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Abstract

We study the variability of predictions made by bagged learners and random forests, and
show how to estimate standard errors for these methods. Our work builds on variance
estimates for bagging proposed by Efron (1992, 2013) that are based on the jackknife and
the infinitesimal jackknife (IJ). In practice, bagged predictors are computed using a finite
number B of bootstrap replicates, and working with a large B can be computationally
expensive. Direct applications of jackknife and IJ estimators to bagging require B =
©(n'-%) bootstrap replicates to converge, where n is the size of the training set. We propose
improved versions that only require B = ©(n) replicates. Moreover, we show that the 1J
estimator requires 1.7 times less bootstrap replicates than the jackknife to achieve a given
accuracy. Finally, we study the sampling distributions of the jackknife and IJ variance
estimates themselves. We illustrate our findings with multiple experiments and simulation
studies.

Keywords: bagging, jackknife methods, Monte Carlo noise, variance estimation

1. Introduction

Bagging (Breiman, 1996) is a popular technique for stabilizing statistical learners. Bag-
ging is often conceptualized as a variance reduction technique, and so it is important to
understand how the sampling variance of a bagged learner compares to the variance of the
original learner. In this paper, we develop and study methods for estimating the variance
of bagged predictors and random forests (Breiman, 2001), a popular extension of bagged
trees. These variance estimates only require the bootstrap replicates that were used to form
the bagged prediction itself, and so can be obtained with moderate computational overhead.
The results presented here build on the jackknife-after-bootstrap methodology introduced
by Efron (1992) and on the infinitesimal jackknife for bagging (IJ) (Efron, 2013).

Figure 1 shows the results from applying our method to a random forest trained on the
“Auto MPG” data set, a regression task where we aim to predict the miles-per-gallon (MPG)
gas consumption of an automobile based on 7 features including weight and horsepower. The
error bars shown in Figure 1 give an estimate of the sampling variance of the random forest;
in other words, they tell us how much the random forest’s predictions might change if we
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Figure 1: Random forest predictions on the “Auto MPG” data set. The random forest was
trained using 314 examples; the graph shows results on a test set of size 78. The
error bars are 1 standard error in each direction. Because this is a fairly small
data set, we estimated standard errors for the random forest using the averaged
estimator from Section 5.2. A more detailed description of the experiment is
provided in Appendix C.

trained it on a new training set. The fact that the error bars do not in general cross the
prediction-equals-observation diagonal suggests that there is some residual noise in the MPG
of a car that cannot be explained by a random forest model based on the available predictor
variables.!

Figure 1 tells us that the random forest was more confident about some predictions than
others. Rather reassuringly, we observe that the random forest was in general less confident
about the predictions for which the reported MPG and predicted MPG were very different.
There is not a perfect correlation, however, between the error level and the size of the error
bars. One of the points, circled in red near (32, 32), appears particularly surprising: the
random forest got the prediction almost exactly right, but gave the prediction large error
bars of £2. This curious datapoint corresponds to the 1982 Dodge Rampage, a two-door
Coupe Utility that is a mix between a passenger car and a truck with a cargo tray. Perhaps
our random forest had a hard time confidently estimating the mileage of the Rampage

1. Our method produces standard error estimates ¢ for random forest predictions. We then represent these
standard error estimates as Gaussian confidence intervals § + 2,6, where z, is a quantile of the normal
distribution.
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because it could not quite decide whether to cluster it with cars or with trucks. We present
experiments on larger data sets in Section 3.

Estimating the variance of bagged learners based on the preexisting bootstrap replicates
can be challenging, as there are two distinct sources of noise. In addition to the sampling
noise (i.e., the noise arising from randomness during data collection), we also need to control
the Monte Carlo noise arising from the use of a finite number of bootstrap replicates. We
study the effects of both sampling noise and Monte Carlo noise.

In our experience, the errors of the jackknife and IJ estimates of variance are often
dominated by Monte Carlo effects. Monte Carlo bias can be particularly troublesome: if
we are not careful, the jackknife and IJ estimators can conflate Monte Carlo noise with the
underlying sampling noise and badly overestimate the sampling variance. We show how to
estimate the magnitude of this Monte Carlo bias and develop bias-corrected versions of the
jackknife and IJ estimators that outperform the original ones. We also show that the 1J
estimate of variance is able to use the preexisting bootstrap replicates more efficiently than
the jackknife estimator by having a lower Monte Carlo variance, and needs 1.7 times less
bootstrap replicates than the jackknife to achieve a given accuracy.

If we take the number of bootstrap replicates to infinity, Monte Carlo effects disappear
and only sampling errors remain. We compare the sampling biases of both the jackknife and
IJ rules and present some evidence that, while the jackknife rule has an upward sampling
bias and the IJ estimator can have a downward bias, the arithmetic mean of the two variance
estimates can be close to unbiased. We also propose a simple method for estimating the
sampling variance of the 1J estimator itself.

Our paper is structured as follows. We first present an overview of our main results
in Section 2, and apply them to random forest examples in Section 3. We then take a
closer look at Monte Carlo effects in Section 4 and analyze the sampling distribution of the
limiting IJ and jackknife rules with B — oo in Section 5. We spread simulation experiments
throughout Sections 4 and 5 to validate our theoretical analysis.

1.1 Related Work

In this paper, we focus on methods based on the jackknife and the infinitesimal jackknife for
bagging (Efron, 1992, 2013) that let us estimate standard errors based on the pre-existing
bootstrap replicates. Other approaches that rely on forming second-order bootstrap repli-
cates have been studied by Duan (2011) and Sexton and Laake (2009). Directly bootstrap-
ping a random forest is usually not a good idea, as it requires forming a large number of base
learners. Sexton and Laake (2009), however, propose a clever work-around to this problem.
Their approach, which could have been called a bootstrap of little bags, involves bootstrap-
ping small random forests with around B = 10 trees and then applying a bias correction to
remove the extra Monte Carlo noise.

There has been considerable interest in studying classes of models for which bagging
can achieve meaningful variance reduction, and also in outlining situations where bagging
can fail completely (e.g., Skurichina and Duin, 1998; Bithlmann and Yu, 2002; Chen and
Hall, 2003; Buja and Stuetzle, 2006; Friedman and Hall, 2007). The problem of producing
practical estimates of the sampling variance of bagged predictors, however, appears to have
received somewhat less attention in the literature so far.
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2. Estimating the Variance of Bagged Predictors

This section presents our main result: estimates of variance for bagged predictors that can
be computed from the same bootstrap replicates that give the predictors. Section 3 then
applies the result to random forests, which can be analyzed as a special class of bagged
predictors.

Suppose that we have training examples Z1 = (1, Y1), ..y Zn = (Zn, Yn), an input x to
a prediction problem, and a base learner é(m) = t(x; Z1, ..., Zn). To make things concrete,
the Z; could be a list of e-mails x; paired with labels y; that catalog the e-mails as either
spam or non-spam, t(z; Z;) could be a decision tree trained on these labeled e-mails, and =
could be a new e-mail that we seek to classify. The quantity é(x) would then be the output
of the tree predictor on input x.

With bagging, we aim to stabilize the base learner ¢ by resampling the training data. In
our case, the bagged version of f(z) is defined as

0 (@) = Buft(z; 23, s Z2), (1)

where the Z are drawn independently with replacement from the original data (i.e., they
form a bootstrap sample). The expectation E, is taken with respect to the bootstrap
measure.

The expectation in (1) cannot in general be evaluated exactly, and so we form the bagged
estimator by Monte Carlo

B

N 1 * * * *

0" (z) = B E ty(x), where tj(x) = t(x; Zyy, ... Zpy) (2)
b=1

and the Z;; are elements in the bt bootstrap sample. As B — oo, we recover the perfectly
bagged estimator 0°°(x).

2.1 Basic Variance Estimates

The goal of our paper is to study the sampling variance of bagged learners
V(z) = Var [éoo(w)} .

In other words, we ask how much variance 6P would have once we make B large enough
to eliminate the bootstrap effects. We consider two basic estimates of V: The Infinitesimal
Jackknife estimate (Efron, 2013), which results in the simple expression

Viy = > Cov[ N7, ()], (3)
=1

where Cov, [N}, t*()] is the covariance between t*(z) and the number of times N the 5"
training example appears in a bootstrap sample; and the Jackknife-after-Bootstrap estimate
(Efron, 1992)

n—1

=TS () - e @) )

n :
=1
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where t’(‘ﬂ.) (z) is the average of t*(z) over all the bootstrap samples not containing the ‘"

example and ¢*(z) is the mean of all the t*(x).

The jackknife-after-bootstrap estimate ‘7fo arises directly by applying the jackknife to
the bootstrap distribution. The infinitesimal jackknife (Jaeckel, 1972), also called the non-
parametric delta method, is an alternative to the jackknife where, instead of studying the
behavior of a statistic when we remove one observation at a time, we look at what happens to
the statistic when we individually down-weight each observation by an infinitesimal amount.
When the infinitesimal jackknife is available, it sometimes gives more stable predictions than
the regular jackknife. Efron (2013) shows how an application of the infinitesimal jackknife
principle to the bootstrap distribution leads to the simple estimate YA/IOj’

2.2 Finite-B Bias

In practice, we can only ever work with a finite number B of bootstrap replicates. The
natural Monte Carlo approximations to the estimators introduced above are

B N2 A (N = D( () — P (@)
= . th i L ’
Viy ;_1 Cov; with Cov B (5)
and
~ n—1 =~ - A A )
VJB = - E A%, where Al = H(Bil) («T) - 03(33) (6)
=1

. > nve—o tr(x)
and H(Bi,b) (.’I,') = {b.Nl: 0} b
|{Nbi = 0}‘

Here, Ny indicates the number of times the ith observation appears in the bootstrap sample
b.

In our experience, these finite-B estimates of variance are often badly biased upwards
if the number of bootstrap samples B is too small. Fortunately, bias-corrected versions are
available:

B
VB = VB = 25 D (ti(w) — (), and 7)

B
> (th(z) — (@)™ (8)

These bias corrections are derived in Section 4. In many applications, the simple estimators
(5) and (6) require B = O(n'®) bootstrap replicates to reduce Monte Carlo noise down to
the level of the inherent sampling noise, whereas our bias-corrected versions only require
B = O(n) replicates. The bias-corrected jackknife (8) was also discussed by Sexton and
Laake (2009).

In Figure 2, we show how 17]13_[] can be used to accurately estimate the variance of a
bagged tree. We compare the true sampling variance of a bagged regression tree with our
variance estimate. The underlying signal is a step function with four jumps that are reflected
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Figure 2: Testing the performance of the bias-corrected infinitesimal jackknife estimate of
variance for bagged predictors, as defined in (15), on a bagged regression tree. We
compare the true sampling error with the average standard error estimate pro-
duced by our method across multiple runs; the dotted lines indicate one-standard-
error-wide confidence bands for our standard error estimate.

as spikes in the variance of the bagged tree. On average, our variance estimator accurately
identifies the location and magnitude of these spikes.

Figure 3 compares the performance of the four considered variance estimates on a bagged
adaptive polynomial regression example described in detail in Section 4.4. We see that the
uncorrected estimators VJB and Vf} are badly biased: the lower whiskers of their boxplots do

not even touch the limiting estimate with B — co. We also see that that 1757U has about
half the variance of IA/ﬁ v+ This example highlights the importance of using estimators that
use available bootstrap replicates efficiently: with B = 500 bootstrap replicates, 1754] can
give us a reasonable estimate of V', whereas XA/JB is quite unstable and biased upwards by a
factor 2.

The figure also suggests that the Monte Carlo noise of 175 decays faster (as a function
of B) than that of ‘A/JB . This is no accident: as we show in Section 4.2, the infinitesimal
jackknife requires 1.7 times less bootstrap replicates than the jackknife to achieve a given
level of level of Monte Carlo error.

2.3 Limiting Sampling Distributions

The performance of YA/JB and 175 depends on both sampling noise and Monte Carlo noise.
In order for VJB (and analogously Vf}) to be accurate, we need both the sampling error of
V79, namely V7° — V', and the Monte Carlo error VJB — V7° to be small.
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Figure 3: Performance, as a function of B, of the jackknife and IJ estimators and their
bias-corrected modifications on the cholesterol data set of Efron and Feldman
(1991). The boxplots depict bootstrap realizations of each estimator. The dotted
line indicates the mean of all the realizations of the IJ-U and J-U estimators
(weighted by B).

It is well known that jackknife estimates of variance are in general biased upwards (Efron
and Stein, 1981). This phenomenon also holds for bagging V7 is somewhat biased upwards

for V. We present some evidence suggestlng that VI 7 is biased downwards by a similar
amount, and that the arithmetic mean of VJ and VI 7 is closer to being unbiased for V/
than either of the two estimators alone.

We also develop a simple estimator for the variance of ‘7105’ itself:

—_— n

v 7] - 32 (- &),

i=1

where C = Cov,[Ny;, t7(z)] and C;" is the mean of the C}" 2,
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3. Random Forest Experiments

Random forests (Breiman, 2001) are a widely used extension of bagged trees. Suppose that
we have a tree-structured predictor ¢ and training data Z1, ..., Z,. Using notation from (2),
the bagged version of this tree predictor is

B
N 1 § * * *
b=1

Random forests extend bagged trees by allowing the individual trees t; to depend on an
auxiliary noise source &,. The main idea is that the auxiliary noise &, encourages more
diversity among the individual trees, and allows for more variance reduction than bagging.
Several variants of random forests have been analyzed theoretically by, e.g., Biau et al.
(2008), Biau (2012), Lin and Jeon (2006), and Meinshausen (2006).

Standard implementations of random forests use the auxiliary noise &, to randomly
restrict the number of variables on which the bootstrapped trees can split at any given
training step. At each step, m features are randomly selected from the pool of all p possible
features and the tree predictor must then split on one of these m features. If m = p the
tree can always split on any feature and the random forest becomes a bagged tree; if m = 1,
then the tree has no freedom in choosing which feature to split on.

Following Breiman (2001), random forests are usually defined more abstractly for theo-
retical analysis: any predictor of the form

B

i 1 « . o\ s iid

01 (z) = B > (w5 &, Dy, o Ziy) With &N E (9)
b=1

is called a random forest. Various choices of noise distribution = lead to different random
forest predictors. In particular, trivial noise sources are allowed and so the class of random
forests includes bagged trees as a special case. In this paper, we only consider random forests
of type (9) where individual trees are all trained on bootstrap samples of the training data.
We note, however, that that variants of random forests that do not use bootstrap noise have
also been found to work well (e.g., Dietterich, 2000; Geurts et al., 2006).

All our results about bagged predictors apply directly to random forests. The reason
for this is that random forests can also be defined as bagged predictors with different base
learners. Suppose that, on each bootstrap replicate, we drew K times from the auxiliary
noise distribution = instead of just once. This would give us a predictor of the form

ARF 1 & 1 K . iid —
0" (x) = EZ It D 5@ &y Zi, s Ziyy) with G N E.
b=1"" k=1
Adding the extra draws from = to the random forest does not change the B — oo limit of
the random forest. If we take K — oo, we effectively marginalize over the noise from =, and
get a predictor
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Figure 4: Standard errors of random forest predictions on the e-mail spam data. The random
forests with m = 5, 19, and 57 splitting variables were all trained on a train set
of size n = 3,065; the panels above show class predictions and 1J-U estimates for
standard errors on a test set of size 1,536. The solid curves are smoothing splines
(df = 4) fit through the data (including both correct and incorrect predictions).

In other words, the random forest 0%F as defined in (9) is just a noisy estimate of a bagged
predictor with base learner .

It is straight-forward to check that our results about 171{3} and ‘A/JB also hold for bagged
predictors with randomized base learners. The extra noise from using ¢(-; £) instead of £(-)
does not affect the limiting correlations in (3) and (4); meanwhile, the bias corrections from
(7) and (8) do not depend on how we produced the t* and remain valid with random forests.
Thus, we can estimate confidence intervals for random forests from N* and t* using exactly
the same formulas as for bagging.

In the rest of this section, we show how the variance estimates studied in this paper
can be used to gain valuable insights in applications of random forests. We use the VLB]_U
variance estimate (7) to minimize the required computational resources. We implemented
the 1J-U estimator for random forests on top of the R package randomForest (Liaw and
Wiener, 2002).

3.1 E-mail Spam Example

The e-mail spam data set (spambase) is part of a standard classification task, the goal of
which is to distinguish spam e-mail (1) from non-spam (0) using p = 57 features. Here, we
investigate the performance of random forests on this data set.

We fit the spam data using random forests with m = 5, 19 and 57 splitting variables.
With m = 5, the trees were highly constrained in their choice of splitting variables, while
m = b7 is just a bagged tree. The three random forests obtained test-set accuracies of
95.1%, 95.2% and 94.7% respectively, and it appears that the m =5 or 19 forests are best.
We can use the [J-U variance formula to gain deeper insight into these numbers, and get a
better understanding about what is constraining the accuracy of each predictor.
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Figure 5: Comparison of the predictions made by the m = 5 and m = 19 random forests.
The stars indicate pairs of test set predictions; the solid line is a smoothing spline
(df = 6) fit through the data.

In Figure 4, we plot test-set predictions against IJ-U estimates of standard error for all
three random forests. The m = 57 random forest appears to be quite unstable, in that the
estimated errors are high. Because many of its predictions have large standard errors, it
is plausible that the predictions made by the random forest could change drastically if we
got more training data. Thus, the m = 57 forest appears to suffer from overfitting, and the
quality of its predictions could improve substantially with more data.

Conversely, predictions made by the m = 5 random forest appear to be remarkably
stable, and almost all predictions have standard errors that lie below 0.1. This suggests that
the m = 5 forest may be mostly constrained by bias: if the predictor reports that a certain
e-mail is spam with probability 0.5 £ 0.1, then the predictor has effectively abandoned any
hope of unambiguously classifying the e-mail. Even if we managed to acquire much more
training data, the class prediction for that e-mail would probably not converge to a strong
vote for spam or non-spam.

The m = 19 forest appears to have balanced the bias-variance trade-off well. We can
further corroborate our intuition about the bias problem faced by the m = 5 forest by
comparing its predictions with those of the m = 19 forest. As shown in Figure 5, whenever
the m = 5 forest made a cautious prediction that an e-mail might be spam (e.g., a prediction
of around 0.8), the m = 19 forest made the same classification decision but with more
confidence (i.e., with a more extreme class probability estimate p). Similarly, the m = 19
forest tended to lower cautious non-spam predictions made by the m = 5 forest. In other
words, the m = 5 forest appears to have often made lukewarm predictions with mid-range
values of p on e-mails for which there was sufficient information in the data to make confident
predictions. This analysis again suggests that the m = 5 forest was constrained by bias and
was not able to efficiently use all the information present in the data set.
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Figure 6: Performance of random forests on the California housing data. The left panel
plots MSE and mean sampling variance as a function of the number m of splitting
variables. The MSE estimate is the out-of bag error, while the mean sampling
variance is the average estimate of variance ‘?I]?I—U computed over all training
examples. The right panel displays the drivers of sampling variance, namely the
variance of the individual bootstrapped trees (bootstrap variance v) and their
correlation (tree correlation p).

3.2 California Housing Example

In the previous example, we saw that the varying accuracy of random forests with different
numbers m of splitting variables primarily reflected a bias-variance trade-off. Random forests
with small m had high bias, while those with large m had high variance. This bias-variance
trade-off does not, however, underlie all random forests. The California housing data set—a
regression task with n = 20,460 and p = 8—provides a contrasting example.

In Figure 6a, we plot the random forest out-of-bag MSE and IJ-U estimate of average
sampling variance across all training examples, with m between 1 and 8. We immediately
notice that the sampling variance is not monotone increasing in m. Rather, the sampling
variance is high if m is too big or too small, and attains a minimum at m = 4. Meanwhile,
in terms of MSE, the optimal choice is m = 5. Thus, there is no bias-variance trade-off
here: picking a value of m around 4 or 5 is optimal both from the MSE minimization and
the variance minimization points of view.

We can gain more insight into this phenomenon using ideas going back to Breiman (2001),
who showed that the sampling variance of a random forest is governed by two factors: the
variance v of the individual bootstrapped trees and their correlation p. The variance of the
ensemble is then pv. In Figure 6b, we show how both v and p react when we vary m. Trees
with large m are fairly correlated, and so the random forest does not get as substantial a
variance reduction over the base learner as with a smaller m. With a very small m, however,
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the variance v of the individual trees shoots up, and so the decrease in p is no longer sufficient
to bring down the variance of the whole forest. The increasing p-curve and the decreasing
v-curve thus jointly produce a U-shaped relationship between m and the variance of the
random forest. The m = 4 forest achieves a low variance by matching fairly stable base
learners with a small correlation p.

4. Controlling Monte Carlo Error

In this section, we analyze the behavior of both the IJ and jackknife estimators under
Monte Carlo noise. We begin by discussing the Monte Carlo distribution of the infinitesimal
jackknife estimate of variance with a finite B; the case of the jackknife-after-bootstrap
estimate of variance is similar but more technical and is presented in Appendix A. We show
that the jackknife estimator needs 1.7 times more bootstrap replicates than the 1J estimator
to control Monte Carlo noise at a given level. We also highlight a bias problem for both
estimators, and recommend a bias correction. When there is no risk of ambiguity, we use
the short-hand t* for t*(x).

4.1 Monte Carlo Error for the IJ Estimator
We first consider the Monte Carlo bias of the infinitesimal jackknife for bagging. Let

Vs = Covi[N;, ]2 (10)
=1

be the perfect 1J estimator with B = oo (Efron, 2013). Then, the Monte Carlo bias of ‘75
is

E. [VE} -Viy = ZVar* [C;], where C; = 2 (NG B)( b )
i=1

is the Monte Carlo estimate of the bootstrap covariance. Since ¢; depends on all n ob-
servations, N and ¢} can in practice be treated as independent for computing Var,[Cj],
especially when n is large (see remark below). Thus, as Var,[N;;] = 1, we see that

B
~ ~ 1 _
E, [vﬁ,} — Vi~ o where 0= Y (1 — F)°. (11)
b=1

w| 3

Notice that © is the standard bootstrap estimate for the variance of the base learner é(x)
Thus, the bias of 175 grows linearly in the variance of the original estimator that is being
bagged.

Meanwhile, by the central limit theorem, C; converges to a Gaussian random vari-
able as B gets large. Thus, the Monte Carlo asymptotic variance of Cf is approximately
2 Var,[C;]? + 4E.[C;]? Var,[C;]. The C; can be treated as roughly independent, and so the
limiting distribution of the IJ estimate of variance has approximate moments

~ ~2 1700 4
SB Seo - [MU D V5o
- ~ | —=,2—F%55+4 : 12
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Interestingly, the Monte Carlo mean squared error (MSE) of ‘75 mostly depends on the
problem through o, where v is the bootstrap estimate of the variance of the base learner.
In other words, the computational difficulty of obtaining confidence intervals for bagged
learners depends on the variance of the base learner.

4.1.1 REMARK: THE IJ ESTIMATOR FOR SUB-BAGGING

We have focused on the case where each bootstrap replicate contains exactly n samples.
However, in some applications, bagging with subsamples of size m # n has been found to
work well (e.g., Bithlmann and Yu, 2002; Buja and Stuetzle, 2006; Friedman, 2002; Strobl
et al., 2007). Our results directly extend to the case where m # n samples are drawn
with replacement from the original sample. We can check that (10) still holds, but now
Var N, = m/n. Carrying out the same analysis as above, we can establish an analogue to
(12):
mo _m?o

> 00 : 2 mVe>e o
Vi(m) — VEy(m) ~ <B’ 2 YD) +4 ng ) (13)

For simplicity of exposition, we will restrict our analysis to the case m = n for the rest of
this paper.
4.1.2 REMARK: APPROXIMATE INDEPENDENCE

In the above derivation, we used the approximation
Var, [(Ng; — 1)(t; — t°)] & Var, [INg;] Var, [t;] .
We can evaluate the accuracy of this approximation using the formula
Var, [(Ny; — 1)(t; — t*)] — Var, [Ny;] Var [t;]
* * T * * F*\12
= Cov, [(Ny; — D%, (t; —1%)%] = Cova [(Ny; — 1), (t; — )]

In the case of the sample mean ¢(Z7, ..., Z}}) = % >; Z; paired with the Poisson bootstrap,
this term reduces to

=\ 2
Cov, [(Nl;kz - 1)27 (tz _ f*)Z] — Cov, [(Ng; . 1)’ (tz i f*)]Q _ 2@

n? ’

and the correction to (11) would be 20/(nB) < no/B.

4.2 Comparison of Monte Carlo Errors

As shown in Appendix A, the Monte Carlo error for the jackknife-after-bootstrap estimate
of variance has approximate moments

o ; 5 7o
VP -V ((6—1)7;",2(6—1)2m’+4(e_1) %”), (14)

where 17}0 is the jackknife estimate computed with B = oo bootstrap replicates. The Monte
Carlo stability of VJB again primarily depends on ©.
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By comparing (12) with (14), we notice that the IJ estimator makes better use of a finite
number B of bootstrap replicates than the jackknife estimator. For a fixed value of B, the
Monte Carlo bias of ‘7JB is about e — 1 or 1.7 times as large as that of 17113; the ratio of
Monte Carlo variance starts off at 3 for small values of B and decays down to 1.7 as B gets
much larger than n. Alternatively, we see that the IJ estimate with B bootstrap replicates
has errors on the same scale as the jackknife estimate with 1.7 - B replicates.

This suggests that if computational considerations matter and there is a desire to per-
form as few bootstrap replicates B as possible while controlling Monte Carlo error, the
infinitesimal jackknife method may be preferable to the jackknife-after-bootstrap.

4.3 Correcting for Monte Carlo Bias

The Monte Carlo MSEs of 171{3} and X/}JB are in practice dominated by bias, especially for
large n. Typically, we would like to pick B large enough to keep the Monte Carlo MSE
on the order of 1/n. For both (12) and (14), we see that performing B = ©(n) bootstrap
iterations is enough to control the variance. To reduce the bias to the desired level, namely
O(n=%9), we would need to take B = ©(n!%) bootstrap samples.

Although the Monte Carlo bias for both ‘71{3} and Y7JB is large, this bias only depends
on v and so is highly predictable. This suggests a bias-corrected modification of the 1J and
jackknife estimators respectively:

‘71ng = ‘/}Ig - %7 and (15)
VPy =V —(e-1) = (16)

Here 175 and ‘7}3 are as defined in (5), and © is the bootstrap estimate of variance from
(11). The letter U stands for unbiased. This transformation effectively removes the Monte
Carlo bias in our experiments without noticeably increasing variance. The bias corrected
estimates only need B = O(n) bootstrap replicates to control Monte Carlo MSE at level
1/n.

4.4 A Numerical Example

To validate the observations made in this section, we re-visit the cholesterol data set used
by Efron (2013) as a central example in developing the 1J estimate of variance. The data
set (introduced by Efron and Feldman, 1991) contains records for n = 164 participants in a
clinical study, all of whom received a proposed cholesterol-lowering drug. The data contains
a measure d of the cholesterol level decrease observed for each subject, as well as a measure
¢ of compliance (i.e. how faithful the subject was in taking the medication). Efron and
Feldman originally fit d as a polynomial function of ¢; the degree of the polynomial was
adaptively selected by minimizing Mallows” C), criterion (1973).

We here follow Efron (2013) and study the bagged adaptive polynomial fit of d against ¢
for predicting the cholesterol decrease of a new subject with a specific compliance level. The
degree of the polynomial is selected among integers between 1 and 6 by C), minimization.
Efron (2013) gives a more detailed description of the experiment. We restrict our attention
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Figure 7: Predicted and actual performance ratios for the uncorrected ‘7JB and ‘75
estimators in the cholesterol compliance example. The plot shows both
Var[‘?f] / Var[‘A/f}] and Bias[‘A/JB] / Bias[r/ﬁ]. The observations are derived from
the data presented in Figure 3; the error bars are one standard deviation in each
direction. The solid lines are theoretical predictions obtained from (12) and (14).

to predicting the cholesterol decrease of a new patient with compliance level ¢ = —2.25; this
corresponds to the patient with the lowest observed compliance level.

In Figure 3, we compare the performance of the variance estimates for bagged predictors
studied in this paper. The boxplots depict repeated realizations of the variance estimates
with a finite B. We can immediately verify the qualitative insights presented in this section.
Both the jackknife and 1J rules are badly biased for small B, and this bias goes away more
slowly than the Monte Carlo variance. Moreover, at any given B, the jackknife estimator is
noticeably less stable than the IJ estimator.

The J-U and IJ-U estimators appear to fix the bias problem without introducing in-
stability. The J-U estimator has a slightly higher mean than the IJ-U one. As discussed
in Section 5.2, this is not surprising, as the limiting (B — o0) jackknife estimator has an
upward sampling bias while the limiting [J estimator can have a downward sampling bias.
The fact that the J-U and IJ-U estimators are so close suggests that both methods work
well for this problem.

The insights developed here also appear to hold quantitatively. In Figure 7, we compare
the ratios of Monte Carlo bias and variance for the jackknife and IJ estimators with theo-
retical approximations implied by (12) and (14). The theoretical formulas appear to present
a credible picture of the relative merits of the jackknife and 1J rules.
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5. Sampling Distribution of Variance Estimates

In practice, the 175 and ‘7JB estimates are computed with a finite number B of bootstrap
replicates. In this section, however, we let B go to infinity, and study the sampling properties
of the IJ and jackknife variance estimates in the absence of Monte Carlo errors. In other
words, we study the impact of noise in the data itself. Recall that we write VI 7 and VJ for
the limiting estimators with B = oo bootstrap replicates.

We begin by developing a simple formula for the sampling variance of 17105’ itself. In the
process of developing this variance formula, we obtain an ANOVA expansion of T?f’j’ that
we then use in Section 5.2 to compare the sampling biases of the jackknife and infinitesimal
jackknife estimators.

5.1 Sampling Variance of the IJ Estimate of Variance

If the data Z; are independently drawn from a distribution F', then the variance of the 1J
estimator is very nearly given by

Varp {17105’} ~ n Varp [h%(Z)] , where (17)
hp(Z) = Ep [é<>°|z1 - Z} —Ep [é“} . (18)
This expression suggests a natural plug-in estimator
= " —\ 2
Var[VE] = Z (Ci*’z - C’;’2> ) (19)

i=1

where C = Cov, [Ny, t;] is a bootstrap estimate for hp(Z;) and C;’Q is the mean of the
05’2. The rest of the notation is as in Section 2.

The relation (17) arises from a general connection between the infinitesimal jackknife
and the theory of Hajek projections. The Hajek projection of an estimator is the best
approximation to that estimator that only considers first-order effects. In our case, the
Héajek projection of 6°° is

05 =B [0 }+ZhF (20)

where hp(Z;) is asin (18). The variance of the Hajek projection is Var [é%o} =nVar [hr(2)].

The key insight behind (17) is that the 1J estimator is effectively trying to estimate the
variance of the Hajek projection of 87, and that

Vs = Y hE(Z:). (21)
=1

The approximation (17) then follows immediately, as the right-hand side of the above expres-
sion is a sum of independent random variables. Note that we cannot apply this right-hand
side expression directly, as h depends on the unknown underlying distribution F'.

The connections between Héjek projections and the infinitesimal jackknife have been
understood for a long time. Jaeckel (1972) originally introduced the infinitesimal jackknife
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Figure 8: Stability of the IJ estimate of variance on the cholesterol data. The left panel
shows the bagged fit to the data, along with error bars generated by the IJ method;
the stars denote the data (some data points have x-values that exceed the range
of the plot). In the right panel, we use (19) to estimate error bars for the error
bars in the first panel. All error bars are one standard deviation in each direction.

as a practical approximation to the first-order variance of an estimator (in our case, the right-
hand side of (21)). More recently, Efron (2013) showed that Y//\}Oj is equal to the variance of
a “bootstrap Hajek projection.” In Appendix B, we build on these ideas and show that, in
cases where a plug-in approximation is valid, (21) holds very nearly for bagged estimators.

We apply our variance formula to the cholesterol data set of Efron (2013), following the
methodology described in Section 4.4. In Figure 8, we use the formula (19) to study the
sampling variance of ‘A/Ioj’ as a function of the compliance level ¢. The main message here
is rather reassuring: as seen in Figure 8b, the coefficient of variation of ‘7}05’ appears to be
fairly low, suggesting that the IJ variance estimates can be trusted in this example. Note
that, the formula from (19) can require many bootstrap replicates to stabilize and suffers
from an upward Monte Carlo bias just like ‘75. We used B = 100,000 bootstrap replicates
to generate Figure 8.

5.2 Sampling Bias of the Jackknife and 1J Estimators

We can understand the sampling biases of both the jackknife and IJ estimators in the
context of the ANOVA decomposition of Efron and Stein (1981). Suppose that we have
data Zy, ..., Z, drawn independently from a distribution F', and compute our estimate o0
based on this data. Then, we can decompose its variance as

Varp [é‘”] Vit Vot ..+ V, (22)
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where

Vi = n Varp [EF [é”|21H

is the variance due to first-order effects, V5 is the variance due to second-order effects of the
form

Ep [é"ﬂzl, ZQ} Ry [éwyzl} —Ep [émyzﬂ +Ep [900} :

and so on. Note that all the terms V}, are non-negative.

Efron and Stein (1981) showed that, under general conditions, the jackknife estimate of
variance is biased upwards. In our case, their result implies that the jackknife estimator
computed on n + 1 data points has variance

Ep [Vﬂ = Vi +2Va+ 3V 4 ... + 0V, (23)

Meanwhile, (21) suggests that
Er [{710;} ~ V. (24)

In other words, on average, both the jackknife and IJ estimators get the first-order variance
term right. The jackknife estimator then proceeds to double the second-order term, triple
the third-order term etc, while the IJ estimator just drops the higher order terms.

By comparing (23) and (24), we see that the upward bias of V7 and the downward bias

of Vloj partially cancel out. In fact,

Veo 4 VRS

)
F 2

3
z1/1+V2+§V3+...+gVn, (25)

and so the arithmetic mean of f}fo and ij’ has an upward bias that depends only on third-
and higher-order effects. Thus, we might expect that in small-sample situations where T7j’°
and ‘7[0}3 exhibit some bias, the mean of the two estimates may work better than either of
them taken individually.

To test this idea, we used both the jackknife and IJ methods to estimate the variance of
a bagged tree trained on a sample of size n = 25. (See Appendix C for details.) Since the
sample size is so small, both the jackknife and IJ estimators exhibit some bias as seen in
Figure 9a. However, the mean of the two estimators is nearly unbiased for the true variance
of the bagged tree. (It appears that this mean has a very slight upward bias, just as we
would expect from (25).)

This issue can arise in real data sets too. When training bagged forward stepwise re-
gression on a prostate cancer data set discussed by Hastie et al. (2009), the jackknife and
IJ methods give fairly different estimates of variance: the jackknife estimator converged to
0.093, while the IJ estimator stabilized at 0.067 (Figure 9b). Based on the discussion in
this section, it appears that (0.093 + 0.067)/2 = 0.08 should be considered a more unbiased
estimate of variance than either of the two numbers on their own.

In the more extensive simulations presented in Table 1, averaging ‘71‘37,] and YA/ﬁ y is in
general less biased than either of the original estimators (although the “AND” experiment
seems to provide an exception to this rule, suggesting that most of the bias of YA/ﬁ y for

this function is due to higher-order interactions). However, ‘75_(] has systematically lower
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Figure 9: Sampling bias of the jackknife and IJ rules. In the left panel, we compare the
expected values of the jackknife and IJ estimators as well as their mean with
the true variance of a bagged tree. In this example, the features take values in
(w1, x2) € [~1, 1]; we depict variance estimates along the diagonal 71 = z3. The
prostate cancer plot can be interpreted in the same way as Figure 3, except that
the we now indicate the weighted means of the J-U and 1J-U estimators separately.

variance, which allows it to win in terms of overall mean squared error. Thus, if unbiasedness
is important, averaging VI{B}—U and Vﬁ i seems like a promising idea, but Vf}_U appears to
be the better rule in terms of raw MSE minimization.

Finally, we emphasize that this relative bias result relies on the heuristic relationship (24).
While this approximation does not seem problematic for the first-order analysis presented in
Section 5.1, we may be concerned that the plug-in argument from Appendix B used to justify
it may not give us correct second- and higher-order terms. Thus, although our simulation
results seem promising, developing a formal and general understanding of the relative biases
of VI 7 and VJ remains an open topic for follow-up research.

6. Conclusion

In this paper, we studied the jackknife-after-bootstrap and infinitesimal jackknife (IJ) meth-
ods (Efron, 1992, 2013) for estimating the variance of bagged predictors. We demonstrated
that both estimators suffer from considerable Monte Carlo bias, and we proposed bias-
corrected versions of the methods that appear to work well in practice. We also provided
a simple formula for the sampling variance of the IJ estimator, and showed that from a
sampling bias point of view the arithmetic mean of the jackknife and IJ estimators is often
preferable to either of the original methods. Finally, we applied these methods in numerous
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Function | n P B ERR ‘/}IE—U f/ﬁU %(‘7}3_(] + ?ﬁU)
Bias | —0.15(£0.03) 0.14(£0.02)  —0.01(+0.02)
Cosine | 50 2 200 || Var| 0.08(£0.02) 0.41(£0.13)  0.2(0.06)
MSE | 0.11(£0.03) 0.43(£0.13)  0.2(%0.06)
Bias | —0.05(£0.01) 0.07(£0.01) _ 0.01(+0.01)
Cosine | 200 2 500 Var 0.02 (+0) 0.07 (£0.01) 0.04 (£0.01)
MSE | 0.02(£0)  0.07(£0.01)  0.04(%0.01)
Bias | —0.3(+0.03) 0.37(£0.04) _ 0.03 (£0.03)
XOR | 50 50 200 | Var| 0.48(%£0.03) 1.82(£0.12)  0.89 (0.05)
MSE | 0.58(£0.03) 1.96(£0.13)  0.89 (+0.05)
Bias | —0.08 (£0.02) 0.24(+0.03) _ 0.08 (£0.02)
XOR | 200 50 500 | Var| 0.26(£0.02) 0.77(£0.04)  0.4(%0.02)
MSE | 0.27(£0.01) 0.83(£0.04)  0.41(%0.02)
Bias | —0.23 (£0.04) 0.65(£0.05)  0.21(+0.04)
AND | 50 500 200 | Var| 1.15(£0.05) 4.23(£0.18)  2.05(£0.09)
MSE | 1.21(£0.06) 4.64(£0.21)  2.09(%0.09)
Bias | —0.04 (£0.04) 0.32(£0.04)  0.14(+0.03)
AND | 200 500 500 Var | 0.55(£0.07) 1.71(£0.22) 0.85(£0.11)
MSE | 0.57(£0.08) 1.82(£0.24)  0.88(%0.11)
Bias | —0.11(£0.02) 0.23(£0.05) _ 0.06 (£0.03)
Auto | 314 7 1000 || Var | 0.13(£0.04) 0.49(+£0.19)  0.27(+0.1)
MSE | 0.15(£0.04) 0.58(£0.24)  0.29(%0.11)

Table 1: Simulation study. We evaluate the mean bias, variance, and MSE of different
variance estimates V for random forests. Here, n is the number of test examples
used, p is the number of features, and B is the number of trees grown; the numbers
in parentheses are 95% confidence errors from sampling. The best methods for
each evaluation metric are highlighted in bold. The data-generating functions are
described in Appendix C.

experiments, including some random forest examples, and showed how they can be used to
gain valuable insights in realistic problems.
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Appendix A. The Effect of Monte Carlo Noise on the Jackknife
Estimator

In this section, we derive expressions for the finite-B Monte Carlo bias and variance of the
jackknife-after-bootstrap estimate of variance. Recall from (6) that

~ -1 LR ~ Z Ny = t tr
VB = o ZA?, where A; = LNG=0 T 2l
n [{Ng; =0} B

and N indicates the number of times the ith observation appears in the bootstrap sample
b. If A; is not defined because Ny = 0 for either all or none of the b = 1, ..., B, then just
set AZ = 0.

Now ‘A/JB is the sum of squares of noisy quantities, and so XA/JB will be biased upwards.
Specifically,

n

AB—Aoozn_ln A
E. V7] - V5 ;Var A,

where XA/fo is the jackknife estimate computed with B = oo bootstrap replicates. For conve-
nience, let

B; = |{b: Ny, =0}/,
and recall that
Var, [Az} —E, [Var* [Ai\BiH + Var, [E* [Ai\B,-H .
For all B; # 0 or B, the conditional expectation is

B —E[B]

E.[A;| B = <1 -

) A;, where A; = E, [t7|Ny; = 0] — E, [t3];
E.[A;|B;] = 0 in the degenerate cases with B; € {0, B}. Thus,
Var, [E. |Ai|B)|| = 0 (82/B).

and so

Var, [Ai] =B, [Var, |Ai|B|| + 0 (a2/B).
Meanwhile, for B; ¢ {0, B},

Var, [Az |BZ} =

where

5 = Var, [t7| Ny, = 0] and 5.7 = Var, [tf|N}; # 0].
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Thus,

11 (B-B)* ] - B—-B;i | (4 2
Var, |:A,L:| = E <]E* |:BBZ].Z:| v; +]E* Tll v; + O (Az /B) )

where 1; = 1({B; ¢ {0, B}}).

As n and B get large, B; converges in law to a Gaussian random variable

B, — Be™!
VB

and the above expressions are uniformly integrable. We can verify that

(B-B)* ] 1 1
IE*[BBi lil=e—2+e " +0 5 )

= (0, e (1 —e)

and

E, [B ;B’iz} = ‘:1 +o((1-eh’).

Finally, this lets us conclude that

> Soo 1n—1«— e—1)2\ o e—1Y\ _ 1 n
E*[Vf}—VJ - =2 Z<<( 6)>v§)+<e>v§+)>+O<B+BQ>,
=1

where the error term depends on 6§0), 17§+), and \A{}’O =(n—-1)/n Y01 A2

We now address Monte Carlo variance. By the central limit theorem, A, converges to a
Gaussian random variable as B gets large. Thus, the asymptotic Monte Carlo variance of
A? is approximately 2 Var,[A;]? + 4E,[A;]? Var,[A;], and so

Var. [Vf] ~ 2 <;"; 1>2 Zn: <<(e_el)2) o+ (e_el> ﬁ§+))2

i=1
1n—1¢ (e — 1)2 (0 e—1Y\ (4
4—— "N A2 —L )5 — ) v .
+ B n ; i (( . )vz + . v;
In practice, the terms 172(0) and 1~)Z(+) can be well approximated by ¢ = Var,[t;], namely the

bootstrap estimate of variance for the base learner. (Note that 17@(0), 17§+), and v can always

be inspected on a random forest, so this assumption can be checked in applications.) This
lets us considerably simplify our expressions for Monte Carlo bias and variance:

E, [f/ﬂ ERVEN % (e — 1), and
- 1 .
Var*[vﬂz2%(e—1)2@2+4§(e—1) 0 5
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Appendix B. The 1J estimator and Hajek projections

Up to (27), the derivation below is an alternate presentation of the argument made by Efron
(2013) in the proof of his Theorem 1. To establish a connection between the 1J estimate of
variance for bagged estimators and the theory of Héjek projections, it is useful to consider
6B as a functional over distributions. Let G be a probability distribution, and let T be a
functional over distributions with the following property:

T(G) = Eg[r(Y1, ..., ¥3,)] for some function 7, (26)

where the Y7, ..., Y, are drawn independently from G. We call functionals T" satisfying (26)
averaging. Clearly, 68 can be expressed as an averaging functional applied to the empirical
distribution F' defined by the observations 71, ..., Z,.

Suppose that we have an averaging functional T', a sample Zy, ..., Z, forming an em-
pirical distribution F , and want to study the variance of T(ﬁ ). The infinitesimal jackknife
estimate for the variance of T is given by

7-3 (ar (o))

where Fj(g) is the discrete distribution that places weight 1/n + (n — 1)/n - € at Z; and
weight 1/n —e/n at all the other Z;.

We can transform samples from F into samples from ﬁl(s) by the following method. Let
Z1, ..., Z; be a sample from F. Go through the whole sample and, independently for each
J, take Z7F and with probability € replace it with Z;. The sample can now be considered a
sample from F(e).

When ¢ — 0, the probability of replacing two of the Z with this procedure becomes
negligible, and we can equivalently transform our sample into a sample from E(a) by trans-
forming a single random element from {Z]* } into Z; with probability ne. Without loss of
generality this element is the first one, and so we conclude that

;1_% g (Eﬁl(g) [T(217 ) Zn)] - Eﬁ [T(Zl7 e Zn”)

=n (Ez [7(Z], ..., Z})| 21 = Zi) = Ep[r(Z5, ..., Z})])

n

where 7 defines T' through (26). Thus,

LI T(R(e)) = B (712} = 2] ~ B [1],
and so
V=>"(E; [T|2; = Z]) - Bz (1)) (27)
=1
~> (Br (7|2 = 2] - Er ) (28)

=1

1647



WAGER, HASTIE AND EFRON

f(x)
00 02 04 06 08 10 12 14
L L L

0.0 0.2 0.4 0.6 0.8 1.0

Figure 10: Underlying model for the bagged tree example from Figure 2.

where on the last line we only replaced the empirical approximation F with its true value
F. In the case of bagging, this last expression is equivalent to (21).

A crucial step in the above argument is the plug-in approximation (28). If T is just a
sum, then the error of (28) is within O(1/n); presumably, similar statements hold whenever
T is sufficiently well-behaved. That being said, it is possible to construct counter-examples
where (28) fails; a simple such example is when 7" counts the number of times Z7 is matched
in the rest of the training data. Establishing general conditions under which (28) holds is
an interesting topic for further research.

Appendix C. Description of Experiments

This section provides a more detailed description of the experiments reported in this paper.

C.1 Auto MPG Example (Figure 1)

The Auto MPG data set, available from the UCI Machine Learning Repository (Bache
and Lichman, 2013), is a regression task with 7 features. After discarding examples with
missing entries, the data set had 392 rows, which we divided into a test set of size 78 and a
train set of size 314. We estimated the variance of the random forest predictions using the
(Y//\'ﬁU—i—‘A/EfU)ﬂ estimator advocated in Section 5.2, with B = 10, 000 bootstrap replicates.

C.2 Bagged Tree Simulation (Figure 2)

The data for this simulation was drawn from a model y; = f(z;) + &;, where x; ~ U([0, 1]),
gi ~ N(0,1/2?), and f(x) is the step function shown in Figure 10. We modeled the data
using 5-leaf regression trees generated using the R package tree (Venables and Ripley, 2002);
for bagging, we used B = 10,000 bootstrap replicates. The reported data is compiled over
1,000 simulation runs with n = 500 data points each.
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C.3 Cholesterol Example (Figures 3, 7, and 8)

For the cholesterol data set (Efron and Feldman, 1991), we closely follow the methodology
of Efron (2013); see his paper for details. The data set has n = 164 subjects and only one
predictor.

C.4 E-mail Spam Example (Figures 4 and 5)

The e-mail spam data set (spambase, Bache and Lichman, 2013) is a classification problem
with n = 4,601 e-mails and p = 57 features; the goal is to discern spam from non-spam.
We divided the data into train and test sets of size 3,065 and 1,536 respectively. Each of
the random forests described in Section 3.1 was fit on the train set using the R package
randomForest (Liaw and Wiener, 2002) with B = 40,000 bootstrap replicates.

C.5 California Housing Example (Figure 6)

The California housing data set (described in Hastie et al., 2009, and available from StatLib)
contains aggregated data from n = 20,460 neighborhoods. There are p = 8 features; the
response is the median house value. We fit random forests on this data using the R package
randomForest (Liaw and Wiener, 2002) with B = 1,000 bootstrap replicates.

C.6 Bagged Tree Simulation #2 (Figure 9a)

We drew n = 25 points from a model where the z; are uniformly distributed over a square,
i.e., 7; ~ U([—1,1]?); the y; are deterministically given by y; = 1({||x;||2 > 1}). We fit this
data using the R package tree (Venables and Ripley, 2002). The bagged predictors were
generated using B = 1,000 bootstrap replicates. The reported results are based on 2,000
simulation runs.

C.7 Prostate Cancer Example (Figure 9b)

The prostate cancer data (published by Stamey et al., 1989) is described in Section 1 of
Hastie et al. (2009). We used forward stepwise regression as implemented by the R function
step as our base learner. This data set has n = 97 subjects and 8 available predictor
variables. In figure 9b, we display standard errors for the predicted response of a patient
whose features match those of patient #41 in the data set.

C.8 Simulations for Table 1

The data generation functions used in Table 1 are defined as follows. The X; fori =1, ..., p
are all generated as independent U ([0, 1]) random variables, and ¢ ~ N (0, 1).

e Cosine: Y =3-cos(m- (X1 + X3)), with p = 2.
e XOR: Treating XOR as a function with a 0/1 return-value,
Y =5-[X0R (X7 > 0.6, X2 > 0.6) + XOR (X3 > 0.6, X4 > 0.6)] + ¢

and p = 50.
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e AND: With analogous notation,
Y =10-AND (X7 > 0.3, X5 > 0.3, X35> 0.3, X4 >0.3)+¢
and p = 500.

e Auto: This example is based on a parametric bootstrap built on the same data set as
used in Figure 1. We first fit a random forest to the training set, and evaluated the
MSE 62 on the test set. We then generated new training sets by replacing the labels
Y; from the original training set with Y + &€, where Y- is the original random forest
prediction at the i** training example and ¢ is fresh residual noise.

During the simulation, we first generated a random test set of size 50 (except for the auto
example, where we just used the original test set of size 78). Then, while keeping the test
set fixed, we generated 100 training sets and produced variance estimates V at each test
point. Table 1 reports average performance over the test set.
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