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13 Text classification and Naive

Bayes

Thus far, this book has mainly discussed the process of ad hoc retrieval, where
users have transient information needs that they try to address by posing
one or more queries to a search engine. However, many users have ongoing
information needs. For example, you might need to track developments in
multicore computer chips. One way of doing this is to issue the query multi-
core AND computer AND chip against an index of recent newswire articles each
morning. In this and the following two chapters we examine the question:
How can this repetitive task be automated? To this end, many systems sup-
port standing queries. A standing query is like any other query except that itSTANDING QUERY

is periodically executed on a collection to which new documents are incre-
mentally added over time.

If your standing query is just multicore AND computer AND chip, you will tend
to miss many relevant new articles which use other terms such as multicore
processors. To achieve good recall, standing queries thus have to be refined
over time and can gradually become quite complex. In this example, using a
Boolean search engine with stemming, you might end up with a query like
(multicore OR multi-core) AND (chip OR processor OR microprocessor).

To capture the generality and scope of the problem space to which stand-
ing queries belong, we now introduce the general notion of a classificationCLASSIFICATION

problem. Given a set of classes, we seek to determine which class(es) a given
object belongs to. In the example, the standing query serves to divide new
newswire articles into the two classes: documents about multicore computer chips
and documents not about multicore computer chips. We refer to this as two-class
classification. Classification using standing queries is also called routing orROUTING

filteringand will be discussed further in Section 15.3.1 (page 335).FILTERING

A class need not be as narrowly focused as the standing query multicore
computer chips. Often, a class is a more general subject area like China or coffee.
Such more general classes are usually referred to as topics, and the classifica-
tion task is then called text classification, text categorization, topic classification,TEXT CLASSIFICATION

or topic spotting. An example for China appears in Figure 13.1. Standing
queries and topics differ in their degree of specificity, but the methods for
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solving routing, filtering, and text classification are essentially the same. We
therefore include routing and filtering under the rubric of text classification
in this and the following chapters.

The notion of classification is very general and has many applications within
and beyond information retrieval (IR). For instance, in computer vision, a
classifier may be used to divide images into classes such as landscape, por-
trait, and neither. We focus here on examples from information retrieval such
as:

• Several of the preprocessing steps necessary for indexing as discussed in
Chapter 2: detecting a document’s encoding (ASCII, Unicode UTF-8 etc;
page 20); word segmentation (Is the white space between two letters a
word boundary or not? page 24 ) ; truecasing (page 30); and identifying
the language of a document (page 46).

• The automatic detection of spam pages (which then are not included in
the search engine index).

• The automatic detection of sexually explicit content (which is included in
search results only if the user turns an option such as SafeSearch off).

• Sentiment detection or the automatic classification of a movie or productSENTIMENT DETECTION

review as positive or negative. An example application is a user search-
ing for negative reviews before buying a camera to make sure it has no
undesirable features or quality problems.

• Personal email sorting. A user may have folders like talk announcements,EMAIL SORTING

electronic bills, email from family and friends, and so on, and may want a
classifier to classify each incoming email and automatically move it to the
appropriate folder. It is easier to find messages in sorted folders than in
a very large inbox. The most common case of this application is a spam
folder that holds all suspected spam messages.

• Topic-specific or vertical search. Vertical search engines restrict searches toVERTICAL SEARCH

ENGINE a particular topic. For example, the query computer science on a vertical
search engine for the topic China will return a list of Chinese computer
science departments with higher precision and recall than the query com-
puter science China on a general purpose search engine. This is because the
vertical search engine does not include web pages in its index that contain
the term china in a different sense (e.g., referring to a hard white ceramic),
but does include relevant pages even if they do not explicitly mention the
term China.

• Finally, the ranking function in ad hoc information retrieval can also be
based on a document classifier as we will explain in Section 15.4 (page 341).
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This list shows the general importance of classification in IR. Most retrieval
systems today contain multiple components that use some form of classifier.
The classification task we will use as an example in this book is text classifi-
cation.

A computer is not essential for classification. Many classification tasks
have traditionally been solved manually. Books in a library are assigned
Library of Congress categories by a librarian. But manual classification is
expensive to scale. The multicore computer chips example illustrates one al-
ternative approach: classification by the use of standing queries – which can
be thought of as rules – most commonly written by hand. As in our exam-RULES IN TEXT

CLASSIFICATION ple (multicore OR multi-core) AND (chip OR processor OR microprocessor), rules are
sometimes equivalent to Boolean expressions.

A rule captures a certain combination of keywords that indicates a class.
Hand-coded rules have good scaling properties, but creating and maintain-
ing them over time is labor intensive. A technically skilled person (e.g., a
domain expert who is good at writing regular expressions) can create rule
sets that will rival or exceed the accuracy of the automatically generated clas-
sifiers we will discuss shortly; however, it can be hard to find someone with
this specialized skill.

Apart from manual classification and hand-crafted rules, there is a third
approach to text classification, namely, machine learning-based text classifi-
cation. It is the approach that we focus on in the next several chapters. In
machine learning, the set of rules or, more generally, the decision criterion of
the text classifier, is learned automatically from training data. This approach
is also called statistical text classification if the learning method is statistical.STATISTICAL TEXT

CLASSIFICATION In statistical text classification, we require a number of good example docu-
ments (or training documents) for each class. The need for manual classifi-
cation is not eliminated because the training documents come from a person
who has labeled them – where labeling refers to the process of annotatingLABELING

each document with its class. But labeling is arguably an easier task than
writing rules. Almost anybody can look at a document and decide whether
or not it is related to China. Sometimes such labeling is already implicitly
part of an existing workflow. For instance, you may go through the news
articles returned by a standing query each morning and give relevance feed-
back (cf. Chapter 9) by moving the relevant articles to a special folder like
multicore-processors.

We begin this chapter with a general introduction to the text classification
problem including a formal definition (Section 13.1); we then cover Naive
Bayes, a particularly simple and effective classification method (Sections 13.2–
13.4). All of the classification algorithms we study represent documents in
high-dimensional spaces. To improve the efficiency of these algorithms, it
is generally desirable to reduce the dimensionality of these spaces; to this
end, a technique known as feature selection is commonly applied in text clas-
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sification as discussed in Section 13.5. Section 13.6 covers evaluation of text
classification. In the following chapters, Chapters 14 and 15, we look at two
other families of classification methods, vector space classifiers and support
vector machines.

13.1 The text classification problem

In text classification, we are given a description d ∈ X of a document, where
X is the document space; and a fixed set of classes C = {c1, c2, . . . , cJ}. ClassesDOCUMENT SPACE

CLASS are also called categories or labels. Typically, the document space X is some
type of high-dimensional space, and the classes are human defined for the
needs of an application, as in the examples China and documents that talk
about multicore computer chips above. We are given a training set D of labeledTRAINING SET

documents 〈d, c〉,where 〈d, c〉 ∈ X× C. For example:

〈d, c〉 = 〈Beijing joins the World Trade Organization, China〉

for the one-sentence document Beijing joins the World Trade Organization and
the class (or label) China.

Using a learning method or learning algorithm, we then wish to learn a clas-LEARNING METHOD

sifier or classification function γ that maps documents to classes:CLASSIFIER

γ : X → C(13.1)

This type of learning is called supervised learning because a supervisor (theSUPERVISED LEARNING

human who defines the classes and labels training documents) serves as a
teacher directing the learning process. We denote the supervised learning
method by Γ and write Γ(D) = γ. The learning method Γ takes the training
set D as input and returns the learned classification function γ.

Most names for learning methods Γ are also used for classifiers γ. We
talk about the Naive Bayes (NB) learning method Γ when we say that “Naive
Bayes is robust,” meaning that it can be applied to many different learning
problems and is unlikely to produce classifiers that fail catastrophically. But
when we say that “Naive Bayes had an error rate of 20%,” we are describing
an experiment in which a particular NB classifier γ (which was produced by
the NB learning method) had a 20% error rate in an application.

Figure 13.1 shows an example of text classification from the Reuters-RCV1
collection, introduced in Section 4.2, page 69. There are six classes (UK, China,
. . . , sports), each with three training documents. We show a few mnemonic
words for each document’s content. The training set provides some typical
examples for each class, so that we can learn the classification function γ.
Once we have learned γ, we can apply it to the test set (or test data), for ex-TEST SET

ample, the new document first private Chinese airline whose class is unknown.
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◮ Figure 13.1 Classes, training set, and test set in text classification .

In Figure 13.1, the classification function assigns the new document to class
γ(d) = China, which is the correct assignment.

The classes in text classification often have some interesting structure such
as the hierarchy in Figure 13.1. There are two instances each of region cate-
gories, industry categories, and subject area categories. A hierarchy can be
an important aid in solving a classification problem; see Section 15.3.2 for
further discussion. Until then, we will make the assumption in the text clas-
sification chapters that the classes form a set with no subset relationships
between them.

Definition (13.1) stipulates that a document is a member of exactly one
class. This is not the most appropriate model for the hierarchy in Figure 13.1.
For instance, a document about the 2008 Olympics should be a member of
two classes: the China class and the sports class. This type of classification
problem is referred to as an any-of problem and we will return to it in Sec-
tion 14.5 (page 306). For the time being, we only consider one-of problems
where a document is a member of exactly one class.

Our goal in text classification is high accuracy on test data or new data – for
example, the newswire articles that we will encounter tomorrow morning
in the multicore chip example. It is easy to achieve high accuracy on the
training set (e.g., we can simply memorize the labels). But high accuracy on
the training set in general does not mean that the classifier will work well on
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new data in an application. When we use the training set to learn a classifier
for test data, we make the assumption that training data and test data are
similar or from the same distribution. We defer a precise definition of this
notion to Section 14.6 (page 308).

13.2 Naive Bayes text classification

The first supervised learning method we introduce is the multinomial NaiveMULTINOMIAL NAIVE

BAYES Bayes or multinomial NB model, a probabilistic learning method. The proba-
bility of a document d being in class c is computed as

P(c|d) ∝ P(c) ∏
1≤k≤nd

P(tk|c)(13.2)

where P(tk|c) is the conditional probability of term tk occurring in a docu-
ment of class c.1 We interpret P(tk|c) as a measure of how much evidence
tk contributes that c is the correct class. P(c) is the prior probability of a
document occurring in class c. If a document’s terms do not provide clear
evidence for one class versus another, we choose the one that has a higher
prior probability. 〈t1, t2, . . . , tnd

〉 are the tokens in d that are part of the vocab-
ulary we use for classification and nd is the number of such tokens in d. For
example, 〈t1, t2, . . . , tnd

〉 for the one-sentence document Beijing and Taipei join
the WTO might be 〈Beijing, Taipei, join, WTO〉, with nd = 4, if we treat the terms
and and the as stop words.

In text classification, our goal is to find the best class for the document. The
best class in NB classification is the most likely or maximum a posteriori (MAP)MAXIMUM A

POSTERIORI CLASS class cmap:

cmap = arg max
c∈C

P̂(c|d) = arg max
c∈C

P̂(c) ∏
1≤k≤nd

P̂(tk|c).(13.3)

We write P̂ for P because we do not know the true values of the parameters
P(c) and P(tk|c), but estimate them from the training set as we will see in a
moment.

In Equation (13.3), many conditional probabilities are multiplied, one for
each position 1 ≤ k ≤ nd. This can result in a floating point underflow.
It is therefore better to perform the computation by adding logarithms of
probabilities instead of multiplying probabilities. The class with the highest
log probability score is still the most probable; log(xy) = log(x) + log(y)
and the logarithm function is monotonic. Hence, the maximization that is

1. We will explain in the next section why P(c|d) is proportional to (∝), not equal to the quantity
on the right.
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actually done in most implementations of NB is:

cmap = arg max
c∈C

[log P̂(c) + ∑
1≤k≤nd

log P̂(tk|c)].(13.4)

Equation (13.4) has a simple interpretation. Each conditional parameter
log P̂(tk|c) is a weight that indicates how good an indicator tk is for c. Sim-
ilarly, the prior log P̂(c) is a weight that indicates the relative frequency of
c. More frequent classes are more likely to be the correct class than infre-
quent classes. The sum of log prior and term weights is then a measure of
how much evidence there is for the document being in the class, and Equa-
tion (13.4) selects the class for which we have the most evidence.

We will initially work with this intuitive interpretation of the multinomial
NB model and defer a formal derivation to Section 13.4.

How do we estimate the parameters P̂(c) and P̂(tk|c)? We first try the
maximum likelihood estimate (MLE; Section 11.3.2, page 226), which is sim-
ply the relative frequency and corresponds to the most likely value of each
parameter given the training data. For the priors this estimate is:

P̂(c) =
Nc

N
,(13.5)

where Nc is the number of documents in class c and N is the total number of
documents.

We estimate the conditional probability P̂(t|c) as the relative frequency of
term t in documents belonging to class c:

P̂(t|c) =
Tct

∑t′∈V Tct′
,(13.6)

where Tct is the number of occurrences of t in training documents from class
c, including multiple occurrences of a term in a document. We have made the
positional independence assumption here, which we will discuss in more detail
in the next section: Tct is a count of occurrences in all positions k in the doc-
uments in the training set. Thus, we do not compute different estimates for
different positions and, for example, if a word occurs twice in a document,
in positions k1 and k2, then P̂(tk1

|c) = P̂(tk2
|c).

The problem with the MLE estimate is that it is zero for a term–class combi-
nation that did not occur in the training data. If the term WTO in the training
data only occurred in China documents, then the MLE estimates for the other
classes, for example UK, will be zero:

P̂(WTO|UK) = 0.

Now, the one-sentence document Britain is a member of the WTO will get a
conditional probability of zero for UK because we are multiplying the condi-
tional probabilities for all terms in Equation (13.2). Clearly, the model should
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TRAINMULTINOMIALNB(C, D)
1 V ← EXTRACTVOCABULARY(D)
2 N ← COUNTDOCS(D)
3 for each c ∈ C

4 do Nc ← COUNTDOCSINCLASS(D, c)
5 prior[c]← Nc/N
6 textc ← CONCATENATETEXTOFALLDOCSINCLASS(D, c)
7 for each t ∈ V
8 do Tct ← COUNTTOKENSOFTERM(textc, t)
9 for each t ∈ V

10 do condprob[t][c]← Tct+1
∑t′ (Tct′+1)

11 return V, prior, condprob

APPLYMULTINOMIALNB(C, V, prior, condprob, d)
1 W ← EXTRACTTOKENSFROMDOC(V, d)
2 for each c ∈ C

3 do score[c] ← log prior[c]
4 for each t ∈W
5 do score[c] += log condprob[t][c]
6 return arg maxc∈C

score[c]

◮ Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.

assign a high probability to the UK class because the term Britain occurs. The
problem is that the zero probability for WTO cannot be “conditioned away,”
no matter how strong the evidence for the class UK from other features. The
estimate is 0 because of sparseness: The training data are never large enoughSPARSENESS

to represent the frequency of rare events adequately, for example, the fre-
quency of WTO occurring in UK documents.

To eliminate zeros, we use add-one or Laplace smoothing, which simply addsADD-ONE SMOOTHING

one to each count (cf. Section 11.3.2):

P̂(t|c) =
Tct + 1

∑t′∈V(Tct′ + 1)
=

Tct + 1

(∑t′∈V Tct′) + B
,(13.7)

where B = |V| is the number of terms in the vocabulary. Add-one smoothing
can be interpreted as a uniform prior (each term occurs once for each class)
that is then updated as evidence from the training data comes in. Note that
this is a prior probability for the occurrence of a term as opposed to the prior
probability of a class which we estimate in Equation (13.5) on the document
level.
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◮ Table 13.1 Data for parameter estimation examples.

docID words in document in c = China?
training set 1 Chinese Beijing Chinese yes

2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no

test set 5 Chinese Chinese Chinese Tokyo Japan ?

◮ Table 13.2 Training and test times for NB.

mode time complexity
training Θ(|D|Lave + |C||V|)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

We have now introduced all the elements we need for training and apply-
ing an NB classifier. The complete algorithm is described in Figure 13.2.

✎ Example 13.1: For the example in Table 13.1, the multinomial parameters we

need to classify the test document are the priors P̂(c) = 3/4 and P̂(c) = 1/4 and the
following conditional probabilities:

P̂(Chinese|c) = (5 + 1)/(8 + 6) = 6/14 = 3/7

P̂(Tokyo|c) = P̂(Japan|c) = (0 + 1)/(8 + 6) = 1/14

P̂(Chinese|c) = (1 + 1)/(3 + 6) = 2/9

P̂(Tokyo|c) = P̂(Japan|c) = (1 + 1)/(3 + 6) = 2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of textc and textc are 8
and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabu-
lary consists of six terms.

We then get:

P̂(c|d5) ∝ 3/4 · (3/7)3 · 1/14 · 1/14 ≈ 0.0003.

P̂(c|d5) ∝ 1/4 · (2/9)3 · 2/9 · 2/9 ≈ 0.0001.

Thus, the classifier assigns the test document to c = China. The reason for this clas-
sification decision is that the three occurrences of the positive indicator Chinese in d5
outweigh the occurrences of the two negative indicators Japan and Tokyo.

What is the time complexity of NB? The complexity of computing the pa-
rameters is Θ(|C||V|) because the set of parameters consists of |C||V| con-
ditional probabilities and |C| priors. The preprocessing necessary for com-
puting the parameters (extracting the vocabulary, counting terms, etc.) can
be done in one pass through the training data. The time complexity of this
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component is therefore Θ(|D|Lave), where |D| is the number of documents
and Lave is the average length of a document.

We use Θ(|D|Lave) as a notation for Θ(T) here, where T is the length of the
training collection. This is nonstandard; Θ(.) is not defined for an average.
We prefer expressing the time complexity in terms of D and Lave because
these are the primary statistics used to characterize training collections.

The time complexity of APPLYMULTINOMIALNB in Figure 13.2 is Θ(|C|La).
La and Ma are the numbers of tokens and types, respectively, in the test doc-
ument. APPLYMULTINOMIALNB can be modified to be Θ(La + |C|Ma) (Ex-
ercise 13.8). Finally, assuming that the length of test documents is bounded,
Θ(La + |C|Ma) = Θ(|C|Ma) because La < b|C|Ma for a fixed constant b.2

Table 13.2 summarizes the time complexities. In general, we have |C||V| <
|D|Lave, so both training and testing complexity are linear in the time it takes
to scan the data. Because we have to look at the data at least once, NB can be
said to have optimal time complexity. Its efficiency is one reason why NB is
a popular text classification method.

13.2.1 Relation to multinomial unigram language model

The multinomial NB model is formally identical to the multinomial unigram
language model (Section 12.2.1, page 242). In particular, Equation (13.2) is
a special case of Equation (12.12) from page 243, which we repeat here for
λ = 1:

P(d|q) ∝ P(d) ∏
t∈q

P(t|Md).(13.8)

The document d in text classification (Equation (13.2)) takes the role of the
query in language modeling (Equation (13.8)) and the classes c in text clas-
sification take the role of the documents d in language modeling. We used
Equation (13.8) to rank documents according to the probability that they are
relevant to the query q. In NB classification, we are usually only interested
in the top-ranked class.

We also used MLE estimates in Section 12.2.2 (page 243) and encountered
the problem of zero estimates owing to sparse data (page 244); but instead
of add-one smoothing, we used a mixture of two distributions to address the

problem there. Add-one smoothing is closely related to add- 1
2 smoothing in

Section 11.3.4 (page 228).

? Exercise 13.1

Why is |C||V| < |D|Lave in Table 13.2 expected to hold for most text collections?

2. Our assumption here is that the length of test documents is bounded. La would exceed
b|C|Ma for extremely long test documents.
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TRAINBERNOULLINB(C, D)
1 V ← EXTRACTVOCABULARY(D)
2 N ← COUNTDOCS(D)
3 for each c ∈ C

4 do Nc ← COUNTDOCSINCLASS(D, c)
5 prior[c]← Nc/N
6 for each t ∈ V
7 do Nct ← COUNTDOCSINCLASSCONTAININGTERM(D, c, t)
8 condprob[t][c]← (Nct + 1)/(Nc + 2)
9 return V, prior, condprob

APPLYBERNOULLINB(C, V, prior, condprob, d)
1 Vd ← EXTRACTTERMSFROMDOC(V, d)
2 for each c ∈ C

3 do score[c]← log prior[c]
4 for each t ∈ V
5 do if t ∈ Vd

6 then score[c] += log condprob[t][c]
7 else score[c] += log(1− condprob[t][c])
8 return arg maxc∈C

score[c]

◮ Figure 13.3 NB algorithm (Bernoulli model): Training and testing. The add-one
smoothing in Line 8 (top) is in analogy to Equation (13.7) with B = 2.

13.3 The Bernoulli model

There are two different ways we can set up an NB classifier. The model we in-
troduced in the previous section is the multinomial model. It generates one
term from the vocabulary in each position of the document, where we as-
sume a generative model that will be discussed in more detail in Section 13.4
(see also page 237).

An alternative to the multinomial model is the multivariate Bernoulli model
or Bernoulli model. It is equivalent to the binary independence model of Sec-BERNOULLI MODEL

tion 11.3 (page 222), which generates an indicator for each term of the vo-
cabulary, either 1 indicating presence of the term in the document or 0 indi-
cating absence. Figure 13.3 presents training and testing algorithms for the
Bernoulli model. The Bernoulli model has the same time complexity as the
multinomial model.

The different generation models imply different estimation strategies and
different classification rules. The Bernoulli model estimates P̂(t|c) as the frac-
tion of documents of class c that contain term t (Figure 13.3, TRAINBERNOULLI-
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NB, line 8). In contrast, the multinomial model estimates P̂(t|c) as the frac-
tion of tokens or fraction of positions in documents of class c that contain term
t (Equation (13.7)). When classifying a test document, the Bernoulli model
uses binary occurrence information, ignoring the number of occurrences,
whereas the multinomial model keeps track of multiple occurrences. As a
result, the Bernoulli model typically makes many mistakes when classifying
long documents. For example, it may assign an entire book to the class China
because of a single occurrence of the term China.

The models also differ in how nonoccurring terms are used in classifica-
tion. They do not affect the classification decision in the multinomial model;
but in the Bernoulli model the probability of nonoccurrence is factored in
when computing P(c|d) (Figure 13.3, APPLYBERNOULLINB, Line 7). This is
because only the Bernoulli NB model models absence of terms explicitly.

✎ Example 13.2: Applying the Bernoulli model to the example in Table 13.1, we

have the same estimates for the priors as before: P̂(c) = 3/4, P̂(c) = 1/4. The
conditional probabilities are:

P̂(Chinese|c) = (3 + 1)/(3 + 2) = 4/5

P̂(Japan|c) = P̂(Tokyo|c) = (0 + 1)/(3 + 2) = 1/5

P̂(Beijing|c) = P̂(Macao|c) = P̂(Shanghai|c) = (1 + 1)/(3 + 2) = 2/5

P̂(Chinese|c) = (1 + 1)/(1 + 2) = 2/3

P̂(Japan|c) = P̂(Tokyo|c) = (1 + 1)/(1 + 2) = 2/3

P̂(Beijing|c) = P̂(Macao|c) = P̂(Shanghai|c) = (0 + 1)/(1 + 2) = 1/3

The denominators are (3 + 2) and (1 + 2) because there are three documents in c
and one document in c and because the constant B in Equation (13.7) is 2 – there are
two cases to consider for each term, occurrence and nonoccurrence.

The scores of the test document for the two classes are

P̂(c|d5) ∝ P̂(c) · P̂(Chinese|c) · P̂(Japan|c) · P̂(Tokyo|c)

· (1− P̂(Beijing|c)) · (1− P̂(Shanghai|c)) · (1− P̂(Macao|c))

= 3/4 · 4/5 · 1/5 · 1/5 · (1−2/5) · (1−2/5) · (1−2/5)

≈ 0.005

and, analogously,

P̂(c|d5) ∝ 1/4 · 2/3 · 2/3 · 2/3 · (1−1/3) · (1−1/3) · (1−1/3)

≈ 0.022

Thus, the classifier assigns the test document to c = not-China. When looking only
at binary occurrence and not at term frequency, Japan and Tokyo are indicators for c
(2/3 > 1/5) and the conditional probabilities of Chinese for c and c are not different
enough (4/5 vs. 2/3) to affect the classification decision.
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13.4 Properties of Naive Bayes

To gain a better understanding of the two models and the assumptions they
make, let us go back and examine how we derived their classification rules in
Chapters 11 and 12. We decide class membership of a document by assigning
it to the class with the maximum a posteriori probability (cf. Section 11.3.2,
page 226), which we compute as follows:

cmap = arg max
c∈C

P(c|d)

= arg max
c∈C

P(d|c)P(c)

P(d)
(13.9)

= arg max
c∈C

P(d|c)P(c),(13.10)

where Bayes’ rule (Equation (11.4), page 220) is applied in (13.9) and we drop
the denominator in the last step because P(d) is the same for all classes and
does not affect the argmax.

We can interpret Equation (13.10) as a description of the generative process
we assume in Bayesian text classification. To generate a document, we first
choose class c with probability P(c) (top nodes in Figures 13.4 and 13.5). The
two models differ in the formalization of the second step, the generation of
the document given the class, corresponding to the conditional distribution
P(d|c):

Multinomial P(d|c) = P(〈t1, . . . , tk, . . . , tnd
〉|c)(13.11)

Bernoulli P(d|c) = P(〈e1, . . . , ei, . . . , eM〉|c),(13.12)

where 〈t1, . . . , tnd
〉 is the sequence of terms as it occurs in d (minus terms

that were excluded from the vocabulary) and 〈e1, . . . , ei, . . . , eM〉 is a binary
vector of dimensionality M that indicates for each term whether it occurs in
d or not.

It should now be clearer why we introduced the document space X in
Equation (13.1) when we defined the classification problem. A critical step
in solving a text classification problem is to choose the document represen-
tation. 〈t1, . . . , tnd

〉 and 〈e1, . . . , eM〉 are two different document representa-
tions. In the first case, X is the set of all term sequences (or, more precisely,
sequences of term tokens). In the second case, X is {0, 1}M.

We cannot use Equations (13.11) and (13.12) for text classification directly.
For the Bernoulli model, we would have to estimate 2M|C| different param-
eters, one for each possible combination of M values ei and a class. The
number of parameters in the multinomial case has the same order of magni-
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C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

◮ Figure 13.4 The multinomial NB model.

tude.3 This being a very large quantity, estimating these parameters reliably
is infeasible.

To reduce the number of parameters, we make the Naive Bayes conditionalCONDITIONAL

INDEPENDENCE

ASSUMPTION
independence assumption. We assume that attribute values are independent of
each other given the class:

Multinomial P(d|c) = P(〈t1, . . . , tnd
〉|c) = ∏

1≤k≤nd

P(Xk = tk|c)(13.13)

Bernoulli P(d|c) = P(〈e1, . . . , eM〉|c) = ∏
1≤i≤M

P(Ui = ei|c).(13.14)

We have introduced two random variables here to make the two different
generative models explicit. Xk is the random variable for position k in theRANDOM VARIABLE X

document and takes as values terms from the vocabulary. P(Xk = t|c) is the
probability that in a document of class c the term t will occur in position k. UiRANDOM VARIABLE U

is the random variable for vocabulary term i and takes as values 0 (absence)
and 1 (presence). P̂(Ui = 1|c) is the probability that in a document of class c
the term ti will occur – in any position and possibly multiple times.

We illustrate the conditional independence assumption in Figures 13.4 and 13.5.
The class China generates values for each of the five term attributes (multi-
nomial) or six binary attributes (Bernoulli) with a certain probability, inde-
pendent of the values of the other attributes. The fact that a document in the
class China contains the term Taipei does not make it more likely or less likely
that it also contains Beijing.

In reality, the conditional independence assumption does not hold for text
data. Terms are conditionally dependent on each other. But as we will dis-
cuss shortly, NB models perform well despite the conditional independence
assumption.

3. In fact, if the length of documents is not bounded, the number of parameters in the multino-
mial case is infinite.
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UAlaska=0 UBeijing=1 UIndia=0 Ujoin=1 UTaipei=1 UWTO=1

C=China

◮ Figure 13.5 The Bernoulli NB model.

Even when assuming conditional independence, we still have too many
parameters for the multinomial model if we assume a different probability
distribution for each position k in the document. The position of a term in a
document by itself does not carry information about the class. Although
there is a difference between China sues France and France sues China, the
occurrence of China in position 1 versus position 3 of the document is not
useful in NB classification because we look at each term separately. The con-
ditional independence assumption commits us to this way of processing the
evidence.

Also, if we assumed different term distributions for each position k, we
would have to estimate a different set of parameters for each k. The probabil-
ity of bean appearing as the first term of a coffee document could be different
from it appearing as the second term, and so on. This again causes problems
in estimation owing to data sparseness.

For these reasons, we make a second independence assumption for the
multinomial model, positional independence: The conditional probabilities forPOSITIONAL

INDEPENDENCE a term are the same independent of position in the document.

P(Xk1
= t|c) = P(Xk2

= t|c)

for all positions k1, k2, terms t and classes c. Thus, we have a single dis-
tribution of terms that is valid for all positions ki and we can use X as its
symbol.4 Positional independence is equivalent to adopting the bag of words
model, which we introduced in the context of ad hoc retrieval in Chapter 6
(page 117).

With conditional and positional independence assumptions, we only need
to estimate Θ(M|C|) parameters P(tk|c) (multinomial model) or P(ei|c) (Bernoulli

4. Our terminology is nonstandard. The random variable X is a categorical variable, not a multi-
nomial variable, and the corresponding NB model should perhaps be called a sequence model. We
have chosen to present this sequence model and the multinomial model in Section 13.4.1 as the
same model because they are computationally identical.
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◮ Table 13.3 Multinomial versus Bernoulli model.
multinomial model Bernoulli model

event model generation of token generation of document
random variable(s) X = t iff t occurs at given pos Ut = 1 iff t occurs in doc
document representation d = 〈t1, . . . , tk, . . . , tnd

〉, tk ∈ V d = 〈e1, . . . , ei, . . . , eM〉,
ei ∈ {0, 1}

parameter estimation P̂(X = t|c) P̂(Ui = e|c)
decision rule: maximize P̂(c) ∏1≤k≤nd

P̂(X = tk|c) P̂(c) ∏ti∈V P̂(Ui = ei|c)
multiple occurrences taken into account ignored
length of docs can handle longer docs works best for short docs
# features can handle more works best with fewer
estimate for term the P̂(X = the|c) ≈ 0.05 P̂(Uthe = 1|c) ≈ 1.0

model), one for each term–class combination, rather than a number that is
at least exponential in M, the size of the vocabulary. The independence
assumptions reduce the number of parameters to be estimated by several
orders of magnitude.

To summarize, we generate a document in the multinomial model (Fig-
ure 13.4) by first picking a class C = c with P(c) where C is a random variableRANDOM VARIABLE C

taking values from C as values. Next we generate term tk in position k with
P(Xk = tk|c) for each of the nd positions of the document. The Xk all have
the same distribution over terms for a given c. In the example in Figure 13.4,
we show the generation of 〈t1, t2, t3, t4, t5〉 = 〈Beijing, and, Taipei, join, WTO〉,
corresponding to the one-sentence document Beijing and Taipei join WTO.

For a completely specified document generation model, we would also
have to define a distribution P(nd|c) over lengths. Without it, the multino-
mial model is a token generation model rather than a document generation
model.

We generate a document in the Bernoulli model (Figure 13.5) by first pick-
ing a class C = c with P(c) and then generating a binary indicator ei for each
term ti of the vocabulary (1 ≤ i ≤ M). In the example in Figure 13.5, we
show the generation of 〈e1, e2, e3, e4, e5, e6〉 = 〈0, 1, 0, 1, 1, 1〉, corresponding,
again, to the one-sentence document Beijing and Taipei join WTO where we
have assumed that and is a stop word.

We compare the two models in Table 13.3, including estimation equations
and decision rules.

Naive Bayes is so called because the independence assumptions we have
just made are indeed very naive for a model of natural language. The condi-
tional independence assumption states that features are independent of each
other given the class. This is hardly ever true for terms in documents. In
many cases, the opposite is true. The pairs hong and kong or london and en-
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◮ Table 13.4 Correct estimation implies accurate prediction, but accurate predic-
tion does not imply correct estimation.

c1 c2 class selected
true probability P(c|d) 0.6 0.4 c1

P̂(c) ∏1≤k≤nd
P̂(tk|c) (Equation (13.13)) 0.00099 0.00001

NB estimate P̂(c|d) 0.99 0.01 c1

glish in Figure 13.7 are examples of highly dependent terms. In addition, the
multinomial model makes an assumption of positional independence. The
Bernoulli model ignores positions in documents altogether because it only
cares about absence or presence. This bag-of-words model discards all in-
formation that is communicated by the order of words in natural language
sentences. How can NB be a good text classifier when its model of natural
language is so oversimplified?

The answer is that even though the probability estimates of NB are of low
quality, its classification decisions are surprisingly good. Consider a document
d with true probabilities P(c1|d) = 0.6 and P(c2|d) = 0.4 as shown in Ta-
ble 13.4. Assume that d contains many terms that are positive indicators for
c1 and many terms that are negative indicators for c2. Thus, when using the
multinomial model in Equation (13.13), P̂(c1) ∏1≤k≤nd

P̂(tk|c1) will be much

larger than P̂(c2) ∏1≤k≤nd
P̂(tk|c2) (0.00099 vs. 0.00001 in the table). After di-

vision by 0.001 to get well-formed probabilities for P(c|d), we end up with
one estimate that is close to 1.0 and one that is close to 0.0. This is common:
The winning class in NB classification usually has a much larger probabil-
ity than the other classes and the estimates diverge very significantly from
the true probabilities. But the classification decision is based on which class
gets the highest score. It does not matter how accurate the estimates are. De-
spite the bad estimates, NB estimates a higher probability for c1 and therefore
assigns d to the correct class in Table 13.4. Correct estimation implies accurate
prediction, but accurate prediction does not imply correct estimation. NB classifiers
estimate badly, but often classify well.

Even if it is not the method with the highest accuracy for text, NB has many
virtues that make it a strong contender for text classification. It excels if there
are many equally important features that jointly contribute to the classifi-
cation decision. It is also somewhat robust to noise features (as defined in
the next section) and concept drift – the gradual change over time of the con-CONCEPT DRIFT

cept underlying a class like US president from Bill Clinton to George W. Bush
(see Section 13.7). Classifiers like kNN (Section 14.3, page 297) can be care-
fully tuned to idiosyncratic properties of a particular time period. This will
then hurt them when documents in the following time period have slightly
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◮ Table 13.5 A set of documents for which the NB independence assumptions are
problematic.

(1) He moved from London, Ontario, to London, England.
(2) He moved from London, England, to London, Ontario.
(3) He moved from England to London, Ontario.

different properties.
The Bernoulli model is particularly robust with respect to concept drift.

We will see in Figure 13.8 that it can have decent performance when using
fewer than a dozen terms. The most important indicators for a class are less
likely to change. Thus, a model that only relies on these features is more
likely to maintain a certain level of accuracy in concept drift.

NB’s main strength is its efficiency: Training and classification can be ac-
complished with one pass over the data. Because it combines efficiency with
good accuracy it is often used as a baseline in text classification research.
It is often the method of choice if (i) squeezing out a few extra percentage
points of accuracy is not worth the trouble in a text classification application,
(ii) a very large amount of training data is available and there is more to be
gained from training on a lot of data than using a better classifier on a smaller
training set, or (iii) if its robustness to concept drift can be exploited.

In this book, we discuss NB as a classifier for text. The independence as-
sumptions do not hold for text. However, it can be shown that NB is an
optimal classifier (in the sense of minimal error rate on new data) for dataOPTIMAL CLASSIFIER

where the independence assumptions do hold.

13.4.1 A variant of the multinomial model

An alternative formalization of the multinomial model represents each doc-
ument d as an M-dimensional vector of counts 〈tft1,d, . . . , tftM,d〉 where tfti,d

is the term frequency of ti in d. P(d|c) is then computed as follows (cf. Equa-
tion (12.8), page 243);

P(d|c) = P(〈tft1,d, . . . , tftM ,d〉|c) ∝ ∏
1≤i≤M

P(X = ti|c)
tfti,d(13.15)

Note that we have omitted the multinomial factor. See Equation (12.8) (page 243).
Equation (13.15) is equivalent to the sequence model in Equation (13.2) as

P(X = ti|c)
tfti,d = 1 for terms that do not occur in d (tfti,d = 0) and a term

that occurs tfti,d
≥ 1 times will contribute tfti,d

factors both in Equation (13.2)
and in Equation (13.15).
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SELECTFEATURES(D, c, k)
1 V ← EXTRACTVOCABULARY(D)
2 L← []
3 for each t ∈ V
4 do A(t, c)← COMPUTEFEATUREUTILITY(D, t, c)
5 APPEND(L, 〈A(t, c), t〉)
6 return FEATURESWITHLARGESTVALUES(L, k)

◮ Figure 13.6 Basic feature selection algorithm for selecting the k best features.

? Exercise 13.2 [⋆]

Which of the documents in Table 13.5 have identical and different bag of words rep-
resentations for (i) the Bernoulli model (ii) the multinomial model? If there are differ-
ences, describe them.

Exercise 13.3

The rationale for the positional independence assumption is that there is no useful
information in the fact that a term occurs in position k of a document. Find exceptions.
Consider formulaic documents with a fixed document structure.

Exercise 13.4

Table 13.3 gives Bernoulli and multinomial estimates for the word the. Explain the
difference.

13.5 Feature selection

Feature selection is the process of selecting a subset of the terms occurringFEATURE SELECTION

in the training set and using only this subset as features in text classifica-
tion. Feature selection serves two main purposes. First, it makes training
and applying a classifier more efficient by decreasing the size of the effective
vocabulary. This is of particular importance for classifiers that, unlike NB,
are expensive to train. Second, feature selection often increases classifica-
tion accuracy by eliminating noise features. A noise feature is one that, whenNOISE FEATURE

added to the document representation, increases the classification error on
new data. Suppose a rare term, say arachnocentric, has no information about
a class, say China, but all instances of arachnocentric happen to occur in China
documents in our training set. Then the learning method might produce a
classifier that misassigns test documents containing arachnocentric to China.
Such an incorrect generalization from an accidental property of the training
set is called overfitting.OVERFITTING

We can view feature selection as a method for replacing a complex clas-
sifier (using all features) with a simpler one (using a subset of the features).
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It may appear counterintuitive at first that a seemingly weaker classifier is
advantageous in statistical text classification, but when discussing the bias-
variance tradeoff in Section 14.6 (page 308), we will see that weaker models
are often preferable when limited training data are available.

The basic feature selection algorithm is shown in Figure 13.6. For a given
class c, we compute a utility measure A(t, c) for each term of the vocabulary
and select the k terms that have the highest values of A(t, c). All other terms
are discarded and not used in classification. We will introduce three different
utility measures in this section: mutual information, A(t, c) = I(Ut; Cc); the
χ2 test, A(t, c) = X2(t, c); and frequency, A(t, c) = N(t, c).

Of the two NB models, the Bernoulli model is particularly sensitive to
noise features. A Bernoulli NB classifier requires some form of feature se-
lection or else its accuracy will be low.

This section mainly addresses feature selection for two-class classification
tasks like China versus not-China. Section 13.5.5 briefly discusses optimiza-
tions for systems with more than two classes.

13.5.1 Mutual information

A common feature selection method is to compute A(t, c) as the expected
mutual information (MI) of term t and class c.5 MI measures how much in-MUTUAL INFORMATION

formation the presence/absence of a term contributes to making the correct
classification decision on c. Formally:

I(U; C) = ∑
et∈{1,0}

∑
ec∈{1,0}

P(U = et, C = ec) log2

P(U = et, C = ec)

P(U = et)P(C = ec)
,(13.16)

where U is a random variable that takes values et = 1 (the document contains
term t) and et = 0 (the document does not contain t), as defined on page 266,
and C is a random variable that takes values ec = 1 (the document is in class
c) and ec = 0 (the document is not in class c). We write Ut and Cc if it is not
clear from context which term t and class c we are referring to.

ForMLEs of the probabilities, Equation (13.16) is equivalent to Equation (13.17):

I(U; C) =
N11

N
log2

NN11

N1.N.1
+

N01

N
log2

NN01

N0.N.1
(13.17)

+
N10

N
log2

NN10

N1.N.0
+

N00

N
log2

NN00

N0.N.0

where the Ns are counts of documents that have the values of et and ec that
are indicated by the two subscripts. For example, N10 is the number of doc-

5. Take care not to confuse expected mutual information with pointwise mutual information,
which is defined as log N11/E11 where N11 and E11 are defined as in Equation (13.18). The
two measures have different properties. See Section 13.7.
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uments that contain t (et = 1) and are not in c (ec = 0). N1. = N10 + N11 is
the number of documents that contain t (et = 1) and we count documents
independent of class membership (ec ∈ {0, 1}). N = N00 + N01 + N10 + N11

is the total number of documents. An example of one of the MLE estimates
that transform Equation (13.16) into Equation (13.17) is P(U = 1, C = 1) =
N11/N.

✎ Example 13.3: Consider the class poultry and the term export in Reuters-RCV1.
The counts of the number of documents with the four possible combinations of indi-
cator values are as follows:

ec = epoultry = 1 ec = epoultry = 0

et = eexport = 1 N11 = 49 N10 = 27,652
et = eexport = 0 N01 = 141 N00 = 774,106

After plugging these values into Equation (13.17) we get:

I(U; C) =
49

801,948
log2

801,948 · 49

(49+27,652)(49+141)

+
141

801,948
log2

801,948 · 141

(141+774,106)(49+141)

+
27,652

801,948
log2

801,948 · 27,652

(49+27,652)(27,652+774,106)

+
774,106

801,948
log2

801,948 · 774,106

(141+774,106)(27,652+774,106)

≈ 0.0001105

To select k terms t1, . . . , tk for a given class, we use the feature selection al-
gorithm in Figure 13.6: We compute the utility measure as A(t, c) = I(Ut, Cc)
and select the k terms with the largest values.

Mutual information measures how much information – in the information-
theoretic sense – a term contains about the class. If a term’s distribution is
the same in the class as it is in the collection as a whole, then I(U; C) =
0. MI reaches its maximum value if the term is a perfect indicator for class
membership, that is, if the term is present in a document if and only if the
document is in the class.

Figure 13.7 shows terms with high mutual information scores for the six
classes in Figure 13.1.6 The selected terms (e.g., london, uk, british for the class
UK) are of obvious utility for making classification decisions for their respec-
tive classes. At the bottom of the list for UK we find terms like peripherals
and tonight (not shown in the figure) that are clearly not helpful in deciding

6. Feature scores were computed on the first 100,000 documents, except for poultry, a rare class,
for which 800,000 documents were used. We have omitted numbers and other special words
from the top ten lists.
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UK
london 0.1925
uk 0.0755
british 0.0596
stg 0.0555
britain 0.0469
plc 0.0357
england 0.0238
pence 0.0212
pounds 0.0149
english 0.0126

China
china 0.0997
chinese 0.0523
beijing 0.0444
yuan 0.0344
shanghai 0.0292
hong 0.0198
kong 0.0195
xinhua 0.0155
province 0.0117
taiwan 0.0108

poultry
poultry 0.0013
meat 0.0008
chicken 0.0006
agriculture 0.0005
avian 0.0004
broiler 0.0003
veterinary 0.0003
birds 0.0003
inspection 0.0003
pathogenic 0.0003

coffee
coffee 0.0111
bags 0.0042
growers 0.0025
kg 0.0019
colombia 0.0018
brazil 0.0016
export 0.0014
exporters 0.0013
exports 0.0013
crop 0.0012

elections
election 0.0519
elections 0.0342
polls 0.0339
voters 0.0315
party 0.0303
vote 0.0299
poll 0.0225
candidate 0.0202
campaign 0.0202
democratic 0.0198

sports
soccer 0.0681
cup 0.0515
match 0.0441
matches 0.0408
played 0.0388
league 0.0386
beat 0.0301
game 0.0299
games 0.0284
team 0.0264

◮ Figure 13.7 Features with high mutual information scores for six Reuters-RCV1
classes.

whether the document is in the class. As you might expect, keeping the in-
formative terms and eliminating the non-informative ones tends to reduce
noise and improve the classifier’s accuracy.

Such an accuracy increase can be observed in Figure 13.8, which shows
F1 as a function of vocabulary size after feature selection for Reuters-RCV1.7

Comparing F1 at 132,776 features (corresponding to selection of all features)
and at 10–100 features, we see that MI feature selection increases F1 by about
0.1 for the multinomial model and by more than 0.2 for the Bernoulli model.
For the Bernoulli model, F1 peaks early, at ten features selected. At that point,
the Bernoulli model is better than the multinomial model. When basing a
classification decision on only a few features, it is more robust to consider bi-
nary occurrence only. For the multinomial model (MI feature selection), the
peak occurs later, at 100 features, and its effectiveness recovers somewhat at

7. We trained the classifiers on the first 100,000 documents and computed F1 on the next 100,000.
The graphs are averages over five classes.
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◮ Figure 13.8 Effect of feature set size on accuracy for multinomial and Bernoulli
models.

the end when we use all features. The reason is that the multinomial takes
the number of occurrences into account in parameter estimation and clas-
sification and therefore better exploits a larger number of features than the
Bernoulli model. Regardless of the differences between the two methods,
using a carefully selected subset of the features results in better effectiveness
than using all features.

13.5.2 χ
2 Feature selection

Another popular feature selection method is χ2. In statistics, the χ2 test isχ2 FEATURE SELECTION

applied to test the independence of two events, where two events A and B are
defined to be independent if P(AB) = P(A)P(B) or, equivalently, P(A|B) =INDEPENDENCE

P(A) and P(B|A) = P(B). In feature selection, the two events are occurrence
of the term and occurrence of the class. We then rank terms with respect to
the following quantity:

X2(D, t, c) = ∑
et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

(13.18)
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where et and ec are defined as in Equation (13.16). N is the observed frequency
in D and E the expected frequency. For example, E11 is the expected frequency
of t and c occurring together in a document assuming that term and class are
independent.

✎ Example 13.4: We first compute E11 for the data in Example 13.3:

E11 = N× P(t)× P(c) = N×
N11 + N10

N
×

N11 + N01

N

= N×
49 + 141

N
×

49 + 27652

N
≈ 6.6

where N is the total number of documents as before.
We compute the other Eetec in the same way:

epoultry = 1 epoultry = 0

eexport = 1 N11 = 49 E11 ≈ 6.6 N10 = 27,652 E10 ≈ 27,694.4
eexport = 0 N01 = 141 E01 ≈ 183.4 N00 = 774,106 E00 ≈ 774,063.6

Plugging these values into Equation (13.18), we get a X2 value of 284:

X2(D, t, c) = ∑
et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

≈ 284

X2 is a measure of how much expected counts E and observed counts N
deviate from each other. A high value of X2 indicates that the hypothesis of
independence, which implies that expected and observed counts are similar,
is incorrect. In our example, X2 ≈ 284 > 10.83. Based on Table 13.6, we
can reject the hypothesis that poultry and export are independent with only a
0.001 chance of being wrong.8 Equivalently, we say that the outcome X2 ≈
284 > 10.83 is statistically significant at the 0.001 level. If the two events areSTATISTICAL

SIGNIFICANCE dependent, then the occurrence of the term makes the occurrence of the class
more likely (or less likely), so it should be helpful as a feature. This is the
rationale of χ2 feature selection.

An arithmetically simpler way of computing X2 is the following:

X2(D, t, c) =
(N11 + N10 + N01 + N00)× (N11N00− N10N01)

2

(N11 + N01)× (N11 + N10)× (N10 + N00)× (N01 + N00)
(13.19)

This is equivalent to Equation (13.18) (Exercise 13.14).

8. We can make this inference because, if the two events are independent, then X2 ∼ χ2, where
χ2 is the χ2 distribution. See, for example, Rice (2006).
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◮ Table 13.6 Critical values of the χ2 distribution with one degree of freedom. For
example, if the two events are independent, then P(X2

> 6.63) < 0.01. So for X2
>

6.63 the assumption of independence can be rejected with 99% confidence.

p χ2 critical value
0.1 2.71
0.05 3.84
0.01 6.63
0.005 7.88
0.001 10.83

✄ Assessing χ
2 as a feature selection method

From a statistical point of view, χ2 feature selection is problematic. For a
test with one degree of freedom, the so-called Yates correction should be
used (see Section 13.7), which makes it harder to reach statistical significance.
Also, whenever a statistical test is used multiple times, then the probability
of getting at least one error increases. If 1,000 hypotheses are rejected, each
with 0.05 error probability, then 0.05× 1000 = 50 calls of the test will be
wrong on average. However, in text classification it rarely matters whether a
few additional terms are added to the feature set or removed from it. Rather,
the relative importance of features is important. As long as χ2 feature selec-
tion only ranks features with respect to their usefulness and is not used to
make statements about statistical dependence or independence of variables,
we need not be overly concerned that it does not adhere strictly to statistical
theory.

13.5.3 Frequency-based feature selection

A third feature selection method is frequency-based feature selection, that is,
selecting the terms that are most common in the class. Frequency can be
either defined as document frequency (the number of documents in the class
c that contain the term t) or as collection frequency (the number of tokens of
t that occur in documents in c). Document frequency is more appropriate for
the Bernoulli model, collection frequency for the multinomial model.

Frequency-based feature selection selects some frequent terms that have
no specific information about the class, for example, the days of the week
(Monday, Tuesday, . . . ), which are frequent across classes in newswire text.
When many thousands of features are selected, then frequency-based fea-
ture selection often does well. Thus, if somewhat suboptimal accuracy is
acceptable, then frequency-based feature selection can be a good alternative
to more complex methods. However, Figure 13.8 is a case where frequency-
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based feature selection performs a lot worse than MI and χ2 and should not
be used.

13.5.4 Feature selection for multiple classifiers

In an operational system with a large number of classifiers, it is desirable
to select a single set of features instead of a different one for each classifier.
One way of doing this is to compute the X2 statistic for an n× 2 table where
the columns are occurrence and nonoccurrence of the term and each row
corresponds to one of the classes. We can then select the k terms with the
highest X2 statistic as before.

More commonly, feature selection statistics are first computed separately
for each class on the two-class classification task c versus c and then com-
bined. One combination method computes a single figure of merit for each
feature, for example, by averaging the values A(t, c) for feature t, and then
selects the k features with highest figures of merit. Another frequently used
combination method selects the top k/n features for each of n classifiers and
then combines these n sets into one global feature set.

Classification accuracy often decreases when selecting k common features
for a system with n classifiers as opposed to n different sets of size k. But even
if it does, the gain in efficiency owing to a common document representation
may be worth the loss in accuracy.

13.5.5 Comparison of feature selection methods

Mutual information and χ2 represent rather different feature selection meth-
ods. The independence of term t and class c can sometimes be rejected with
high confidence even if t carries little information about membership of a
document in c. This is particularly true for rare terms. If a term occurs once
in a large collection and that one occurrence is in the poultry class, then this
is statistically significant. But a single occurrence is not very informative
according to the information-theoretic definition of information. Because
its criterion is significance, χ2 selects more rare terms (which are often less
reliable indicators) than mutual information. But the selection criterion of
mutual information also does not necessarily select the terms that maximize
classification accuracy.

Despite the differences between the two methods, the classification accu-
racy of feature sets selected with χ2 and MI does not seem to differ systemat-
ically. In most text classification problems, there are a few strong indicators
and many weak indicators. As long as all strong indicators and a large num-
ber of weak indicators are selected, accuracy is expected to be good. Both
methods do this.

Figure 13.8 compares MI and χ2 feature selection for the multinomial model.
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Peak effectiveness is virtually the same for both methods. χ2 reaches this
peak later, at 300 features, probably because the rare, but highly significant
features it selects initially do not cover all documents in the class. However,
features selected later (in the range of 100–300) are of better quality than those
selected by MI.

All three methods – MI, χ2 and frequency based – are greedy methods.GREEDY FEATURE

SELECTION They may select features that contribute no incremental information over
previously selected features. In Figure 13.7, kong is selected as the seventh
term even though it is highly correlated with previously selected hong and
therefore redundant. Although such redundancy can negatively impact ac-
curacy, non-greedy methods (see Section 13.7 for references) are rarely used
in text classification due to their computational cost.

? Exercise 13.5

Consider the following frequencies for the class coffee for four terms in the first 100,000
documents of Reuters-RCV1:

term N00 N01 N10 N11

brazil 98,012 102 1835 51
council 96,322 133 3525 20
producers 98,524 119 1118 34
roasted 99,824 143 23 10

Select two of these four terms based on (i) χ2, (ii) mutual information, (iii) frequency.

13.6 Evaluation of text classification

] Historically, the classic Reuters-21578 collection was the main benchmark
for text classification evaluation. This is a collection of 21,578 newswire ar-
ticles, originally collected and labeled by Carnegie Group, Inc. and Reuters,
Ltd. in the course of developing the CONSTRUE text classification system.
It is much smaller than and predates the Reuters-RCV1 collection discussed
in Chapter 4 (page 69). The articles are assigned classes from a set of 118
topic categories. A document may be assigned several classes or none, but
the commonest case is single assignment (documents with at least one class
received an average of 1.24 classes). The standard approach to this any-of
problem (Chapter 14, page 306) is to learn 118 two-class classifiers, one for
each class, where the two-class classifier for class c is the classifier for the twoTWO-CLASS CLASSIFIER

classes c and its complement c.
For each of these classifiers, we can measure recall, precision, and accu-

racy. In recent work, people almost invariably use the ModApte split, whichMODAPTE SPLIT

includes only documents that were viewed and assessed by a human indexer,
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◮ Table 13.7 The ten largest classes in the Reuters-21578 collection with number of
documents in training and test sets.

class # train # testclass # train # test
earn 2877 1087 trade 369 119
acquisitions 1650 179 interest 347 131
money-fx 538 179 ship 197 89
grain 433 149 wheat 212 71
crude 389 189 corn 182 56

and comprises 9,603 training documents and 3,299 test documents. The dis-
tribution of documents in classes is very uneven, and some work evaluates
systems on only documents in the ten largest classes. They are listed in Ta-
ble 13.7. A typical document with topics is shown in Figure 13.9.

In Section 13.1, we stated as our goal in text classification the minimization
of classification error on test data. Classification error is 1.0 minus classifica-
tion accuracy, the proportion of correct decisions, a measure we introduced
in Section 8.3 (page 155). This measure is appropriate if the percentage of
documents in the class is high, perhaps 10% to 20% and higher. But as we
discussed in Section 8.3, accuracy is not a good measure for “small” classes
because always saying no, a strategy that defeats the purpose of building a
classifier, will achieve high accuracy. The always-no classifier is 99% accurate
for a class with relative frequency 1%. For small classes, precision, recall and
F1 are better measures.

We will use effectiveness as a generic term for measures that evaluate theEFFECTIVENESS

quality of classification decisions, including precision, recall, F1, and accu-
racy. Performance refers to the computational efficiency of classification andPERFORMANCE

EFFICIENCY IR systems in this book. However, many researchers mean effectiveness, not
efficiency of text classification when they use the term performance.

When we process a collection with several two-class classifiers (such as
Reuters-21578 with its 118 classes), we often want to compute a single ag-
gregate measure that combines the measures for individual classifiers. There
are two methods for doing this. Macroaveraging computes a simple aver-MACROAVERAGING

age over classes. Microaveraging pools per-document decisions across classes,MICROAVERAGING

and then computes an effectiveness measure on the pooled contingency ta-
ble. Table 13.8 gives an example.

The differences between the two methods can be large. Macroaveraging
gives equal weight to each class, whereas microaveraging gives equal weight
to each per-document classification decision. Because the F1 measure ignores
true negatives and its magnitude is mostly determined by the number of
true positives, large classes dominate small classes in microaveraging. In the
example, microaveraged precision (0.83) is much closer to the precision of
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<REUTERS TOPICS=’’YES’’ LEWISSPLIT=’’TRAIN’’
CGISPLIT=’’TRAINING-SET’’ OLDID=’’12981’’ NEWID=’’798’’>
<DATE> 2-MAR-1987 16:51:43.42</DATE>
<TOPICS><D>livestock</D><D>hog</D></TOPICS>
<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>
<DATELINE> CHICAGO, March 2 - </DATELINE><BODY>The American Pork
Congress kicks off tomorrow, March 3, in Indianapolis with 160
of the nations pork producers from 44 member states determining
industry positions on a number of issues, according to the
National Pork Producers Council, NPPC.
Delegates to the three day Congress will be considering 26
resolutions concerning various issues, including the future
direction of farm policy and the tax law as it applies to the
agriculture sector. The delegates will also debate whether to
endorse concepts of a national PRV (pseudorabies virus) control
and eradication program, the NPPC said. A large
trade show, in conjunction with the congress, will feature
the latest in technology in all areas of the industry, the NPPC
added. Reuter
\&\#3;</BODY></TEXT></REUTERS>

◮ Figure 13.9 A sample document from the Reuters-21578 collection.

c2 (0.9) than to the precision of c1 (0.5) because c2 is five times larger than
c1. Microaveraged results are therefore really a measure of effectiveness on
the large classes in a test collection. To get a sense of effectiveness on small
classes, you should compute macroaveraged results.

In one-of classification (Section 14.5, page 306), microaveraged F1 is the
same as accuracy (Exercise 13.6).

Table 13.9 gives microaveraged and macroaveraged effectiveness of Naive
Bayes for the ModApte split of Reuters-21578. To give a sense of the relative
effectiveness of NB, we compare it with linear SVMs (rightmost column; see
Chapter 15), one of the most effective classifiers, but also one that is more
expensive to train than NB. NB has a microaveraged F1 of 80%, which is
9% less than the SVM (89%), a 10% relative decrease (row “micro-avg-L (90
classes)”). So there is a surprisingly small effectiveness penalty for its sim-
plicity and efficiency. However, on small classes, some of which only have on
the order of ten positive examples in the training set, NB does much worse.
Its macroaveraged F1 is 13% below the SVM, a 22% relative decrease (row
“macro-avg (90 classes)”).

The table also compares NB with the other classifiers we cover in this book:
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◮ Table 13.8 Macro- and microaveraging. “Truth” is the true class and “call” the
decision of the classifier. In this example, macroaveraged precision is [10/(10 + 10) +
90/(10 + 90)]/2 = (0.5 + 0.9)/2 = 0.7. Microaveraged precision is 100/(100 + 20) ≈
0.83.

class 1
truth: truth:
yes no

call:
yes

10 10

call:
no

10 970

class 2
truth: truth:
yes no

call:
yes

90 10

call:
no

10 890

pooled table
truth: truth:
yes no

call:
yes

100 20

call:
no

20 1860

◮ Table 13.9 Text classification effectiveness numbers on Reuters-21578 for F1 (in
percent). Results from Li and Yang (2003) (a), Joachims (1998) (b: kNN) and Dumais
et al. (1998) (b: NB, Rocchio, trees, SVM).

(a) NB Rocchio kNN SVM
micro-avg-L (90 classes) 80 85 86 89
macro-avg (90 classes) 47 59 60 60

(b) NB Rocchio kNN trees SVM
earn 96 93 97 98 98
acq 88 65 92 90 94
money-fx 57 47 78 66 75
grain 79 68 82 85 95
crude 80 70 86 85 89
trade 64 65 77 73 76
interest 65 63 74 67 78
ship 85 49 79 74 86
wheat 70 69 77 93 92
corn 65 48 78 92 90
micro-avg (top 10) 82 65 82 88 92
micro-avg-D (118 classes) 75 62 n/a n/a 87

Rocchio and kNN. In addition, we give numbers for decision trees, an impor-DECISION TREES

tant classification method we do not cover. The bottom part of the table
shows that there is considerable variation from class to class. For instance,
NB beats kNN on ship, but is much worse on money-fx.

Comparing parts (a) and (b) of the table, one is struck by the degree to
which the cited papers’ results differ. This is partly due to the fact that the
numbers in (b) are break-even scores (cf. page 161) averaged over 118 classes,
whereas the numbers in (a) are true F1 scores (computed without any know-
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ledge of the test set) averaged over ninety classes. This is unfortunately typ-
ical of what happens when comparing different results in text classification:
There are often differences in the experimental setup or the evaluation that
complicate the interpretation of the results.

These and other results have shown that the average effectiveness of NB
is uncompetitive with classifiers like SVMs when trained and tested on inde-
pendent and identically distributed (i.i.d.) data, that is, uniform data with all the
good properties of statistical sampling. However, these differences may of-
ten be invisible or even reverse themselves when working in the real world
where, usually, the training sample is drawn from a subset of the data to
which the classifier will be applied, the nature of the data drifts over time
rather than being stationary (the problem of concept drift we mentioned on
page 269), and there may well be errors in the data (among other problems).
Many practitioners have had the experience of being unable to build a fancy
classifier for a certain problem that consistently performs better than NB.

Our conclusion from the results in Table 13.9 is that, although most re-
searchers believe that an SVM is better than kNN and kNN better than NB,
the ranking of classifiers ultimately depends on the class, the document col-
lection, and the experimental setup. In text classification, there is always
more to know than simply which machine learning algorithm was used, as
we further discuss in Section 15.3 (page 334).

When performing evaluations like the one in Table 13.9, it is important to
maintain a strict separation between the training set and the test set. We can
easily make correct classification decisions on the test set by using informa-
tion we have gleaned from the test set, such as the fact that a particular term
is a good predictor in the test set (even though this is not the case in the train-
ing set). A more subtle example of using knowledge about the test set is to
try a large number of values of a parameter (e.g., the number of selected fea-
tures) and select the value that is best for the test set. As a rule, accuracy on
new data – the type of data we will encounter when we use the classifier in
an application – will be much lower than accuracy on a test set that the clas-
sifier has been tuned for. We discussed the same problem in ad hoc retrieval
in Section 8.1 (page 153).

In a clean statistical text classification experiment, you should never run
any program on or even look at the test set while developing a text classifica-
tion system. Instead, set aside a development set for testing while you developDEVELOPMENT SET

your method. When such a set serves the primary purpose of finding a good
value for a parameter, for example, the number of selected features, then it
is also called held-out data. Train the classifier on the rest of the training setHELD-OUT DATA

with different parameter values, and then select the value that gives best re-
sults on the held-out part of the training set. Ideally, at the very end, when
all parameters have been set and the method is fully specified, you run one
final experiment on the test set and publish the results. Because no informa-
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◮ Table 13.10 Data for parameter estimation exercise.

docID words in document in c = China?
training set 1 Taipei Taiwan yes

2 Macao Taiwan Shanghai yes
3 Japan Sapporo no
4 Sapporo Osaka Taiwan no

test set 5 Taiwan Taiwan Sapporo ?

tion about the test set was used in developing the classifier, the results of this
experiment should be indicative of actual performance in practice.

This ideal often cannot be met; researchers tend to evaluate several sys-
tems on the same test set over a period of several years. But it is neverthe-
less highly important to not look at the test data and to run systems on it as
sparingly as possible. Beginners often violate this rule, and their results lose
validity because they have implicitly tuned their system to the test data sim-
ply by running many variant systems and keeping the tweaks to the system
that worked best on the test set.

? Exercise 13.6 [⋆⋆]

Assume a situation where every document in the test collection has been assigned
exactly one class, and that a classifier also assigns exactly one class to each document.
This setup is called one-of classification (Section 14.5, page 306). Show that in one-of
classification (i) the total number of false positive decisions equals the total number
of false negative decisions and (ii) microaveraged F1 and accuracy are identical.

Exercise 13.7

The class priors in Figure 13.2 are computed as the fraction of documents in the class
as opposed to the fraction of tokens in the class. Why?

Exercise 13.8

The function APPLYMULTINOMIALNB in Figure 13.2 has time complexity Θ(La +
|C|La). How would you modify the function so that its time complexity is Θ(La +
|C|Ma)?

Exercise 13.9

Based on the data in Table 13.10, (i) estimate a multinomial Naive Bayes classifier, (ii)
apply the classifier to the test document, (iii) estimate a Bernoulli NB classifier, (iv)
apply the classifier to the test document. You need not estimate parameters that you
don’t need for classifying the test document.

Exercise 13.10

Your task is to classify words as English or not English. Words are generated by a
source with the following distribution:
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event word English? probability

1 ozb no 4/9
2 uzu no 4/9
3 zoo yes 1/18
4 bun yes 1/18

(i) Compute the parameters (priors and conditionals) of a multinomial NB classi-
fier that uses the letters b, n, o, u, and z as features. Assume a training set that
reflects the probability distribution of the source perfectly. Make the same indepen-
dence assumptions that are usually made for a multinomial classifier that uses terms
as features for text classification. Compute parameters using smoothing, in which
computed-zero probabilities are smoothed into probability 0.01, and computed-nonzero

probabilities are untouched. (This simplistic smoothing may cause P(A) + P(A) > 1.
Solutions are not required to correct this.) (ii) How does the classifier classify the
word zoo? (iii) Classify the word zoo using a multinomial classifier as in part (i), but
do not make the assumption of positional independence. That is, estimate separate
parameters for each position in a word. You only need to compute the parameters
you need for classifying zoo.

Exercise 13.11

What are the values of I(Ut; Cc) and X2(D, t, c) if term and class are completely inde-
pendent? What are the values if they are completely dependent?

Exercise 13.12

The feature selection method in Equation (13.16) is most appropriate for the Bernoulli
model. Why? How could one modify it for the multinomial model?

Exercise 13.13

Features can also be selected according toinformation gain (IG), which is defined as:INFORMATION GAIN

IG(D, t, c) = H(pD)− ∑
x∈{Dt+ ,Dt−}

|x|

|D|
H(px)

where H is entropy, D is the training set, and Dt+ , and Dt− are the subset of D with
term t, and the subset of D without term t, respectively. pA is the class distribution
in (sub)collection A, e.g., pA(c) = 0.25, pA(c) = 0.75 if a quarter of the documents in
A are in class c.

Show that mutual information and information gain are equivalent.

Exercise 13.14

Show that the two X2 formulas (Equations (13.18) and (13.19)) are equivalent.

Exercise 13.15

In the χ2 example on page 276 we have |N11 − E11| = |N10 − E10| = |N01 − E01| =
|N00 − E00|. Show that this holds in general.

Exercise 13.16

χ2 and mutual information do not distinguish between positively and negatively cor-
related features. Because most good text classification features are positively corre-
lated (i.e., they occur more often in c than in c), one may want to explicitly rule out
the selection of negative indicators. How would you do this?
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13.7 References and further reading

General introductions to statistical classification and machine learning can be
found in (Hastie et al. 2001), (Mitchell 1997), and (Duda et al. 2000), including
many important methods (e.g., decision trees and boosting) that we do not
cover. A comprehensive review of text classification methods and results is
(Sebastiani 2002). Manning and Schütze (1999, Chapter 16) give an accessible
introduction to text classification with coverage of decision trees, perceptrons
and maximum entropy models. More information on the superlinear time
complexity of learning methods that are more accurate than Naive Bayes can
be found in (Perkins et al. 2003) and (Joachims 2006a).

Maron and Kuhns (1960) described one of the first NB text classifiers. Lewis
(1998) focuses on the history of NB classification. Bernoulli and multinomial
models and their accuracy for different collections are discussed by McCal-
lum and Nigam (1998). Eyheramendy et al. (2003) present additional NB
models. Domingos and Pazzani (1997), Friedman (1997), and Hand and Yu
(2001) analyze why NB performs well although its probability estimates are
poor. The first paper also discusses NB’s optimality when the independence
assumptions are true of the data. Pavlov et al. (2004) propose a modified
document representation that partially addresses the inappropriateness of
the independence assumptions. Bennett (2000) attributes the tendency of NB
probability estimates to be close to either 0 or 1 to the effect of document
length. Ng and Jordan (2001) show that NB is sometimes (although rarely)
superior to discriminative methods because it more quickly reaches its opti-
mal error rate. The basic NB model presented in this chapter can be tuned for
better effectiveness (Rennie et al. 2003;Kołcz and Yih 2007). The problem of
concept drift and other reasons why state-of-the-art classifiers do not always
excel in practice are discussed by Forman (2006) and Hand (2006).

Early uses of mutual information and χ2 for feature selection in text clas-
sification are Lewis and Ringuette (1994) and Schütze et al. (1995), respec-
tively. Yang and Pedersen (1997) review feature selection methods and their
impact on classification effectiveness. They find that pointwise mutual infor-POINTWISE MUTUAL

INFORMATION mation is not competitive with other methods. Yang and Pedersen refer to
expected mutual information (Equation (13.16)) as information gain (see Ex-
ercise 13.13, page 285). (Snedecor and Cochran 1989) is a good reference for
the χ2 test in statistics, including the Yates’ correction for continuity for 2× 2
tables. Dunning (1993) discusses problems of the χ2 test when counts are
small. Nongreedy feature selection techniques are described by Hastie et al.
(2001). Cohen (1995) discusses the pitfalls of using multiple significance tests
and methods to avoid them. Forman (2004) evaluates different methods for
feature selection for multiple classifiers.

David D. Lewis defines the ModApte split at www.daviddlewis.com/resources/testcollections/reuters21578/readme
based on Apté et al. (1994). Lewis (1995) describes utility measures for theUTILITY MEASURE
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evaluation of text classification systems. Yang and Liu (1999) employ signif-
icance tests in the evaluation of text classification methods.

Lewis et al. (2004) find that SVMs (Chapter 15) perform better on Reuters-
RCV1 than kNN and Rocchio (Chapter 14).
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