
Fuss, Futexes and Furwocks: Fast Userlevel Locking
in Linux

Hubertus Franke
IBM Thomas J. Watson Research Center

frankeh@watson.ibm.com

Rusty Russell
IBM Linux Technology Center

rusty@rustcorp.com.au

Matthew Kirkwood
matthew@hairy.beasts.org

Abstract

Fast userlevel locking is an alternative locking
mechanism to the typically heavy weight ker-
nel approaches such as fcntl locking and Sys-
tem V semaphores. Here, multiple processes
communicate locking state through shared
memory regions and atomic operations. Ker-
nel involvement is only necessary when there
is contention on a lock, in order to perform
queueing and scheduling functions. In this pa-
per we discuss the issues related to user level
locking by following the history of ideas and
the code to the current day. We present the ef-
ficacy of "futexes" through benchmarks, both
synthetic and through adaptations to existing
databases. We conclude by presenting the po-
tential future directions of the "futex" inter-
face.

1 Introduction

Linux™1 has seen significant growth as a
server operating system and has been success-
fully deployed in enterprise environments for
Web, file and print serving. With the deploy-
ment of Version 2.4, Linux has seen a tremen-
dous boost in scalability and robustness that

1Linux is a trademark of Linus Torvalds

makes it now feasible to deploy even more de-
manding enterprise applications such as high
end databases, business intelligence software
and application servers. As a result, whole en-
terprise business suites and middleware such
as SAP™, Websphere™, Oracle, DB2™2, etc.,
are now available for Linux.

For these enterprise applications to run effi-
ciently on Linux, or on any other operating
system for that matter, the OS must provide
the proper abstractions and services. Enter-
prise applications and applications suites are
increasingly built as multi process / multi-
threaded applications. Multi-threaded appli-
cations can take better advantage of SMP
hardware, while multiple processes allows for
higher degrees of fault tolerance, i.e., a single
process abort does not necessarily bring the en-
tire application down. Furthermore, applica-
tions suites are often a collection of multiple
independent subsystems.

Despite their functional separation, the pro-
cesses representing these subsystems often
must communicate with each other and share
state amongst each other. Examples of this
are database systems, which typically maintain
shared I/O buffers in user space. The buffers

2All third party trademarks are the property of their
respective owners.

Ottawa Linux Symposium 2002 480

are concurrently accessed by various database
engines and prefetching processes.

Access to such shared state must be prop-
erly synchronized through either exclusive or
shared locks. Exclusive locks allow only
one party access to the protected entity, while
shared locks allow multiple reader – single
writer semantics. Synchronization implies a
shared state, indicating that a particular re-
source is available or busy, and a means to wait
for its availability. The latter one can either be
accomplished through busy-waiting or through
a explicit / implicit call to the scheduler.

In traditional UNIX™ 3 systems, System V
IPC (inter process communication) such as
semaphores, msgqueues, socketsand the file
locking mechanism (flock()) are the basic
mechanisms for two processes to synchronize.
These mechanisms expose an opaque handle
to a kernel object that naturally provides the
shared state and atomic operations in the ker-
nel. Services must be requested through sys-
tem calls (e.g.,semop()). The drawback of
this approach is that every lock access requires
a system call. When locks have low contention
rates, the system call can constitute a signifi-
cant overhead.

One solution to this problem is to deploy user
level locking, which avoids some of the over-
head associated with purely kernel-based lock-
ing mechanisms. It relies on a user level lock
located in a shared memory region and modi-
fied through atomic operations to indicate the
lock status. Only the contended case requires
kernel intervention. The exact behavior and the
obtainable performance are directly affected by
how and when the kernel services are invoked.
The idea described here is not new. Some
of the foundation of this paper are described
in [4], [7] and [6]. In [2] the impact of lock-
ing on JVM performance is discussed.

3UNIX is a trademark of The Open Group

In this paper we are describing a particular fast
user level locking mechanism calledfutexes
that was developed in the context of the Linux
operating system. It consists of two parts, the
user library and a kernel service that has been
integrated into the Linux kernel distribution
version 2.5.7.

The paper is organized as followed. In sec-
tion 2 we describe the basic behavioral and
functional requirements of a user level lock-
ing mechanism. In section 3 we describe some
of the earlier approaches that led to the current
design offutexesand the futexes themselves.
In section 4 we provide a performance assess-
ment on a synthetic and a database benchmark.
In section 5 we elaborate on current and future
efforts and in 6 we conclude.

2 Requirements

In this section we are stating some of the re-
quirements of a fast userlevel locking mecha-
nism that we derived as part of this work and
that were posted to us as requirements by mid-
dleware providers.

There are various behavioral requirements that
need to be considered. Most center around the
fairness of the locking scheme and the lock re-
lease policy. In afair locking scheme the lock
is granted in the order it was requested, i.e., it
is handed over to the longest waiting task. This
can have negative impact on throughput due to
the increased number of context switches. At
the same time it can lead to the so calledcon-
voy problem. Since, the locks are granted in
the order of request arrival, they all proceed
at the speed of the slowest process, slowing
down all waiting processes. A common solu-
tion to the convoy problem has been to mark
the lock available upon release, wake all wait-
ing processes and have them recontend for the
lock. This is referred to asrandom fairness,

Ottawa Linux Symposium 2002 481

although higher priority tasks will usually have
an advantage over lower priority ones. How-
ever, this also leads to the well knownthun-
dering herd problem. Despite this, it can
work quite well on uni-processor systems if the
first task to wake releases the lock before being
preempted or scheduled, allowing the second
herd member to obtain the lock, etc. It works
less spectacularly on SMP. To avoid this prob-
lem, one should only wake up one waiting task
upon lock release. Marking the lock available
as part of releasing it, gives the releasing task
the opportunity to reacquire the lock immedi-
ately again, if so desired, and avoid unneces-
sary context switches and the convoy problem.
Some refer to these asgreedy, as the running
task has the highest probability of reacquiring
the lock if the lock is hot. However, this can
lead to starvation. Hence, the basic mecha-
nisms must enable both fair locking, random
locking and greedy or convoy avoidance lock-
ing (short ca-locking). Another requirement
is to enable spin locking, i.e., have an appli-
cation spin for the availablilty of the lock for
some user specified time (or until granted) be-
fore giving up and resolving to block in the
kernel for its availability. Hence an applica-
tion has the choice to either (a) block waiting
to be notified for the lock to be released, or (b)
yield the processor until the thread is resched-
uled and then the lock is tried to be acquired
again, or (c) spin consuming CPU cycles until
the lock is released.

With respect to performance, there are basi-
cally two overriding goals:

• avoid system calls if possible, as system
calls typically consume several hundred
instructions.

• avoid unnecessary context switches: con-
text switches lead to overhead associated
with TLB invalidations etc.

Hence, in fast userlevel locking, we first dis-
tinguish between the uncontended and the con-
tended case. The uncontended case should be
efficient and should avoid system calls by all
means. In the contended case we are willing to
perform a system call to block in the kernel.

Avoiding system calls in the uncontended case
requires a shared state in user space accessible
to all participating processes/task. This shared
state, referred to as theuser lock, indicates the
status of the lock, i.e., whether the lock is held
or not and whether there are waiting tasks or
not. This is in contrast to the System V IPC
mechanisms which merely exports a handle to
the user, and performs all operations in the ker-
nel.

The user lock is located in a shared memory re-
gion that was create viashmat() ormmap() .
As a result, it can be located at different virtual
addresses in different address spaces. In the
uncontended case, the application atomically
changes the lock status word without enter-
ing into the kernel. Hence, atomic operations
such asatomic_inc(), atomic_dec,
cmpxchg() , and test_and_set() are
neccessary in user space. In the contended
case, the application needs to wait for the re-
lease of the lock or needs to wake up a wait-
ing task in the case of an unlock operation.
In order to wait in the kernel, akernel object
is required, that haswaiting queuesassociated
with it. The waiting queues provide the queue-
ing and scheduling interactions. Of course, the
aforementioned IPC mechanisms can be used
for this purpose. However, these objects still
imply a heavy weight object that requires a pri-
ori allocation and often does not precisely pro-
vide the required functionality. Another alter-
native that is commonly deployed arespinlocks
where the task spins on the availability of the
user lock until granted. To avoid too many cpu
cycles being wasted, the task yields the proces-
sor occasionally.

Ottawa Linux Symposium 2002 482

It is desirable to have the user lock be handle-
free. In other words instead of handling an
oqaquekernel handle, requiring initialization
and cross process global handles, it is desir-
able to address locks directly through their vir-
tual address. As a consequence, kernel objects
can be allocated dynamically and on demand,
rather than apriori.

A lock, though addressed by a virtual ad-
dress, can be identified conceptually through
its global lock identity, which we define by the
memory object backing the virtual address and
the offset within that object. We notate this
by the tuple [B,O]. Three fundamental mem-
ory types can be distinguished that represent
B: (a) anonymous memory, (b) shared memory
segment, and (c) memory mapped files. While
(b) and (c) can be used between multiple pro-
cesses, (a) can only be used between threads
of the same process. Utilizing the virtual ad-
dress of the lock as the kernel handle also pro-
vides for an integrated access mechanism that
ties the virtual address automatically with its
kernel object.

Despite the atomic manipulation of the user
level lock word, race conditions can still ex-
ists as the sequence of lock word manipulation
and system calls is not atomic. This has to
be resolved properly within the kernel to avoid
deadlock and inproper functioning.

Another requirement is that fast user level lock-
ing should be simple enough to provide the
basic foundation to efficiently enable more
complicated synchronization constructs, e.g.
semaphores, rwlocks, blocking locks, or spin
versions of these, pthread mutexes, DB latches.
It should also allow for a clean separation
of the blocking requirements towards the ker-
nel, so that the blocking only has to be im-
plemented with a small set of different con-
structs. This allows for extending the use of
the basic primitives without kernel modifica-

tions. Of interest is the implementation of
mutex, semaphores and multiple reader/single
writer locks.

Finally, a solution needs to be found that en-
ables the recovery of “dead” locks. We define
unrecoverable locks as those that have been ac-
quired by a process and the process terminates
without releasing the lock. There are no conve-
nient means for the kernel or for the other pro-
cesses to determine which locks are currently
held by a particular process, as lock acquisition
can be achieved through user memory manip-
ulation. Registering the process’s “pid” after
lock acquisition is not enough as both opera-
tions are not atomic. If the process dies before
it can register its pid or if it cleared its pid and
before being able the release the lock, the lock
is unrecoverable. A protocol based solution to
this problem is described in [1]. We have not
addressed this problem in our prototypes yet.

3 Linux Fast User level Locking:
History and Implementations

Having stated the requirements in the previ-
ous section, we now proceed to describe the
basic general implementation issues. For the
purpose of this discussion we define a gen-
eral opaque datatypeulock_t to represent
the userlevel lock. At a minimum it requires
a status word.

typedef struct ulock_t {
long status;

} ulock_t;

We assume that a shared memory region has
been allocated either throughshmat() or
throughmmap() and that any user locks are
allocated into this region. Again note, that the
addresses of the same lock need not be the
same across all participating address spaces.

Ottawa Linux Symposium 2002 483

The basic semaphore functionsUP() and
DOWN()can be implemented as follows.

static inline int
usema_down(ulock_t *ulock)
{

if (!__ulock_down(ulock))
return 0;

return sys_ulock_wait(ulock);
}

static inline int
usema_up(ulock_t *ulock)
{

if (!__ulock_up(ulock))
return 0;

return sys_ulock_wakeup(ulock);
}

The __ulock_down() and
__ulock_up() provide the atomic in-
crement and decrement operations on the lock
status word. A non positive count (status) indi-
cates that the lock is not available. In addition,
a negative countcould indicate the number
of waiting tasks in the kernel. If a contention
is detected, i.e. (ulock->status <=
0) , the kernel is invoked through thesys_*
functions to either wait on the wait queue
associated withulock or release a blocking
task from said waitqueue.

All counting is performed on the lock word
and race conditions resulting from the non-
atomicity of the lock word must be resolved
in the kernel. Due to such race conditions, a
lock can receive a wakeup before the waiting
process had a chance to enqueue itself into the
kernel wait queue. We describe below how var-
ious implementation resolved this race condi-
tion as part of the kernel service.

One early design suggested was the explicit al-
location of a kernel object and the export of the
kernel object address as the handle. The ker-
nel object was comprised of a wait queue and
a unique security signature. On every wait or

wakeup call, the signature would be verified to
ensure that the handle passed indeed was refer-
ring to a valid kernel object. The disadvantages
of this approach have been mentioned in sec-
tion 2, namely that a handle needs to be stored
in ulock_t and that explicit allocation and
deallocation of the kernel object are required.
Furthermore, security is limited to the length of
the key and hypothetically could be guessed.

Another prototype implementation, known
as ulocks [3], implements general user
semaphores with both fair and convoy avoid-
ance wakeup policy. Mutual exclusive
locks are regarded as a subset of the user
semaphores. The prototype also provides
multiple reader/single writer locks (rwlocks).
The user lock objectulock_t consists of a
lock word and an integer indicating the re-
quired number of kernel wait queues. User
semaphores and exclusive locks are imple-
mented with one kernel wait queue and multi-
ple reader/single writer locks are implemented
with two kernel wait queues.

This implementation separates the lock word
from the kernel wait queues and other kernel
objects, i.e., the lock word is never accessed
from the kernel on the time critical wait and
wakeup code path. Hence the state of the lock
and the number of waiting tasks in the kernel
is all recorded in the lock word. For exclusive
locks, standard counting as described in the
generalulock_t discussion, is implemented.
As with general semaphores, a positive number
indicates the number of times the semaphore
can be acquired, “0” and less indicates that the
lock is busy, while the absolute of a negative
number indicates the number of waiting tasks
in the kernel.

The “premature” wakeup call is handled
by implementing the kernel internal wait-
queues using kernel semaphores (struct
semaphore) which are initialized with a

Ottawa Linux Symposium 2002 484

value 0. A premature wakeup call, i.e. no
pending waiter yet, simply increases the ker-
nel semaphore’s count to 1. Once the pend-
ing wait arrives it simply decrements the count
back to 0 and exits the system call without
waiting in the kernel. All the wait queues (ker-
nel semaphores) associated with a user lock are
encapsulated in a single kernel object.

In the rwlocks case, the lock word is split into
three fields: write locked (1 bit), writes waiting
(15 bits), readers (16 bits). If write locked, the
readers indicate the number of tasks wait-
ing to read the lock, if not write locked, it in-
dicates the numbers of tasks that have acquired
read access to the lock. Writers are blocking
on a first kernel wait queue, while readers are
blocking on a second kernel wait queue associ-
ated with a ulock. To wakeup multiple pending
read requests, the number of task to be woken
up is passed through the system call interface.

To implement rwlocks and ca-locks, atomic
compare and exchange support is required.
Unfortunately on older 386 platforms that is
not the case.

The kernel routines must identify the kernel
object that is associated with the user lock.
Since the lock can be placed at different virtual
addresses in different processes, a lookup has
to be performed. In the common fast lookup,
the virtual address of the user lock and the ad-
dress space are hashed to a kernel object. If
no hash entry exists, the proper global identity
[B, O] of the lock must be established. For this
we first scan the calling process’s vma list for
the vma containing the lock word and its off-
set. The global identity is then looked up in
a second hash table that links global identities
with their associated kernel object. If no kernel
object exists for this global identity, one is al-
located, initialized and added to the hash func-
tions. Theclose() function associated with
a shared region holding kernel objects is inter-

cepted, so that kernel objects are deleted and
the hash tables are cleaned up, once all attached
processes have detached from the shared re-
gion.

While this implementation provides for all the
requirements, the kernel infrastructure of mul-
tiple hash tables and lookups was deemed too
heavy. In addition, the requirement for com-
pare and exchange is also seen to be restric-
tive.

3.1 Futexes

With several independent implementations [8,
9, 10] in existence, the time seemed right in
early 2002 to attempt to combine the best el-
ements of each to produce the minimum use-
ful subset for insertion into the experimental
Linux kernel series.

There are three key points of the original futex
implementation which was added to the 2.5.7
kernel:

1. We use a unique identifier for each futex
(which can be shared across different ad-
dress spaces, so may have different vir-
tual addresses in each): this identifier is
the “struct page” pointer and the offset
within that page. We increment the ref-
erence count on the page so it cannot be
swapped out while the process is sleeping.

2. The structure indicating which futex the
process is sleeping on is placed in a hash
table, and is created upon entry to the fu-
tex syscalls on the process’s kernel stack.

3. The compression of “f ast userspace
mutex” into “ futex” gave a simple unique
identifier to the section of code and the
function names used.

Ottawa Linux Symposium 2002 485

3.1.1 The 2.5.7 Implementation

The initial implementation which was
judged a sufficient basis for kernel inclusion
used a single two-argument system call,
“sys_futex(struct futex *, int
op)” . The first argument was the address of
the futex, and the second was the operation,
used to furthur demultiplex the system call
and insulate the implementation somewhat
from the problems of system call number
allocation. The latter is especially important
as the system call is expand as new operations
are required. The two valid op numbers for
this implementation wereFUTEX_UP and
FUTEX_DOWN.

The algorithm was simple, the file
linux/kernel/futex.c containing 140 code
lines, and 233 in total.

1. The user address was checked for align-
ment and that it did not overlap a page
boundary.

2. The page is pinned: this involves look-
ing up the address in the process’s address
space to find the appropriate “struct
page * ”, and incrementing its reference
count so it cannot be swapped out.

3. The “struct page * ” and offset
within the page are added, and that result
hashed using the recently introduced fast
multiplicative hashing routines [11], to
give a hash bucket in the futex hash table.

4. The “op” argument is then examined. If it
is FUTEX_DOWNthen:

(a) The process is markedINTERRUPT-
IBLE, meaning it is ready to sleep.

(b) A “struct futex_q ” is chained
to the tail of the hash bucket deter-
mined in step 3: the tail is chosen

to give FIFO ordering for wakeups.
This structures contains a pointer
to the process and the “struct
page * ” and offset which identify
the futex uniquely.

(c) The page is mapped into low mem-
ory (if it is a high memory page), and
an atomic decrement of the futex ad-
dress is attempted,4 then unmapped
again. If this does not decrement the
counter to zero, we check for signals
(setting the error toEINTR and go-
ing to the next step), schedule, and
then repeat this step.

(d) Otherwise, we now have the futex,
or have received a signal, so we
mark this processRUNNING,unlink
ourselves from the hash table, and
wake the next waiter if there is one,
and return0 or -EINTR . We have
to wake another process so that it
decrements the futex to -1 to indicate
that it is waiting (in the case where
we have the futex), or to avoid the
race where a signal came in just as
we were woken up to get the futex
(in the case where a signal was re-
ceived).

5. If the op argument wasFUTEX_UP:

(a) Map the page into low memory if it
is in a high memory page

(b) Set the count of the futex to one
(“available”).

(c) Unmap the page if it was mapped
from high memory

4We do not even attempt to decrement the address if
it is already negative, to avoid potential wraparound. We
do the decrement even if the counter is zero, as “-1” indi-
cates we are sleeping and hence has different semantics
than 0.

Ottawa Linux Symposium 2002 486

(d) Search the hash table for the
first “struct futex_q ” associ-
ated with this futex, and wake up that
process.

6. Otherwise, if the op argument is anything
else, set the error to EINVAL.

7. Unpin the page.

While there are several subtleties in this im-
plementation, it gives a second major advan-
tage over System V semaphores: there are no
explicit limits on how many futexes you can
create, nor can one futex user “starve” other
users of futexes. This is because the futex is
merely a memory location like any other until
the sys_futex syscall is entered, and each
process can only do onesys_futex syscall
at a time, so we are limited to pinning one page
per process into memory, at worst.

3.1.2 What about Read-Write Locks?

We considered an implementation of “FU-
TEX_READ_DOWN” et. al, which would
be similar to the simple mutual exclusion
locks, but before adding these to the kernel,
Paul Mackerras suggested a design for creat-
ing read/write lock in userspace by using two
futexes and a count:f astuserspaceread/write
locks, or furwocks. This implementation pro-
vides the benchmark for any kernel-based im-
plementation to beat to justify its inclusion as
a first-class primitive, which can be done by
adding new valid “op” values. A comparision
with the integrated approach chosen by ulocks
is provided in Section 4.

3.1.3 Problems with the 2.5.7 Implementa-
tion

Once the first implementation entered the
mainstream experimental kernel, it drew the
attention of a much wider audience. In par-
ticular those concerned with implementing
POSIX(tm)5 threads, and attention also re-
turned to the fairness issue.

• There is no straightforward way to imple-
ment the pthread_cond_timedwait primi-
tive: this operation requires a timeout, but
using a timer is difficult as these must not
interfere with their use by any other code.

• The pthread_cond_broadcast primitive re-
quires every process sleeping to be woken
up, which does not fit well with the 2.5.7
implementation, where a process only ex-
its the kernel when the futex has been suc-
cessfully obtained or a signal is received.

• For N:M threading, such as the Next Gen-
eration Posix Threads project [5] an asyn-
chronous interface for finding out about
the futex is required, since a single pro-
cess (containing multiple threads) might
be interested in more than one futex.

• Starvation occurs in the following situta-
tion: a single process which immediately
drops and then immediately competes for
the lock will regain it before any woken
process will.

With these limitations brought to light, we
searched for another design which would be
flexible enough to cater for these diverse
needs. After various implemenation attempts
and discussions we settled on a variation
of atomic_compare_and_swapprimitive, with

5POSIX is a trademark of the IEEE Inc.

Ottawa Linux Symposium 2002 487

the atomicity guaranteed by passing the ex-
pected value into the kernel for checking.? To
do this, two new “op” values replaced the oper-
ations above, and the system call was changed
to two additional arguments, “int val” and
“struct timespec *reltime”.

FUTEX_WAIT: Similar to the previous FU-
TEX_DOWN, except that the looping and
manipulation of the counter is left to
userspace. This works as follows:

1. Set the process state toINTERRUPT-
IBLE, and place “struct futex_q”
into the hash table as before.

2. Map the page into low memory (if in
high memory).

3. Read the futex value.

4. Unmap the page (if mapped at step
2).

5. If the value read at step 3 is not
equal to the “val” argument provided
to the system call, set the return to
EWOULDBLOCK.

6. Otherwise, sleep for the time indi-
cated by the “reltime” argument, or
indefinitely if that is NULL.

(a) If we timed out, set the return
value toETIMEDOUT.

(b) Otherwise, if there is a signal
pending, set the return value to
EINTR.

7. Try to remove our “struct
futex_q ” from the hash table: if
we were already removed, return
0 (success) unconditionally, as this
means we were woken up, otherwise
return the error code specified
above.

FUTEX_WAKE: This is similar to the previ-
ousFUTEX_UP, except that it does not

alter the futex value, it simple wakes one
(or more) processes. The number of pro-
cesses to wake is controlled by the “int
val” parameter, and the return value for
the system call is the number of pro-
cesses actually woken and removed from
the hash table.

FUTEX_AWAIT: This is proposed as an
asynchronous operation to notify the pro-
cess via a SIGIO-style mechanism when
the value changes. The exact method has
not yet been settled (see future work in
Section 5).

This new primitive is only slightly slower than
the previous one,6 in that the time between
waking the process and that process attempt-
ing to claim the lock has increased (as the lock
claim is done in userspace on return from the
FUTEX_WAKE syscall), and if the process
has to attempt the lock multiple times before
success, each attempt will be accompanied by
a syscall, rather than the syscall claiming the
lock itself.

On the other hand, the following can be imple-
mented entirely in the userspace library:

1. All the POSIX style locks, includ-
ing pthread_cond_broadcast (which re-
quires the “wake all” operation) and
pthread_cond_timedwait (which requires
the timeout argument). One of the au-
thors (Rusty) has implemented a “non-
pthreads” demonstration library which
does exactly this.

2. Read-write locks in a single word, on ar-
chitectures which support cmpxchg-style
primitives.

6About 1.5% on a low-contention tdbtorture, 3.5%
on a high-contention tdbtorture

Ottawa Linux Symposium 2002 488

3. FIFO wakeup, where fairness is guaran-
teed to anyone waiting (see 3.1.4).

Finally, it is worthwhile pointing out that
the kernel implementation requires exactly the
same number of lines as the previous imple-
mentation: 233.

3.1.4 FIFO Queueing

The naive implementation of “up” does the fol-
lowing:

1. Atomically set the futex to 1 (“available”)
and record the previous value.

2. If the previous value was negative, invoke
sys_futex to wake up a waiter.

Now, there is the potential for another process
to claim the futex (without entering the kernel
at all) between these two steps: the process wo-
ken at step 2 will then fail, and go back to sleep.
As long as this does not lead to starvation, this
unfairness is usually tolerable, given the per-
formance improvements shown in Section 4

There is one particular case where starvation
is a real problem which must be avoided. A
process which is holding the lock for extended
periods and wishes to “give way” if others
are waiting cannot simple to “futex_up(); fu-
tex_down();”, as it will always win the lock
back before any other processes.

Hence one of us (Hubertus) added the con-
cept of “futex_up_fair() ”, where the fu-
tex is set to an extremely negative number
(“passed”), instead of 1 (“available”). This
looks like a “contended” case to the fast
userspace “futex_down()” path, as it is nega-
tive, but indicates to any process after a suc-
cessful return from theFUTEX_WAITcall that

the futex has been passed directly, and no fur-
ther action (other than resetting the value to -1)
is required to claim it.

4 Performance Evaluation

In this section we assess the performance of
the current implementation. We start out with a
synthetic benchmark and continue with a mod-
ified database benchmark.

4.1 MicroBenchmark: UlockFlex

Ulockflex is a synthetic benchmark designed
to ensure the integrity and measure the perfor-
mance of locking primitives. In a run,Ulock-
flex allocates a finite set (typically one) of
global shared regions (shmat or mmap’ed files)
and a specified number of user locks which
are assigned to the shared region in a round
robin fashion. It then clones a specified num-
ber of tasks either as threads or as processes
and assigns each task to one particular lock in
a round robin fashion. Each cloned task, in
a tight loop, computes two random numbers
nlht and lht, acquires its assigned lock, does
some work of lock hold timelht, releases the
lock, does some more work of non-lock hold
timenlht and repeats the loop. The mean lock
hold timelht(mean) and non-lock hold times
nlht(mean) are input parameters.lht andnlht
are determined as random numbers over a uni-
form distribution in the interval[0.5..1.5] of
their respective mean. The tool reports total
cummulative throughput (as in number of iter-
ations through the loop). It also reports the co-
efficient of variance of the per task througput.
A higher coefficient indicates the potential for
starvation. A small coefficient indicates fair-
ness over the period of execution. A data struc-
ture associated with each lock is updated after
obtaining the lock and verified before releasing
the lock, thus allowing for integrity checks.

Ottawa Linux Symposium 2002 489

In the following we evaluate the performance
of various user locking primitives that were
built on the basics of the futex and the
ulock implementations. We consider the ba-
sic two wakeup policies for both futexes
and ulocks, i.e. fair wakeup and regular
wakeup (i.e. convoy avoidance), yielding
the 4 casesfutex_fair, futex, ulocks_fairand
ulocks. For these cases we also consider a
spinning lock acquisition in that the task tries
to acquire the lock for 3µsecs before giv-
ing up and blocking in the kernel, yielding
the 4 cases offutex_fair(spin,3), futex(spin,3),
ulocks_fair(spin,3)and ulocks(spin,3). For
reference we also provide the measurements
for a locking mechanism build on System V
semaphores, i.e., each lock request results in
a system call. This variant is denoted assysv,
resulting in 9 overall locking primitives being
evaluated.

All experiments were performed on a dual
Pentium-III 500 MHz, 256MB system. A data
point was obtained by running ulockflex for 10
seconds with a minimum of 10 runs or until a
95% confidence interval was achieved.

In the first experiment we determine the basic
overhead of the locking mechanims. For this
we run with one task, one lock andnlht ==
lht == 0. Note that in this case all user lock-
ing mechanisms never have to enter into the
kernel. Performance is reported as % efficiency
of a run without lock invocations. Thesysvwas
25.1% efficient, while all 8 user level locking
cases fell within 84.6% and 87.9%. When the
(nlht+ lht) was increased to 10µsecs, the effi-
ciency ofsysvwas still only 82.2%, while those
of the user level locks ranged from 98.9% to
99.1%.

When executing this setup with two tasks and
two locks the efficiency ofsysvdrops to 18.3%
from 25.1% indicating a hot lock in the ker-
nel. At the same time the user level primitives

all remain in the same range, as expected. The
same effect can be described as follows. With
this setup we would expect twice the through-
put performance as compared to the 1 task, 1
lock setup. Indeed, for all user primitives the
scalability observed is between 1.99 and 2.02,
while sysvonly shows a scalability of 1.51.

In the next set of experiments we fixed the to-
tal loop execution timenlht + lht to 10µsecs,
however we changed the individual compo-
nents. Let(nlht, lht) denote a configuration.
Four configuration are observed: (0,10), (5,5),
(7,3), (9,1). The (0,10) represents the highly
contended case, while (9,1) represents a sig-
nificantly less contended case. The exact con-
tention is determined by the number of tasks
accessing a shared lock. Contention num-
bers reported are all measured against the fair
locking version of ulocks in a separate run.
The contention measurement does not intro-
duce any significant overhead.

Figures 1..5 show the comparision of the 9
locking primitives for the four configurations
under various task counts (2,3,4,100,1000).
The percentage improvements for each config-
uration and task count over thesysvbase num-
ber for that configuration are reported in Ta-
ble 1 for the fair futexes and ulocks without and
with spinning (3µsecs) and in Table 2 for the
regular futexes and ulocks.

The overall qualitative assessment of the re-
sults presented in these figures and tables is
as follows. First comparing the fair locking
mechanisms, fair ulocks, in general, have an
advantage over fair futexes. Furthermore, fair
futexes perform worse thansysvfor high con-
tention scenarios. Only in the high task count
numbers do fair futexes outperform (substan-
tially) sysv and fair ulocks. Spinning only
showed some decent improvement in the low
contention cases, as expected. For the regu-
lar versions (ca-locks), both futexes and ulocks

Ottawa Linux Symposium 2002 490

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 1: Throughput for various lock types for
2 tasks, 1 lock and 4 configurations

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 2: Throughput for various lock types for
3 tasks, 1 lock and 4 configurations

always outperform thesysvversion. The gen-
eral tendency is for ulocks to achieve their per-
formance at the(5,5) configuration with lit-
tle additional benefits. Though futexes in gen-
eral lack the ulock performance at the(5,5)
configuration, they outperform ulocks at the
(7.3) and the(9,1) configurations. In con-
trast to futexes, spinning for ulocks does not
help.

Figure 1 shows the results for 2 tasks compet-
ing for 1 lock under four contention scenarios.
The lock contention for the 4 configurations
were 100%, 97.8%, 41.7% and 13.1%. The

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 3: Throughput for various lock types for
4 tasks, 1 lock and 4 configurations

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 4: Throughput for various lock types for
100 tasks, 1 lock and 4 configurations

lock contention observed for Figure 2.. 5 are
all above 99.8%.

We now turn our attention to the multiple
reader/single writer (rwlock) lock primitives.
To recall, furwocks implement the rwlock
functionality ontop of two regular futexes,
while ulocks implement them directly in the in-
terface through atomic compare and exchange
manipulation of the lock word.Ulockflexal-
lows the specification of ashare-level for
rwlocks. This translates into the probability of
a task requesting a read lock instead of a write
lock while iterating through the tight loop.

Ottawa Linux Symposium 2002 491

(0,10) (5,5) (7,3) (9,1)
0

2

4

6

8

10

12

14

16

18
x 10

4

Configs

T
hr

ou
gh

pu
t

sysv
futex_fair
futex_fair(spin,3)
ulocks_fair
ulocks_fair(spin,3)
futex
futex(spin,3)
ulocks
ulocks(spin,3)

Figure 5: Throughput for various lock types for
1000 tasks, 1 lock and 4 configurations

0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Share−Level (%)

T
hr

ou
gh

pu
t

2 tasks furwock
2 tasks ulocks
3 tasks furwock
3 tasks ulocks
4 tasks furwock
4 tasks ulocks
100 tasks furwock
100 tasks ulocks

Figure 6: Throughput of furwocks and shared
ulocks for (2,3,4,100) tasks competing for a
single lock under different read share ratios

Figure 6 shows the achieved throughput of fur-
wocks and shared ulocks for 2, 3, 4 and 100
tasks competing for a single lock under differ-
ent read share ratios. The general observation
is that the furwocks (solid lines) outperform
the ulocks (dashed lines) for their respective
task numbers. In general the lower the share
level and/or the higher the task numbers the
better the improvements that can be achieved
with furwocks over shared ulocks. Only in
the 100% share-level (only read accesses) do
shared ulocks outperform furwocks by2̃-3%.

We now analyze the fairness of the user lock-
ing. We monitor the global fairness by com-
puting the coefficient of variancecoeffof the
per task throughput. Note this should not be
compared with the fair locking itself. Theco-
eff of sysvis typically below 0.01. Only the
1000 task case showed acoeffof 9.1, indicat-
ing that tasks did not all properly get started.
The coeff for fair futexes and fair ulocks for
small task numbers (2,3,4) is in general be-
low 0.01 (as expected). For large task number
(100,1000), thecoeffremains very low for fu-
texes, while ulocks experience acoeffas high
as 1.10. For furwocks, the general observa-
tion is that thecoeff is less than 0.16 in both
furwocks and shared ulocks. Only for the 100
task case does thecoeffreach 0.45. Overall the
mean of coeff for all scenarios is 0.068 for fur-
wocks and 0.054 for shared ulocks. In general
we can state that at these level of contention,
global starvation is not a problem.

We now turn our attention to the degree of lo-
cal fairness for the ca-locks. We do this by
investigating how many times a task is capa-
ble of reacquiring the lock before some other
task locks it. To do so, we examine a high con-
tention case of 100 tasks and the (9,1) config-
uration. The kernel lock and the fair futexes
showed perfect fairness, 99.99% of the task
could never reacquire its lock without losing it
to some other task. The fair ulocks only 92.1%
failed to reacquire, 3.6% was able to grab the
lock twice in a row and 0.4% three times. The
maximum times a lock was able to be reac-
quired was 1034 times. For futexes these num-
bers are 79.0%, 21.0% and maximum of 575
and for ulocks they are 82.4%, 17.54% and
maximum of 751. To some degree it confirms
that futexes and ulocks have a higher degree
of instant reacquisition, however this analysis
fails to shed more light on why futexes are so
much better than ulocks.

Ottawa Linux Symposium 2002 492

4.2 TDB Torture Results

The Trivial DataBase (TDB) is a simple hash-
chain-based on-disk database used by SAMBA
and other projects to store persistent internal
data. It has a similar interface to the clas-
sic dbm library, but allows multiple readers
and writers and is less than 2000 lines long.
TDB normally uses fcntl locks: we replaced
these with futex locks in a special part of the
memory-mapped file. We also examined an
implementation using "spin then yield" locks,
which try to get the lock 1000 times before
calling yield() to let other processes schedule.

tdbtorture is one of the standard test pro-
grams which comes with TDB: we simplified
it to eliminate the cleanup traversal which it
normally performs, resulting in a benchmark
which forks 6 processes, each of which does
200000 random search/add/delete/traverse op-
erations.

To examine behavior under high contention,
we created a database with only one hash
chain, giving only two locks (there is one lock
for the free records chain). For the low con-
tention case, we used 4096 chains (there is still
some contention on the allocation lock). For
the no contention case, we used a single pro-
cess, rather than 6. The results shown in Ta-
ble 3 were obtained on a 2-processor 350MHz
Pentium II.

It is interesting that the fcntl locks have differ-
ent scaling properties than futexes: they actu-
ally do much worse under the low contention
case, possibly because the number of locks the
kernel has to keep track of increases.

Another point to make here is the simplicity of
the transformation from fcntl locks to futexes
within TDB: the modification took no longer
than five minutes to someone familiar with the
code.

5 Current and Future Directions

Currently we are evaluating an asynchronous
wait extension to the futex subsystem. The re-
quirement for this arises for the necessity to
support global POSIX mutexes in thread pack-
ages. In particular, we are working with the
NGPT (next generation pthreads) team to de-
rive specific requirements for building global
POSIX mutexes over futexes. Doing so pro-
vides the benefit that in the uncontended case,
no kernel interactions are required. However,
NGPT supports aM : N threading model, i.e.,
M user level threads are executed overN tasks.
Conceptually, theN tasks provide virtual pro-
cessors on which theM user threads are exe-
cuting.

When a user level thread, executing on one of
theseN tasks, needs to block on a futex, it
should not block the task, as this task provides
the virtual processing. Instead only the user
thread should be descheduled by the thread
manager of the NGPT system. Nevertheless,
awaitobj must be attached to the waitqueue
in the kernel, indicating that a user thread is
waiting on a particular futex and that the task
group needs a notification wrt to the continu-
ation on that futex. Once the thread manager
receives the notification it can reschedule the
previously blocked user thread.

For this we provide an additional operator
AFUTEX_WAITto the sys_futex system
call. Its task is to append awaitobj to the
futex’s kernel waitqueue and continue. Com-
pared to the synchronous calls described in
Section 3, thiswaitobj can not be allocated
on the stack and must be allocated and deallo-
cated dynamically. Dynamic allocations have
the disadvantage that thewaitobjs must be
freed even during an irregular program exit. It
further poses a denial of service attack threat in
that a malicious applications can continously
call sys_futex(AFUTEX_WAIT) . We are

Ottawa Linux Symposium 2002 493

contemplating various solutions to this prob-
lem.

The general solutions seem to convert to the
usage of a/dev/futexdevice to control resource
consumption. The first solution is to allo-
cate a file descriptorfd from the /dev/futex
“device” for each outstanding asynchronous
waitobj . Conveniently these descriptors
should be “pooled” to avoid the constant open-
ing and closing of the device. The private
data of the file would simply be thewaitobj .
Upon completion a SIGIO is sent to the appli-
cation. The advantage of this approach is that
the denial of service attack is naturally limited
to the file limits imposed on a process. Further-
more, on program death, allwaitobjs still
enqueued can be easily dequeued. The disad-
vantage is that this approach can significantly
pollute the “fd’ space. Another solution pro-
posed has been to open only onefd, but allow
multiplewaitobj allocations for thisfd. This
approach removes the fd space pollution issue
but requires an additional tuning parameter for
how many outstandingwaitobjs should be
allowed per fd. It also requires proper resource
management of thewaitobjs in the kernel.
At this point no definite decisions has been
reached on which direction to proceed.

The question of priorities in futexes has been
raised: the current implementation is strictly
FIFO order. The use of nice level is almost
certainly too restrictive, so some other priority
method would be required. Expanding the sys-
tem call to add a priority argument is possible,
if there were demonstrated application advan-
tage.

6 Conclusion

In this paper we described a fast userlevel lock-
ing mechanism, calledfutexes, that were in-
tegrated into the Linux 2.5 development ker-

nel. We outlined the various requirements for
such a package, described previous various so-
lutions and the current futex package. In the
performance section we showed, that futexes
can provide significant performance advan-
tages over standard System V IPC semaphores
in all cases studies.

7 Acknowledgements

Ulrich Drepper (for feedback about current
POSIX threads and glibc requirements), Paul
Mackerras (for furwocks and many ideas on al-
ternate implementations), Peter Waechtler and
Bill Abt for their feedback on asynchronous
notifications.

References

[1] Philip Bohannon and et. al. Recoverable
User-Level Mutual Exclusion. InProc.
7th IEEE Symposium on Parallel and
Distributed Systems, October 1995.

[2] Robert Dimpsey, Rajiv Arora, and Kean
Kuiper. Java Server Performance: Acase
study of building efficient, scalable
JVMs. IBM Systems Journal,
39(1):151–174, 2000.

[3] Hubertus Franke. Ulocks: Fast Userlevel
Locking. Available at
http://lse.sourceforge.net.

[4] John M. Mellor-Crummey and
Michael L. Scott. Scalable
Reader-Writer Synchronization for
Shared Memory Multiprocessors.ACM
Transactions on Computer Systems,
9(1):21–65, February 1991.

[5] NGPT: Next Generation Pthreads.
Available at
http://oss.software.ibm.com/pthreads.

Ottawa Linux Symposium 2002 494

[6] Michael Scott and William N. Scherer
III. Scalable Queue-Based Spin Locks
with Timeouts. InProc. 11th
ACMSIGPLAN Symposium on Principles
and Practice of Parallel Programming,
PPoPP’01, 2001.

[7] Robert W. Wisniewski, Leonidas I.
Kontothanassis, and Michael Scott. High
Performance Synchronization
Algorithms for Multiprogrammed
Multiprocessors. InProc. 5th ACM
SIGPLAN Symposium on Principles and
Practice of Parallel Programming,
PPoPP’95, 1995.

[8] Message-ID:
<Pine.LNX.4.33.0201071902070.5064-
101000@sphinx.mythic-beasts.com>.

[9] Message-ID:
<20020211143841.A1674@
elinux01.watson.ibm.com>.

[10] Message-ID:
<E16gRe3−0006ak−00@
wagner.rustcorp.com.au>.

[11] Message-ID:
<20020106183417.L10326@
holomorphy.com>.

Conf no-spin spin
futex ulock futex ulock

2 tasks
(0,10) -15.5 -0.7 -20.5 -22.9
(5,5) 7.9 4.6 52.4 47.7
(7,3) 15.5 18.7 50.2 66.4
(9,1) 33.2 33.1 40.1 46.5

3 tasks
(0,10) -13.7 -15.2 -19.1 -15.9
(5,5) -5.7 8.9 -10.1 3.8
(7,3) -33.0 11.0 -28.2 -9.2
(9,1) -33.7 7.5 -21.7 -0.7

4 tasks
(0,10) -15.8 -20.0 -20.4 -17.5
(5,5) 0.6 13.3 -5.3 13.5
(7,3) -38.6 8.0 -42.5 7.3
(9,1) -43.6 7.7 -30.6 6.4

100 tasks
(0,10) 172.3 190.8 151.4 189.5
(5,5) 367.6 393.9 386.4 397.6
(7,3) 464.0 300.5 449.0 305.5
(9,1) 495.7 180.3 449.1 190.0

1000 tasks
(0,10) 1900.4 2343.9 1787.2 2317.9
(5,5) 3363.7 3752.5 3403.7 3792.1
(7,3) 3972.5 3295.2 3891.1 3357.3
(9,1) 4393.7 1971.5 4127.7 1985.3

Table 1: Percentage improvement of Fair lock-
ing (spinning and non-spinning) over the base
sysvthroughput

Ottawa Linux Symposium 2002 495

Conf no-spin spin
futex ulock futex ulock

2 tasks
(0,10) 8.8 7.6 9.3 7.8
(5,5) 17.7 127.8 86.0 108.2
(7,3) 33.2 60.1 68.5 55.7
(9,1) 40.8 30.9 44.9 29.3

3 tasks
(0,10) 43.2 9.0 38.5 9.3
(5,5) 49.1 116.0 89.9 76.5
(7,3) 35.0 38.0 58.0 28.1
(9,1) 39.5 12.8 43.3 12.3

4 tasks
(0,10) 61.2 38.8 59.7 33.7
(5,5) 66.6 130.5 116.3 90.5
(7,3) 34.7 29.9 49.1 20.3
(9,1) 36.1 10.5 39.6 6.2

100 tasks
(0,10) 456.8 397.1 426.9 399.7
(5,5) 852.3 1030.2 973.4 844.5
(7,3) 1040.4 1003.9 1175.2 919.5
(9,1) 1223.7 967.7 1260.4 936.5

1000 tasks
(0,10) 4591.7 4047.9 3333.1 4055.2
(5,5) 6989.5 9570.0 8583.8 8095.9
(7,3) 9149.7 9427.1 10781.5 8714.6
(9,1) 11569.6 9437.7 11869.9 9223.3

Table 2: Percentage improvement of regular
(ca) locking (spinning and non-spinning) over
the basesysvthroughput

Locktype Contention Level
High Low None

FCNTL 1003.69 1482.08 76.4
SPIN 751.18 431.42 67.6
FUTEX 593.00 111.45 41.5

Table 3: Completion times (secs) of tdbtorture
runs with different contention rates and differ-
ent lock implementations

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

