
Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. 349

16 Flat clustering

Clustering algorithms group a set of documents into subsets or clusters. TheCLUSTER

algorithms’ goal is to create clusters that are coherent internally, but clearly
different from each other. In other words, documents within a cluster should
be as similar as possible; and documents in one cluster should be as dissimi-
lar as possible from documents in other clusters.
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◮ Figure 16.1 An example of a data set with a clear cluster structure.

Clustering is the most common form of unsupervised learning. No super-UNSUPERVISED

LEARNING vision means that there is no human expert who has assigned documents
to classes. In clustering, it is the distribution and makeup of the data that
will determine cluster membership. A simple example is Figure 16.1. It is
visually clear that there are three distinct clusters of points. This chapter and
Chapter 17 introduce algorithms that find such clusters in an unsupervised
fashion.

The difference between clustering and classification may not seem great
at first. After all, in both cases we have a partition of a set of documents
into groups. But as we will see the two problems are fundamentally differ-
ent. Classification is a form of supervised learning (Chapter 13, page 256):
our goal is to replicate a categorical distinction that a human supervisor im-



Online edition (c)
2009 Cambridge UP

350 16 Flat clustering

poses on the data. In unsupervised learning, of which clustering is the most
important example, we have no such teacher to guide us.

The key input to a clustering algorithm is the distance measure. In Fig-
ure 16.1, the distance measure is distance in the 2D plane. This measure sug-
gests three different clusters in the figure. In document clustering, the dis-
tance measure is often also Euclidean distance. Different distance measures
give rise to different clusterings. Thus, the distance measure is an important
means by which we can influence the outcome of clustering.

Flat clustering creates a flat set of clusters without any explicit structure thatFLAT CLUSTERING

would relate clusters to each other. Hierarchical clustering creates a hierarchy
of clusters and will be covered in Chapter 17. Chapter 17 also addresses the
difficult problem of labeling clusters automatically.

A second important distinction can be made between hard and soft cluster-
ing algorithms. Hard clustering computes a hard assignment – each documentHARD CLUSTERING

is a member of exactly one cluster. The assignment of soft clustering algo-SOFT CLUSTERING

rithms is soft – a document’s assignment is a distribution over all clusters.
In a soft assignment, a document has fractional membership in several clus-
ters. Latent semantic indexing, a form of dimensionality reduction, is a soft
clustering algorithm (Chapter 18, page 417).

This chapter motivates the use of clustering in information retrieval by
introducing a number of applications (Section 16.1), defines the problem
we are trying to solve in clustering (Section 16.2) and discusses measures
for evaluating cluster quality (Section 16.3). It then describes two flat clus-
tering algorithms, K-means (Section 16.4), a hard clustering algorithm, and
the Expectation-Maximization (or EM) algorithm (Section 16.5), a soft clus-
tering algorithm. K-means is perhaps the most widely used flat clustering
algorithm due to its simplicity and efficiency. The EM algorithm is a gen-
eralization of K-means and can be applied to a large variety of document
representations and distributions.

16.1 Clustering in information retrieval

The cluster hypothesis states the fundamental assumption we make when us-CLUSTER HYPOTHESIS

ing clustering in information retrieval.

Cluster hypothesis. Documents in the same cluster behave similarly
with respect to relevance to information needs.

The hypothesis states that if there is a document from a cluster that is rele-
vant to a search request, then it is likely that other documents from the same
cluster are also relevant. This is because clustering puts together documents
that share many terms. The cluster hypothesis essentially is the contiguity
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Application What is Benefit Example
clustered?

Search result clustering search
results

more effective information
presentation to user

Figure 16.2

Scatter-Gather (subsets of)
collection

alternative user interface:
“search without typing”

Figure 16.3

Collection clustering collection effective information pre-
sentation for exploratory
browsing

McKeown et al. (2002),
http://news.google.com

Language modeling collection increased precision and/or
recall Liu and Croft (2004)

Cluster-based retrieval collection higher efficiency: faster
search Salton (1971a)

◮ Table 16.1 Some applications of clustering in information retrieval.

hypothesis in Chapter 14 (page 289). In both cases, we posit that similar
documents behave similarly with respect to relevance.

Table 16.1 shows some of the main applications of clustering in informa-
tion retrieval. They differ in the set of documents that they cluster – search
results, collection or subsets of the collection – and the aspect of an informa-
tion retrieval system they try to improve – user experience, user interface,
effectiveness or efficiency of the search system. But they are all based on the
basic assumption stated by the cluster hypothesis.

The first application mentioned in Table 16.1 is search result clustering whereSEARCH RESULT

CLUSTERING by search results we mean the documents that were returned in response to
a query. The default presentation of search results in information retrieval is
a simple list. Users scan the list from top to bottom until they have found
the information they are looking for. Instead, search result clustering clus-
ters the search results, so that similar documents appear together. It is often
easier to scan a few coherent groups than many individual documents. This
is particularly useful if a search term has different word senses. The example
in Figure 16.2 is jaguar. Three frequent senses on the web refer to the car, the
animal and an Apple operating system. The Clustered Results panel returned
by the Vivísimo search engine (http://vivisimo.com) can be a more effective user
interface for understanding what is in the search results than a simple list of
documents.

A better user interface is also the goal of Scatter-Gather, the second ap-SCATTER-GATHER

plication in Table 16.1. Scatter-Gather clusters the whole collection to get
groups of documents that the user can select or gather. The selected groups
are merged and the resulting set is again clustered. This process is repeated
until a cluster of interest is found. An example is shown in Figure 16.3.
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◮ Figure 16.2 Clustering of search results to improve recall. None of the top hits
cover the animal sense of jaguar, but users can easily access it by clicking on the cat
cluster in the Clustered Results panel on the left (third arrow from the top).

Automatically generated clusters like those in Figure 16.3 are not as neatly
organized as a manually constructed hierarchical tree like the Open Direc-
tory at http://dmoz.org. Also, finding descriptive labels for clusters automati-
cally is a difficult problem (Section 17.7, page 396). But cluster-based navi-
gation is an interesting alternative to keyword searching, the standard infor-
mation retrieval paradigm. This is especially true in scenarios where users
prefer browsing over searching because they are unsure about which search
terms to use.

As an alternative to the user-mediated iterative clustering in Scatter-Gather,
we can also compute a static hierarchical clustering of a collection that is
not influenced by user interactions (“Collection clustering” in Table 16.1).
Google News and its precursor, the Columbia NewsBlaster system, are ex-
amples of this approach. In the case of news, we need to frequently recom-
pute the clustering to make sure that users can access the latest breaking
stories. Clustering is well suited for access to a collection of news stories
since news reading is not really search, but rather a process of selecting a
subset of stories about recent events.
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◮ Figure 16.3 An example of a user session in Scatter-Gather. A collection of New
York Times news stories is clustered (“scattered”) into eight clusters (top row). The
user manually gathers three of these into a smaller collection International Stories and
performs another scattering operation. This process repeats until a small cluster with
relevant documents is found (e.g., Trinidad).

The fourth application of clustering exploits the cluster hypothesis directly
for improving search results, based on a clustering of the entire collection.
We use a standard inverted index to identify an initial set of documents that
match the query, but we then add other documents from the same clusters
even if they have low similarity to the query. For example, if the query is car
and several car documents are taken from a cluster of automobile documents,
then we can add documents from this cluster that use terms other than car
(automobile, vehicle etc). This can increase recall since a group of documents
with high mutual similarity is often relevant as a whole.

More recently this idea has been used for language modeling. Equation (12.10),
page 245, showed that to avoid sparse data problems in the language mod-
eling approach to IR, the model of document d can be interpolated with a



Online edition (c)
2009 Cambridge UP

354 16 Flat clustering

collection model. But the collection contains many documents with terms
untypical of d. By replacing the collection model with a model derived from
d’s cluster, we get more accurate estimates of the occurrence probabilities of
terms in d.

Clustering can also speed up search. As we saw in Section 6.3.2 (page 123)
search in the vector space model amounts to finding the nearest neighbors
to the query. The inverted index supports fast nearest-neighbor search for
the standard IR setting. However, sometimes we may not be able to use an
inverted index efficiently, e.g., in latent semantic indexing (Chapter 18). In
such cases, we could compute the similarity of the query to every document,
but this is slow. The cluster hypothesis offers an alternative: Find the clus-
ters that are closest to the query and only consider documents from these
clusters. Within this much smaller set, we can compute similarities exhaus-
tively and rank documents in the usual way. Since there are many fewer
clusters than documents, finding the closest cluster is fast; and since the doc-
uments matching a query are all similar to each other, they tend to be in
the same clusters. While this algorithm is inexact, the expected decrease in
search quality is small. This is essentially the application of clustering that
was covered in Section 7.1.6 (page 141).

? Exercise 16.1

Define two documents as similar if they have at least two proper names like Clinton
or Sarkozy in common. Give an example of an information need and two documents,
for which the cluster hypothesis does not hold for this notion of similarity.

Exercise 16.2

Make up a simple one-dimensional example (i.e. points on a line) with two clusters
where the inexactness of cluster-based retrieval shows up. In your example, retriev-
ing clusters close to the query should do worse than direct nearest neighbor search.

16.2 Problem statement

We can define the goal in hard flat clustering as follows. Given (i) a set of
documents D = {d1, . . . , dN}, (ii) a desired number of clusters K, and (iii)
an objective function that evaluates the quality of a clustering, we want toOBJECTIVE FUNCTION

compute an assignment γ : D → {1, . . . , K} that minimizes (or, in other
cases, maximizes) the objective function. In most cases, we also demand that
γ is surjective, i.e., that none of the K clusters is empty.

The objective function is often defined in terms of similarity or distance
between documents. Below, we will see that the objective in K-means clus-
tering is to minimize the average distance between documents and their cen-
troids or, equivalently, to maximize the similarity between documents and
their centroids. The discussion of similarity measures and distance metrics
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in Chapter 14 (page 291) also applies to this chapter. As in Chapter 14, we use
both similarity and distance to talk about relatedness between documents.

For documents, the type of similarity we want is usually topic similarity
or high values on the same dimensions in the vector space model. For exam-
ple, documents about China have high values on dimensions like Chinese,
Beijing, and Mao whereas documents about the UK tend to have high values
for London, Britain and Queen. We approximate topic similarity with cosine
similarity or Euclidean distance in vector space (Chapter 6). If we intend to
capture similarity of a type other than topic, for example, similarity of lan-
guage, then a different representation may be appropriate. When computing
topic similarity, stop words can be safely ignored, but they are important
cues for separating clusters of English (in which the occurs frequently and la
infrequently) and French documents (in which the occurs infrequently and la
frequently).

A note on terminology. An alternative definition of hard clustering is that
a document can be a full member of more than one cluster. Partitional clus-PARTITIONAL

CLUSTERING tering always refers to a clustering where each document belongs to exactly
one cluster. (But in a partitional hierarchical clustering (Chapter 17) all mem-
bers of a cluster are of course also members of its parent.) On the definition
of hard clustering that permits multiple membership, the difference between
soft clustering and hard clustering is that membership values in hard clus-
tering are either 0 or 1, whereas they can take on any non-negative value in
soft clustering.

Some researchers distinguish between exhaustive clusterings that assignEXHAUSTIVE

each document to a cluster and non-exhaustive clusterings, in which some
documents will be assigned to no cluster. Non-exhaustive clusterings in
which each document is a member of either no cluster or one cluster are
called exclusive. We define clustering to be exhaustive in this book.EXCLUSIVE

16.2.1 Cardinality – the number of clusters

A difficult issue in clustering is determining the number of clusters or cardi-CARDINALITY

nality of a clustering, which we denote by K. Often K is nothing more than
a good guess based on experience or domain knowledge. But for K-means,
we will also introduce a heuristic method for choosing K and an attempt to
incorporate the selection of K into the objective function. Sometimes the ap-
plication puts constraints on the range of K. For example, the Scatter-Gather
interface in Figure 16.3 could not display more than about K = 10 clusters
per layer because of the size and resolution of computer monitors in the early
1990s.

Since our goal is to optimize an objective function, clustering is essentially
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a search problem. The brute force solution would be to enumerate all pos-
sible clusterings and pick the best. However, there are exponentially many
partitions, so this approach is not feasible.1 For this reason, most flat clus-
tering algorithms refine an initial partitioning iteratively. If the search starts
at an unfavorable initial point, we may miss the global optimum. Finding a
good starting point is therefore another important problem we have to solve
in flat clustering.

16.3 Evaluation of clustering

Typical objective functions in clustering formalize the goal of attaining high
intra-cluster similarity (documents within a cluster are similar) and low inter-
cluster similarity (documents from different clusters are dissimilar). This is
an internal criterion for the quality of a clustering. But good scores on anINTERNAL CRITERION

OF QUALITY internal criterion do not necessarily translate into good effectiveness in an
application. An alternative to internal criteria is direct evaluation in the ap-
plication of interest. For search result clustering, we may want to measure
the time it takes users to find an answer with different clustering algorithms.
This is the most direct evaluation, but it is expensive, especially if large user
studies are necessary.

As a surrogate for user judgments, we can use a set of classes in an evalua-
tion benchmark or gold standard (see Section 8.5, page 164, and Section 13.6,
page 279). The gold standard is ideally produced by human judges with a
good level of inter-judge agreement (see Chapter 8, page 152). We can then
compute an external criterion that evaluates how well the clustering matchesEXTERNAL CRITERION

OF QUALITY the gold standard classes. For example, we may want to say that the opti-
mal clustering of the search results for jaguar in Figure 16.2 consists of three
classes corresponding to the three senses car, animal, and operating system.
In this type of evaluation, we only use the partition provided by the gold
standard, not the class labels.

This section introduces four external criteria of clustering quality. Purity is
a simple and transparent evaluation measure. Normalized mutual information
can be information-theoretically interpreted. The Rand index penalizes both
false positive and false negative decisions during clustering. The F measure
in addition supports differential weighting of these two types of errors.

To compute purity, each cluster is assigned to the class which is most fre-PURITY

quent in the cluster, and then the accuracy of this assignment is measured
by counting the number of correctly assigned documents and dividing by N.

1. An upper bound on the number of clusterings is KN/K!. The exact number of different
partitions of N documents into K clusters is the Stirling number of the second kind. See
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html or Comtet (1974).
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◮ Figure 16.4 Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5
(cluster 1); o, 4 (cluster 2); and ⋄, 3 (cluster 3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.

purity NMI RI F5

lower bound 0.0 0.0 0.0 0.0
maximum 1 1 1 1
value for Figure 16.4 0.71 0.36 0.68 0.46

◮ Table 16.2 The four external evaluation measures applied to the clustering in
Figure 16.4.

Formally:

purity(Ω, C) =
1

N ∑
k

max
j
|ωk ∩ cj|(16.1)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is
the set of classes. We interpret ωk as the set of documents in ωk and cj as the
set of documents in cj in Equation (16.1).

We present an example of how to compute purity in Figure 16.4.2 Bad
clusterings have purity values close to 0, a perfect clustering has a purity of
1. Purity is compared with the other three measures discussed in this chapter
in Table 16.2.

High purity is easy to achieve when the number of clusters is large – in
particular, purity is 1 if each document gets its own cluster. Thus, we cannot
use purity to trade off the quality of the clustering against the number of
clusters.

A measure that allows us to make this tradeoff is normalized mutual infor-NORMALIZED MUTUAL

INFORMATION

2. Recall our note of caution from Figure 14.2 (page 291) when looking at this and other 2D
figures in this and the following chapter: these illustrations can be misleading because 2D pro-
jections of length-normalized vectors distort similarities and distances between points.
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mation or NMI:

NMI(Ω, C) =
I(Ω; C)

[H(Ω) + H(C)]/2
(16.2)

I is mutual information (cf. Chapter 13, page 272):

I(Ω; C) = ∑
k

∑
j

P(ωk ∩ cj) log
P(ωk ∩ cj)

P(ωk)P(cj)
(16.3)

= ∑
k

∑
j

|ωk ∩ cj|

N
log

N|ωk ∩ cj|

|ωk||cj|
(16.4)

where P(ωk), P(cj), and P(ωk ∩ cj) are the probabilities of a document being
in cluster ωk, class cj, and in the intersection of ωk and cj, respectively. Equa-
tion (16.4) is equivalent to Equation (16.3) for maximum likelihood estimates
of the probabilities (i.e., the estimate of each probability is the corresponding
relative frequency).

H is entropy as defined in Chapter 5 (page 99):

H(Ω) = −∑
k

P(ωk) log P(ωk)(16.5)

= −∑
k

|ωk|

N
log
|ωk|

N
(16.6)

where, again, the second equation is based on maximum likelihood estimates
of the probabilities.

I(Ω; C) in Equation (16.3) measures the amount of information by which
our knowledge about the classes increases when we are told what the clusters
are. The minimum of I(Ω; C) is 0 if the clustering is random with respect to
class membership. In that case, knowing that a document is in a particular
cluster does not give us any new information about what its class might be.
Maximum mutual information is reached for a clustering Ωexact that perfectly
recreates the classes – but also if clusters in Ωexact are further subdivided into
smaller clusters (Exercise 16.7). In particular, a clustering with K = N one-
document clusters has maximum MI. So MI has the same problem as purity:
it does not penalize large cardinalities and thus does not formalize our bias
that, other things being equal, fewer clusters are better.

The normalization by the denominator [H(Ω)+ H(C)]/2 in Equation (16.2)
fixes this problem since entropy tends to increase with the number of clus-
ters. For example, H(Ω) reaches its maximum log N for K = N, which en-
sures that NMI is low for K = N. Because NMI is normalized, we can use
it to compare clusterings with different numbers of clusters. The particular
form of the denominator is chosen because [H(Ω) + H(C)]/2 is a tight upper
bound on I(Ω; C) (Exercise 16.8). Thus, NMI is always a number between 0
and 1.
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An alternative to this information-theoretic interpretation of clustering is
to view it as a series of decisions, one for each of the N(N − 1)/2 pairs of
documents in the collection. We want to assign two documents to the same
cluster if and only if they are similar. A true positive (TP) decision assigns
two similar documents to the same cluster, a true negative (TN) decision as-
signs two dissimilar documents to different clusters. There are two types
of errors we can commit. A false positive (FP) decision assigns two dissim-
ilar documents to the same cluster. A false negative (FN) decision assigns
two similar documents to different clusters. The Rand index (RI) measuresRAND INDEX

RI the percentage of decisions that are correct. That is, it is simply accuracy
(Section 8.3, page 155).

RI =
TP + TN

TP + FP + FN + TN

As an example, we compute RI for Figure 16.4. We first compute TP + FP.
The three clusters contain 6, 6, and 5 points, respectively, so the total number
of “positives” or pairs of documents that are in the same cluster is:

TP + FP =

(
6
2

)
+

(
6
2

)
+

(
5
2

)
= 40

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the ⋄ pairs in cluster 3,
and the x pair in cluster 3 are true positives:

TP =

(
5
2

)
+

(
4
2

)
+

(
3
2

)
+

(
2
2

)
= 20

Thus, FP = 40− 20 = 20.
FN and TN are computed similarly, resulting in the following contingency

table:

Same cluster Different clusters
Same class TP = 20 FN = 24
Different classes FP = 20 TN = 72

RI is then (20 + 72)/(20 + 20 + 24 + 72) ≈ 0.68.
The Rand index gives equal weight to false positives and false negatives.

Separating similar documents is sometimes worse than putting pairs of dis-
similar documents in the same cluster. We can use the F measure (Section 8.3,F MEASURE

page 154) to penalize false negatives more strongly than false positives by
selecting a value β > 1, thus giving more weight to recall.

P =
TP

TP + FP
R =

TP

TP + FN
Fβ =

(β2 + 1)PR

β2P + R
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Based on the numbers in the contingency table, P = 20/40 = 0.5 and R =
20/44 ≈ 0.455. This gives us F1 ≈ 0.48 for β = 1 and F5 ≈ 0.456 for β = 5.
In information retrieval, evaluating clustering with F has the advantage that
the measure is already familiar to the research community.

? Exercise 16.3

Replace every point d in Figure 16.4 with two identical copies of d in the same class.
(i) Is it less difficult, equally difficult or more difficult to cluster this set of 34 points
as opposed to the 17 points in Figure 16.4? (ii) Compute purity, NMI, RI, and F5 for
the clustering with 34 points. Which measures increase and which stay the same after
doubling the number of points? (iii) Given your assessment in (i) and the results in
(ii), which measures are best suited to compare the quality of the two clusterings?

16.4 K-means

K-means is the most important flat clustering algorithm. Its objective is to
minimize the average squared Euclidean distance (Chapter 6, page 131) of
documents from their cluster centers where a cluster center is defined as the
mean or centroid ~µ of the documents in a cluster ω:CENTROID

~µ(ω) =
1

|ω| ∑
~x∈ω

~x

The definition assumes that documents are represented as length-normalized
vectors in a real-valued space in the familiar way. We used centroids for Roc-
chio classification in Chapter 14 (page 292). They play a similar role here.
The ideal cluster in K-means is a sphere with the centroid as its center of
gravity. Ideally, the clusters should not overlap. Our desiderata for classes
in Rocchio classification were the same. The difference is that we have no la-
beled training set in clustering for which we know which documents should
be in the same cluster.

A measure of how well the centroids represent the members of their clus-
ters is the residual sum of squares or RSS, the squared distance of each vectorRESIDUAL SUM OF

SQUARES from its centroid summed over all vectors:

RSSk = ∑
~x∈ωk

|~x−~µ(ωk)|
2

RSS =
K

∑
k=1

RSSk(16.7)

RSS is the objective function in K-means and our goal is to minimize it. Since
N is fixed, minimizing RSS is equivalent to minimizing the average squared
distance, a measure of how well centroids represent their documents.
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K-MEANS({~x1, . . . ,~xN}, K)
1 (~s1,~s2, . . . ,~sK)← SELECTRANDOMSEEDS({~x1, . . . ,~xN}, K)
2 for k← 1 to K
3 do ~µk ←~sk

4 while stopping criterion has not been met
5 do for k← 1 to K
6 do ωk ← {}
7 for n← 1 to N
8 do j← arg minj′ |~µj′ −~xn|

9 ωj ← ωj ∪ {~xn} (reassignment of vectors)
10 for k← 1 to K
11 do ~µk ←

1
|ωk|

∑~x∈ωk
~x (recomputation of centroids)

12 return {~µ1, . . . ,~µK}

◮ Figure 16.5 The K-means algorithm. For most IR applications, the vectors
~xn ∈ RM should be length-normalized. Alternative methods of seed selection and
initialization are discussed on page 364.

The first step of K-means is to select as initial cluster centers K randomly
selected documents, the seeds. The algorithm then moves the cluster centersSEED

around in space in order to minimize RSS. As shown in Figure 16.5, this is
done iteratively by repeating two steps until a stopping criterion is met: reas-
signing documents to the cluster with the closest centroid; and recomputing
each centroid based on the current members of its cluster. Figure 16.6 shows
snapshots from nine iterations of the K-means algorithm for a set of points.
The “centroid” column of Table 17.2 (page 397) shows examples of centroids.

We can apply one of the following termination conditions.

• A fixed number of iterations I has been completed. This condition limits
the runtime of the clustering algorithm, but in some cases the quality of
the clustering will be poor because of an insufficient number of iterations.

• Assignment of documents to clusters (the partitioning function γ) does
not change between iterations. Except for cases with a bad local mini-
mum, this produces a good clustering, but runtimes may be unacceptably
long.

• Centroids ~µk do not change between iterations. This is equivalent to γ not
changing (Exercise 16.5).

• Terminate when RSS falls below a threshold. This criterion ensures that
the clustering is of a desired quality after termination. In practice, we
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◮ Figure 16.6 A K-means example for K = 2 in R2. The position of the two cen-
troids (~µ’s shown as X’s in the top four panels) converges after nine iterations.
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need to combine it with a bound on the number of iterations to guarantee
termination.

• Terminate when the decrease in RSS falls below a threshold θ. For small θ,
this indicates that we are close to convergence. Again, we need to combine
it with a bound on the number of iterations to prevent very long runtimes.

We now show that K-means converges by proving that RSS monotonically
decreases in each iteration. We will use decrease in the meaning decrease or does
not change in this section. First, RSS decreases in the reassignment step since
each vector is assigned to the closest centroid, so the distance it contributes
to RSS decreases. Second, it decreases in the recomputation step because the
new centroid is the vector ~v for which RSSk reaches its minimum.

RSSk(~v) = ∑
~x∈ωk

|~v−~x|2 = ∑
~x∈ωk

M

∑
m=1

(vm − xm)2(16.8)

∂RSSk(~v)

∂vm
= ∑

~x∈ωk

2(vm − xm)(16.9)

where xm and vm are the mth components of their respective vectors. Setting
the partial derivative to zero, we get:

vm =
1

|ωk|
∑

~x∈ωk

xm(16.10)

which is the componentwise definition of the centroid. Thus, we minimize
RSSk when the old centroid is replaced with the new centroid. RSS, the sum
of the RSSk, must then also decrease during recomputation.

Since there is only a finite set of possible clusterings, a monotonically de-
creasing algorithm will eventually arrive at a (local) minimum. Take care,
however, to break ties consistently, e.g., by assigning a document to the clus-
ter with the lowest index if there are several equidistant centroids. Other-
wise, the algorithm can cycle forever in a loop of clusterings that have the
same cost.

While this proves the convergence of K-means, there is unfortunately no
guarantee that a global minimum in the objective function will be reached.
This is a particular problem if a document set contains many outliers, doc-OUTLIER

uments that are far from any other documents and therefore do not fit well
into any cluster. Frequently, if an outlier is chosen as an initial seed, then no
other vector is assigned to it during subsequent iterations. Thus, we end up
with a singleton cluster (a cluster with only one document) even though thereSINGLETON CLUSTER

is probably a clustering with lower RSS. Figure 16.7 shows an example of a
suboptimal clustering resulting from a bad choice of initial seeds.
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◮ Figure 16.7 The outcome of clustering in K-means depends on the initial seeds.
For seeds d2 and d5, K-means converges to {{d1, d2, d3}, {d4, d5, d6}}, a suboptimal
clustering. For seeds d2 and d3, it converges to {{d1, d2, d4, d5}, {d3, d6}}, the global
optimum for K = 2.

Another type of suboptimal clustering that frequently occurs is one with
empty clusters (Exercise 16.11).

Effective heuristics for seed selection include (i) excluding outliers from
the seed set; (ii) trying out multiple starting points and choosing the cluster-
ing with lowest cost; and (iii) obtaining seeds from another method such as
hierarchical clustering. Since deterministic hierarchical clustering methods
are more predictable than K-means, a hierarchical clustering of a small ran-
dom sample of size iK (e.g., for i = 5 or i = 10) often provides good seeds
(see the description of the Buckshot algorithm, Chapter 17, page 399).

Other initialization methods compute seeds that are not selected from the
vectors to be clustered. A robust method that works well for a large variety
of document distributions is to select i (e.g., i = 10) random vectors for each
cluster and use their centroid as the seed for this cluster. See Section 16.6 for
more sophisticated initializations.

What is the time complexity of K-means? Most of the time is spent on com-
puting vector distances. One such operation costs Θ(M). The reassignment
step computes KN distances, so its overall complexity is Θ(KNM). In the
recomputation step, each vector gets added to a centroid once, so the com-
plexity of this step is Θ(NM). For a fixed number of iterations I, the overall
complexity is therefore Θ(IKNM). Thus, K-means is linear in all relevant
factors: iterations, number of clusters, number of vectors and dimensionality
of the space. This means that K-means is more efficient than the hierarchical
algorithms in Chapter 17. We had to fix the number of iterations I, which can
be tricky in practice. But in most cases, K-means quickly reaches either com-
plete convergence or a clustering that is close to convergence. In the latter
case, a few documents would switch membership if further iterations were
computed, but this has a small effect on the overall quality of the clustering.
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There is one subtlety in the preceding argument. Even a linear algorithm
can be quite slow if one of the arguments of Θ(. . .) is large, and M usually is
large. High dimensionality is not a problem for computing the distance be-
tween two documents. Their vectors are sparse, so that only a small fraction
of the theoretically possible M componentwise differences need to be com-
puted. Centroids, however, are dense since they pool all terms that occur in
any of the documents of their clusters. As a result, distance computations are
time consuming in a naive implementation of K-means. However, there are
simple and effective heuristics for making centroid-document similarities as
fast to compute as document-document similarities. Truncating centroids to
the most significant k terms (e.g., k = 1000) hardly decreases cluster quality
while achieving a significant speedup of the reassignment step (see refer-
ences in Section 16.6).

The same efficiency problem is addressed by K-medoids, a variant of K-K-MEDOIDS

means that computes medoids instead of centroids as cluster centers. We
define the medoid of a cluster as the document vector that is closest to theMEDOID

centroid. Since medoids are sparse document vectors, distance computations
are fast.

✄ 16.4.1 Cluster cardinality in K-means

We stated in Section 16.2 that the number of clusters K is an input to most flat
clustering algorithms. What do we do if we cannot come up with a plausible
guess for K?

A naive approach would be to select the optimal value of K according to
the objective function, namely the value of K that minimizes RSS. Defining
RSSmin(K) as the minimal RSS of all clusterings with K clusters, we observe
that RSSmin(K) is a monotonically decreasing function in K (Exercise 16.13),
which reaches its minimum 0 for K = N where N is the number of doc-
uments. We would end up with each document being in its own cluster.
Clearly, this is not an optimal clustering.

A heuristic method that gets around this problem is to estimate RSSmin(K)
as follows. We first perform i (e.g., i = 10) clusterings with K clusters (each
with a different initialization) and compute the RSS of each. Then we take the

minimum of the i RSS values. We denote this minimum by R̂SSmin(K). Now

we can inspect the values R̂SSmin(K) as K increases and find the “knee” in the

curve – the point where successive decreases in R̂SSmin become noticeably
smaller. There are two such points in Figure 16.8, one at K = 4, where the
gradient flattens slightly, and a clearer flattening at K = 9. This is typical:
there is seldom a single best number of clusters. We still need to employ an
external constraint to choose from a number of possible values of K (4 and 9
in this case).
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◮ Figure 16.8 Estimated minimal residual sum of squares as a function of the num-
ber of clusters in K-means. In this clustering of 1203 Reuters-RCV1 documents, there

are two points where the R̂SSmin curve flattens: at 4 clusters and at 9 clusters. The
documents were selected from the categories China, Germany, Russia and Sports, so
the K = 4 clustering is closest to the Reuters classification.

A second type of criterion for cluster cardinality imposes a penalty for each
new cluster – where conceptually we start with a single cluster containing all
documents and then search for the optimal number of clusters K by succes-
sively incrementing K by one. To determine the cluster cardinality in this
way, we create a generalized objective function that combines two elements:
distortion, a measure of how much documents deviate from the prototype ofDISTORTION

their clusters (e.g., RSS for K-means); and a measure of model complexity. WeMODEL COMPLEXITY

interpret a clustering here as a model of the data. Model complexity in clus-
tering is usually the number of clusters or a function thereof. For K-means,
we then get this selection criterion for K:

K = arg min
K

[RSSmin(K) + λK](16.11)

where λ is a weighting factor. A large value of λ favors solutions with few
clusters. For λ = 0, there is no penalty for more clusters and K = N is the
best solution.
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The obvious difficulty with Equation (16.11) is that we need to determine
λ. Unless this is easier than determining K directly, then we are back to
square one. In some cases, we can choose values of λ that have worked well
for similar data sets in the past. For example, if we periodically cluster news
stories from a newswire, there is likely to be a fixed value of λ that gives us
the right K in each successive clustering. In this application, we would not
be able to determine K based on past experience since K changes.

A theoretical justification for Equation (16.11) is the Akaike Information Cri-AKAIKE INFORMATION

CRITERION terion or AIC, an information-theoretic measure that trades off distortion
against model complexity. The general form of AIC is:

AIC: K = arg min
K

[−2L(K) + 2q(K)](16.12)

where −L(K), the negative maximum log-likelihood of the data for K clus-
ters, is a measure of distortion and q(K), the number of parameters of a
model with K clusters, is a measure of model complexity. We will not at-
tempt to derive the AIC here, but it is easy to understand intuitively. The
first property of a good model of the data is that each data point is modeled
well by the model. This is the goal of low distortion. But models should
also be small (i.e., have low model complexity) since a model that merely
describes the data (and therefore has zero distortion) is worthless. AIC pro-
vides a theoretical justification for one particular way of weighting these two
factors, distortion and model complexity, when selecting a model.

For K-means, the AIC can be stated as follows:

AIC: K = arg min
K

[RSSmin(K) + 2MK](16.13)

Equation (16.13) is a special case of Equation (16.11) for λ = 2M.
To derive Equation (16.13) from Equation (16.12) observe that q(K) = KM

in K-means since each element of the K centroids is a parameter that can be
varied independently; and that L(K) = −(1/2)RSSmin(K) (modulo a con-
stant) if we view the model underlying K-means as a Gaussian mixture with
hard assignment, uniform cluster priors and identical spherical covariance
matrices (see Exercise 16.19).

The derivation of AIC is based on a number of assumptions, e.g., that the
data are independent and identically distributed. These assumptions are
only approximately true for data sets in information retrieval. As a conse-
quence, the AIC can rarely be applied without modification in text clustering.
In Figure 16.8, the dimensionality of the vector space is M ≈ 50,000. Thus,

2MK > 50,000 dominates the smaller RSS-based term (R̂SSmin(1) < 5000,
not shown in the figure) and the minimum of the expression is reached for
K = 1. But as we know, K = 4 (corresponding to the four classes China,
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Germany, Russia and Sports) is a better choice than K = 1. In practice, Equa-
tion (16.11) is often more useful than Equation (16.13) – with the caveat that
we need to come up with an estimate for λ.

? Exercise 16.4

Why are documents that do not use the same term for the concept car likely to end
up in the same cluster in K-means clustering?

Exercise 16.5

Two of the possible termination conditions for K-means were (1) assignment does not
change, (2) centroids do not change (page 361). Do these two conditions imply each
other?

✄ 16.5 Model-based clustering

In this section, we describe a generalization of K-means, the EM algorithm.
It can be applied to a larger variety of document representations and distri-
butions than K-means.

In K-means, we attempt to find centroids that are good representatives. We
can view the set of K centroids as a model that generates the data. Generating
a document in this model consists of first picking a centroid at random and
then adding some noise. If the noise is normally distributed, this procedure
will result in clusters of spherical shape. Model-based clustering assumes thatMODEL-BASED

CLUSTERING the data were generated by a model and tries to recover the original model
from the data. The model that we recover from the data then defines clusters
and an assignment of documents to clusters.

A commonly used criterion for estimating the model parameters is maxi-
mum likelihood. In K-means, the quantity exp(−RSS) is proportional to the
likelihood that a particular model (i.e., a set of centroids) generated the data.
For K-means, maximum likelihood and minimal RSS are equivalent criteria.
We denote the model parameters by Θ. In K-means, Θ = {~µ1, . . . ,~µK}.

More generally, the maximum likelihood criterion is to select the parame-
ters Θ that maximize the log-likelihood of generating the data D:

Θ = arg max
Θ

L(D|Θ) = arg max
Θ

log
N

∏
n=1

P(dn|Θ) = arg max
Θ

N

∑
n=1

log P(dn|Θ)

L(D|Θ) is the objective function that measures the goodness of the cluster-
ing. Given two clusterings with the same number of clusters, we prefer the
one with higher L(D|Θ).

This is the same approach we took in Chapter 12 (page 237) for language
modeling and in Section 13.1 (page 265) for text classification. In text clas-
sification, we chose the class that maximizes the likelihood of generating a
particular document. Here, we choose the clustering Θ that maximizes the
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likelihood of generating a given set of documents. Once we have Θ, we can
compute an assignment probability P(d|ωk; Θ) for each document-cluster
pair. This set of assignment probabilities defines a soft clustering.

An example of a soft assignment is that a document about Chinese cars
may have a fractional membership of 0.5 in each of the two clusters China
and automobiles, reflecting the fact that both topics are pertinent. A hard clus-
tering like K-means cannot model this simultaneous relevance to two topics.

Model-based clustering provides a framework for incorporating our know-
ledge about a domain. K-means and the hierarchical algorithms in Chap-
ter 17 make fairly rigid assumptions about the data. For example, clusters
in K-means are assumed to be spheres. Model-based clustering offers more
flexibility. The clustering model can be adapted to what we know about
the underlying distribution of the data, be it Bernoulli (as in the example
in Table 16.3), Gaussian with non-spherical variance (another model that is
important in document clustering) or a member of a different family.

A commonly used algorithm for model-based clustering is the Expectation-EXPECTATION-
MAXIMIZATION

ALGORITHM
Maximization algorithm or EM algorithm. EM clustering is an iterative algo-
rithm that maximizes L(D|Θ). EM can be applied to many different types of
probabilistic modeling. We will work with a mixture of multivariate Bernoulli
distributions here, the distribution we know from Section 11.3 (page 222) and
Section 13.3 (page 263):

P(d|ωk; Θ) =

(
∏

tm∈d

qmk

)(
∏

tm /∈d

(1− qmk)

)
(16.14)

where Θ = {Θ1, . . . , ΘK}, Θk = (αk, q1k, . . . , qMk), and qmk = P(Um = 1|ωk)
are the parameters of the model.3 P(Um = 1|ωk) is the probability that a
document from cluster ωk contains term tm. The probability αk is the prior of
cluster ωk: the probability that a document d is in ωk if we have no informa-
tion about d.

The mixture model then is:

P(d|Θ) =
K

∑
k=1

αk

(
∏

tm∈d

qmk

)(
∏

tm /∈d

(1− qmk)

)
(16.15)

In this model, we generate a document by first picking a cluster k with prob-
ability αk and then generating the terms of the document according to the
parameters qmk. Recall that the document representation of the multivariate
Bernoulli is a vector of M Boolean values (and not a real-valued vector).

3. Um is the random variable we defined in Section 13.3 (page 266) for the Bernoulli Naive Bayes
model. It takes the values 1 (term tm is present in the document) and 0 (term tm is absent in the
document).
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How do we use EM to infer the parameters of the clustering from the data?
That is, how do we choose parameters Θ that maximize L(D|Θ)? EM is simi-
lar to K-means in that it alternates between an expectation step, correspondingEXPECTATION STEP

to reassignment, and a maximization step, corresponding to recomputation ofMAXIMIZATION STEP

the parameters of the model. The parameters of K-means are the centroids,
the parameters of the instance of EM in this section are the αk and qmk.

The maximization step recomputes the conditional parameters qmk and the
priors αk as follows:

Maximization step: qmk =
∑

N
n=1 rnk I(tm ∈ dn)

∑
N
n=1 rnk

αk =
∑

N
n=1 rnk

N
(16.16)

where I(tm ∈ dn) = 1 if tm ∈ dn and 0 otherwise and rnk is the soft as-
signment of document dn to cluster k as computed in the preceding iteration.
(We’ll address the issue of initialization in a moment.) These are the max-
imum likelihood estimates for the parameters of the multivariate Bernoulli
from Table 13.3 (page 268) except that documents are assigned fractionally to
clusters here. These maximum likelihood estimates maximize the likelihood
of the data given the model.

The expectation step computes the soft assignment of documents to clus-
ters given the current parameters qmk and αk:

Expectation step : rnk =
αk(∏tm∈dn

qmk)(∏tm /∈dn
(1− qmk))

∑
K
k=1 αk(∏tm∈dn

qmk)(∏tm /∈dn
(1− qmk))

(16.17)

This expectation step applies Equations (16.14) and (16.15) to computing the
likelihood that ωk generated document dn. It is the classification procedure
for the multivariate Bernoulli in Table 13.3. Thus, the expectation step is
nothing else but Bernoulli Naive Bayes classification (including normaliza-
tion, i.e. dividing by the denominator, to get a probability distribution over
clusters).

We clustered a set of 11 documents into two clusters using EM in Ta-
ble 16.3. After convergence in iteration 25, the first 5 documents are assigned
to cluster 1 (ri,1 = 1.00) and the last 6 to cluster 2 (ri,1 = 0.00). Somewhat
atypically, the final assignment is a hard assignment here. EM usually con-
verges to a soft assignment. In iteration 25, the prior α1 for cluster 1 is
5/11 ≈ 0.45 because 5 of the 11 documents are in cluster 1. Some terms
are quickly associated with one cluster because the initial assignment can
“spread” to them unambiguously. For example, membership in cluster 2
spreads from document 7 to document 8 in the first iteration because they
share sugar (r8,1 = 0 in iteration 1). For parameters of terms occurring
in ambiguous contexts, convergence takes longer. Seed documents 6 and 7
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(a) docID document text docID document text
1 hot chocolate cocoa beans 7 sweet sugar
2 cocoa ghana africa 8 sugar cane brazil
3 beans harvest ghana 9 sweet sugar beet
4 cocoa butter 10 sweet cake icing
5 butter truffles 11 cake black forest
6 sweet chocolate

(b) Parameter Iteration of clustering
0 1 2 3 4 5 15 25

α1 0.50 0.45 0.53 0.57 0.58 0.54 0.45
r1,1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r2,1 0.50 0.79 0.99 1.00 1.00 1.00 1.00
r3,1 0.50 0.84 1.00 1.00 1.00 1.00 1.00
r4,1 0.50 0.75 0.94 1.00 1.00 1.00 1.00
r5,1 0.50 0.52 0.66 0.91 1.00 1.00 1.00
r6,1 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.00
r7,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r8,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r9,1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r10,1 0.50 0.40 0.14 0.01 0.00 0.00 0.00
r11,1 0.50 0.57 0.58 0.41 0.07 0.00 0.00
qafrica,1 0.000 0.100 0.134 0.158 0.158 0.169 0.200
qafrica,2 0.000 0.083 0.042 0.001 0.000 0.000 0.000
qbrazil,1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
qbrazil,2 0.000 0.167 0.195 0.213 0.214 0.196 0.167
qcocoa,1 0.000 0.400 0.432 0.465 0.474 0.508 0.600
qcocoa,2 0.000 0.167 0.090 0.014 0.001 0.000 0.000
qsugar,1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
qsugar,2 1.000 0.500 0.585 0.640 0.642 0.589 0.500
qsweet,1 1.000 0.300 0.238 0.180 0.159 0.153 0.000
qsweet,2 1.000 0.417 0.507 0.610 0.640 0.608 0.667

◮ Table 16.3 The EM clustering algorithm. The table shows a set of documents
(a) and parameter values for selected iterations during EM clustering (b). Parameters
shown are prior α1, soft assignment scores rn,1 (both omitted for cluster 2), and lexical
parameters qm,k for a few terms. The authors initially assigned document 6 to clus-
ter 1 and document 7 to cluster 2 (iteration 0). EM converges after 25 iterations. For
smoothing, the rnk in Equation (16.16) were replaced with rnk + ǫ where ǫ = 0.0001.
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both contain sweet. As a result, it takes 25 iterations for the term to be unam-
biguously associated with cluster 2. (qsweet,1 = 0 in iteration 25.)

Finding good seeds is even more critical for EM than for K-means. EM is
prone to get stuck in local optima if the seeds are not chosen well. This is a
general problem that also occurs in other applications of EM.4 Therefore, as
with K-means, the initial assignment of documents to clusters is often com-
puted by a different algorithm. For example, a hard K-means clustering may
provide the initial assignment, which EM can then “soften up.”

? Exercise 16.6

We saw above that the time complexity of K-means is Θ(IKNM). What is the time
complexity of EM?

16.6 References and further reading

Berkhin (2006b) gives a general up-to-date survey of clustering methods with
special attention to scalability. The classic reference for clustering in pat-
tern recognition, covering both K-means and EM, is (Duda et al. 2000). Ras-
mussen (1992) introduces clustering from an information retrieval perspec-
tive. Anderberg (1973) provides a general introduction to clustering for ap-
plications. In addition to Euclidean distance and cosine similarity, Kullback-
Leibler divergence is often used in clustering as a measure of how (dis)similar
documents and clusters are (Xu and Croft 1999, Muresan and Harper 2004,
Kurland and Lee 2004).

The cluster hypothesis is due to Jardine and van Rijsbergen (1971) who
state it as follows: Associations between documents convey information about the
relevance of documents to requests. Salton (1971a; 1975), Croft (1978), Voorhees
(1985a), Can and Ozkarahan (1990), Cacheda et al. (2003), Can et al. (2004),
Singitham et al. (2004) and Altingövde et al. (2008) investigate the efficiency
and effectiveness of cluster-based retrieval. While some of these studies
show improvements in effectiveness, efficiency or both, there is no consensus
that cluster-based retrieval works well consistently across scenarios. Cluster-
based language modeling was pioneered by Liu and Croft (2004).

There is good evidence that clustering of search results improves user ex-
perience and search result quality (Hearst and Pedersen 1996, Zamir and Et-
zioni 1999, Tombros et al. 2002, Käki 2005, Toda and Kataoka 2005), although
not as much as search result structuring based on carefully edited category
hierarchies (Hearst 2006). The Scatter-Gather interface for browsing collec-
tions was presented by Cutting et al. (1992). A theoretical framework for an-

4. For example, this problem is common when EM is used to estimate parameters of hidden
Markov models, probabilistic grammars, and machine translation models in natural language
processing (Manning and Schütze 1999).
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alyzing the properties of Scatter/Gather and other information seeking user
interfaces is presented by Pirolli (2007). Schütze and Silverstein (1997) eval-
uate LSI (Chapter 18) and truncated representations of centroids for efficient
K-means clustering.

The Columbia NewsBlaster system (McKeown et al. 2002), a forerunner to
the now much more famous and refined Google News (http://news.google.com),
used hierarchical clustering (Chapter 17) to give two levels of news topic
granularity. See Hatzivassiloglou et al. (2000) for details, and Chen and Lin
(2000) and Radev et al. (2001) for related systems. Other applications of
clustering in information retrieval are duplicate detection (Yang and Callan
(2006), Section 19.6, page 438), novelty detection (see references in Section 17.9,
page 399) and metadata discovery on the semantic web (Alonso et al. 2006).

The discussion of external evaluation measures is partially based on Strehl
(2002). Dom (2002) proposes a measure Q0 that is better motivated theoret-
ically than NMI. Q0 is the number of bits needed to transmit class member-
ships assuming cluster memberships are known. The Rand index is due to
Rand (1971). Hubert and Arabie (1985) propose an adjusted Rand index thatADJUSTED RAND INDEX

ranges between −1 and 1 and is 0 if there is only chance agreement between
clusters and classes (similar to κ in Chapter 8, page 165). Basu et al. (2004) ar-
gue that the three evaluation measures NMI, Rand index and F measure give
very similar results. Stein et al. (2003) propose expected edge density as an in-
ternal measure and give evidence that it is a good predictor of the quality of a
clustering. Kleinberg (2002) and Meilă (2005) present axiomatic frameworks
for comparing clusterings.

Authors that are often credited with the invention of the K-means algo-
rithm include Lloyd (1982) (first distributed in 1957), Ball (1965), MacQueen
(1967), and Hartigan and Wong (1979). Arthur and Vassilvitskii (2006) in-
vestigate the worst-case complexity of K-means. Bradley and Fayyad (1998),
Pelleg and Moore (1999) and Davidson and Satyanarayana (2003) investi-
gate the convergence properties of K-means empirically and how it depends
on initial seed selection. Dhillon and Modha (2001) compare K-means clus-
ters with SVD-based clusters (Chapter 18). The K-medoid algorithm was
presented by Kaufman and Rousseeuw (1990). The EM algorithm was orig-
inally introduced by Dempster et al. (1977). An in-depth treatment of EM is
(McLachlan and Krishnan 1996). See Section 18.5 (page 417) for publications
on latent analysis, which can also be viewed as soft clustering.

AIC is due to Akaike (1974) (see also Burnham and Anderson (2002)). An
alternative to AIC is BIC, which can be motivated as a Bayesian model se-
lection procedure (Schwarz 1978). Fraley and Raftery (1998) show how to
choose an optimal number of clusters based on BIC. An application of BIC to
K-means is (Pelleg and Moore 2000). Hamerly and Elkan (2003) propose an
alternative to BIC that performs better in their experiments. Another influ-
ential Bayesian approach for determining the number of clusters (simultane-
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ously with cluster assignment) is described by Cheeseman and Stutz (1996).
Two methods for determining cardinality without external criteria are pre-
sented by Tibshirani et al. (2001).

We only have space here for classical completely unsupervised clustering.
An important current topic of research is how to use prior knowledge to
guide clustering (e.g., Ji and Xu (2006)) and how to incorporate interactive
feedback during clustering (e.g., Huang and Mitchell (2006)). Fayyad et al.
(1998) propose an initialization for EM clustering. For algorithms that can
cluster very large data sets in one scan through the data see Bradley et al.
(1998).

The applications in Table 16.1 all cluster documents. Other information re-
trieval applications cluster words (e.g., Crouch 1988), contexts of words (e.g.,
Schütze and Pedersen 1995) or words and documents simultaneously (e.g.,
Tishby and Slonim 2000, Dhillon 2001, Zha et al. 2001). Simultaneous clus-
tering of words and documents is an example of co-clustering or biclustering.CO-CLUSTERING

16.7 Exercises

? Exercise 16.7

Let Ω be a clustering that exactly reproduces a class structure C and Ω′ a clustering
that further subdivides some clusters in Ω. Show that I(Ω; C) = I(Ω′; C).

Exercise 16.8

Show that I(Ω; C) ≤ [H(Ω) + H(C)]/2.

Exercise 16.9

Mutual information is symmetric in the sense that its value does not change if the
roles of clusters and classes are switched: I(Ω; C) = I(C; Ω). Which of the other
three evaluation measures are symmetric in this sense?

Exercise 16.10

Compute RSS for the two clusterings in Figure 16.7.

Exercise 16.11

(i) Give an example of a set of points and three initial centroids (which need not be
members of the set of points) for which 3-means converges to a clustering with an
empty cluster. (ii) Can a clustering with an empty cluster be the global optimum with
respect to RSS?

Exercise 16.12

Download Reuters-21578. Discard documents that do not occur in one of the 10
classes acquisitions, corn, crude, earn, grain, interest, money-fx, ship, trade, and wheat.
Discard documents that occur in two of these 10 classes. (i) Compute a K-means clus-
tering of this subset into 10 clusters. There are a number of software packages that
implement K-means, such as WEKA (Witten and Frank 2005) and R (R Development
Core Team 2005). (ii) Compute purity, normalized mutual information, F1 and RI for
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the clustering with respect to the 10 classes. (iii) Compile a confusion matrix (Ta-
ble 14.5, page 308) for the 10 classes and 10 clusters. Identify classes that give rise to
false positives and false negatives.

Exercise 16.13

Prove that RSSmin(K) is monotonically decreasing in K.

Exercise 16.14

There is a soft version of K-means that computes the fractional membership of a doc-
ument in a cluster as a monotonically decreasing function of the distance ∆ from its

centroid, e.g., as e−∆. Modify reassignment and recomputation steps of hard K-means
for this soft version.

Exercise 16.15

In the last iteration in Table 16.3, document 6 is in cluster 2 even though it was the
initial seed for cluster 1. Why does the document change membership?

Exercise 16.16

The values of the parameters qmk in iteration 25 in Table 16.3 are rounded. What are
the exact values that EM will converge to?

Exercise 16.17

Perform a K-means clustering for the documents in Table 16.3. After how many
iterations does K-means converge? Compare the result with the EM clustering in
Table 16.3 and discuss the differences.

Exercise 16.18 [⋆ ⋆ ⋆]

Modify the expectation and maximization steps of EM for a Gaussian mixture. The
maximization step computes the maximum likelihood parameter estimates αk, ~µk,
and Σk for each of the clusters. The expectation step computes for each vector a soft
assignment to clusters (Gaussians) based on their current parameters. Write down
the equations for Gaussian mixtures corresponding to Equations (16.16) and (16.17).

Exercise 16.19 [⋆ ⋆ ⋆]

Show that K-means can be viewed as the limiting case of EM for Gaussian mixtures
if variance is very small and all covariances are 0.

Exercise 16.20 [⋆ ⋆ ⋆]

The within-point scatter of a clustering is defined as ∑k
1
2 ∑~xi∈ωk

∑~xj∈ωk
|~xi−~xj|

2. ShowWITHIN-POINT

SCATTER that minimizing RSS and minimizing within-point scatter are equivalent.

Exercise 16.21 [⋆ ⋆ ⋆]

Derive an AIC criterion for the multivariate Bernoulli mixture model from Equa-
tion (16.12).
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