2006; Paul et al., 2008). In the important, but limited,
context of the linear model, Fan & Lv (2008) proposed a two-stage procedure to deal with this
problem. First, so-called independence screening is used as a fast butcrude method of reducing the
dimensionality to a more moderate size (usually below the sample size); then, a moresophisticated
technique, such as a penalized likelihood method based on the smoothly clippedabsolute deviation
(SCAD) penalty, can be applied to perform the final feature selection andparameter estimation
simultaneously.

Independence screening recruits those features having the best marginal utility, which corre-
sponds to the largest marginal correlation with the response in the context of least-squares regres-
sion. Under certain regularity conditions, Fan & Lv (2008) show surprisingly that this fast feature
selection method has a ‘sure screening property’; that is, with probability very close to 1, the in-
dependence screening technique retains all of the important features in the model. A remarkable
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feature of this theoretical result is that the dimensionality of the model is allowedto grow exponen-
tially in the sample size; for this reason, we refer to the method as an ‘ultrahigh’dimensional feature
selection technique, to distinguish it from other ‘high’ dimensional methods where the dimension-
ality can grow only polynomially in the sample size. The sure screening property is described in
greater detail in Section 3.2, and as a result of this theoretical justification, the method is referred to
as Sure Independence Screening (SIS).

An important methodological extension, called Iterated Sure Independence Screening (ISIS),
covers cases where the regularity conditions may fail, for instance if a feature is marginally uncor-
related, but jointly correlated with the response, or the reverse situation where a feature is jointly
uncorrelated but has higher marginal correlation than some important features. Roughly, ISIS works
by iteratively performing feature selection to recruit a small number of features, computing residuals
based on the model fitted using these recruited features, and then using theworking residuals as the
response variable to continue recruiting new features. The crucial stepis to compute the working
residuals, which is easy for the least-squares regression problem butnot obvious for other problems.
The improved performance of ISIS has been documented in Fan & Lv (2008).

Independence screening is a commonly used techniques for feature selection. It has been widely
used for gene selection or disease classification in bioinformatics. In thoseapplications, the genes
or proteins are called statistically significant if their associated expressionsin the treatment group
differ statistically from the control group, resulting in a large and active literature on the multiple
testing problem. See, for example, Dudoit et al. (2003) and Efron (2008). The selected features are
frequently used for tumor/disease classification. See, for example, Tibshirani et al. (2003), and Fan
& Ren (2006). This screening method is indeed a form of independence screening and has been
justified by Fan & Fan (2008) under some ideal situations. However, commonsense can carry us
only so far. As indicated above and illustrated further in Section 4.1, it is easy to construct features
that are marginally unrelated, but jointly related with the response. Such features will be screened
out by independent learning methods such as the two-samplet test. In other words, genes that are
screened out by test statistics can indeed be important in disease classification and understanding
molecular mechanisms of the disease. How can we construct better feature selection procedures
in ultrahigh dimensional feature space than the independence screening popularly used in feature
selection?

The first goal of this paper is to extend SIS and ISIS to much more general models. One
challenge here is to make an appropriate definition of a residual in this context. We describe a
procedure that effectively sidesteps this issue and therefore permits thedesired extension of ISIS.
In fact, our method even improves the original ISIS of Fan & Lv (2008) in that it allows variable
deletion in the recruiting process. Our methodology applies to a very general pseudo-likelihood
framework, in which the aim is to find the parameter vectorβ = (β1, . . . ,βp)

T that is sparse and
minimizes an objective function of the form

Q(β0,β) =
n

∑
i=1

L(Yi ,β0 +xT
i β),

where(xT
i ,Yi) are the covariate vector and response for theith individual. Important applications of

this methodology, which is outlined in greater detail in Section 2, include the following:

1. Generalized linear models: All generalized linear models, including logistic regression and
Poisson log-linear models, fit very naturally into our methodological framework. See McCul-
lagh & Nelder (1989) for many applications of generalized linear models. Note in particular
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that logistic regression models yield a popular approach for studying classification problems.
In Section 4, we present simulations in which our approach compares favorably with the
competing LASSO technique (Tibshirani, 1996).

2. Classification: Other common approaches to classification assume the response takes val-
ues in{−1,1} and also fit into our framework. For instance, support vector machine clas-
sifiers (Vapnik, 1995) use the hinge loss functionL(Yi ,β0 + xT

i β) = {1−Yi(β0 + xT
i β)}+,

while the boosting algorithm AdaBoost (Freund & Schapire, 1997) usesL(Yi ,β0 + xT
i β) =

exp{−Yi(β0 +xT
i β)}.

3. Robust fitting: In a high-dimensional linear model setting, it is advisable to be cautious
about the assumed relationship between the features and the response. Thus, instead of the
conventional least squares loss function, we may prefer a robust lossfunction such as theL1

lossL(Yi ,β0 + xT
i β) = |Yi −β0− xT

i β| or the Huber loss (Huber, 1964), which also fits into
our framework.

Any screening method, by default, has a large false selection rate (FSR),namely, many unim-
portant features are selected after screening. A second aim of this paper, covered in Section 3, is to
present two variants of the SIS methodology, which reduce significantly theFSR. Both are based
on partitioning the data into (usually) two groups. The first has the desirableproperty that in high-
dimensional problems the probability of incorrectly selecting unimportant features is small. Thus
this method is particularly useful as a means of quickly identifying features that should be included
in the final model. The second method is less aggressive, and for the linearmodel has the same
sure screening property as the original SIS technique. The applicationsof our proposed methods
are illustrated in Section 5.

2. ISIS Methodology in a General Framework

Lety = (Y1, . . . ,Yn)
T be a vector of responses and letx1, . . . ,xn be their associated covariate (column)

vectors, each taking values inRp. The vectors(xT
1 ,Y1), . . . ,(xT

n ,Yn) are assumed to be independent
and identically distributed realizations from the population(X1, . . . ,Xp,Y)T . Then×pdesign matrix
is X = (x1, . . . ,xn)

T .

2.1 Feature Ranking by Marginal Utilities

The relationship betweenY and (X1, . . . ,Xp)
T is often modeled through a parameter vectorβ =

(β1, . . . ,βp)
T , and the fitting of the model amounts to minimizing a negative pseudo-likelihood

function of the form

Q(β0,β) = n−1
n

∑
i=1

L(Yi ,β0 +xT
i β).

Here,L can be regarded as the loss of usingβ0 + xT
i β to predictYi . The marginal utility of thej th

feature is

L j = min
β0,β j

n−1
n

∑
i=1

L(Yi ,β0 +Xi j β j),

which minimizes the loss function, wherexi = (Xi1, . . . ,Xip)
T . The idea of SIS in this framework

is to compute the vector of marginal utilitiesL = (L1, . . . ,Lp)
T and rank them according to the
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marginal utilities: the smaller the more important. Note that in order to computeL j , we need only
fit a model with two parameters,β0 andβ j , so computing the vectorL can be done very quickly and
stably, even for an ultrahigh dimensional problem. The featureXj is selected by SIS ifL j is one of
thed smallest components ofL . Typically, we may taked = ⌊n/ logn⌋, though the choice ofd is
discussed in greater detail in Section 4.

The procedure above is an independence screening method. It uses only a marginal relation
between features and the response variable to screen variables. Whend is large enough, it has
high probability of selecting all of the important features. For this reason, we call the methodSure
Independence Screening(SIS). For classification problems with quadratic lossL, Fan & Lv (2008)
show that SIS reduces to feature screening using a two-samplet-statistic. See also Hall et al. (2009)
for a derivation from an empirical likelihood point of view and §3.2 for sometheoretical results on
the sure screening property.

2.2 Penalized Pseudo-likelihood

With features crudely selected by SIS, variable selection and parameter estimation can further be
carried out simultaneously using a more refined penalized (pseudo)-likelihood method, as we now
describe. The approach takes joint information into consideration. By reordering the features if
necessary, we may assume without loss of generality thatX1, . . . ,Xd are the features recruited by SIS.
We letxi,d = (Xi1, . . . ,Xid)T and redefineβ = (β1, . . . ,βd)

T . In the penalized likelihood approach,
we seek to minimize

ℓ(β0,β) = n−1
n

∑
i=1

L(Yi ,β0 +xT
i,dβ)+

d

∑
j=1

pλ(|β j |). (1)

Here, pλ(·) is a penalty function andλ > 0 is a regularization parameter, which may be chosen
by five-fold cross-validation, for example. The penalty function should satisfy certain conditions
in order for the resulting estimates to have desirable properties, and in particular to yield sparse
solutions in which some of the coefficients may be set to zero; see Fan & Li (2001) for further
details.

Commonly used examples of penalty functions include theL1 penaltypλ(|β|) = λ|β| (Tibshi-
rani, 1996; Park & Hastie, 2007), the smoothly clipped absolute deviation (SCAD) penalty (Fan &
Li, 2001), which is a quadratic spline withpλ(0) = 0 and

p′λ(|β|) = λ
{
1{|β|≤λ} +

(aλ−|β|)+

(a−1)λ
1{|β|>λ}

}
,

for somea > 2 and|β| > 0, and the minimum concavity penalty (MCP),p′λ(|β|) = (λ− |β|/a)+

(Zhang, 2009). The choicea = 3.7 has been recommended in Fan & Li (2001). Unlike theL1

penalty, SCAD and MC penalty functions have flat tails, which are fundamental in reducing biases
due to penalization (Antoniadis & Fan, 2001; Fan & Li, 2001). Park & Hastie(2007) describe
an iterative algorithm for minimizing the objective function for theL1 penalty, and Zhang (2009)
propose a PLUS algorithm for finding solution paths to the penalized least-squares problem with
a general penaltypλ(·). On the other hand, Fan & Li (2001) have shown that the SCAD-type of
penalized loss function can be minimized iteratively using a local quadratic approximation, whereas
Zou & Li (2008) propose a local linear approximation, taking the advantage of recently developed
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algorithms for penalizedL1 optimization (Efron et al., 2004). Starting fromβ(0) = 0 as suggested
by Fan & Lv (2008), using the local linear approximation

pλ(|β|) ≈ pλ(|β(k)|)+ p′λ(|β(k)|)(|β|− |β(k)|),

in (1), at the(k+1)th iteration we minimize the weightedL1 penalty

n−1
n

∑
i=1

L(Yi ,β0 +xT
i,dβ)+

d

∑
j=1

w(k)
j |β j |, (2)

wherew(k)
j = p′λ(|β

(k)
j |). Note that with initial valueβ(0) = 0, β(1) is indeed a LASSO estimate for

the SCAD and MC penalties, sincep′λ(0+) = λ. In other words, zero is not an absorbing state.
Though motivated slightly differently, a weightedL1 penalty is also the basis of the adaptive Lasso
(Zou, 2006); in that casew(k)

j ≡ w j = 1/|β̂ j |γ, whereβ̂ = (β̂1, . . . , β̂d)
T may be taken to be the

maximum likelihood estimator, andγ > 0 is chosen by the user. The drawback of such an approach
is that zero is an absorbing state when (2) is iteratively used—components being estimated as zero
at one iteration will never escape from zero.

For a class of penalty functions that includes the SCAD penalty and whend is fixed asn
diverges, Fan & Li (2001) established an oracle property; that is, thepenalized estimates per-
form asymptotically as well as if an oracle had told us in advance which components ofβ were
non-zero. Fan & Peng (2004) extended this result to cover situations whered may diverge with
d = dn = o(n1/5). Zou (2006) shows that the adaptive LASSO possesses the oracle property too,
whend is finite. See also further theoretical studies by Zhang & Huang (2008) and Zhang (2009).
We refer to the two-stage procedures described above as SIS-Lasso, SIS-SCAD and SIS-AdaLasso.

2.3 Iterative Feature Selection

The SIS methodology may break down if a feature is marginally unrelated, butjointly related with
the response, or if a feature is jointly uncorrelated with the response but has higher marginal corre-
lation with the response than some important features. In the former case, theimportant feature has
already been screened at the first stage, whereas in the latter case, theunimportant feature is ranked
too high by the independent screening technique. ISIS seeks to overcome these difficulties by using
more fully the joint covariate information while retaining computational expedience and stability as
in SIS.

In the first step, we apply SIS to pick a setÂ1 of indices of sizek1, and then employ a penalized

(pseudo)-likelihood method such as Lasso, SCAD, MCP or the adaptive Lasso to select a subset̂M1

of these indices. This is our initial estimate of the set of indices of important features. The screening
stage solves only bivariate optimizations (2.1) and the fitting part solves only aoptimization problem
(1) with moderate sizek1. This is an attractive feature in ultrahigh dimensional statistical learning.

Instead of computing residuals, as could be done in the linear model, we compute

L(2)
j = min

β0,β
M̂1

,β j

n−1
n

∑
i=1

L(Yi ,β0 +xT
i,M̂1

β
M̂1

+Xi j β j), (3)

for j ∈ M̂ c
1 = {1, . . . , p} \ M̂1, wherex

i,M̂1
is the sub-vector ofxi consisting of those elements in

M̂1. This is again a low-dimensional optimization problem which can easily be solved. Note that
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L(2)
j [after subtracting the constant minβ0,β

M̂1
n−1 ∑n

i=1L(Yi ,β0 +xT
i,M̂1

β
M̂1

) and changing the sign of

the difference] can be interpreted as the additional contribution of variable Xj given the existence

of variables inM̂1. After ordering{L(2)
j : j ∈ M̂ c

1 }, we form the set̂A2 consisting of the indices
corresponding to the smallestk2 elements, say. In this screening stage, an alternative approach is to
substitute the fitted valuêβ

M̂1
from the first stage into (3) and the optimization problem (3) would

only be bivariate. This approach is exactly an extension of Fan & Lv (2008) as we have

L(Yi ,β0 +xT
i,M̂1

β̂
M̂1

+Xi j β j) = (r̂ i −β0−Xi j β j)
2,

for the quadratic loss, where ˆr i = Yi − xT
i,M̂1

β̂
M̂1

is the residual from the previous step of fitting.

The conditional contributions of features are more relevant in recruiting variables at the second
stage, but the computation is more expensive. Our numerical experiments in Section 4.4 shows the
improvement of such a deviation from Fan & Lv (2008).

After the prescreening step, we use penalized likelihood to obtain

β̂2 = argmin
β0,β

M̂1
,βA2

n−1
n

∑
i=1

L(Yi ,β0 +xT
i,M̂1

β
M̂1

+xT
i,Â2

β
Â2

)+ ∑
j∈M̂1∪Â2

pλ(|β j |).

Again, the penalty term encourages a sparse solution. The indices ofβ̂2 that are non-zero yield a

new estimated set̂M2 of active indices. This step also deviates importantly from the approach in
Fan & Lv (2008) even in the least-squares case. It allows the procedure to delete variables from the

previously selected features with indices in̂M1.

The process, which iteratively recruits and deletes features, can then be repeated until we obtain

a set of indiceŝMℓ which either has reached the prescribed sized, or satisfieŝMℓ = M̂ℓ−1. Of
course, we also obtain a final estimated parameter vectorβ̂ℓ. The above method can be considered
as an analogue of the least squares ISIS procedure (Fan & Lv, 2008) without explicit definition of
the residuals. In fact, it is an improvement even for the least-squares problem.

In general, choosing larger values of eachkr decreases the computational cost and the prob-
ability that the ISIS procedure will terminate prematurely. However, it also makes the procedure
more like its non-iterated counterpart, and so may offer less improvement in theawkward cases for
SIS described in Section 1. In our implementation, we chosek1 = ⌊2d/3⌋, and thereafter at therth

iteration, we tookkr = d−|M̂r−1|. This ensures that the iterated versions of SIS take at least two

iterations to terminate; another possibility would be to take, for example,kr = min(5,d−|M̂r−1|).
Fan & Lv (2008) showed empirically that for the linear model ISIS improves significantly the

performance of SIS in the difficult cases described above. The reason is that the fitting of the
residuals from the(r −1)th iteration on the remaining features significantly weakens the priority of
those unimportant features that are highly correlated with the response through their associations

with {Xj : j ∈ M̂r−1}. This is due to the fact that the features{Xj : j ∈ M̂r−1} have lower correlation
with the residuals than with the original responses. It also gives those important features that are
missed in the previous step a chance to survive.
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2.4 Generalized Linear Models

Recall that we say thatY is of exponential dispersion family form if its density can be written in
terms of its meanµ and a dispersion parameterφ as

fY(y;µ,φ) = exp

{
yθ(µ)−b(θ(µ))

φ
+c(y,φ)

}
,

from some known functionsθ(·), b(·) andc(·, ·). In a generalized linear model for independent
responsesY1, . . . ,Yn, we assert that the conditional density ofYi given the covariate vectorX i = xi is
of exponential dispersion family form, with the conditional mean responseµi related toxi through
g(µi) = xT

i β for some known link functiong(·), and where the dispersion parameters are constrained
by requiring thatφi = φai , for some unknown dispersion parameterφ and known constantsa1, . . . ,an.
For simplicity, throughout the paper, we take a constant dispersion parameter.

It is immediate from the form of the likelihood function for a generalized linear model that such
a model fits within the pseudo-likelihood framework of Section 4. In fact, we have in general that

L(Yi ,β0 +xT
i β) =

n

∑
i=1

{
b
(
θ(g−1(β0 +xT

i β)
)
−Yiθ

(
g−1(β0 +xT

i β)
)}

. (4)

If we make the canonical choice of link function,g(·) = θ(·), then (4) simplifies to

L(Yi ,β0 +xT
i β) =

n

∑
i=1

{
b(β0 +xT

i β)−Yi(β0 +xT
i β)

}
.

An elegant way to handle classification problems is to assume the class label takes values 0 or 1,
and fit a logistic regression model. For this particular generalized linear model, we have

L(Yi ,β0 +xT
i β) =

n

∑
i=1

{log(1+eβ0+xT
i β)−Yi(β0 +xT

i β)},

while for Poisson log-linear models, we may take

L(Yi ,β0 +xT
i β) =

n

∑
i=1

{
eβ0+xT

i β−Yi(β0 +xT
i β)

}
.

3. Reduction of False Selection Rates

Sure independence screening approaches are simple and quick methodsto screen out irrelevant
features. They are usually conservative and include many unimportant features. In this section, we
outline two possible variants of SIS and ISIS that have attractive theoretical properties in terms of
reducing the FSRs. The first is an aggressive feature selection method that is particularly useful
when the dimensionality is very large relative to the sample size; the second is a more conservative
procedure.

3.1 First Variant of ISIS

It is convenient to introduce some new notation. We writeA for the set of active indices—that is,
the set containing those indicesj for which β j 6= 0 in the true model. WriteXA = {Xj : j ∈ A} and
XAc = {Xj : j ∈ Ac} for the corresponding sets of active and inactive variables respectively.
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Assume for simplicity thatn is even, and split the sample into two halves at random. Apply
SIS or ISIS separately to the data in each partition (withd = ⌊n/ logn⌋ or larger, say), yielding two
estimateŝA (1) andÂ (2) of the set of active indicesA . Both of them should have large FSRs, as they
are constructed from a crude screening method. Assume that both sets have the satisfy

P(A ⊂ Â ( j)) → 1, for j = 1 and 2.

Then, the active features should appear in both sets with probability tendingto one. We thus con-
structÂ = Â (1)∩ Â (2) as an estimate ofA . This estimate also satisfies

P(A ⊂ Â) → 1.

However, this estimate contains many fewer indices corresponding to inactive features, as such
indices have to appear twice at random in the setsÂ (1) andÂ (2). This is indeed shown in Theorem 1
below.

Just as in the original formulation of SIS in Section 2, we can now use a penalized (pseudo)-
likelihood method such as SCAD to perform final feature selection fromÂ and parameter estima-
tion. We can even proceed without the penalization since the false selection rate is small.

In our theoretical support for this variant of SIS, we will make use of thefollowing condition:

(A1) Let r ∈N, the set of natural numbers. We say the model satisfies the exchangeabilitycondition
at levelr if the set of random vectors

{(Y,XA ,Xj1, . . . ,Xjr ) : j1, . . . , jr are distinct elements ofAc}

is exchangeable.

This condition ensures that each inactive feature is equally likely to be recruited by SIS. Note that
(A1) certainly allows inactive features to be correlated with the response, butdoes imply that each
inactive feature has the same marginal distribution. In Theorem 1 below, thecaser = 1 is particu-
larly important, as it gives an upper bound on the probability of recruiting any inactive features into
the model. Note that this upper bound requires only the weakest version (level 1) of the exchange-
ability condition.

Theorem 1 Let r∈ N, and assume the model satisfies the exchangeability condition(A1) at level r.
If Â denotes the estimator ofA from the above variant of SIS, then

P(|Â ∩Ac| ≥ r) ≤
(d

r

)2

(p−|A |
r

) ≤ 1
r!

( d2

p−|A |
)r

,

where, for the second inequality, we require d2 ≤ p−|A | and d is the prescribed number of selected
features inÂ (1) or Â (2).

Proof Fix r ∈ N, and letJ = {( j1, . . . , jr) : j1, . . . , jr are distinct elements ofAc}. Then

P(|Â ∩Ac| ≥ r) ≤ ∑
( j1,..., jr )∈J

P( j1 ∈ Â , · · · , jr ∈ Â)

= ∑
( j1,..., jr )∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1))2,
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in which we use the random splitting in the last equality. Obviously, the last probability is bounded
by

max
( j1,..., jr )∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)) ∑
( j1,..., jr )∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)). (5)

Since there are at mostd inactive features fromAc in the setÂ (1), the number of r-tuples fromJ
falling in the setÂ (1) can not be more than the total number of such r-tuples inÂ (1), that is,

∑
( j1,..., jr )∈J

1{ j1∈Â(1),··· , jr∈Â(1)} ≤
(

d
r

)
.

Thus, we have

∑
( j1,..., jr )∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)) ≤
(

d
r

)
. (6)

Substituting this into (5), we obtain

P(|Â ∩Ac| ≥ r) ≤
(

d
r

)
max

( j1,..., jr )∈J
P( j1 ∈ Â (1), · · · , jr ∈ Â (1)).

Now, under the exchangeability condition (A1), eachr-tuple of distinct indices inAc is equally
likely to be recruited intôA (1). Hence, it follows from (6) that

max
( j1,..., jr )∈J

P( j1 ∈ Â (1), · · · , jr ∈ Â (1)) ≤
(d

r

)
(p−|A |

r

) ,

and the first result follows. The second result follows from the simple fact that

(d− i)2

p∗− i
≤ d2

p∗
, for all 0≤ i ≤ d,

wherep∗ = p−|A |, and the simple calculation that

(d
r

)2

(p∗
r

) =
1
r!

d2(d−1)2 · · ·(d− r +1)2

p∗(p∗−1) · · ·(p∗− r +1)
≤ 1

r!

(
d
p∗

)r

.

This completes the proof.

Theorem 1 gives a nonasymptotic bound, using only the symmetry arguments,and this bound
is expected to be reasonably tight especially whenp is large. From Theorem 1, we see that if the
exchangeability condition at level 1 is satisfied and ifp is large by comparison withn2, then when
the number of selected featuresd is smaller thann, we have with high probability this variant of
SIS reports no ‘false positives’; that is, it is very likely that any index in the estimated active set
also belongs to the active set in the true model. Intuitively, ifp is large, then each inactive feature
has small probability of being included in the estimated active set, so it is very unlikely indeed that
it will appear in the estimated active sets from both partitions. The nature of thisresult is a little
unusual in that it suggests a ‘blessing of dimensionality’—the bound on the probability of false
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positives decreases withp. However, this is only part of the full story, because the probability of
missing elements of the true active set is expected to increase withp.

Of course, it is possible to partition the data intoK > 2 groups, say, each of sizen/K, and
estimateA by Â (1) ∩ Â (2) ∩ . . .∩ Â (K), whereÂ (k) represents the estimated set of active indices
from thekth partition. Such a variable selection procedure would be even more aggressive than the
K = 2 version; improved bounds in Theorem 1 could be obtained, but the probability of missing true
active indices would be increased. As theK = 2 procedure is already quite aggressive, we consider
this to be the most natural choice in practice.

In the iterated version of this first variant of SIS, we apply SIS to each partition separately to
obtain two sets of indiceŝA (1)

1 andÂ (2)
1 , each havingk1 elements. After forming the intersection

Â1 = Â
(1)
1 ∩Â (2)

1 , we carry out penalized likelihood estimation as before to give a first approximation

M̂1 to the true active set of features. We then perform a second stage of theISIS procedure, as

outlined in Section 2, to each partition separately to obtain sets of indicesM̂1∪ Â (1)
2 andM̂1∪ Â (2)

2 .
Taking the intersection of these sets and re-estimating parameters using penalized likelihood as

in Section 2 gives a second approximation̂M2 to the true active set. This process can be continued

until we reach an iterationℓ with M̂ℓ = M̂ℓ−1, or we have recruitedd indices.

3.2 Second Variant of ISIS

Our second variant of SIS is a more conservative feature selection procedure and also relies on
random partitioning the data intoK = 2 groups as before. Again, we apply SIS to each partition
separately, but now we recruit as many features into equal-sized sets ofactive indices̃A (1) andÃ (2)

as are required to ensure that the intersectionÃ = Ã (1) ∩ Ã (2) hasd elements. We then apply a
penalized pseudo-likelihood method to the featuresXÃ = {Xj : j ∈ Ã} for final feature selection
and parameter estimation.

Theoretical support for this method can be provided in the case of the linear model; namely,
under certain regularity conditions, this variant of SIS possesses the sure screening property. More
precisely, if Conditions (1)–(4) of Fan & Lv (2008) hold with 2κ + τ < 1, and we choosed =
⌊n/ logn⌋, then there existsC > 0 such that

P(A ⊆ Ã) = 1−O{exp(−Cn1−2κ/ logn+ logp)}.

The parameterκ ≥ 0 controls the rate at which the minimum signal minj∈A |β j | is allowed to con-
verge to zero, whileτ≥ 0 controls the rate at which the maximal eigenvalue of the covariance matrix
Σ = Cov(X1, . . . ,Xp) is allowed to diverge to infinity. In fact, we insist that minj∈A |β j | ≥ n−κ and
λmax(Σ)≤ nτ for largen, whereλmax(Σ) denotes the maximal eigenvalue ofΣ. Thus, these technical
conditions ensure that any non-zero signal is not too small, and that the features are not too close to
being collinear, and the dimensionality is also controlled via logp = o(n1−2κ/ logn), which is still
of an exponential order. See Fan & Lv (2008) for further discussionof the sure screening property.

Recently, Fan & Song (2009) extended the result of Fan & Lv (2008) to generalized linear
models. LetL̂0 = minβ0 n−1 ∑n

i=1L(Yi ,β0) be the baseline value to (2.1). The feature ranking pro-

cedure is equivalent to the thresholding method:M̂νn = { j : L j −L0 ≥ νn}, in which νn is a given
thresholding value. Under certainly regularity conditions, if

min
j∈A

|cov(Xj ,Y)| ≥ c1n−κ, for somec1 > 0 andκ < 1/2
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andνn = c0n−2κ for a sufficiently smallc0, then we have

P(A ⊂ M̂νn) → 1,

exponentially fast, provided that logpn = o(n1−2κ). The sure screening property does not depend
on the correlation of the features, as expected. However, the selected model size does depend on the
correlation structure: The more correlated the features, the larger the selected model size. In fact,
Fan & Song (2009) demonstrated further that with probability tending to one exponentially fast,

|M̂νn| = O(ν−2
n λmax(Σ)). Whenλmax(Σ) = O(nτ) andλmax(Σ) = O(n−2κ), the selected model size

is |M̂νn| = O(n2κ+τ). In particularly, if the condition 2κ+ τ < 1 is imposed as in Fan & Lv (2008),
we can reduce safely the model size too(n) by independence learning.

An iterated version of this second variant of SIS is also available. At the first stage we apply
SIS, taking enough features in equal-sized sets of active indicesÃ

(1)
1 and Ã (2)

1 to ensure that the

intersectionÃ1 = Ã
(1)
1 ∩ Ã (2)

1 hask1 elements. Applying penalized likelihood to the features with

indices inÃ1 gives a first approximatioñM1 to the true set of active indices. We then carry out a
second stage of the ISIS procedure of Section 2 to each partition separately to obtain equal-sized
new sets of indices̃A (1)

2 and Ã (2)
2 , taking enough features to ensure thatÃ2 = Ã

(1)
2 ∩ Ã

(2)
2 hask2

elements. Penalized likelihood applied tõM1∩ Ã2 gives a second approximatioñM2 to the true set

of active indices. As with the first variant, we continue until we reach an iterationℓ with M̃ℓ = M̃ℓ−1,
or we have recruitedd indices.

4. Numerical Results

We illustrate the breadth of applicability of (I)SIS and its variants by studying itsperformance on
simulated data in four different contexts: logistic regression, Poisson regression, robust regression
(with a least absolute deviation criterion) and multi-class classification with support vector ma-
chines. We will consider three different configurations of thep = 1000 featuresX1, . . . ,Xp:

Case 1: X1, . . . ,Xp are independent and identically distributedN(0,1) random variables

Case 2: X1, . . . ,Xp are jointly Gaussian, marginallyN(0,1), and with corr(Xi ,X4) = 1/
√

2 for all
i 6= 4 and corr(Xi ,Xj) = 1/2 if i and j are distinct elements of{1, . . . , p}\{4}

Case 3: X1, . . . ,Xp are jointly Gaussian, marginallyN(0,1), and with corr(Xi ,X5) = 0 for all i 6= 5,
corr(Xi ,X4) = 1/

√
2 for all i /∈ {4,5}, and corr(Xi ,Xj) = 1/2 if i and j are distinct elements

of {1, . . . , p}\{4,5}.

Case 1, with independent features, is the most straightforward for variable selection. In Cases 2
and 3, however, we have serial correlation such that corr(Xi ,Xj) does not decay as|i − j| increases.
We will see later that for both Case 2 and Case 3 the true coefficients are chosen such that the
response is marginally uncorrelated withX4. We therefore expect feature selection in these situations
to be more challenging, especially for the non-iterated versions of SIS. Notice that in the asymptotic
theory of SIS in Fan & Lv (2008), this type of dependence is ruled out bytheir Condition (4).

Regarding the choice ofd, the asymptotic theory of Fan & Lv (2008) shows that in the linear
model there existsθ∗ > 0 such that we may obtain the sure screening property with⌊n1−θ∗⌋ <
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d < n. However,θ∗ is unknown in practice, and therefore Fan and Lv recommendd = ⌊n/ logn⌋
as a sensible choice. Of course, choosing a larger value ofd increases the probability that SIS
will include all of the correct variables, but including more inactive variables will tend to have a
slight detrimental effect on the performance of the final variable selectionand parameter estimation
method. We have found that this latter effect is most noticeable in models where the response
provides less information. In particular, the binary response of a logistic regression model and, to a
lesser extent, the integer-valued response in a Poisson regression model are less informative than the
real-valued response in a linear model. We therefore usedd = ⌊ n

4logn⌋ in the logistic regression and
multicategory classification settings of Sections 4.1 and 4.5,d = ⌊ n

2logn⌋ in the Poisson regression
settings of Section 4.2 andd = ⌊n

2⌋ in Section 4.4. These model-based, rather than data-adaptive,
choices ofd seem to be satisfactory, as the performance of the procedures is quite robust to different
choices ofd (in fact usingd = ⌊ n

logn⌋ for all models would still give good performance).

4.1 Logistic Regression

In this example, the data(xT
1 ,Y1), . . . ,(xT

n ,Yn) are independent copies of a pair(xT ,Y), whereY

is distributed, conditional onX = x, as Bin(1, p(x)), with log
( p(x)

1−p(x)

)
= β0 + xTβ. We choose

n = 400.
As explained above, we chosed = ⌊ n

4logn⌋ = 16 in both the vanilla version of SIS outlined in
Section 2 (Van-SIS), and the second variant (Var2-SIS) in Section 3.2. For the first variant (Var1-
SIS), however, we usedd = ⌊ n

logn⌋ = 66; note that since this means the selected features are in the
intersection of two sets of sized, we typically end up with far fewer thand features selected by this
method.

For the logistic regression example, the choice of final regularization parameterλ for the SCAD
penalty (after all (I)SIS steps) was made by means of an independent validation data set of sizen
(generated from the same model as the original data, used only for tuning the parameters), rather
than by cross-validation. This also applies for the LASSO and Nearest Shrunken Centroid (NSC,
Tibshirani et al., 2003) methods which we include for comparison; instead of using SIS, this method
regularizes the log-likelihood with anL1-penalty. The reason for using the independent tuning data
set is that the lack of information in the binary response means that cross-validation is particularly
prone to overfitting in logistic regression, and therefore perfoms poorly for all methods.

The coefficients used in each of the three cases were as follows:

Case 1: β0 = 0, β1 = 1.2439,β2 = −1.3416,β3 = −1.3500,β4 = −1.7971,β5 = −1.5810,β6 =
−1.5967, andβ j = 0 for j > 6. The corresponding Bayes test error is 0.1368.

Case 2: β0 = 0, β1 = 4, β2 = 4, β3 = 4, β4 = −6
√

2, andβ j = 0 for j > 4. The Bayes test error is
0.1074.

Case 3: β0 = 0, β1 = 4, β2 = 4, β3 = 4, β4 = −6
√

2, β5 = 4/3, andβ j = 0 for j > 5. The Bayes
test error is 0.1040.

In Case 1, the coefficients were chosen randomly, and were generatedas (4logn/
√

n+ |Z|/4)U
with Z ∼ N(0,1) andU = 1 with probability 0.5 and−1 with probability−0.5, independent of
Z. For Cases 2 and 3, the choices ensure that even thoughβ4 6= 0, we have thatX4 andY are
independent. The fact thatX4 is marginally independent of the response is designed to make it
difficult for a popular method such as the two-samplet test or other independent learning methods
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to recognize this important feature. Furthermore, for Case 3, we add another important variableX5

with a small coefficient to make it even more difficult to identify the true model. ForCase 2, the
ideal variables picked up by the two sample test or independence screening technique areX1, X2

andX3. Using these variables to build the ideal classifier, the Bayes risk is 0.3443, which is much
larger than the Bayes error 0.1074 of the true model withX1,X2,X3,X4. In fact one may exaggerate
Case 2 to make the Bayes error using the independence screening technique close to 0.5, which
corresponds to random guessing, by settingβ0 = 0, β1 = β2 = β3 = a, βm = a for m= 5,6, · · · , j,
β4 = −a( j −1)

√
2/2, andβm = 0 for m> j. For example, the Bayes error using the independence

screening technique, which deletesX4, is 0.4290 whenj = 20 anda = 4 while the corresponding
Bayes error usingXm, m= 1,2, · · · ,20 is 0.0445.

In the tables below, we report several performance measures, all of which are based on 100
Monte Carlo repetitions. The first two rows give the medianL1 and squaredL2 estimation errors
‖β − β̂‖1 = ∑p

j=0 |β j − β̂ j | and ‖β − β̂‖2
2 = ∑p

j=0(β j − β̂ j)
2. The third row gives the proportion

of times that the (I)SIS procedure under consideration includes all of theimportant features in the
model, while the fourth reports the corresponding proportion of times that thefinal features selected,
after application of the SCAD or LASSO penalty as appropriate, include all of the important ones.
The fifth row gives the median final number of features selected. Measures of fit to the training data
are provided in the sixth, seventh and eighth rows, namely the median values of 2Q(β̂0, β̂), defined
in (2.1), Akaike’s information criterion (Akaike, 1974), which adds twice the number of features in
the final model, and the Bayesian information criterion (Schwarz, 1978), which adds the product of
logn and the number of features in the final model. Finally, an independent test data set of size 100n
was used to evaluate the median value of 2Q(β̂0, β̂) on the test data (Row 9), as well as to report the
median 0-1 test error (Row 10), where we observe an error if the test response differs from the fitted
response by more than 1/2.

Table 1 compares five methods, Van-SIS, Var1-SIS, Var2-SIS, LASSO, and NSC. The most
noticeable observation is that while the LASSO always includes all of the important features, it does
so by selecting very large models—a median of 94 variables, as opposed to the correct number, 6,
which is the median model size reported by all three SIS-based methods. Thisis due to the bias of
the LASSO, as pointed out by Fan & Li (2001) and Zou (2006), which encourages the choice of a
small regularization parameter to make the overall mean squared error small. Consequently, many
unwanted features are also recruited. This is also evidenced by comparing the differences between
L1 andL2 losses in the first two rows. Thus the LASSO method has large estimation error, and while
2Q(β̂0, β̂) is small on the training data set, this is a result of overfit, as seen by the large values of
AIC/BIC, 2Q(β̂0, β̂) on the test data and the 0-1 test error.

As the features are independent in Case 1, it is unsurprising to see that Van-SIS has the best
performance of the three SIS-based methods. Even with the larger value of d used for Var1-SIS, it
tends to miss important features more often than the other methods. Although the method appears
to have value as a means of obtaining a minimal set of features that should be included in a final
model, we will not consider Var1-SIS further in our simulation study.

Table 2 displays the results of repeating the Case 1 simulations for Van-SIS,Var1-SIS and Var2-
SIS under the same conditions, but using the LASSO penalty function ratherthan the SCAD penalty
function after the SIS step. These versions are called Van-SIS-LASSO, Var1-SIS-LASSO and Var2-
SIS-LASSO respectively. We see that, as well as decreasing the computational cost, using any of
the three versions of SIS before the LASSO improves performance substantially compared with
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applying the LASSO to the full set of features. On the other hand, the results are less successful
than applying SIS and its variants in conjuction with the SCAD penalty for final feature selection
and parameter estimation. We therefore do not consider Van-SIS-LASSO, Var1-SIS-LASSO and
Var2-SIS-LASSO further.

Van-SIS Var1-SIS Var2-SIS LASSO NSC

‖β− β̂‖1 1.1093 1.2495 1.2134 8.4821 N/A

‖β− β̂‖2
2 0.4861 0.5237 0.5204 1.7029 N/A

Prop. incl. (I)SIS models 0.99 0.84 0.91 N/A N/A
Prop. incl. final models 0.99 0.84 0.91 1.00 0.34
Median final model size 6 6 6 94 3

2Q(β̂0, β̂) (training) 237.21 247.00 242.85 163.64 N/A
AIC 250.43 259.87 256.26 352.54 N/A
BIC 277.77 284.90 282.04 724.70 N/A

2Q(β̂0, β̂) (test) 271.81 273.08 272.91 318.52 N/A
0-1 test error 0.1421 0.1425 0.1426 0.1720 0.3595

Table 1: Logistic regression, Case 1

Van-SIS-LASSO Var1-SIS-LASSO Var2-SIS-LASSO

‖β− β̂‖1 3.8500 2.1050 3.0055

‖β− β̂‖2
2 1.0762 0.7536 0.9227

Prop. incl. (I)SIS models 0.99 0.84 0.91
Prop. incl. final models 0.99 0.84 0.91
Median final model size 16.0 9.0 14.5

2Q(β̂0, β̂) (training) 207.86 240.44 226.95
AIC 239.69 260.49 255.99
BIC 302.98 295.40 316.36

2Q(β̂0, β̂) (test) 304.79 280.95 291.79
0-1 test error 0.1621 0.1476 0.1552

Table 2: Logistic regression, Case 1

In Cases 2 and 3, we also consider the iterated versions of Van-SIS andVar2-SIS, which we
denote Van-ISIS and Var2-ISIS respectively. At each intermediate stage of the ISIS procedures,
the Bayesian information criterion was used as a fast way of choosing the SCAD regularization
parameter.

From Tables 3 and 4, we see that the non-iterated SIS methods fail badly in these awkward
cases. Their performance is similar to that of the LASSO method. On the other hand, both of the
iterated methods Van-ISIS and Var2-ISIS perform extremely well (and similarly to each other).

4.2 Poisson Regression

In our second example, the generic responseY is distributed, conditional onX = x, as Poisson(µ(x)),
where logµ(x) = β0 +xTβ.
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Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC

‖β− β̂‖1 20.0504 1.9445 20.1100 1.8450 21.6437 N/A

‖β− β̂‖2
2 9.4101 1.0523 9.3347 0.9801 9.1123 N/A

Prop. incl. (I)SIS models 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models 0.00 1.00 0.00 1.00 0.00 0.21
Median final model size 16 4 16 4 91 16.5

2Q(β̂0, β̂) (training) 307.15 187.58 309.63 187.42 127.05 N/A
AIC 333.79 195.58 340.77 195.58 311.10 N/A
BIC 386.07 211.92 402.79 211.55 672.34 N/A

2Q(β̂0, β̂) (test) 344.25 204.23 335.21 204.28 258.65 N/A
0-1 test error 0.1925 0.1092 0.1899 0.1092 0.1409 0.3765

Table 3: Logistic regression, Case 2

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC

‖β− β̂‖1 20.5774 2.6938 20.6967 3.2461 23.1661 N/A

‖β− β̂‖2
2 9.4568 1.3615 9.3821 1.5852 9.1057 N/A

Prop. incl. (I)SIS models 0.00 1.00 0.00 1.00 N/A N/A
Prop. incl. final models 0.00 0.90 0.00 0.98 0.00 0.17
Median final model size 16 5 16 5 101.5 10

2Q(β̂0, β̂) (training) 269.20 187.89 296.18 187.89 109.32 N/A
AIC 289.20 197.59 327.66 198.65 310.68 N/A
BIC 337.05 218.10 389.17 219.18 713.78 N/A

2Q(β̂0, β̂) (test) 360.89 225.15 358.13 226.25 275.55 N/A
0-1 test error 0.1933 0.1120 0.1946 0.1119 0.1461 0.3866

Table 4: Logistic regression, Case 3

Due to the extra information in the count response, we choosen= 200, and apply all versions of
(I)SIS withd = ⌊ n

2logn⌋= 37. We also use 10-fold cross-validation to choose the final regularization
parameter for the SCAD and LASSO penalties. The coefficients used wereas follows:

Case 1: β0 = 5, β1 = −0.5423,β2 = 0.5314,β3 = −0.5012,β4 = −0.4850,β5 = −0.4133,β6 =
0.5234, andβ j = 0 for j > 6.

Case 2: β0 = 5, β1 = 0.6, β2 = 0.6, β3 = 0.6, β4 = −0.9
√

2, andβ j = 0 for j > 4.

Case 3: β0 = 5, β1 = 0.6, β2 = 0.6, β3 = 0.6, β4 = −0.9
√

2, β5 = 0.15, andβ j = 0 for j > 5.

In Case 1, the magnitudes of the coefficientsβ1, . . . ,β6 were generated as( logn√
n + |Z|/8)U with Z ∼

N(0,1) andU = 1 with probability 0.5 and−1 with probability 0.5, independently ofZ. Again, the
choices in Cases 2 and 3 ensure that, even thoughβ4 6= 0, we have corr(X4,Y) = 0. The coefficients
are a re-scaled version of those in the logistic regression model, except thatβ0 = 5 is used to control
an appropriate signal-to-noise ratio.

The results are shown in Tables 5, 6 and 7. Even in Case 1, with independent features, the ISIS
methods outperform SIS, so we chose not to present the results for SISin the other two cases. Again,
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both Van-ISIS and Var2-ISIS perform extremely well, almost always including all the important
features in relatively small final models. The LASSO method continues to suffer from overfitting,
particularly in the difficult Cases 2 and 3.

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO

‖β− β̂‖1 0.0695 0.1239 1.1773 0.1222 0.1969

‖β− β̂‖2
2 0.0225 0.0320 0.4775 0.0330 0.0537

Prop. incl. (I)SIS models 0.76 1.00 0.45 1.00 N/A
Prop. incl. final models 0.76 1.00 0.45 1.00 1.00
Median final model size 12 18 13 17 27

2Q(β̂0, β̂) (training) 1560.85 1501.80 7735.51 1510.38 1534.19
AIC 1586.32 1537.80 7764.51 1542.14 1587.23
BIC 1627.06 1597.17 7812.34 1595.30 1674.49

2Q(β̂0, β̂) (test) 1557.74 1594.10 14340.26 1589.51 1644.63

Table 5: Poisson regression, Case 1

Van-ISIS Var2-ISIS LASSO

‖β− β̂‖1 0.2705 0.2252 3.0710

‖β− β̂‖2
2 0.0719 0.0667 1.2856

Prop. incl. (I)SIS models 1.00 0.97 N/A
Prop. incl. final models 1.00 0.97 0.00
Median final model size 18 16 174

2Q(β̂0, β̂) (training) 1494.53 1509.40 1369.96
AIC 1530.53 1541.17 1717.91
BIC 1589.90 1595.74 2293.29

2Q(β̂0, β̂) (test) 1629.49 1614.57 2213.10

Table 6: Poisson regression, Case 2

Van-ISIS Var2-ISIS LASSO

‖β− β̂‖1 0.2541 0.2319 3.0942

‖β− β̂‖2
2 0.0682 0.0697 1.2856

Prop. incl. (I)SIS models 0.97 0.91 0.00
Prop. incl. final models 0.97 0.91 0.00
Median final model size 18 16 174

2Q(β̂0, β̂) (training) 1500.03 1516.14 1366.63
AIC 1536.03 1546.79 1715.35
BIC 1595.40 1600.17 2293.60

2Q(β̂0, β̂) (test) 1640.27 1630.58 2389.09

Table 7: Poisson regression, Case 3
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4.3 Robust Regression

We have also conducted similar numerical experiments usingL1-regression for the three cases in
an analogous manner to the previous two examples. We obtain similar results. Both versions of
ISIS are effective in selecting important features with relatively low false positive rates. Hence, the
prediction errors are also small. On the other hand, LASSO missed the difficult variables in cases 2
and 3 and also selected models with a large number of features to attenuate the bias of the variable
selection procedure. As a result, its prediction errors are much larger. To save space, we omit the
details of the results.

4.4 Linear Regression

Note that our new ISIS procedure allows feature deletion in each step. Itis an important improve-
ment over the original proposal of Fan & Lv (2008) even in the ordinaryleast-squares setting. To
demonstrate this, we choose Case 3, the most difficult one, with coefficientsgiven as follows.

Case 3: β0 = 0, β1 = 5, β2 = 5, β3 = 5, β4 = −15
√

2/2, β5 = 1, andβ j = 0 for j > 5.

The responseY is set asY = xTβ + ε with independentε ∼ N(0,1). This model is the same as
Example 4.2.3 of Fan & Lv (2008). Usingn = 70 andd = n/2, our new ISIS method includes
all five important variables for 91 out of the 100 repetitions, while the original ISIS without feature
deletion includes all the important features for only 36 out of the 100 repetitions. The median model
size of our new variable selection procedure with variable deletion is 21, whereas the median model
size corresponding to the original ISIS of Fan & Lv (2008) is 19.

We have also conducted the numerical experiment with a different sample size n = 100 and
d = n/2 = 50. For 97 out of 100 repetitions, our new ISIS includes all the important features while
ISIS without variable deletion includes all the important features for only 72repetitions. Their
median model sizes are both 26. This clearly demonstrates the improvement of allowing feature
deletion in this example.

4.5 Multicategory Classification

Our final example in this section is a four-class classification problem. Here we study two different
feature configurations, both of which depend on first generating independentX̃1, . . . , X̃p such that
X̃1, . . . , X̃4 are uniformly distributed on[−

√
3,
√

3], andX̃5, . . . , X̃p are distributed asN(0,1). We use
these random variables to generate the following cases:

Case 1: Xj = X̃j for j = 1, . . . , p

Case 2: X1 = X̃1−
√

2X̃5, X2 = X̃2 +
√

2X̃5, X3 = X̃3−
√

2X̃5, X4 = X̃4 +
√

2X̃5, andXj =
√

3X̃j for
j = 5, . . . , p.

Conditional onX = x, the responseY was generated according toP(Y = k|X̃ = x̃) ∝ exp{ fk(x̃)}, for
k = 1, . . . ,4, wheref1(x̃) =−ax̃1+ax̃4, f2(x̃) = ax̃1−ax̃2, f3(x̃) = ax̃2−ax̃3 and f4(x̃) = ax̃3−ax̃4

with a = 5/
√

3.
In both Case 1 and Case 2, all features have the same standard deviation since sd(Xj) = 1 for

j = 1,2, · · · , p in Case 1 and sd(Xj) =
√

3 for j = 1,2, · · · , p in Case 2. Moreover, for this case, the
variableX5 is marginally unimportant, but jointly significant, so it represents a challenge to identify
this as an important variable. For both Case 1 and Case 2, the Bayes erroris 0.1373.
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For the multicategory classification we use the loss function proposed by Lee, Lin and Wahba
(2004). Denote the coefficients for thekth class byβ0k and βk for k = 1,2,3,4, and letB =
((β01,βT

1 )T ,
(β02,βT

2 )T ,(β03,βT
3 )T ,(β04,βT

4 )T). Let fk(x) ≡ fk(x,β0k,βk) = β0k +xTβk, k = 1,2,3,4, and

f(x) ≡ f(x,B) = ( f1(x), f2(x), f3(x), f4(x))T .

The loss function is given byL(Y, f(x)) = ∑ j 6=Y [1+ f j(x)]+, where[ψ]+ = ψ if ψ ≥ 0 and 0 oth-
erwise. Deviating slightly from our standard procedure, the marginal utility of the j th feature is
defined by

L j = min
B

n

∑
i=1

L(Yi , f(Xi j ,B))+
1
2

4

∑
k=1

β2
jk

to avoid possible unidentifiablity issues due to the hinge loss function. Analogous modification is
applied to (3) in the iterative feature selection step. With estimated coefficientsβ̂0k and β̂k, and

f̂k(x) = β̂0k + xT β̂k for k = 1,2,3,4, the estimated classification rule is given by argmaxk f̂k(x).
There are some other appropriate multi-category loss functions such as theone proposed by Liu,
Shen and Doss (2005).

As with the logistic regression example in Section 4.1, we usen = 400,d = ⌊ n
4logn⌋ = 16 and

an independent validation data set of sizen to pick the final regularization parameter for the SCAD
penalty.

The results are given in Table 8. The mean estimated testing error was basedon a further testing
data set of size 200n, and we also report the standard error of this mean estimate. In the case of
independent features, all (I)SIS methods have similar performance. The benefits of using iterated
versions of the ISIS methodology are again clear for Case 2, with dependent features.

Van-SIS Van-ISIS Var2-SIS Var2-ISIS LASSO NSC
Case 1

Prop. incl. (I)SIS models 1.00 1.00 0.99 1.00 N/A N/A
Prop. incl. final model 1.00 1.00 0.99 1.00 0.00 0.68
Median modal size 2.5 4 10 5 19 4
0-1 test error 0.3060 0.3010 0.2968 0.2924 0.3296 0.4524
Test error standard error 0.0067 0.0063 0.0067 0.0061 0.0078 0.0214

Case 2
Prop. incl. (I)SIS models 0.10 1.00 0.03 1.00 N/A N/A
Prop. incl. final models 0.10 1.00 0.03 1.00 0.33 0.30
Median modal size 4 11 5 9 54 9
0-1 test error 0.4362 0.3037 0.4801 0.2983 0.4296 0.6242
Test error standard error 0.0073 0.0065 0.0083 0.0063 0.0043 0.0084

Table 8: Multicategory classification

5. Real Data Examples

In this section, we apply our proposed methods to two real data sets. The first one has a binary
response while the second is multi-category. We treat both as classification problems and use the
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hinge loss discussed in Section 4.5. We compare our methods with two alternatives: the LASSO
and NSC.

5.1 Neuroblastoma Data

We first consider the neuroblastoma data used in Oberthuer et al. (2006). The study consists of 251
patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004.
At diagnosis, patients’ ages range from 0 to 296 months with a median age of 15 months. They
analyzed 251 neuroblastoma specimens using a customized oligonucleotide microarray with the
goal of developing a gene expression-based classification rule for neuroblastoma patients to reliably
predict courses of the disease. This also provides a comprehensive view on which set of genes is
responsible for neuroblastoma.

The complete data set, obtained via the MicroArray Quality Control phase-II(MAQC-II) project,
includes gene expression over 10,707 probe sites. Of particular interest is to predict the response
labeled “3-year event-free survival” (3-year EFS) which is a binaryvariable indicating whether each
patient survived 3 years after the diagnosis of neuroblastoma. Excluding five outlier arrays, there
are 246 subjects out of which 239 subjects have 3-year EFS information available with 49 positives
and 190 negatives. We apply SIS and ISIS to reduce dimensionality fromp= 10,707 tod = 50. On
the other hand, our competitive methods LASSO and NSC are applied directly top= 10,707 genes.
Whenever appropriate, five-fold cross validation is used to select tuningparameters. We randomly
select 125 subjects (25 positives and 100 negatives) to be the training set and the remainder are used
as the testing set. Results are reported in the top half of Table 9. Selected probes for LASSO and all
different (I)SIS methods are reported in Table 10.

In MAQC-II, a specially designed end point is the gender of each subject, which should be an
easy classification. The goal of this specially designed end point is to compare the performance
of different classifiers for simple classification jobs. The gender information is available for all
the non-outlier 246 arrays with 145 males and 101 females. We randomly select 70 males and 50
females to be in the training set and use the others as the testing set. We setd = 50 for our SIS and
ISIS as in the case of the 3-year EFS end point. The results are given in the bottom half of Table 9.
Selected probes for all different methods are reported in Table 11.

End point SIS ISIS var2-SIS var2-ISIS LASSO NSC

3-year EFS
No. of features 5 23 10 12 57 9413
Testing error 19/114 22/114 22/114 21/114 22/114 24/114

Gender
No. of features 6 2 4 2 42 3
Testing error 4/126 4/126 4/126 4/126 5/126 4/126

Table 9: Results from analyzing two endpoints of the neuroblastoma data

We can see from Table 9 that our (I)SIS methods compare favorably with the LASSO and NSC.
Especially for the end point 3-year EFS, our methods use fewer features while giving smaller testing
error. For the end point GENDER, Table 11 indicates that the most parsimonious model given by
ISIS and Var2-ISIS is a sub model of others.

5.2 SRBCT Data

In this section, we apply our method to the children cancer data set reportedin Khan et al. (2001).
Khan et al. (2001) used artificial neural networks to develop a method ofclassifying the small, round
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Probe SIS ISIS var2-SIS var2-ISIS LASSO
‘A 23 P160638’ x
‘A 23 P168916’ x x
‘A 23 P42882’ x
‘A 23 P145669’ x
‘A 32 P50522’ x
‘A 23 P34800’ x
‘A 23 P86774’ x
‘A 23 P417918’ x x
‘A 23 P100711’ x
‘A 23 P145569’ x
‘A 23 P337201’ x
‘A 23 P56630’ x x x
‘A 23 P208030’ x x
‘A 23 P211738’ x
‘A 23 P153692’ x
‘A 24 P148811’ x
‘A 23 P126844’ x x
‘A 23 P25194’ x
‘A 24 P399174’ x
‘A 24 P183664’ x
‘A 23 P59051’ x
‘A 24 P14464’ x
‘A 23 P501831’ x x
‘A 23 P103631’ x
‘A 23 P32558’ x
‘A 23 P25873’ x
‘A 23 P95553’ x
‘A 24 P227230’ x x
‘A 23 P5131’ x
‘A 23 P218841’ x
‘A 23 P58036’ x
‘A 23 P89910’ x
‘A 24 P98783’ x
‘A 23 P121987’ x x
‘A 32 P365452’ x
‘A 23 P109682’ x
‘Hs58251.2’ x
‘A 23 P121102’ x
‘A 23 P3242’ x
‘A 32 P177667’ x
‘Hs6806.2’ x
‘Hs376840.2’ x
‘A 24 P136691’ x
‘Pro25GB35 D 7’ x x
‘A 23 P87401’ x
‘A 32 P302472’ x
‘Hs343026.1’ x
‘A 23 P216225’ x x x
‘A 23 P203419’ x x
‘A 24 P22163’ x x
‘A 24 P187706’ x
‘C1 QC’ x
‘Hs190380.1’ x x
‘Hs117120.1’ x
‘A 32 P133518’ x
‘EQCP1Pro25GT5’ x
‘A 24 P111061’ x
‘A 23 P20823’ x x x x
‘A 24 P211151’ x
‘Hs265827.1’ x x
‘Pro25GB12 D 7’ x
‘Hs156406.1’ x
‘A 24 P902509’ x
‘A 32 P32653’ x
‘Hs42896.1’ x
‘A 32 P143793’ x x x
‘A 23 P391382’ x
‘A 23 P327134’ x
‘Pro25GEQCP1T5’ x
‘A 24 P351451’ x
‘Hs170298.1’ x
‘A 23 P159390’ x
‘Hs272191.1’ x
‘r60 a135’ x
‘Hs439489.1’ x
‘A 23 P107295’ x
‘A 23 P100764’ x x x x x
‘A 23 P157027’ x
‘A 24 P342055’ x
‘A 23 P1387’ x
‘Hs6911.1’ x
‘r60 1’ x

Table 10: Selected probes for the 3-year EFS end point
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Probe SIS ISIS var2-SIS var2-ISIS LASSO NSC
‘A 23 P201035’ x
‘A 24 P167642’ x
‘A 24 P55295’ x
‘A 24 P82200’ x
‘A 23 P109614’ x
‘A 24 P102053’ x
‘A 23 P170551’ x
‘A 23 P329835’ x
‘A 23 P70571’ x
‘A 23 P259901’ x
‘A 24 P222000’ x
‘A 23 P160729’ x
‘A 23 P95553’ x x
‘A 23 P100315’ x
‘A 23 P10172’ x
‘A 23 P137361’ x
‘A 23 P202484’ x
‘A 24 P56240’ x
‘A 32 P104448’ x
‘(-)3xSLv1’ x
‘A 24 P648880’ x
‘Hs446389.2’ x
‘A 23 P259314’ x x x x x x
‘Hs386420.1’ x
‘Pro25GB32 D 7’ x
‘Hs116364.2’ x
‘A 32 P375286’ x x
‘A 32 P152400’ x
‘A 32 P105073’ x
‘Hs147756.1’ x
‘Hs110039.1’ x
‘r60 a107’ x
‘Hs439208.1’ x
‘A 32 P506090’ x
‘A 24 P706312’ x
‘Hs58042.1’ x
‘A 23 P128706’ x
‘Hs3569.1’ x
‘A 24 P182900’ x
‘A 23 P92042’ x
‘Hs170499.1’ x
‘A 24 P500584’ x x x x x x
‘A 32 P843590’ x
‘Hs353080.1’ x
‘A 23 P388200’ x
‘C1 QC’ x
‘Hs452821.1’ x

Table 11: Selected probe for Gender end point

blue cell tumors (SRBCTs) of childhood to one of the four categories: neuroblastoma (NB), rhab-
domyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and the Ewing family oftumors (EWS)
using cDNA gene expression profiles. Accurate diagnosis of SRBCTs tothese four distinct diag-
nostic categories is important in that the treatment options and responses to therapy are different
from one category to another.

After filtering, 2308 gene profiles out of 6567 genes are given in the SRBCT data set. It is
available online at http://research.nhgri.nih.gov/microarray/Supplement/. It includes a training set
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of size 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS) and an independenttest set of size 20 (6 NBs,
5 RMSs, 3 NHLs, and 6 EWS).

Before performing classification, we standardize the data sets by applyinga simple linear trans-
formation to both the training set and the test set. The linear transformation is based on the training
data so that, after standardizing, the training data have mean zero and standard deviation one. Our
(I)SIS reduces dimensionality fromp = 2308 tod = ⌊63/ log63⌋ = 15 first while alternative meth-
ods LASSO and NSC are applied top = 2308 gene directly. Whenever appropriate, a four-fold
cross validation is used to select tuning parameters.

ISIS, var2-ISIS, LASSO and NSC all achieve zero test error on the 20 samples in the test set.
NSC uses 343 genes and LASSO requires 71 genes. However ISIS and var2-ISIS use 15 and 14
genes, respectively.

This real data application delivers the same message that our new ISIS andvar2-ISIS methods
can achieve competitive classification performance using fewer features.
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