Math 110 - Midterm Exam - Fall, 2016

1. Let p be a prime. By the projective line $\mathbb{P}^1(\mathbb{Z}_p)$ over \mathbb{Z}/p we will mean the set

$$\mathbb{Z}_p \cup \{\infty\}$$

where ∞ is a formal symbol. It does not connote a notion of size or infinity on the set \mathbb{Z}_p . Let A denote the matrix

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]$$

where a, b, c, and d denote members of \mathbb{Z}_p , and $ad - bc \neq 0$. By the fractional linear transformation associated to A on $\mathbb{P}^1(\mathbb{Z}_p)$, we will mean the transformation \hat{A} given by

$$z \longrightarrow \frac{az+b}{cz+d}$$

where $z \in \mathbb{P}^1(\mathbb{Z}_p)$. Here it is understood that if cz + d = 0, then the fraction is to be interpreted as $= \infty$, and that if $z = \infty$, the fraction is to be interpreted as $\frac{a}{c}$.

- (a) Suppose you are given two invertible 2×2 matrices A and B over \mathbb{Z}_p . it follows that $A \cdot B$ is also invertible. Give a simple description of $\hat{A} \circ \hat{B}$ in terms of operations involving A and B.
- (b) Show that if I is the identity matrix, then \hat{I} is the identity on $\mathbb{P}^1(\mathbb{Z}_p)$.
- (c) Suppose that we have an alphabet with p+1 elements, and we code the letters by a one to one assignment π from the letters to $\mathbb{P}^1(\mathbb{Z}_p)$. For any message m, we also write $\pi(m)$ for the message obtained by replacing each letter λ by $\pi(\lambda)$. Show that for any invertible matrix A over \mathbb{Z}_p , there is an easy way to decrypt the message obtained by applying \hat{A} to $\pi(m)$, and then applying π^{-1} .
- (d) For p = 31 in part (c), and a 32 letter alphabet, describe the decryption scheme for the encryption scheme associated to the transformation

$$z \to \frac{2z+5}{7z+16}$$

2. Suppose we construct a block cipher, with blocks of length 2, as follows. We will use an invertible 2×2 matrix A over \mathbb{Z}_{26} and a 2-vector v, also over \mathbb{Z}_{26} . Each block β of length two is encoded as a 2-vector over \mathbb{Z}_{26} , and and is then encrypted using the assignment

$$\beta \longrightarrow A\beta + v$$

- (a) Show that for A and v as above, it is possible to decrypt any message, and give an explicit description of the decryption algorithm.
- (b) Does the above procedure work for A given by

$$\left[\begin{array}{cc} 7 & 5 \\ 9 & 11 \end{array}\right]$$

and
$$v$$
 given by

$$\begin{pmatrix} 4 \\ 9 \end{pmatrix}$$
?

Why or why not? If it does, give the decryption formula.

(c) Does the above procedure work for A given by

$$\left[\begin{array}{cc} 1 & 2 \\ 17 & 5 \end{array}\right]$$

and v given by

$$\binom{7}{2}$$
?

Why or why not? If it does, give the decryption formula.

3. How many solutions to the equation

$$x^2 = 50$$

are there in \mathbb{Z}_{4891} ? If there are any, enumerate them.

- 4. Construct addition and multiplication tables for a finite field with 9 elements. Find a primitive root, and give its order.
- 5. Show that if gcd(e, 24) = 1, then $e^2 \cong 1 \pmod{24}$. Show that if you use 35 as your RSA modulus, then the decryption and encryption exponents are always the same.