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11 Probabilistic information

retrieval

During the discussion of relevance feedback in Section 9.1.2, we observed
that if we have some known relevant and nonrelevant documents, then we
can straightforwardly start to estimate the probability of a term t appearing
in a relevant document P(t|R = 1), and that this could be the basis of a
classifier that decides whether documents are relevant or not. In this chapter,
we more systematically introduce this probabilistic approach to IR, which
provides a different formal basis for a retrieval model and results in different
techniques for setting term weights.

Users start with information needs, which they translate into query repre-
sentations. Similarly, there are documents, which are converted into document
representations (the latter differing at least by how text is tokenized, but per-
haps containing fundamentally less information, as when a non-positional
index is used). Based on these two representations, a system tries to de-
termine how well documents satisfy information needs. In the Boolean or
vector space models of IR, matching is done in a formally defined but seman-
tically imprecise calculus of index terms. Given only a query, an IR system
has an uncertain understanding of the information need. Given the query
and document representations, a system has an uncertain guess of whether
a document has content relevant to the information need. Probability theory
provides a principled foundation for such reasoning under uncertainty. This
chapter provides one answer as to how to exploit this foundation to estimate
how likely it is that a document is relevant to an information need.

There is more than one possible retrieval model which has a probabilistic
basis. Here, we will introduce probability theory and the Probability Rank-
ing Principle (Sections 11.1–11.2), and then concentrate on the Binary Inde-
pendence Model (Section 11.3), which is the original and still most influential
probabilistic retrieval model. Finally, we will introduce related but extended
methods which use term counts, including the empirically successful Okapi
BM25 weighting scheme, and Bayesian Network models for IR (Section 11.4).
In Chapter 12, we then present the alternative probabilistic language model-
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ing approach to IR, which has been developed with considerable success in
recent years.

11.1 Review of basic probability theory

We hope that the reader has seen a little basic probability theory previously.
We will give a very quick review; some references for further reading appear
at the end of the chapter. A variable A represents an event (a subset of the
space of possible outcomes). Equivalently, we can represent the subset via a
random variable, which is a function from outcomes to real numbers; the sub-RANDOM VARIABLE

set is the domain over which the random variable A has a particular value.
Often we will not know with certainty whether an event is true in the world.
We can ask the probability of the event 0 ≤ P(A) ≤ 1. For two events A and
B, the joint event of both events occurring is described by the joint probabil-
ity P(A, B). The conditional probability P(A|B) expresses the probability of
event A given that event B occurred. The fundamental relationship between
joint and conditional probabilities is given by the chain rule:CHAIN RULE

P(A, B) = P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)(11.1)

Without making any assumptions, the probability of a joint event equals the
probability of one of the events multiplied by the probability of the other
event conditioned on knowing the first event happened.

Writing P(A) for the complement of an event, we similarly have:

P(A, B) = P(B|A)P(A)(11.2)

Probability theory also has a partition rule, which says that if an event B canPARTITION RULE

be divided into an exhaustive set of disjoint subcases, then the probability of
B is the sum of the probabilities of the subcases. A special case of this rule
gives that:

P(B) = P(A, B) + P(A, B)(11.3)

From these we can derive Bayes’ Rule for inverting conditional probabili-BAYES’ RULE

ties:

P(A|B) =
P(B|A)P(A)

P(B)
=

[

P(B|A)

∑X∈{A,A} P(B|X)P(X)

]

P(A)(11.4)

This equation can also be thought of as a way of updating probabilities. We
start off with an initial estimate of how likely the event A is when we do
not have any other information; this is the prior probability P(A). Bayes’ rulePRIOR PROBABILITY

lets us derive a posterior probability P(A|B) after having seen the evidence B,POSTERIOR

PROBABILITY
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based on the likelihood of B occurring in the two cases that A does or does not
hold.1

Finally, it is often useful to talk about the odds of an event, which provideODDS

a kind of multiplier for how probabilities change:

Odds: O(A) =
P(A)

P(A)
=

P(A)

1 − P(A)
(11.5)

11.2 The Probability Ranking Principle

11.2.1 The 1/0 loss case

We assume a ranked retrieval setup as in Section 6.3, where there is a collec-
tion of documents, the user issues a query, and an ordered list of documents
is returned. We also assume a binary notion of relevance as in Chapter 8. For
a query q and a document d in the collection, let Rd,q be an indicator random
variable that says whether d is relevant with respect to a given query q. That
is, it takes on a value of 1 when the document is relevant and 0 otherwise. In
context we will often write just R for Rd,q.

Using a probabilistic model, the obvious order in which to present doc-
uments to the user is to rank documents by their estimated probability of
relevance with respect to the information need: P(R = 1|d, q). This is the ba-
sis of the Probability Ranking Principle (PRP) (van Rijsbergen 1979, 113–114):PROBABILITY

RANKING PRINCIPLE

“If a reference retrieval system’s response to each request is a ranking
of the documents in the collection in order of decreasing probability
of relevance to the user who submitted the request, where the prob-
abilities are estimated as accurately as possible on the basis of what-
ever data have been made available to the system for this purpose, the
overall effectiveness of the system to its user will be the best that is
obtainable on the basis of those data.”

In the simplest case of the PRP, there are no retrieval costs or other utility
concerns that would differentially weight actions or errors. You lose a point
for either returning a nonrelevant document or failing to return a relevant
document (such a binary situation where you are evaluated on your accuracy
is called 1/0 loss). The goal is to return the best possible results as the top k1/0 LOSS

documents, for any value of k the user chooses to examine. The PRP then
says to simply rank all documents in decreasing order of P(R = 1|d, q). If
a set of retrieval results is to be returned, rather than an ordering, the BayesBAYES OPTIMAL

DECISION RULE

1. The term likelihood is just a synonym of probability. It is the probability of an event or data
according to a model. The term is usually used when people are thinking of holding the data
fixed, while varying the model.
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Optimal Decision Rule, the decision which minimizes the risk of loss, is to
simply return documents that are more likely relevant than nonrelevant:

d is relevant iff P(R = 1|d, q) > P(R = 0|d, q)(11.6)

Theorem 11.1. The PRP is optimal, in the sense that it minimizes the expected loss
(also known as the Bayes risk) under 1/0 loss.BAYES RISK

The proof can be found in Ripley (1996). However, it requires that all proba-
bilities are known correctly. This is never the case in practice. Nevertheless,
the PRP still provides a very useful foundation for developing models of IR.

11.2.2 The PRP with retrieval costs

Suppose, instead, that we assume a model of retrieval costs. Let C1 be the
cost of not retrieving a relevant document and C0 the cost of retrieval of a
nonrelevant document. Then the Probability Ranking Principle says that if
for a specific document d and for all documents d′ not yet retrieved

C0 · P(R = 0|d)− C1 · P(R = 1|d) ≤ C0 · P(R = 0|d′) − C1 · P(R = 1|d′)(11.7)

then d is the next document to be retrieved. Such a model gives a formal
framework where we can model differential costs of false positives and false
negatives and even system performance issues at the modeling stage, rather
than simply at the evaluation stage, as we did in Section 8.6 (page 168). How-
ever, we will not further consider loss/utility models in this chapter.

11.3 The Binary Independence Model

The Binary Independence Model (BIM) we present in this section is the modelBINARY

INDEPENDENCE

MODEL
that has traditionally been used with the PRP. It introduces some simple as-
sumptions, which make estimating the probability function P(R|d, q) prac-
tical. Here, “binary” is equivalent to Boolean: documents and queries are
both represented as binary term incidence vectors. That is, a document d
is represented by the vector ~x = (x1, . . . , xM) where xt = 1 if term t is
present in document d and xt = 0 if t is not present in d. With this rep-
resentation, many possible documents have the same vector representation.
Similarly, we represent q by the incidence vector ~q (the distinction between
q and ~q is less central since commonly q is in the form of a set of words).
“Independence” means that terms are modeled as occurring in documents
independently. The model recognizes no association between terms. This
assumption is far from correct, but it nevertheless often gives satisfactory
results in practice; it is the “naive” assumption of Naive Bayes models, dis-
cussed further in Section 13.4 (page 265). Indeed, the Binary Independence
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Model is exactly the same as the multivariate Bernoulli Naive Bayes model
presented in Section 13.3 (page 263). In a sense this assumption is equivalent
to an assumption of the vector space model, where each term is a dimension
that is orthogonal to all other terms.

We will first present a model which assumes that the user has a single
step information need. As discussed in Chapter 9, seeing a range of results
might let the user refine their information need. Fortunately, as mentioned
there, it is straightforward to extend the Binary Independence Model so as to
provide a framework for relevance feedback, and we present this model in
Section 11.3.4.

To make a probabilistic retrieval strategy precise, we need to estimate how
terms in documents contribute to relevance, specifically, we wish to know
how term frequency, document frequency, document length, and other statis-
tics that we can compute influence judgments about document relevance,
and how they can be reasonably combined to estimate the probability of doc-
ument relevance. We then order documents by decreasing estimated proba-
bility of relevance.

We assume here that the relevance of each document is independent of the
relevance of other documents. As we noted in Section 8.5.1 (page 166), this
is incorrect: the assumption is especially harmful in practice if it allows a
system to return duplicate or near duplicate documents. Under the BIM, we
model the probability P(R|d, q) that a document is relevant via the probabil-
ity in terms of term incidence vectors P(R|~x,~q). Then, using Bayes rule, we
have:

P(R = 1|~x,~q) =
P(~x|R = 1,~q)P(R = 1|~q)

P(~x|~q)
(11.8)

P(R = 0|~x,~q) =
P(~x|R = 0,~q)P(R = 0|~q)

P(~x|~q)

Here, P(~x|R = 1,~q) and P(~x|R = 0,~q) are the probability that if a relevant or
nonrelevant, respectively, document is retrieved, then that document’s rep-
resentation is ~x. You should think of this quantity as defined with respect to
a space of possible documents in a domain. How do we compute all these
probabilities? We never know the exact probabilities, and so we have to use
estimates: Statistics about the actual document collection are used to estimate
these probabilities. P(R = 1|~q) and P(R = 0|~q) indicate the prior probability
of retrieving a relevant or nonrelevant document respectively for a query ~q.
Again, if we knew the percentage of relevant documents in the collection,
then we could use this number to estimate P(R = 1|~q) and P(R = 0|~q). Since
a document is either relevant or nonrelevant to a query, we must have that:

P(R = 1|~x,~q) + P(R = 0|~x,~q) = 1(11.9)
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11.3.1 Deriving a ranking function for query terms

Given a query q, we wish to order returned documents by descending P(R =
1|d, q). Under the BIM, this is modeled as ordering by P(R = 1|~x,~q). Rather
than estimating this probability directly, because we are interested only in the
ranking of documents, we work with some other quantities which are easier
to compute and which give the same ordering of documents. In particular,
we can rank documents by their odds of relevance (as the odds of relevance
is monotonic with the probability of relevance). This makes things easier,
because we can ignore the common denominator in (11.8), giving:

O(R|~x,~q) =
P(R = 1|~x,~q)

P(R = 0|~x,~q)
=

P(R=1|~q)P(~x|R=1,~q)
P(~x|~q)

P(R=0|~q)P(~x|R=0,~q)
P(~x|~q)

=
P(R = 1|~q)

P(R = 0|~q)
·

P(~x|R = 1,~q)

P(~x|R = 0,~q)
(11.10)

The left term in the rightmost expression of Equation (11.10) is a constant for
a given query. Since we are only ranking documents, there is thus no need
for us to estimate it. The right-hand term does, however, require estimation,
and this initially appears to be difficult: How can we accurately estimate the
probability of an entire term incidence vector occurring? It is at this point that
we make the Naive Bayes conditional independence assumption that the presenceNAIVE BAYES

ASSUMPTION or absence of a word in a document is independent of the presence or absence
of any other word (given the query):

P(~x|R = 1,~q)

P(~x|R = 0,~q)
=

M

∏
t=1

P(xt|R = 1,~q)

P(xt|R = 0,~q)
(11.11)

So:

O(R|~x,~q) = O(R|~q) ·
M

∏
t=1

P(xt|R = 1,~q)

P(xt|R = 0,~q)
(11.12)

Since each xt is either 0 or 1, we can separate the terms to give:

O(R|~x,~q) = O(R|~q) · ∏
t:xt=1

P(xt = 1|R = 1,~q)

P(xt = 1|R = 0,~q)
· ∏

t:xt=0

P(xt = 0|R = 1,~q)

P(xt = 0|R = 0,~q)
(11.13)

Henceforth, let pt = P(xt = 1|R = 1,~q) be the probability of a term appear-
ing in a document relevant to the query, and ut = P(xt = 1|R = 0,~q) be the
probability of a term appearing in a nonrelevant document. These quantities
can be visualized in the following contingency table where the columns add
to 1:

(11.14)
document relevant (R = 1) nonrelevant (R = 0)

Term present xt = 1 pt ut

Term absent xt = 0 1 − pt 1 − ut



Online edition (c)
2009 Cambridge UP

11.3 The Binary Independence Model 225

Let us make an additional simplifying assumption that terms not occur-
ring in the query are equally likely to occur in relevant and nonrelevant doc-
uments: that is, if qt = 0 then pt = ut. (This assumption can be changed,
as when doing relevance feedback in Section 11.3.4.) Then we need only
consider terms in the products that appear in the query, and so,

O(R|~q,~x) = O(R|~q) · ∏
t:xt=qt=1

pt

ut
· ∏

t:xt=0,qt=1

1 − pt

1 − ut
(11.15)

The left product is over query terms found in the document and the right
product is over query terms not found in the document.

We can manipulate this expression by including the query terms found in
the document into the right product, but simultaneously dividing through
by them in the left product, so the value is unchanged. Then we have:

O(R|~q,~x) = O(R|~q) · ∏
t:xt=qt=1

pt(1 − ut)

ut(1 − pt)
· ∏

t:qt=1

1 − pt

1 − ut
(11.16)

The left product is still over query terms found in the document, but the right
product is now over all query terms. That means that this right product is a
constant for a particular query, just like the odds O(R|~q). So the only quantity
that needs to be estimated to rank documents for relevance to a query is the
left product. We can equally rank documents by the logarithm of this term,
since log is a monotonic function. The resulting quantity used for ranking is
called the Retrieval Status Value (RSV) in this model:RETRIEVAL STATUS

VALUE

RSVd = log ∏
t:xt=qt=1

pt(1 − ut)

ut(1 − pt)
= ∑

t:xt=qt=1

log
pt(1 − ut)

ut(1 − pt)
(11.17)

So everything comes down to computing the RSV. Define ct:

ct = log
pt(1 − ut)

ut(1 − pt)
= log

pt

(1 − pt)
+ log

1 − ut

ut
(11.18)

The ct terms are log odds ratios for the terms in the query. We have the
odds of the term appearing if the document is relevant (pt/(1 − pt)) and the
odds of the term appearing if the document is nonrelevant (ut/(1− ut)). The
odds ratio is the ratio of two such odds, and then we finally take the log of thatODDS RATIO

quantity. The value will be 0 if a term has equal odds of appearing in relevant
and nonrelevant documents, and positive if it is more likely to appear in
relevant documents. The ct quantities function as term weights in the model,
and the document score for a query is RSVd = ∑xt=qt=1 ct. Operationally, we
sum them in accumulators for query terms appearing in documents, just as
for the vector space model calculations discussed in Section 7.1 (page 135).
We now turn to how we estimate these ct quantities for a particular collection
and query.
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11.3.2 Probability estimates in theory

For each term t, what would these ct numbers look like for the whole collec-
tion? (11.19) gives a contingency table of counts of documents in the collec-
tion, where dft is the number of documents that contain term t:

(11.19)
documents relevant nonrelevant Total

Term present xt = 1 s dft − s dft

Term absent xt = 0 S − s (N − dft) − (S − s) N − dft

Total S N − S N

Using this, pt = s/S and ut = (dft − s)/(N − S) and

ct = K(N, dft, S, s) = log
s/(S − s)

(dft − s)/((N − dft) − (S − s))
(11.20)

To avoid the possibility of zeroes (such as if every or no relevant document

has a particular term) it is fairly standard to add 1
2 to each of the quantities

in the center 4 terms of (11.19), and then to adjust the marginal counts (the
totals) accordingly (so, the bottom right cell totals N + 2). Then we have:

ĉt = K(N, dft, S, s) = log
(s + 1

2 )/(S − s + 1
2 )

(dft − s + 1
2 )/(N − dft − S + s + 1

2 )
(11.21)

Adding 1
2 in this way is a simple form of smoothing. For trials with cat-

egorical outcomes (such as noting the presence or absence of a term), one
way to estimate the probability of an event from data is simply to count the
number of times an event occurred divided by the total number of trials.
This is referred to as the relative frequency of the event. Estimating the prob-RELATIVE FREQUENCY

ability as the relative frequency is the maximum likelihood estimate (or MLE),MAXIMUM LIKELIHOOD

ESTIMATE

MLE
because this value makes the observed data maximally likely. However, if
we simply use the MLE, then the probability given to events we happened to
see is usually too high, whereas other events may be completely unseen and
giving them as a probability estimate their relative frequency of 0 is both an
underestimate, and normally breaks our models, since anything multiplied
by 0 is 0. Simultaneously decreasing the estimated probability of seen events
and increasing the probability of unseen events is referred to as smoothing.SMOOTHING

One simple way of smoothing is to add a number α to each of the observed
counts. These pseudocounts correspond to the use of a uniform distributionPSEUDOCOUNTS

over the vocabulary as a Bayesian prior, following Equation (11.4). We ini-BAYESIAN PRIOR

tially assume a uniform distribution over events, where the size of α denotes
the strength of our belief in uniformity, and we then update the probability
based on observed events. Since our belief in uniformity is weak, we use
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α = 1
2 . This is a form of maximum a posteriori (MAP) estimation, where weMAXIMUM A

POSTERIORI

MAP
choose the most likely point value for probabilities based on the prior and
the observed evidence, following Equation (11.4). We will further discuss
methods of smoothing estimated counts to give probability models in Sec-

tion 12.2.2 (page 243); the simple method of adding 1
2 to each observed count

will do for now.

11.3.3 Probability estimates in practice

Under the assumption that relevant documents are a very small percentage
of the collection, it is plausible to approximate statistics for nonrelevant doc-
uments by statistics from the whole collection. Under this assumption, ut

(the probability of term occurrence in nonrelevant documents for a query) is
dft/N and

log[(1 − ut)/ut] = log[(N − dft)/dft] ≈ log N/dft(11.22)

In other words, we can provide a theoretical justification for the most fre-
quently used form of idf weighting, which we saw in Section 6.2.1.

The approximation technique in Equation (11.22) cannot easily be extended
to relevant documents. The quantity pt can be estimated in various ways:

1. We can use the frequency of term occurrence in known relevant docu-
ments (if we know some). This is the basis of probabilistic approaches to
relevance feedback weighting in a feedback loop, discussed in the next
subsection.

2. Croft and Harper (1979) proposed using a constant in their combination
match model. For instance, we might assume that pt is constant over all
terms xt in the query and that pt = 0.5. This means that each term has
even odds of appearing in a relevant document, and so the pt and (1− pt)
factors cancel out in the expression for RSV. Such an estimate is weak, but
doesn’t disagree violently with our hopes for the search terms appearing
in many but not all relevant documents. Combining this method with our
earlier approximation for ut, the document ranking is determined simply
by which query terms occur in documents scaled by their idf weighting.
For short documents (titles or abstracts) in situations in which iterative
searching is undesirable, using this weighting term alone can be quite
satisfactory, although in many other circumstances we would like to do
better.

3. Greiff (1998) argues that the constant estimate of pt in the Croft and Harper
(1979) model is theoretically problematic and not observed empirically: as
might be expected, pt is shown to rise with dft. Based on his data analysis,

a plausible proposal would be to use the estimate pt = 1
3 + 2

3 dft/N.
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Iterative methods of estimation, which combine some of the above ideas,
are discussed in the next subsection.

11.3.4 Probabilistic approaches to relevance feedback

We can use (pseudo-)relevance feedback, perhaps in an iterative process of
estimation, to get a more accurate estimate of pt. The probabilistic approach
to relevance feedback works as follows:

1. Guess initial estimates of pt and ut. This can be done using the probability
estimates of the previous section. For instance, we can assume that pt is

constant over all xt in the query, in particular, perhaps taking pt = 1
2 .

2. Use the current estimates of pt and ut to determine a best guess at the set
of relevant documents R = {d : Rd,q = 1}. Use this model to retrieve a set
of candidate relevant documents, which we present to the user.

3. We interact with the user to refine the model of R. We do this by learn-
ing from the user relevance judgments for some subset of documents V.
Based on relevance judgments, V is partitioned into two subsets: VR =
{d ∈ V, Rd,q = 1} ⊂ R and VNR = {d ∈ V, Rd,q = 0}, which is disjoint
from R.

4. We reestimate pt and ut on the basis of known relevant and nonrelevant
documents. If the sets VR and VNR are large enough, we may be able
to estimate these quantities directly from these documents as maximum
likelihood estimates:

pt = |VRt|/|VR|(11.23)

(where VRt is the set of documents in VR containing xt). In practice,
we usually need to smooth these estimates. We can do this by adding
1
2 to both the count |VRt| and to the number of relevant documents not
containing the term, giving:

pt =
|VRt|+

1
2

|VR| + 1
(11.24)

However, the set of documents judged by the user (V) is usually very
small, and so the resulting statistical estimate is quite unreliable (noisy),
even if the estimate is smoothed. So it is often better to combine the new
information with the original guess in a process of Bayesian updating. In
this case we have:

p
(k+1)
t =

|VRt|+ κp
(k)
t

|VR| + κ

(11.25)
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Here p
(k)
t is the kth estimate for pt in an iterative updating process and

is used as a Bayesian prior in the next iteration with a weighting of κ.
Relating this equation back to Equation (11.4) requires a bit more proba-
bility theory than we have presented here (we need to use a beta distribu-
tion prior, conjugate to the Bernoulli random variable Xt). But the form
of the resulting equation is quite straightforward: rather than uniformly
distributing pseudocounts, we now distribute a total of κ pseudocounts
according to the previous estimate, which acts as the prior distribution.
In the absence of other evidence (and assuming that the user is perhaps
indicating roughly 5 relevant or nonrelevant documents) then a value
of around κ = 5 is perhaps appropriate. That is, the prior is strongly
weighted so that the estimate does not change too much from the evi-
dence provided by a very small number of documents.

5. Repeat the above process from step 2, generating a succession of approxi-
mations to R and hence pt, until the user is satisfied.

It is also straightforward to derive a pseudo-relevance feedback version of
this algorithm, where we simply pretend that VR = V. More briefly:

1. Assume initial estimates for pt and ut as above.

2. Determine a guess for the size of the relevant document set. If unsure, a
conservative (too small) guess is likely to be best. This motivates use of a
fixed size set V of highest ranked documents.

3. Improve our guesses for pt and ut. We choose from the methods of Equa-
tions (11.23) and (11.25) for re-estimating pt, except now based on the set
V instead of VR. If we let Vt be the subset of documents in V containing

xt and use add 1
2 smoothing, we get:

pt =
|Vt|+

1
2

|V| + 1
(11.26)

and if we assume that documents that are not retrieved are nonrelevant
then we can update our ut estimates as:

ut =
dft − |Vt|+

1
2

N − |V| + 1
(11.27)

4. Go to step 2 until the ranking of the returned results converges.

Once we have a real estimate for pt then the ct weights used in the RSV
value look almost like a tf-idf value. For instance, using Equation (11.18),
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Equation (11.22), and Equation (11.26), we have:

ct = log

[

pt

1 − pt
·

1 − ut

ut

]

≈ log

[

|Vt|+
1
2

|V| − |Vt|+ 1
·

N

dft

]

(11.28)

But things aren’t quite the same: pt/(1 − pt) measures the (estimated) pro-
portion of relevant documents that the term t occurs in, not term frequency.
Moreover, if we apply log identities:

ct = log
|Vt|+

1
2

|V| − |Vt|+ 1
+ log

N

dft
(11.29)

we see that we are now adding the two log scaled components rather than
multiplying them.

? Exercise 11.1

Work through the derivation of Equation (11.20) from Equations (11.18) and (11.19).

Exercise 11.2

What are the differences between standard vector space tf-idf weighting and the BIM
probabilistic retrieval model (in the case where no document relevance information
is available)?

Exercise 11.3 [⋆⋆]

Let Xt be a random variable indicating whether the term t appears in a document.
Suppose we have |R| relevant documents in the document collection and that Xt = 1
in s of the documents. Take the observed data to be just these observations of Xt for
each document in R. Show that the MLE for the parameter pt = P(Xt = 1|R = 1,~q),
that is, the value for pt which maximizes the probability of the observed data, is
pt = s/|R|.

Exercise 11.4

Describe the differences between vector space relevance feedback and probabilistic
relevance feedback.

11.4 An appraisal and some extensions

11.4.1 An appraisal of probabilistic models

Probabilistic methods are one of the oldest formal models in IR. Already
in the 1970s they were held out as an opportunity to place IR on a firmer
theoretical footing, and with the resurgence of probabilistic methods in com-
putational linguistics in the 1990s, that hope has returned, and probabilis-
tic methods are again one of the currently hottest topics in IR. Traditionally,
probabilistic IR has had neat ideas but the methods have never won on per-
formance. Getting reasonable approximations of the needed probabilities for
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a probabilistic IR model is possible, but it requires some major assumptions.
In the BIM these are:

• a Boolean representation of documents/queries/relevance

• term independence

• terms not in the query don’t affect the outcome

• document relevance values are independent

It is perhaps the severity of the modeling assumptions that makes achieving
good performance difficult. A general problem seems to be that probabilistic
models either require partial relevance information or else only allow for
deriving apparently inferior term weighting models.

Things started to change in the 1990s when the BM25 weighting scheme,
which we discuss in the next section, showed very good performance, and
started to be adopted as a term weighting scheme by many groups. The
difference between “vector space” and “probabilistic” IR systems is not that
great: in either case, you build an information retrieval scheme in the exact
same way that we discussed in Chapter 7. For a probabilistic IR system, it’s
just that, at the end, you score queries not by cosine similarity and tf-idf in
a vector space, but by a slightly different formula motivated by probability
theory. Indeed, sometimes people have changed an existing vector-space
IR system into an effectively probabilistic system simply by adopted term
weighting formulas from probabilistic models. In this section, we briefly
present three extensions of the traditional probabilistic model, and in the next
chapter, we look at the somewhat different probabilistic language modeling
approach to IR.

11.4.2 Tree-structured dependencies between terms

Some of the assumptions of the BIM can be removed. For example, we can
remove the assumption that terms are independent. This assumption is very
far from true in practice. A case that particularly violates this assumption is
term pairs like Hong and Kong, which are strongly dependent. But dependen-
cies can occur in various complex configurations, such as between the set of
terms New, York, England, City, Stock, Exchange, and University. van Rijsbergen
(1979) proposed a simple, plausible model which allowed a tree structure of
term dependencies, as in Figure 11.1. In this model each term can be directly
dependent on only one other term, giving a tree structure of dependencies.
When it was invented in the 1970s, estimation problems held back the practi-
cal success of this model, but the idea was reinvented as the Tree Augmented
Naive Bayes model by Friedman and Goldszmidt (1996), who used it with
some success on various machine learning data sets.
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x1

x2

x3 x4 x5

x6 x7

◮ Figure 11.1 A tree of dependencies between terms. In this graphical model rep-
resentation, a term xi is directly dependent on a term xk if there is an arrow xk → xi .

11.4.3 Okapi BM25: a non-binary model

The BIM was originally designed for short catalog records and abstracts of
fairly consistent length, and it works reasonably in these contexts, but for
modern full-text search collections, it seems clear that a model should pay
attention to term frequency and document length, as in Chapter 6. The BM25BM25 WEIGHTS

weighting scheme, often called Okapi weighting, after the system in which it wasOKAPI WEIGHTING

first implemented, was developed as a way of building a probabilistic model
sensitive to these quantities while not introducing too many additional pa-
rameters into the model (Spärck Jones et al. 2000). We will not develop the
full theory behind the model here, but just present a series of forms that
build up to the standard form now used for document scoring. The simplest
score for document d is just idf weighting of the query terms present, as in
Equation (11.22):

RSVd = ∑
t∈q

log
N

dft
(11.30)

Sometimes, an alternative version of idf is used. If we start with the formula
in Equation (11.21) but in the absence of relevance feedback information we
estimate that S = s = 0, then we get an alternative idf formulation as follows:

RSVd = ∑
t∈q

log
N − dft + 1

2

dft + 1
2

(11.31)



Online edition (c)
2009 Cambridge UP

11.4 An appraisal and some extensions 233

This variant behaves slightly strangely: if a term occurs in over half the doc-
uments in the collection then this model gives a negative term weight, which
is presumably undesirable. But, assuming the use of a stop list, this normally
doesn’t happen, and the value for each summand can be given a floor of 0.

We can improve on Equation (11.30) by factoring in the frequency of each
term and document length:

RSVd = ∑
t∈q

log

[

N

dft

]

·
(k1 + 1)tftd

k1((1 − b) + b × (Ld/Lave)) + tftd
(11.32)

Here, tftd is the frequency of term t in document d, and Ld and Lave are the
length of document d and the average document length for the whole col-
lection. The variable k1 is a positive tuning parameter that calibrates the
document term frequency scaling. A k1 value of 0 corresponds to a binary
model (no term frequency), and a large value corresponds to using raw term
frequency. b is another tuning parameter (0 ≤ b ≤ 1) which determines
the scaling by document length: b = 1 corresponds to fully scaling the term
weight by the document length, while b = 0 corresponds to no length nor-
malization.

If the query is long, then we might also use similar weighting for query
terms. This is appropriate if the queries are paragraph long information
needs, but unnecessary for short queries.

RSVd = ∑
t∈q

[

log
N

dft

]

·
(k1 + 1)tftd

k1((1 − b) + b × (Ld/Lave)) + tftd
·
(k3 + 1)tftq

k3 + tftq
(11.33)

with tftq being the frequency of term t in the query q, and k3 being another
positive tuning parameter that this time calibrates term frequency scaling
of the query. In the equation presented, there is no length normalization of
queries (it is as if b = 0 here). Length normalization of the query is unnec-
essary because retrieval is being done with respect to a single fixed query.
The tuning parameters of these formulas should ideally be set to optimize
performance on a development test collection (see page 153). That is, we
can search for values of these parameters that maximize performance on a
separate development test collection (either manually or with optimization
methods such as grid search or something more advanced), and then use
these parameters on the actual test collection. In the absence of such opti-
mization, experiments have shown reasonable values are to set k1 and k3 to
a value between 1.2 and 2 and b = 0.75.

If we have relevance judgments available, then we can use the full form of
(11.21) in place of the approximation log(N/dft) introduced in (11.22):

RSVd = ∑
t∈q

log

[[

(|VRt|+
1
2 )/(|VNRt|+

1
2 )

(dft − |VRt|+
1
2 )/(N − dft − |VR| + |VRt| +

1
2 )

]

(11.34)
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×
(k1 + 1)tftd

k1((1− b) + b(Ld/Lave)) + tftd
×

(k3 + 1)tftq

k3 + tftq

]

Here, VRt, NVRt, and VR are used as in Section 11.3.4. The first part of the
expression reflects relevance feedback (or just idf weighting if no relevance
information is available), the second implements document term frequency
and document length scaling, and the third considers term frequency in the
query.

Rather than just providing a term weighting method for terms in a user’s
query, relevance feedback can also involve augmenting the query (automat-
ically or with manual review) with some (say, 10–20) of the top terms in the
known-relevant documents as ordered by the relevance factor ĉt from Equa-
tion (11.21), and the above formula can then be used with such an augmented
query vector~q.

The BM25 term weighting formulas have been used quite widely and quite
successfully across a range of collections and search tasks. Especially in the
TREC evaluations, they performed well and were widely adopted by many
groups. See Spärck Jones et al. (2000) for extensive motivation and discussion
of experimental results.

11.4.4 Bayesian network approaches to IR

Turtle and Croft (1989; 1991) introduced into information retrieval the use
of Bayesian networks (Jensen and Jensen 2001), a form of probabilistic graph-BAYESIAN NETWORKS

ical model. We skip the details because fully introducing the formalism of
Bayesian networks would require much too much space, but conceptually,
Bayesian networks use directed graphs to show probabilistic dependencies
between variables, as in Figure 11.1, and have led to the development of so-
phisticated algorithms for propagating influence so as to allow learning and
inference with arbitrary knowledge within arbitrary directed acyclic graphs.
Turtle and Croft used a sophisticated network to better model the complex
dependencies between a document and a user’s information need.

The model decomposes into two parts: a document collection network and
a query network. The document collection network is large, but can be pre-
computed: it maps from documents to terms to concepts. The concepts are
a thesaurus-based expansion of the terms appearing in the document. The
query network is relatively small but a new network needs to be built each
time a query comes in, and then attached to the document network. The
query network maps from query terms, to query subexpressions (built us-
ing probabilistic or “noisy” versions of AND and OR operators), to the user’s
information need.

The result is a flexible probabilistic network which can generalize vari-
ous simpler Boolean and probabilistic models. Indeed, this is the primary
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case of a statistical ranked retrieval model that naturally supports structured
query operators. The system allowed efficient large-scale retrieval, and was
the basis of the InQuery text retrieval system, built at the University of Mas-
sachusetts. This system performed very well in TREC evaluations and for a
time was sold commercially. On the other hand, the model still used various
approximations and independence assumptions to make parameter estima-
tion and computation possible. There has not been much follow-on work
along these lines, but we would note that this model was actually built very
early on in the modern era of using Bayesian networks, and there have been
many subsequent developments in the theory, and the time is perhaps right
for a new generation of Bayesian network-based information retrieval sys-
tems.

11.5 References and further reading

Longer introductions to probability theory can be found in most introduc-
tory probability and statistics books, such as (Grinstead and Snell 1997, Rice
2006, Ross 2006). An introduction to Bayesian utility theory can be found in
(Ripley 1996).

The probabilistic approach to IR originated in the UK in the 1950s. The
first major presentation of a probabilistic model is Maron and Kuhns (1960).
Robertson and Jones (1976) introduce the main foundations of the BIM and
van Rijsbergen (1979) presents in detail the classic BIM probabilistic model.
The idea of the PRP is variously attributed to S. E. Robertson, M. E. Maron
and W. S. Cooper (the term “Probabilistic Ordering Principle” is used in
Robertson and Jones (1976), but PRP dominates in later work). Fuhr (1992)
is a more recent presentation of probabilistic IR, which includes coverage of
other approaches such as probabilistic logics and Bayesian networks. Crestani
et al. (1998) is another survey.Spärck Jones et al. (2000) is the definitive pre-
sentation of probabilistic IR experiments by the “London school”, and Robert-
son (2005) presents a retrospective on the group’s participation in TREC eval-
uations, including detailed discussion of the Okapi BM25 scoring function
and its development. Robertson et al. (2004) extend BM25 to the case of mul-
tiple weighted fields.

The open-source Indri search engine, which is distributed with the Lemur
toolkit (http://www.lemurproject.org/) merges ideas from Bayesian inference net-
works and statistical language modeling approaches (see Chapter 12), in par-
ticular preserving the former’s support for structured query operators.
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