
Dynamics of Mathematical Reason

Abstract
Michael  Friedman's  rich  account  of  the  way  the  mathematical  sciences  ideally  are 
transformed in his Dynamics of Reason affords mathematics a more influential role than 
is common in the philosophy of science. In this paper I assess Friedman's position and 
argue that we can improve on it by pursuing further the parallels between mathematics 
and  science.  We  find  a  richness  to  the  organisation  of  mathematics  similar  to  that 
Friedman finds in physics.
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It  is  always interesting to inspect new philosophical conceptions of the mathematical 

sciences to ascertain the space their authors have accorded to the purely mathematical 

components.  All  too  often  philosophers  of  science  implicitly  buy  into  the  logical 

empiricist  stance that mathematics is  a branch of logic, broadly speaking, and thus a 

transparent  language  whose  involvement  in  scientific  theories  in  no  sense  frames  or 

mediates our understanding of the world.  Even those more sophisticated philosophers 

who  have  left  behind  a  naïve  empiricism  to  examine  the  mediating  effects  of  our 

instruments and models have little to say to us on the subject of mathematics. On the 

other hand, when the logical empiricist attitude to mathematics is rejected and the use of 

mathematics is taken to involve something more than the use of a logical language, this 

largely amounts to a kind of literalism which worries about our being committed to the 

sorts of abstract  entities  physicalists take not to exist.  Philosophies which find in the 

application of mathematics something of significance other than a troublesome problem 
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are fairly rare, and experience shows that most of these owe considerable allegiance to 

Kantianism.

In  his  book  Dynamics  of  Reason,  Michael  Friedman  (2001),  philosopher  of 

science and Kant enthusiast, has provided us with a rich, synthetic picture of how science 

should  proceed,  which  accordingly  pays  mathematics  far  more  respect.  To  fully 

appreciate this picture, there is of course no substitute for reading the book. Within the 

limited space of an article the quickest way to indicate what is involved is to sketch his 

account of the arrival and bedding down of Einstein's General Theory of Relativity, the 

‘exemplar’,  we  might  say,  of  Friedman’s  scheme.  Starting  out  from  Newtonian 

gravitation, which was written in the mathematical language of the calculus within the 

setting of Euclidean geometry, and which had received its meta-scientific grounding in 

Kant’s philosophical system, through the nineteenth century mathematicians devised new 

forms  of  geometry  and  corresponding  forms  of  calculus.  With  the  resources  of  this 

language made available, Einstein could give new constitutive laws for the physics of the 

cosmos,  in  such  a  way  that  Newtonian  cosmology  could  be  reinterpreted  as 

approximating  one  of  a  broader  set  of  empirical  possibilities.  Although this  work  of 

reinterpreting the earlier theory is an essential part of scientific work, Friedman is enough 

of a Kuhnian to maintain that a pre-revolutionary advocate might find the theory quite 

incomprehensible when presented in these novel terms. 

What has been achieved by this re-interpretation, Friedman terms ‘retrospective 

communicative rationality’. But this does not satisfy him. What is especially novel in his 

account is his depiction of the means by which not just  retrospective communicative 

rationality is achieved, but also a prospective version. In the case of general relativity, the 

2



associated  meta-scientific  work  was  carried  out  by  Helmholtz,  Mach,  and  Poincaré, 

stretching  the  Kantian  schematism  in  light  of  the  transformations  of  geometry  by 

Riemann,  Lie  and  Klein,  and  in  Helmholtz’  case  his  own  psychophysical  research. 

Poincaré’s  meta-scientific  work  was  conducted  in  the  context  of  his  conventionalist 

philosophy.  After  the  Einsteinian  revolution,  further  meta-scientific  work  went  into 

bedding the theory down, thereby sparking off a novel philosophy. In this case the role 

was played by Schlick, Reichenbach and Carnap.

For Friedman, when all of these component parts pull together, science is working 

at its best. It is a truly optimistic picture, which gives you a glow of pride for ploughing 

the noble furrow of philosophy, a discipline that could make a contribution to one of 

mankind’s greatest intellectual achievements. Before we get too carried away, however, 

an  obvious  concern  presents  itself  here  that  there  have  not  been  too  many  of  these 

successes, especially in recent decades. We need to see, then, how other ‘revolutions’ 

fare. It  is,  we might say,  a constitutive principle of Friedman’s scheme that only the 

mathematical  sciences  will  feature,  although  he  does  find  scope  to  bring  Darwinian 

evolution into the story. In the case of the original Newtonian revolution, we have: the 

invention of the calculus and its later development by Euler  et al.;  the meta-scientific 

spadework being done by Galileo, Descartes, Leibniz and Newton himself. Then, there is 

Kant,  of  course,  at  the  other  end  of  the  revolution  giving  a  philosophical  shape  to 

Newtonianism and separating philosophy from natural science in the process.

But what of more recent pieces of physics? What of quantum mechanics, surely 

by any account one of our most successful pieces of natural science? 

* * *
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It is a commonly held view that all is not well with the interpretation of quantum 

mechanics, but where does the fault for this lie? Well,  the mathematics was certainly 

quickly  in  reasonable  shape.  Indeed,  the  speed  with  which  Weyl  and  von Neumann 

intervened is staggering. And had this revolution been philosophically achieved, that is, 

had it been another exemplary case of Friedman’s scheme, we would have heard from 

him a rich tale of the development of mathematics, about how work on integral equations, 

spectral  theory,  group  representation  theory,  Fourier  analysis  and  its  massive 

generalisation in the shape of harmonic analysis, Wedderburn structure theorems, von 

Neumann algebras, C*-algebras, and so on, provided a constitutive language in which the 

physical laws of quantum mechanics could be expressed.

Along with the new powerful mathematical framework came the ability to see 

how the earlier classical theories succeeded as well as they did in certain regimes. So, one 

cannot fault quantum mechanics for its retrospective communicative rationality. No, what 

seems to  be missing in  the quantum case relates  to  the  forward movement.  In  other 

words, quantum mechanics has been let down by the lack of a meta-scientific framework. 

For Friedman, while quantum mechanics has been empirically successful, philosophical 

contributions have not been ‘timely’ (2001: 120-121). Now, there has to be something 

right about this, but I want to leave that to one side for the moment and return to the 

mathematics used in quantum theory to wonder what Friedman is to make of it.  The 

mathematical path he has outlined for us in most detail, the one relating to the Einsteinian 

revolution (Riemannian geometry, Klein’s Erlanger Programme, Hilbert’s foundations of 

geometry) seems to lead inexorably to the logical empiricist view of mathematics as a 

part of logic plus the odd principle. We can afford to be generous and take set theory of 
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1930. The question arises, then, as to how the mathematics of quantum mechanics must 

go beyond this set theoretic framework for it to count as part of a Friedmanian alteration 

in the constitutive language.

Does anything about the development of the mathematics used in quantum theory 

mentioned above constitute a sufficiently transformation ? For instance, does the fact that 

von  Neumann  constructs  a  very  different  style  of  mathematical  analysis,  one  which 

appeared so strange to G. H. Hardy in the mid-1930s that he could wonder aloud whether 

it was really mathematics, does this fact constitute an augmentation of the constitutive 

capacity of mathematics, even if in principle it can all be done in set theory? If not, I 

cannot see that there is enough of capacity for the kind of changes in mathematics that 

Friedman needs.

Let me try to apply more pressure on this point by carrying on the story of the 

quantum revolution to quantum field theory. Now, Freedman Dyson famously maintained 

that mathematics and physics divorced in the 1930s over the problems of dealing with the 

infinities that plague quantum field theory. Where mathematicians had previously had the 

resources in stock to deal with the problems posed them by physics, or at least they were 

not far from hand, quantum field theory had them stumped. Disliking the cavalier attitude 

of the physicists, they turned inwards, leaving the physicists to get on with things as best 

they could. Reconciliation came in the late 1970s with a realisation that both parties had 

interesting things to tell each other. We shall not subject this story to too much scrutiny 

here,  save  to  point  out  that  Soviet  mathematicians  might  be  said  to  have  kept 

communication alive, but instead pass on to see how the couple are faring today. Well, 

here  things  are  looking  quite  encouraging.  Regarding  the  mathematically  suspect 
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Feynman diagram calculations, we can see several proposals on the table as to how to 

bring  them  safely  within  the  mathematical  fold.  Rather  promising  is  Kreimer  and 

Connes’ attack on the renormalization group and the discovery of a Hopf algebra closely 

resembling one Connes had earlier found in his noncommutative geometry programme.

Perhaps, noncommutative geometry will be part  of something larger, the Holy 

Grail  of  a  quantum gravity.  Certainly,  connections  have  been made to  string  theory. 

String theorists  avoid some of  the notorious  infinities  by passing from the Y-shaped 

particle interactions of the Feynman diagram to the smoothness of an upside-down ‘pair 

of pants’ cobordism. Now, while string theory and more broadly conformal field theory 

are using plenty of category theory, this is also the case for the other leading contender in 

the race to a consistent quantum gravity, which uses, if anything, more of the stuff, and, 

partly inspired by Grothendieck, higher-dimensional versions at that. I am referring to 

work in the loop quantum gravity paradigm. Here, Feynman diagrams are ‘categorified’ 

into  spin  foams.  Space-time  emerges  from  a  weave  of  representations  (in  the 

mathematical sense). Now string theorists are glancing over and taking note of 2-category 

theory in an attempt to get  at  a  non-abelian string theory.1 There is  an extraordinary 

ferment of new ideas.

* * *

Let us now get to the crux of the matter. I have mentioned these developments to 

pose the following question of Friedman’s scheme: 

1 See Baez and Schreiber (forthcoming) to see how advocates of loop quantum gravity and string theory are 
combining their efforts to produce the right mathematical language for theories of quantum gravity.
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If things work out and we end up with as good a quantum field theory, or even 

quantum  gravity,  as  we  could  hope  for,  should  we  be  led  to  take  it  as  a 

confirmation of his scheme by saying that it has been achieved by mathematics 

broadening its constitutive principles?

What Friedman says concerning mathematics inclines me to think that he might answer 

‘No’ to this question. Rather than any of the glorious mathematics mentioned above, 

Friedman makes what he admits to be a speculative suggestion that the quantum logic of 

von Neumann and Birkhoff may prove to be the breakthrough. So in his book, the only 

pieces of mathematics we hear about are Euclidean geometry, the calculus, Riemannian 

geometry, Hilbert’s Foundations of Geometry, then the possibility of quantum logic. It 

seems as though for Friedman a change in our mathematical  principles following the 

‘foundational’ period must impact on either the set theoretic framework or the classical 

logic used with it. I think not. Even if quantum logic gets up and running, it is just going 

to  be  seen  as  one  way of  viewing the  structure  of  orthomodular  lattices,  a  piece  of 

mathematics perfectly capable of being formulated in terms of set theory and good old 

classical logic. Nobody is going to start systematically ignoring the distributive law in the 

meta-language. Nobody will say “I have an orthomodular lattice which is boolean and I 

know that any orthomodular lattice is either finite or infinite, but I cannot say that my 

orthomodular lattice is either finite and boolean or infinite and boolean”. No, if that line 

of von Neumann should prove to be a fruitful way to view quantum mechanics, it must be 

taken  at  an  intra-mathematical  conceptual  level,  for  example,  as  being  part  of 

noncommutative geometry, or perhaps the category theorists will tell us it points to the 
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right setting for quantum mechanics in some variety of monoidal category.2 It is already 

at this level that we shall have to be able to speak of radical overhaul, just as while the 

discovery that  the internal  logic  of a topos is  constructive does not  mean than Errett 

Bishop triumphed, one can claim with some justification that the very arrival of the topos 

notion marked such an overhaul. So, if Friedman cannot see this and other aspects of 

what has taken place in mathematics in the post-1930 era as already involving a radical 

overhaul, then I suspect his scheme is in trouble.

What this comes down to can be equated crudely with the question whether there 

are ‘revolutions’ in mathematics in the post-1930 era. It is perfectly convincing to talk of 

a  century  long  revolution  from  1800  onwards  (see  Gray  1992),  but  can  we  have 

revolutions post-Zermelo-Fraenkel, even if we do not exceed its bounds? Yes, I would 

say. I am glad to see that van Fraassen thinks it possible too (2002: 239n8), although 

significantly here too he alludes to classical  logic being at stake when he invokes an 

article where a supposed revolutionary new logic - intuitionistic this time - failed. But we 

do not have to remain with the potential for revolutions, because we are going through 

one right now. My revolution like Gray’s is a long drawn out and defuse affair. If after 

the revolutionary event the lines appear reasonably sharp, when you are in the thick of 

things it is more like being in a cloud.

Pierre Cartier, once a Bourbaki member, tells us:

When I began in mathematics the main task of a mathematician was to bring 

order and make a synthesis of existing material, to create what Thomas Kuhn 

called normal science. Mathematics, in the forties and fifties, was undergoing 

2 See Baez forthcoming about this possibility. He claims there that “...quantum theory will make more sense 
when regarded as part of a theory of spacetime” and that “...we can only see this from a category-theoretic 
perspective - in particular, one that de-emphasizes the primary role of the category of sets and functions.”
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what Kuhn calls a solidification period. In a given science there are times when 

you  have  to  take  all  the  existing  material  and  create  a  unified  terminology, 

unified  standards,  and  train  people  in  a  unified  style.  The  purpose  of 

mathematics, in the fifties and sixties, was that, to create a new era of normal 

science. Now we are again at the beginning of a new revolution. Mathematics is 

undergoing major changes. We don't know exactly where it will go. It is not yet 

time to make a synthesis of all these things - maybe in twenty or thirty years it 

will be time for a new Bourbaki. I consider myself very fortunate to have had 

two lives, a life of normal science and a life of scientific revolution. (Senechal 

1998)

The best article to consult concerning what he includes in this revolution is his ‘Mad 

Day's  Work’  paper  (Cartier  2001),  which  treats,  and  attempt  to  reconcile,  Alexandre 

Grothendieck’s and Alain Connes’ work. In a similar vein, Yuri Manin’s very interesting 

‘George Cantor and his heritage’ (Manin 2002) points to higher categories as the new 

‘foundations’, the term taken to mean “...the historically variable conglomerate of rules 

and principles used to organize the already existing and always being created anew body 

of mathematical knowledge of the relevant epoch.” (p. 6).

One might have expected that philosophers would be crawling all over category 

theory. It is not everything, but as Peter May claims:

A great  deal  of  modern  mathematics,  by  no  means  just  algebraic  topology, 

would quite literally be unthinkable without the language of categories, functors, 

and natural transformations introduced by Eilenberg and MacLane in their 1945 

paper. It was perhaps inevitable that some such language would have appeared 
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eventually.  It  was  certainly  not  inevitable  that  such  an  early  systematization 

would have proven so remarkably durable and appropriate; it is hard to imagine 

that this language will ever be supplanted. It's introduction heralded the present 

golden age of mathematics. (May 2000:11) 3

In Friedman’s terms, May is presenting category theory as a constitutive language, but 

constitutive for other part of mathematics, rather than science.

* * *

There seems to be an obstacle that prevents philosophers from coming to terms 

with post-1930s mathematics, and it  is one even Lakatos never quite surmounted. He 

could never see where the dialectical excitement would come from once you are locked 

into a dominant formal system. It seems to me that Friedman is caught in a similar bind. 

We can see this by looking more closely at where Friedman takes the principal difference 

between  mathematics  and  science  to  lie.  One  of  the  most  important  features  of  his 

scheme is the occurrence during a revolution of empirical laws becoming constitutive 

principles  and  similarly  former  constitutive  principles  becoming (approximately  true) 

empirical facts. For example, what is a contingent fact of the Newtonian universe, that 

the inertial mass and the gravitational mass should be the same, becomes a constitutive 

principle of the Einsteinian picture. On the other hand, the constitutive lack of curvature 

of the Newtonian universe becomes an approximately true, but in places false, description 

of  this  universe.  This,  he  claims,  is  where  mathematics  differs  principally  from the 

natural sciences (2001: 98).

3 Using  Google,  one  finds  that  the  search  'revolution'  +  'mathematics'  often  leads  to  Grothendieck's 
algebraic topology (where toposes originated). It also leads to Eilenberg and Steenrod's algebraic topology.
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But we can find instances to parallel shifts in the status of laws between being 

empirical and being constitutive, even in post-30s mathematics.4 By the mid-1940s, there 

were many ways of going from space to group: Cech cohomology, singular cohomology, 

simplicial cohomology, etc., and corresponding homology theories. On some spaces they 

gave the same answers, but on others they differed. With the axiomatisation of homology 

and cohomology theory by Eilenberg and Steenrod, which, as May suggests, could not 

have been written down without the language of category theory, what were contingent 

features of a bunch of ways of extracting algebraic information from a topological space 

became  constitutive  of  what  it  is  to  be  a  homology  or  cohomology  theory.  Cech 

homology was found to not to possess one of these features, codified as the exactness 

axiom, and got ‘improved’ as Steenrod homology, although it was later revived as an 

example of a partially exact homology theory.

Let us look more closely at what happened to homology theories. Prior to the 

change  topological  spaces  were  defined  as  collections  of  points  satisfying  various 

axioms, although for the most part mathematicians dealt with subsets of  n-dimensional 

Euclidean  space.  Again  groups  could  be  defined  abstractly  as  sets  satisfying  certain 

axioms, but for the most part were realised as products of copies of the integers and its 

quotients,  or  perhaps  as  vector  spaces  over  the  rationals  or  reals.  Processes  called 

homology  theories  were  defined  to  extract  groups  indexed  by  natural  numbers  with 

mappings between them. Comparisons were made between these theories as to how they 

acted on specific spaces, many coincidences being found.

4 For an account drawing parallels between mathematics and science as regards laws and happenstantial 
facts see author’s paper.
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After  Eilenberg-Steenrod,  homology  theories  were  natural  number  indexed 

families of functors satisfying certain axioms. This axiomatisation would not have been 

written without the new language of  category theory.  Something previously named a 

homology theory now had to pass a test to see whether it  was  bona fide.  One of the 

consequences of the axiomatisation was that all bona fide homology theories would agree 

on certain basic spaces.  Previously 'empirical',  or ‘quasiempirical’  if you prefer,  facts 

became either  axioms or  consequences  of  the  axiomatisation.  The  old fact  that  there 

existed  a  homology  theory  behaving  in  a  certain  atypical  way  became  false,  Cech 

‘homology’ was simply not a homology theory. Debates then ensued about what was the 

'right'  category of  topological  spaces  to  allow this  new powerful  functorial  algebraic 

topology to function well.

Now this might be thought of as just a case of the rise of a new definition. Indeed, 

can we not see this episode as a case of what Ian Hacking (2000) takes Lakatos to be 

highlighting in his role as a ‘deflator’? The empirical, or rather to use Lakatos’s term, the 

‘quasi-empirical’,  has been made analytic  by sufficient  work on the definition of the 

concepts involved. But that is not the whole story on Lakatos. He is also someone who 

believed a mathematician, at least one who “...has talent, spark, genius, communicates 

with, feels the sweep of, and obeys [the] dialectic of ideas” (Lakatos 1976: 146), will 

contribute to getting things ‘right’:

As far  as naïve classification is  concerned, nominalists are close to the truth 

when claiming that the only thing that polyhedra have in common is their name. 

But after a few centuries of proofs and refutations, as the theory of polyhedra 
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develops, and theoretical classification replaces naïve classification, the balance 

changes in favour of the realist. (Lakatos 1976: 92n)

We are driving here at the notion of the proper organisation of concepts, in this case the 

right  notion  of  mathematical  space.  In  a  given  conceptual  organisation,  there  are 

dependency relations which resemble very closely those Friedman detects  in physics. 

These organisations can be overturned in revolutions.5

But still  you might say that there is a difference. Going along with Friedman, 

Newtonian  Gravitation  can  be  recast  retrospectively  in  the  language  of  Riemannian 

manifolds, where it can now be compared with General Theory of Relativity. Evidence - 

say, observations on Mercury’s advancing perihelion - is checked against them both, and 

the former is found wanting. When mathematics conducts itself analogously and recasts 

the past in a new framework, you do not tend to throw things away. Singular, Cech and 

simplicial  cohomology all  make fine cohomology theories,  no single  one is  the right 

cohomology theory, and as I mentioned earlier even the aberrant Cech homology is still 

studied. But does this difference amount to much? Are we not seeing a shift in physics in 

any case to this mathematical way with the treatment of universality classes of models 

and of toy models?

Mathematical  physicists  are  now happy with the idea that  they need to  study 

collections of models.  The Ising model is  surely inaccurate about the features of our 

world, false then, but it is the most computational tractable of a universality class, which 

includes models we would like to know about. Elsewhere, plenty of time is devoted to 

studying 2 + 1 dimensional models, in the search for insight into 3 + 1 dimensional ones. 

5 If one wishes to describe Lakatos as exploring the change of status from quasi-empirical to analytic, then 
the best way to my mind of understanding such 'analyticity' is through the lens of Alasdair MacIntyre's 
Thomistic-Aristotelianism, see especially (1998: 184-185).
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And  what  of  investigations  into  spaces  of  conformal  field  theories (the  distinction 

between theories and models seems to be becoming blurred), and the dualities relating 

them, or of the idea of ensembles of universes? “Oh, that’s just mathematics dressed up 

as physics”, some say. Write it off if you will, but plenty of physicists work in this way.

All this is, of course, not to suggest that there are no philosophically significant 

differences between mathematics and physics. But one must be careful not to look to 

impose differences too early. If you were appointing a researcher to work on a whale 

physiology project, you would surely prefer someone who had made a thorough study of 

elephant physiology, but who had never seen the sea, to an oceanographer.

***

To  round  out  the  picture,  what  prospects  are  there  for  meta-scientific  philosophical 

activity to intervene in timely fashion to allow for quantum field theory, or quantum 

gravity, and belatedly quantum mechanics, to be properly achieved? Remember the life-

line Friedman has provided for philosophers distressed by the thought that they might be 

drowning in a sea of ineffectiveness: Philosophy has played an indispensable role in the 

formulation of that crowning human achievement - the General Theory of Relativity - 

and it should expect to be able to make crucial contributions in the future. Looking at the 

meta-scientific level, whose resources have proved so shockingly wanting in the case of 

quantum mechanics, what do we have on the cards? For Friedman, after Carnap comes 

Kuhn , author of "our most sophisticated historiography". Perhaps, historians would find 

more conducive Peter Galison's interesting Peircean response to incommensurability in 

the final chapter of Image and Logic (Galison 1997)? Another way out would be to take 

up Kuhn's hint:
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the  early  models  of  the  sort  of  history  that  has  so  influenced me  and  my 

historical colleagues is the product of a post-Kantian European tradition which 

I  and  my  philosophical colleagues  continue  to  find  opaque.  Increasingly,  I 

suspect that anyone who believes history may have a deep philosophical import 

will have to learn to bridge the longstanding divide between the Continental 

and English-language philosophical traditions. (Kuhn 1977: xv)

This must surely be music  to  Friedman's  ears,  for who does Kuhn mean? Alexandre 

Koyré must feature, and beyond him lies Ernst Cassirer. Now, Cassirer is the one we are 

encouraged to return to at the end of Friedman’s book The Parting of the Ways if we wish 

to glean from the Neo-Kantian tradition more than the pale  shadow of it  which was 

projected Westwards by the Vienna Circle  Diaspora.  Friedman in  this  book sees  the 

origin of what Kuhn refers to as the “longstanding divide” in the differences between 

Carnap and Heidegger.

Of the philosophy which emerged from those who stayed in  Europe we have 

Habermas’s notion of communicative rationality, borrowed by Friedman. Elsewhere, van 

Fraassen  (2002)  appeals  to  Sartre's  existentialist  philosophy  of  the  emotions  to 

understand how we adopt revolutionary change. These are strange, but interesting times 

we live in, where philosophers of science themselves are experiencing Satrean emotions 

and so are reaching out further than they have for many decades. For my part, I think we 

could have saved a lot of time if we had only listened to Collingwood in, for example, his 

The Idea of Nature. Indeed, it seems to me that what he argues there is not so far from 

what Friedman is seeking.
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But  will  any  of  these  philosophies  help  us  smooth  the  passage  of  the  next 

revolution in mathematical physics? For my part, the only way they might is if they can 

help us revive the philosophy of mathematics. While I do not want to go so far as to 

claim that all hands should be set to the mathematical pump, I propose as an indication of 

the health of our philosophising we see whether mathematics is being taken seriously. For 

the past few decades we have been failing. The questions a philosophy of X should ask 

are not to be completely determined by the state of development of X, but there should be 

some genuine connection. For too long philosophical work on mathematics has let us 

down. Philosophers of mathematics are at last beginning to progress from alluding briefly 

in a footnote to category theory as another structuralist approach, to a more serious form 

of engagement, but the signs are, however, that it will be a long time before we come 

close to matching the meta-scientific work of a Poincare, a Mach, or a Helmholtz. I fear 

that all but a handful are at least fifty years behind, and the exceptions receive scant 

encouragement. We seem all too happy to keep philosophy of mathematics tightly bound 

to philosophical logic, philosophy of language, and analytic metaphysics. Our best hope, 

I believe, is to forge links to philosophers of science with the kind of vision displayed by 

Michael Friedman in Dynamics of Reason.
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