
Online edition (c)
2009 Cambridge UP

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. 237

12 Language models for information

retrieval

A common suggestion to users for coming up with good queries is to think
of words that would likely appear in a relevant document, and to use those
words as the query. The language modeling approach to IR directly models
that idea: a document is a good match to a query if the document model
is likely to generate the query, which will in turn happen if the document
contains the query words often. This approach thus provides a different real-
ization of some of the basic ideas for document ranking which we saw in Sec-
tion 6.2 (page 117). Instead of overtly modeling the probability P(R = 1|q, d)
of relevance of a document d to a query q, as in the traditional probabilis-
tic approach to IR (Chapter 11), the basic language modeling approach in-
stead builds a probabilistic language model Md from each document d, and
ranks documents based on the probability of the model generating the query:
P(q|Md).

In this chapter, we first introduce the concept of language models (Sec-
tion 12.1) and then describe the basic and most commonly used language
modeling approach to IR, the Query Likelihood Model (Section 12.2). Af-
ter some comparisons between the language modeling approach and other
approaches to IR (Section 12.3), we finish by briefly describing various ex-
tensions to the language modeling approach (Section 12.4).

12.1 Language models

12.1.1 Finite automata and language models

What do we mean by a document model generating a query? A traditional
generative model of a language, of the kind familiar from formal languageGENERATIVE MODEL

theory, can be used either to recognize or to generate strings. For example,
the finite automaton shown in Figure 12.1 can generate strings that include
the examples shown. The full set of strings that can be generated is called
the language of the automaton.1LANGUAGE

Online edition (c)
2009 Cambridge UP

238 12 Language models for information retrieval

I wish

I wish
I wish I wish
I wish I wish I wish
I wish I wish I wish I wish I wish I wish
. . .

CANNOT GENERATE: wish I wish

◮ Figure 12.1 A simple finite automaton and some of the strings in the language it
generates. → shows the start state of the automaton and a double circle indicates a
(possible) finishing state.

q1

P(STOP|q1) = 0.2

the 0.2
a 0.1
frog 0.01
toad 0.01
said 0.03
likes 0.02
that 0.04
.

◮ Figure 12.2 A one-state finite automaton that acts as a unigram language model.
We show a partial specification of the state emission probabilities.

If instead each node has a probability distribution over generating differ-
ent terms, we have a language model. The notion of a language model is
inherently probabilistic. A language model is a function that puts a probabilityLANGUAGE MODEL

measure over strings drawn from some vocabulary. That is, for a language
model M over an alphabet Σ:

∑
s∈Σ∗

P(s) = 1(12.1)

One simple kind of language model is equivalent to a probabilistic finite
automaton consisting of just a single node with a single probability distri-
bution over producing different terms, so that ∑t∈V P(t) = 1, as shown
in Figure 12.2. After generating each word, we decide whether to stop or
to loop around and then produce another word, and so the model also re-
quires a probability of stopping in the finishing state. Such a model places a
probability distribution over any sequence of words. By construction, it also
provides a model for generating text according to its distribution.

1. Finite automata can have outputs attached to either their states or their arcs; we use states
here, because that maps directly on to the way probabilistic automata are usually formalized.

Online edition (c)
2009 Cambridge UP

12.1 Language models 239

Model M1 Model M2

the 0.2 the 0.15
a 0.1 a 0.12
frog 0.01 frog 0.0002
toad 0.01 toad 0.0001
said 0.03 said 0.03
likes 0.02 likes 0.04
that 0.04 that 0.04
dog 0.005 dog 0.01
cat 0.003 cat 0.015
monkey 0.001 monkey 0.002
.

◮ Figure 12.3 Partial specification of two unigram language models.

✎ Example 12.1: To find the probability of a word sequence, we just multiply the
probabilities which the model gives to each word in the sequence, together with the
probability of continuing or stopping after producing each word. For example,

P(frog said that toad likes frog) = (0.01 × 0.03 × 0.04 × 0.01 × 0.02 × 0.01)(12.2)

×(0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.8 × 0.2)

≈ 0.000000000001573

As you can see, the probability of a particular string/document, is usually a very
small number! Here we stopped after generating frog the second time. The first line of
numbers are the term emission probabilities, and the second line gives the probabil-
ity of continuing or stopping after generating each word. An explicit stop probability
is needed for a finite automaton to be a well-formed language model according to
Equation (12.1). Nevertheless, most of the time, we will omit to include STOP and
(1 − STOP) probabilities (as do most other authors). To compare two models for a
data set, we can calculate their likelihood ratio, which results from simply dividing theLIKELIHOOD RATIO

probability of the data according to one model by the probability of the data accord-
ing to the other model. Providing that the stop probability is fixed, its inclusion will
not alter the likelihood ratio that results from comparing the likelihood of two lan-

guage models generating a string. Hence, it will not alter the ranking of documents.2

Nevertheless, formally, the numbers will no longer truly be probabilities, but only
proportional to probabilities. See Exercise 12.4.

✎ Example 12.2: Suppose, now, that we have two language models M1 and M2,
shown partially in Figure 12.3. Each gives a probability estimate to a sequence of

2. In the IR context that we are leading up to, taking the stop probability to be fixed across
models seems reasonable. This is because we are generating queries, and the length distribution
of queries is fixed and independent of the document from which we are generating the language
model.

Online edition (c)
2009 Cambridge UP

240 12 Language models for information retrieval

terms, as already illustrated in Example 12.1. The language model that gives the
higher probability to the sequence of terms is more likely to have generated the term
sequence. This time, we will omit STOP probabilities from our calculations. For the
sequence shown, we get:

(12.3) s frog said that toad likes that dog
M1 0.01 0.03 0.04 0.01 0.02 0.04 0.005
M2 0.0002 0.03 0.04 0.0001 0.04 0.04 0.01

P(s|M1) = 0.00000000000048
P(s|M2) = 0.000000000000000384

and we see that P(s|M1) > P(s|M2). We present the formulas here in terms of prod-
ucts of probabilities, but, as is common in probabilistic applications, in practice it is
usually best to work with sums of log probabilities (cf. page 258).

12.1.2 Types of language models

How do we build probabilities over sequences of terms? We can always
use the chain rule from Equation (11.1) to decompose the probability of a
sequence of events into the probability of each successive event conditioned
on earlier events:

P(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t1t2)P(t4|t1t2t3)(12.4)

The simplest form of language model simply throws away all conditioning
context, and estimates each term independently. Such a model is called a
unigram language model:UNIGRAM LANGUAGE

MODEL

Puni(t1t2t3t4) = P(t1)P(t2)P(t3)P(t4)(12.5)

There are many more complex kinds of language models, such as bigramBIGRAM LANGUAGE

MODEL language models, which condition on the previous term,

Pbi(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t2)P(t4|t3)(12.6)

and even more complex grammar-based language models such as proba-
bilistic context-free grammars. Such models are vital for tasks like speech
recognition, spelling correction, and machine translation, where you need
the probability of a term conditioned on surrounding context. However,
most language-modeling work in IR has used unigram language models.
IR is not the place where you most immediately need complex language
models, since IR does not directly depend on the structure of sentences to
the extent that other tasks like speech recognition do. Unigram models are
often sufficient to judge the topic of a text. Moreover, as we shall see, IR lan-
guage models are frequently estimated from a single document and so it is

Online edition (c)
2009 Cambridge UP

12.1 Language models 241

questionable whether there is enough training data to do more. Losses from
data sparseness (see the discussion on page 260) tend to outweigh any gains
from richer models. This is an example of the bias-variance tradeoff (cf. Sec-
tion 14.6, page 308): With limited training data, a more constrained model
tends to perform better. In addition, unigram models are more efficient to
estimate and apply than higher-order models. Nevertheless, the importance
of phrase and proximity queries in IR in general suggests that future work
should make use of more sophisticated language models, and some has be-
gun to (see Section 12.5, page 252). Indeed, making this move parallels the
model of van Rijsbergen in Chapter 11 (page 231).

12.1.3 Multinomial distributions over words

Under the unigram language model the order of words is irrelevant, and so
such models are often called “bag of words” models, as discussed in Chap-
ter 6 (page 117). Even though there is no conditioning on preceding context,
this model nevertheless still gives the probability of a particular ordering of
terms. However, any other ordering of this bag of terms will have the same
probability. So, really, we have a multinomial distribution over words. So longMULTINOMIAL

DISTRIBUTION as we stick to unigram models, the language model name and motivation
could be viewed as historical rather than necessary. We could instead just
refer to the model as a multinomial model. From this perspective, the equa-
tions presented above do not present the multinomial probability of a bag of
words, since they do not sum over all possible orderings of those words, as
is done by the multinomial coefficient (the first term on the right-hand side)
in the standard presentation of a multinomial model:

P(d) =
Ld!

tft1,d!tft2,d! · · · tftM,d!
P(t1)

tft1,d P(t2)
tft2,d · · · P(tM)tftM,d(12.7)

Here, Ld = ∑1≤i≤M tfti,d
is the length of document d, M is the size of the term

vocabulary, and the products are now over the terms in the vocabulary, not
the positions in the document. However, just as with STOP probabilities, in
practice we can also leave out the multinomial coefficient in our calculations,
since, for a particular bag of words, it will be a constant, and so it has no effect
on the likelihood ratio of two different models generating a particular bag of
words. Multinomial distributions also appear in Section 13.2 (page 258).

The fundamental problem in designing language models is that we do not
know what exactly we should use as the model Md. However, we do gener-
ally have a sample of text that is representative of that model. This problem
makes a lot of sense in the original, primary uses of language models. For ex-
ample, in speech recognition, we have a training sample of (spoken) text. But
we have to expect that, in the future, users will use different words and in

Online edition (c)
2009 Cambridge UP

242 12 Language models for information retrieval

different sequences, which we have never observed before, and so the model
has to generalize beyond the observed data to allow unknown words and se-
quences. This interpretation is not so clear in the IR case, where a document
is finite and usually fixed. The strategy we adopt in IR is as follows. We
pretend that the document d is only a representative sample of text drawn
from a model distribution, treating it like a fine-grained topic. We then esti-
mate a language model from this sample, and use that model to calculate the
probability of observing any word sequence, and, finally, we rank documents
according to their probability of generating the query.

? Exercise 12.1 [⋆]

Including stop probabilities in the calculation, what will the sum of the probability
estimates of all strings in the language of length 1 be? Assume that you generate a
word and then decide whether to stop or not (i.e., the null string is not part of the
language).

Exercise 12.2 [⋆]

If the stop probability is omitted from calculations, what will the sum of the scores
assigned to strings in the language of length 1 be?

Exercise 12.3 [⋆]

What is the likelihood ratio of the document according to M1 and M2 in Exam-
ple 12.2?

Exercise 12.4 [⋆]

No explicit STOP probability appeared in Example 12.2. Assuming that the STOP

probability of each model is 0.1, does this change the likelihood ratio of a document
according to the two models?

Exercise 12.5 [⋆⋆]

How might a language model be used in a spelling correction system? In particular,
consider the case of context-sensitive spelling correction, and correcting incorrect us-
ages of words, such as their in Are you their? (See Section 3.5 (page 65) for pointers to
some literature on this topic.)

12.2 The query likelihood model

12.2.1 Using query likelihood language models in IR

Language modeling is a quite general formal approach to IR, with many vari-
ant realizations. The original and basic method for using language models
in IR is the query likelihood model. In it, we construct from each document dQUERY LIKELIHOOD

MODEL in the collection a language model Md. Our goal is to rank documents by
P(d|q), where the probability of a document is interpreted as the likelihood
that it is relevant to the query. Using Bayes rule (as introduced in Section 11.1,
page 220), we have:

P(d|q) = P(q|d)P(d)/P(q)

Online edition (c)
2009 Cambridge UP

12.2 The query likelihood model 243

P(q) is the same for all documents, and so can be ignored. The prior prob-
ability of a document P(d) is often treated as uniform across all d and so it
can also be ignored, but we could implement a genuine prior which could in-
clude criteria like authority, length, genre, newness, and number of previous
people who have read the document. But, given these simplifications, we
return results ranked by simply P(q|d), the probability of the query q under
the language model derived from d. The Language Modeling approach thus
attempts to model the query generation process: Documents are ranked by
the probability that a query would be observed as a random sample from the
respective document model.

The most common way to do this is using the multinomial unigram lan-
guage model, which is equivalent to a multinomial Naive Bayes model (page 263),
where the documents are the classes, each treated in the estimation as a sep-
arate “language”. Under this model, we have that:

P(q|Md) = Kq ∏
t∈V

P(t|Md)
tft,d(12.8)

where, again Kq = Ld!/(tft1,d!tft2,d! · · · tftM ,d!) is the multinomial coefficient
for the query q, which we will henceforth ignore, since it is a constant for a
particular query.

For retrieval based on a language model (henceforth LM), we treat the
generation of queries as a random process. The approach is to

1. Infer a LM for each document.

2. Estimate P(q|Mdi
), the probability of generating the query according to

each of these document models.

3. Rank the documents according to these probabilities.

The intuition of the basic model is that the user has a prototype document in
mind, and generates a query based on words that appear in this document.
Often, users have a reasonable idea of terms that are likely to occur in doc-
uments of interest and they will choose query terms that distinguish these
documents from others in the collection.3 Collection statistics are an integral
part of the language model, rather than being used heuristically as in many
other approaches.

12.2.2 Estimating the query generation probability

In this section we describe how to estimate P(q|Md). The probability of pro-
ducing the query given the LM Md of document d using maximum likelihood

3. Of course, in other cases, they do not. The answer to this within the language modeling
approach is translation language models, as briefly discussed in Section 12.4.

Online edition (c)
2009 Cambridge UP

244 12 Language models for information retrieval

estimation (MLE) and the unigram assumption is:

P̂(q|Md) = ∏
t∈q

P̂mle(t|Md) = ∏
t∈q

tft,d

Ld
(12.9)

where Md is the language model of document d, tft,d is the (raw) term fre-
quency of term t in document d, and Ld is the number of tokens in docu-
ment d. That is, we just count up how often each word occurred, and divide
through by the total number of words in the document d. This is the same
method of calculating an MLE as we saw in Section 11.3.2 (page 226), but
now using a multinomial over word counts.

The classic problem with using language models is one of estimation (the
ˆ symbol on the P’s is used above to stress that the model is estimated):
terms appear very sparsely in documents. In particular, some words will
not have appeared in the document at all, but are possible words for the in-
formation need, which the user may have used in the query. If we estimate
P̂(t|Md) = 0 for a term missing from a document d, then we get a strict
conjunctive semantics: documents will only give a query non-zero probabil-
ity if all of the query terms appear in the document. Zero probabilities are
clearly a problem in other uses of language models, such as when predicting
the next word in a speech recognition application, because many words will
be sparsely represented in the training data. It may seem rather less clear
whether this is problematic in an IR application. This could be thought of
as a human-computer interface issue: vector space systems have generally
preferred more lenient matching, though recent web search developments
have tended more in the direction of doing searches with such conjunctive
semantics. Regardless of the approach here, there is a more general prob-
lem of estimation: occurring words are also badly estimated; in particular,
the probability of words occurring once in the document is normally over-
estimated, since their one occurrence was partly by chance. The answer to
this (as we saw in Section 11.3.2, page 226) is smoothing. But as people have
come to understand the LM approach better, it has become apparent that the
role of smoothing in this model is not only to avoid zero probabilities. The
smoothing of terms actually implements major parts of the term weighting
component (Exercise 12.8). It is not just that an unsmoothed model has con-
junctive semantics; an unsmoothed model works badly because it lacks parts
of the term weighting component.

Thus, we need to smooth probabilities in our document language mod-
els: to discount non-zero probabilities and to give some probability mass to
unseen words. There’s a wide space of approaches to smoothing probabil-
ity distributions to deal with this problem. In Section 11.3.2 (page 226), we
already discussed adding a number (1, 1/2, or a small α) to the observed

Online edition (c)
2009 Cambridge UP

12.2 The query likelihood model 245

counts and renormalizing to give a probability distribution.4 In this sec-
tion we will mention a couple of other smoothing methods, which involve
combining observed counts with a more general reference probability distri-
bution. The general approach is that a non-occurring term should be possi-
ble in a query, but its probability should be somewhat close to but no more
likely than would be expected by chance from the whole collection. That is,
if tft,d = 0 then

P̂(t|Md) ≤ cft/T

where cft is the raw count of the term in the collection, and T is the raw size
(number of tokens) of the entire collection. A simple idea that works well in
practice is to use a mixture between a document-specific multinomial distri-
bution and a multinomial distribution estimated from the entire collection:

P̂(t|d) = λP̂mle(t|Md) + (1 − λ)P̂mle(t|Mc)(12.10)

where 0 < λ < 1 and Mc is a language model built from the entire doc-
ument collection. This mixes the probability from the document with the
general collection frequency of the word. Such a model is referred to as a
linear interpolation language model.5 Correctly setting λ is important to theLINEAR

INTERPOLATION good performance of this model.
An alternative is to use a language model built from the whole collection

as a prior distribution in a Bayesian updating process (rather than a uniformBAYESIAN SMOOTHING

distribution, as we saw in Section 11.3.2). We then get the following equation:

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α
(12.11)

Both of these smoothing methods have been shown to perform well in IR
experiments; we will stick with the linear interpolation smoothing method
for the rest of this section. While different in detail, they are both conceptu-
ally similar: in both cases the probability estimate for a word present in the
document combines a discounted MLE and a fraction of the estimate of its
prevalence in the whole collection, while for words not present in a docu-
ment, the estimate is just a fraction of the estimate of the prevalence of the
word in the whole collection.

The role of smoothing in LMs for IR is not simply or principally to avoid es-
timation problems. This was not clear when the models were first proposed,
but it is now understood that smoothing is essential to the good properties

4. In the context of probability theory, (re)normalization refers to summing numbers that cover
an event space and dividing them through by their sum, so that the result is a probability distri-
bution which sums to 1. This is distinct from both the concept of term normalization in Chapter 2
and the concept of length normalization in Chapter 6, which is done with a L2 norm.
5. It is also referred to as Jelinek-Mercer smoothing.

Online edition (c)
2009 Cambridge UP

246 12 Language models for information retrieval

of the models. The reason for this is explored in Exercise 12.8. The extent
of smoothing in these two models is controlled by the λ and α parameters: a
small value of λ or a large value of α means more smoothing. This parameter
can be tuned to optimize performance using a line search (or, for the linear
interpolation model, by other methods, such as the expectation maximimiza-
tion algorithm; see Section 16.5, page 368). The value need not be a constant.
One approach is to make the value a function of the query size. This is useful
because a small amount of smoothing (a “conjunctive-like” search) is more
suitable for short queries, while a lot of smoothing is more suitable for long
queries.

To summarize, the retrieval ranking for a query q under the basic LM for
IR we have been considering is given by:

P(d|q) ∝ P(d) ∏
t∈q

((1 − λ)P(t|Mc) + λP(t|Md))(12.12)

This equation captures the probability that the document that the user had
in mind was in fact d.

✎ Example 12.3: Suppose the document collection contains two documents:

• d1: Xyzzy reports a profit but revenue is down

• d2: Quorus narrows quarter loss but revenue decreases further

The model will be MLE unigram models from the documents and collection, mixed
with λ = 1/2.

Suppose the query is revenue down. Then:

P(q|d1) = [(1/8 + 2/16)/2] × [(1/8 + 1/16)/2](12.13)

= 1/8 × 3/32 = 3/256

P(q|d2) = [(1/8 + 2/16)/2] × [(0/8 + 1/16)/2]

= 1/8 × 1/32 = 1/256

So, the ranking is d1 > d2.

12.2.3 Ponte and Croft’s Experiments

Ponte and Croft (1998) present the first experiments on the language model-
ing approach to information retrieval. Their basic approach is the model that
we have presented until now. However, we have presented an approach
where the language model is a mixture of two multinomials, much as in
(Miller et al. 1999, Hiemstra 2000) rather than Ponte and Croft’s multivari-
ate Bernoulli model. The use of multinomials has been standard in most
subsequent work in the LM approach and experimental results in IR, as
well as evidence from text classification which we consider in Section 13.3

Online edition (c)
2009 Cambridge UP

12.2 The query likelihood model 247

Precision
Rec. tf-idf LM %chg
0.0 0.7439 0.7590 +2.0
0.1 0.4521 0.4910 +8.6
0.2 0.3514 0.4045 +15.1 *
0.3 0.2761 0.3342 +21.0 *
0.4 0.2093 0.2572 +22.9 *
0.5 0.1558 0.2061 +32.3 *
0.6 0.1024 0.1405 +37.1 *
0.7 0.0451 0.0760 +68.7 *
0.8 0.0160 0.0432 +169.6 *
0.9 0.0033 0.0063 +89.3
1.0 0.0028 0.0050 +76.9
Ave 0.1868 0.2233 +19.55 *

◮ Figure 12.4 Results of a comparison of tf-idf with language modeling (LM) term
weighting by Ponte and Croft (1998). The version of tf-idf from the INQUERY IR sys-
tem includes length normalization of tf. The table gives an evaluation according to
11-point average precision with significance marked with a * according to a Wilcoxon
signed rank test. The language modeling approach always does better in these exper-
iments, but note that where the approach shows significant gains is at higher levels
of recall.

(page 263), suggests that it is superior. Ponte and Croft argued strongly for
the effectiveness of the term weights that come from the language modeling
approach over traditional tf-idf weights. We present a subset of their results
in Figure 12.4 where they compare tf-idf to language modeling by evaluating
TREC topics 202–250 over TREC disks 2 and 3. The queries are sentence-
length natural language queries. The language modeling approach yields
significantly better results than their baseline tf-idf based term weighting ap-
proach. And indeed the gains shown here have been extended in subsequent
work.

? Exercise 12.6 [⋆]

Consider making a language model from the following training text:

the martian has landed on the latin pop sensation ricky martin

a. Under a MLE-estimated unigram probability model, what are P(the) and P(martian)?

b. Under a MLE-estimated bigram model, what are P(sensation|pop) and P(pop|the)?

Online edition (c)
2009 Cambridge UP

248 12 Language models for information retrieval

Exercise 12.7 [⋆⋆]

Suppose we have a collection that consists of the 4 documents given in the below
table.

docID Document text

1 click go the shears boys click click click
2 click click
3 metal here
4 metal shears click here

Build a query likelihood language model for this document collection. Assume a
mixture model between the documents and the collection, with both weighted at 0.5.
Maximum likelihood estimation (mle) is used to estimate both as unigram models.
Work out the model probabilities of the queries click, shears, and hence click shears for
each document, and use those probabilities to rank the documents returned by each
query. Fill in these probabilities in the below table:

Query Doc 1 Doc 2 Doc 3 Doc 4

click
shears
click shears

What is the final ranking of the documents for the query click shears?

Exercise 12.8 [⋆⋆]

Using the calculations in Exercise 12.7 as inspiration or as examples where appro-
priate, write one sentence each describing the treatment that the model in Equa-
tion (12.10) gives to each of the following quantities. Include whether it is present
in the model or not and whether the effect is raw or scaled.

a. Term frequency in a document

b. Collection frequency of a term

c. Document frequency of a term

d. Length normalization of a term

Exercise 12.9 [⋆⋆]

In the mixture model approach to the query likelihood model (Equation (12.12)), the
probability estimate of a term is based on the term frequency of a word in a document,
and the collection frequency of the word. Doing this certainly guarantees that each
term of a query (in the vocabulary) has a non-zero chance of being generated by each
document. But it has a more subtle but important effect of implementing a form of
term weighting, related to what we saw in Chapter 6. Explain how this works. In
particular, include in your answer a concrete numeric example showing this term
weighting at work.

12.3 Language modeling versus other approaches in IR

The language modeling approach provides a novel way of looking at the
problem of text retrieval, which links it with a lot of recent work in speech

Online edition (c)
2009 Cambridge UP

12.3 Language modeling versus other approaches in IR 249

and language processing. As Ponte and Croft (1998) emphasize, the language
modeling approach to IR provides a different approach to scoring matches
between queries and documents, and the hope is that the probabilistic lan-
guage modeling foundation improves the weights that are used, and hence
the performance of the model. The major issue is estimation of the docu-
ment model, such as choices of how to smooth it effectively. The model
has achieved very good retrieval results. Compared to other probabilistic
approaches, such as the BIM from Chapter 11, the main difference initially
appears to be that the LM approach does away with explicitly modeling rel-
evance (whereas this is the central variable evaluated in the BIM approach).
But this may not be the correct way to think about things, as some of the
papers in Section 12.5 further discuss. The LM approach assumes that docu-
ments and expressions of information needs are objects of the same type, and
assesses their match by importing the tools and methods of language mod-
eling from speech and natural language processing. The resulting model is
mathematically precise, conceptually simple, computationally tractable, and
intuitively appealing. This seems similar to the situation with XML retrieval
(Chapter 10): there the approaches that assume queries and documents are
objects of the same type are also among the most successful.

On the other hand, like all IR models, you can also raise objections to the
model. The assumption of equivalence between document and information
need representation is unrealistic. Current LM approaches use very simple
models of language, usually unigram models. Without an explicit notion of
relevance, relevance feedback is difficult to integrate into the model, as are
user preferences. It also seems necessary to move beyond a unigram model
to accommodate notions of phrase or passage matching or Boolean retrieval
operators. Subsequent work in the LM approach has looked at addressing
some of these concerns, including putting relevance back into the model and
allowing a language mismatch between the query language and the docu-
ment language.

The model has significant relations to traditional tf-idf models. Term fre-
quency is directly represented in tf-idf models, and much recent work has
recognized the importance of document length normalization. The effect of
doing a mixture of document generation probability with collection gener-
ation probability is a little like idf: terms rare in the general collection but
common in some documents will have a greater influence on the ranking of
documents. In most concrete realizations, the models share treating terms as
if they were independent. On the other hand, the intuitions are probabilistic
rather than geometric, the mathematical models are more principled rather
than heuristic, and the details of how statistics like term frequency and doc-
ument length are used differ. If you are concerned mainly with performance
numbers, recent work has shown the LM approach to be very effective in re-
trieval experiments, beating tf-idf and BM25 weights. Nevertheless, there is

Online edition (c)
2009 Cambridge UP

250 12 Language models for information retrieval

Query Query model P(t|Query)

Document Doc. model P(t|Document)

(a)

(b)

(c)

◮ Figure 12.5 Three ways of developing the language modeling approach: (a) query
likelihood, (b) document likelihood, and (c) model comparison.

perhaps still insufficient evidence that its performance so greatly exceeds that
of a well-tuned traditional vector space retrieval system as to justify chang-
ing an existing implementation.

12.4 Extended language modeling approaches

In this section we briefly mention some of the work that extends the basic
language modeling approach.

There are other ways to think of using the language modeling idea in IR
settings, and many of them have been tried in subsequent work. Rather than
looking at the probability of a document language model Md generating the
query, you can look at the probability of a query language model Mq gener-
ating the document. The main reason that doing things in this direction and
creating a document likelihood model is less appealing is that there is much lessDOCUMENT

LIKELIHOOD MODEL text available to estimate a language model based on the query text, and so
the model will be worse estimated, and will have to depend more on being
smoothed with some other language model. On the other hand, it is easy to
see how to incorporate relevance feedback into such a model: you can ex-
pand the query with terms taken from relevant documents in the usual way
and hence update the language model Mq (Zhai and Lafferty 2001a). Indeed,
with appropriate modeling choices, this approach leads to the BIM model of
Chapter 11. The relevance model of Lavrenko and Croft (2001) is an instance
of a document likelihood model, which incorporates pseudo-relevance feed-
back into a language modeling approach. It achieves very strong empirical
results.

Rather than directly generating in either direction, we can make a lan-
guage model from both the document and query, and then ask how different
these two language models are from each other. Lafferty and Zhai (2001) lay

Online edition (c)
2009 Cambridge UP

12.4 Extended language modeling approaches 251

out these three ways of thinking about the problem, which we show in Fig-
ure 12.5, and develop a general risk minimization approach for document
retrieval. For instance, one way to model the risk of returning a document d
as relevant to a query q is to use the Kullback-Leibler (KL) divergence betweenKULLBACK-LEIBLER

DIVERGENCE their respective language models:

R(d; q) = KL(Md‖Mq) = ∑
t∈V

P(t|Mq) log
P(t|Mq)

P(t|Md)
(12.14)

KL divergence is an asymmetric divergence measure originating in informa-
tion theory, which measures how bad the probability distribution Mq is at
modeling Md (Cover and Thomas 1991, Manning and Schütze 1999). Laf-
ferty and Zhai (2001) present results suggesting that a model comparison
approach outperforms both query-likelihood and document-likelihood ap-
proaches. One disadvantage of using KL divergence as a ranking function
is that scores are not comparable across queries. This does not matter for ad
hoc retrieval, but is important in other applications such as topic tracking.
Kraaij and Spitters (2003) suggest an alternative proposal which models sim-
ilarity as a normalized log-likelihood ratio (or, equivalently, as a difference
between cross-entropies).

Basic LMs do not address issues of alternate expression, that is, synonymy,
or any deviation in use of language between queries and documents. Berger
and Lafferty (1999) introduce translation models to bridge this query-document
gap. A translation model lets you generate query words not in a document byTRANSLATION MODEL

translation to alternate terms with similar meaning. This also provides a ba-
sis for performing cross-language IR. We assume that the translation model
can be represented by a conditional probability distribution T(·|·) between
vocabulary terms. The form of the translation query generation model is
then:

P(q|Md) = ∏
t∈q

∑
v∈V

P(v|Md)T(t|v)(12.15)

The term P(v|Md) is the basic document language model, and the term T(t|v)
performs translation. This model is clearly more computationally intensive
and we need to build a translation model. The translation model is usually
built using separate resources (such as a traditional thesaurus or bilingual
dictionary or a statistical machine translation system’s translation diction-
ary), but can be built using the document collection if there are pieces of
text that naturally paraphrase or summarize other pieces of text. Candi-
date examples are documents and their titles or abstracts, or documents and
anchor-text pointing to them in a hypertext environment.

Building extended LM approaches remains an active area of research. In
general, translation models, relevance feedback models, and model compar-

Online edition (c)
2009 Cambridge UP

252 12 Language models for information retrieval

ison approaches have all been demonstrated to improve performance over
the basic query likelihood LM.

12.5 References and further reading

For more details on the basic concepts of probabilistic language models and
techniques for smoothing, see either Manning and Schütze (1999, Chapter 6)
or Jurafsky and Martin (2008, Chapter 4).

The important initial papers that originated the language modeling ap-
proach to IR are: (Ponte and Croft 1998, Hiemstra 1998, Berger and Lafferty
1999, Miller et al. 1999). Other relevant papers can be found in the next sev-
eral years of SIGIR proceedings. (Croft and Lafferty 2003) contains a col-
lection of papers from a workshop on language modeling approaches and
Hiemstra and Kraaij (2005) review one prominent thread of work on using
language modeling approaches for TREC tasks. Zhai and Lafferty (2001b)
clarify the role of smoothing in LMs for IR and present detailed empirical
comparisons of different smoothing methods. Zaragoza et al. (2003) advo-
cate using full Bayesian predictive distributions rather than MAP point es-
timates, but while they outperform Bayesian smoothing, they fail to outper-
form a linear interpolation. Zhai and Lafferty (2002) argue that a two-stage
smoothing model with first Bayesian smoothing followed by linear interpo-
lation gives a good model of the task, and performs better and more stably
than a single form of smoothing. A nice feature of the LM approach is that it
provides a convenient and principled way to put various kinds of prior infor-
mation into the model; Kraaij et al. (2002) demonstrate this by showing the
value of link information as a prior in improving web entry page retrieval
performance. As briefly discussed in Chapter 16 (page 353), Liu and Croft
(2004) show some gains by smoothing a document LM with estimates from
a cluster of similar documents; Tao et al. (2006) report larger gains by doing
document-similarity based smoothing.

Hiemstra and Kraaij (2005) present TREC results showing a LM approach
beating use of BM25 weights. Recent work has achieved some gains by
going beyond the unigram model, providing the higher order models are
smoothed with lower order models (Gao et al. 2004, Cao et al. 2005), though
the gains to date remain modest. Spärck Jones (2004) presents a critical view-
point on the rationale for the language modeling approach, but Lafferty and
Zhai (2003) argue that a unified account can be given of the probabilistic
semantics underlying both the language modeling approach presented in
this chapter and the classical probabilistic information retrieval approach of
Chapter 11. The Lemur Toolkit (http://www.lemurproject.org/) provides a flexi-
ble open source framework for investigating language modeling approaches
to IR.

	Language models for information retrieval
	Language models
	Finite automata and language models
	Types of language models
	Multinomial distributions over words

	The query likelihood model
	Using query likelihood language models in IR
	Estimating the query generation probability
	Ponte and Croft's Experiments

	Language modeling versus other approaches in IR
	Extended language modeling approaches
	References and further reading

