
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Common Compiler Optimisations are Invalid
in the C11 Memory Model and what we can do about it

Viktor Vafeiadis
MPI-SWS

Thibaut Balabonski
INRIA

Soham Chakraborty
MPI-SWS

Robin Morisset
INRIA

Francesco Zappa Nardelli
INRIA

Abstract
We show that the weak memory model introduced by the 2011
C and C++ standards does not permit many common source-to-
source program transformations (such as expression linearisation
and “roach motel” reorderings) that modern compilers perform and
that are deemed to be correct. As such it cannot be used to de-
fine the semantics of intermediate languages of compilers, as, for
instance, LLVM aimed to. We consider a number of possible lo-
cal fixes, some strengthening and some weakening the model. We
evaluate the proposed fixes by determining which program transfor-
mations are valid with respect to each of the patched models. We
provide formal Coq proofs of their correctness or counterexamples
as appropriate.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Concurrency; Weak memory models; C/C++; Compil-
ers; Program transformations

1. Introduction
Programmers want to understand the code they write, compilers
(and hardware) try hard to optimise it. Alas, in concurrent systems
even simple compiler optimisations like constant propagation can
introduce unexpected behaviours! The memory models of program-
ming languages are designed to resolve this tension, by governing
which values can be returned when the system reads from shared
memory. However, designing memory models is hard: it requires
finding a compromise between providing an understandable and
portable execution model for concurrent programs to programmers,
while allowing common compiler optimisations.

It is well-known that only racy programs (that is, programs in
which two threads can access the same resource concurrently in
conflicting ways) can observe normal compiler and hardware op-
timisations. A common approach for a programming language is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676995

thus to require that race-free code must exhibit only sequentially-
consistent (that is, interleaving) behaviours, while racy code is un-
defined and has no semantics. This approach, usually referred to
as DRF (data race freedom), is appealing to the programmer be-
cause under the hypothesis that the shared state is properly pro-
tected by locks he has to reason only about interleaving of memory
accesses. It is also appealing to the compiler because it can opti-
mise code freely provided that it respects synchronisations. A study
by Ševčík [18] shows that it is indeed the case that in an idealised
DRF model common compiler optimisations are correct. These in-
clude elimination and reorderings of non-synchronising memory
accesses, and the so-called “roach motel” reorderings [10]: mov-
ing a memory access after a lock or before an unlock instruction.
Intuitively, the latter amounts to enlarging a critical section, which
should be obviously correct.

Although the idealised DRF design is appealing, integrating it
into a complete language design is not straightforward because ad-
ditional complexity has to be taken into account. For instance, Java
relies on unforgeability of pointers to enforce its security model,
and the Java memory model (JSR-133) [10] must impose additional
restrictions to ensure that all programs (including racy programs)
enjoy some basic memory safety guarantees. The resulting model
is intricate, and fails to allow some optimisations implemented in
the HotSpot reference compiler [17]. Despite ongoing efforts, no
satisfactory fix to JSR-133 has been proposed yet.

The recent memory model for the C and C++ languages [8, 7],
from now on referred to as C11, is also based on the DRF model.
Since these languages are not type safe, the Java restrictions are
unnecessary and both languages simply state that racy programs
have undefined behaviour. However, requiring all programs to be
well-synchronised via a locking mechanism is unacceptable when
it comes to writing low-level high-performance code, for which C
and C++ are often the languages of choice. An escape mechanism
called low-level atomics was built into the model. The idea is to
not consider conflicting atomic accesses as races, and to specify
their semantics by attributes annotated on each memory access.
These range from sequentially consistent (SC), which imposes a
total ordering semantics, to weaker ones as release (REL) and
acquire (ACQ), which can be used to efficiently implement message
passing, and relaxed (RLX), whose purpose is to allow performing
single hardware loads and stores without the overhead of memory
barrier instructions. As a result, RLX accesses do not synchronise
with one another and provide extremely weak ordering guarantees.

A common belief is that the C11 memory model enables all
common compiler optimisations, and indeed Morisset et al. [11]
proved that Ševčík’s correctness theorem for eliminations and re-
orderings of non-atomic accesses holds in the C11 memory model.

The authors however did not consider transformations involving
low-level atomic memory accesses.

Nowadays mainstream compilers are becoming aggressive in
performing optimisations that involve atomic accesses; for instance
in gcc 4.10, reorderings of SC atomic loads with non-atomic loads
can be observed as a side effect of partial-redundancy elimination,
while clang 3.5 routinely reorders non-atomic and RLX accesses. A
complete understanding of the validity of compiler optimisations
in the C11 memory model is now a necessity to guide not only the
future standard evolution but also current compiler development.

In this paper we set out to perform an in-depth study of opti-
misations in the C11 memory model. In particular we build on, and
extend, the results of [11] by considering optimisations that involve
atomic accesses. Unexpected surprises lurked behind the corner.

Standard Source-to-Source Transformations are Invalid in C11.
Surprisingly, and contradicting the common belief, we discovered
that the C11 model, as defined in the C/C++ standards and for-
malised by Batty et al. [4], does not validate a number of source-to-
source transformations that are routinely performed by compilers
and are intended to be correct. As an appetiser, in what follows
we show that sequentialisation, a simple transformation that adds
synchronisation by sequentialising two concurrent accesses:

C1‖C2 C1;C2

is unsound even when C1 consists of a single non-atomic vari-
able access. Most of our counterexamples exploit the counterintu-
itive causality cycles allowed by the C11 semantics. To understand
these, first consider the following code:

r1 = x.load(RLX);
y.store(1, RLX);

r2 = y.load(RLX);
x.store(1, RLX);

(LB)

(in all our examples all variables are initialised to 0 before the
parallel composition, unless specified otherwise). Since relaxed
atomic accesses by design do not race and do not synchronise, it
is perfectly reasonable to get r1 = r2 = 1 at the end of some
execution: the memory accesses in each thread are independent and
the compiler or the hardware might have reordered them.

The C11 standard keeps track of relative ordering between the
memory accesses performed during program execution via the
happens-before relation (shortened hb), defined as the transitive
closure of the program order and of the synchronisations between
actions of different threads.1 Non-atomic loads must return the last
write in the hb relation: this is unique in race-free programs and
guarantees a sequentially consistent semantics for race-free pro-
grams with only non-atomic accesses. For relaxed atomic accesses
the intentions of the standard are more liberal and basically state
that a relaxed load can see any other write which does not happen
after it (according to hb), and which is not shadowed by another
write, effectively allowing the outcome r1 = r2 = 1 above.

Unfortunately, the definition above enables some controversial
behaviours. For instance, the program below can terminate with
x = y = 1 as well:

if (x.load(RLX))
y.store(1, RLX);

if (y.load(RLX))
x.store(1, RLX);

(CYC)

Again there are no synchronisations, and relaxed loads can see arbi-
trary stores. However, justifying this in terms of compiler or hard-
ware optimisations is harder: the first thread might speculate that
x has value 1 tentatively executing the store to y, while the second
thread speculates that the value of y is 1 tentatively executing the
store to x. The two threads then check if the speculation was cor-
rect, seeing each other’s tentative stores that justify the speculation.

1 For simplicity, we assume there are no consume atomic accesses.

[a = x = y = 0]

WNA(a, 1)

RRLX(x, 1)

RNA(a, 1)

WRLX(y, 1)

RRLX(y, 1)

WRLX(x, 1)reads-from
reads-from

reads-from

Figure 1. Execution resulting in a = x = y = 1.

Several authors have observed that causality cycles make code
verification infeasible [2, 12, 16]. We show that the situation is even
worse than that, because we can exploit them to show that standard
program transformations are unsound. Consider:

a = 1;
if (x.load(RLX))

if (a)
y.store(1, RLX);

if (y.load(RLX))
x.store(1, RLX);

(SEQ)

First, notice that there is no execution (consistent execution in the
terminology of Section 2) in which the load of a occurs. We show
this by contradiction. Suppose that there is an execution in which
a load of a occurs. In such an execution the load of a can only
return 0 (the initial value of a) because the store a = 1 does
not happen before it (because it is in a different thread that has
not been synchronised with) and non-atomic loads must return the
latest write that happens before them. Therefore, in this execution
the store to y does not happen, which in turn means that the load
of y cannot return 1 and the store to x also does not happen.
Then, x cannot read 1, and thus the load of a does not occur. As
a consequence this program is not racy: since the load of a does
not occur in any execution, there are no executions with conflicting
accesses on the same non-atomic variable. We conclude that the
only possible final state is a = 1 ∧ x = y = 0.

Now, imagine we apply sequentialisation, collapsing the first
two threads and moving the assignment to the start:

a = 1;
if (x.load(RLX))

if (a)
y.store(1, RLX);

if (y.load(RLX))
x.store(1, RLX);

Running the resulting code can lead to an execution, formally
depicted in Figure 1, in which the load of a actually returns the
value 1 since the store to a now happens before (via program-order)
the load. This results in the final state a = x = y = 1, which is not
possible for the initial program.

Consequences. The example above is an instance of source-to-
source program transformation: the semantics of both the source
and target code are defined by the C11 memory model. It might
be argued that the main purpose of compiler is not to perform
a source-to-source translation but rather compile C11 programs
to x86/ARM/Power assembler (to cite three widespread architec-
tures), and a correctness statement for a compiler should relate the
C11 semantics of the source program to the x86/ARM/Power se-
mantics of the generated assembler. Indeed if we compile the trans-
formed code above using the standard mapping for low-level atom-
ics for x86 [4] or ARM/Power [13], then the problematic new be-
haviour does not arise in practice. To the best of our knowledge
no modern relaxed architecture allows the causality cycle (or the
other idiosyncrasies of the C11 model we exploit) built by the pro-
gram labelled by (CYC) to terminate with x = y = 1. This implies

that our counterexamples do not break C11-to-assembly compiler
correctness statements, in contrast to what happens in Java [17].

However compilers rarely compile C code into assembly code
in just one pass. Our counterexamples imply that the C11 mem-
ory model cannot be used to give semantics to the intermedi-
ate languages used internally by a compiler, as for instance the
Clang/LLVM compiler aimed to. They also imply that reasoning
about the correctness of program transformations cannot be done
at the C11 level but must take into account the actual mapping of
atomic accesses to a particular architecture, forbidding architec-
ture independent reasoning and preventing compositional reason-
ing about compiler passes.

The design of a memory model that forbids causality cycles
while enabling common compiler optimisation is currently a Holy
Grail quest. Our counterexamples exploit a precise form of causal-
ity cycles (involving control dependencies) and not the most gen-
eral form [6]; unfortunately it turns out that there is no simple local
fix to the C11 model that makes all these transformations valid.

Contributions and Outline.

• We show that several source-to-source transformations intended
to be correct, can introduce new behaviours in the C11 mem-
ory model. The transformations we consider include sequential-
isation, strengthening, and roach motel reorderings; we present
them and demonstrate that C11 forbids them in Section 3.

• We explore a number of possible local fixes to the C11 model,
some strengthening and some weakening the model. These in-
volve replacing one C11 consistency axiom by another; we for-
malise them in Section 4 and study their basic metatheory in
Section 5. These include the acyclicity condition advocated by
Boehm and Demsky [6] as well as weaker conditions.
For each patched model, in Sections 6 and 7, we conduct an
in-depth study of the soundness of a wide class of program
transformations, involving reordering and eliminations of both
non-atomic and atomic variables. For each we either provide a
proof of its correctness formalised in the Coq proof assistant
(with one exception), or a counterexample. For the condition
in [6], under an additional condition on sequentially consistent
accesses, all the intended transformations are valid. The weaker
conditions either disallow some transformations or do not sat-
isfy the DRF theorem. Additionally we show that the side con-
ditions on the memory attributes of the operations involved in
each sound optimisation are locally maximal, in that we have
counterexamples for any weakening of them.

• We show that “Write-after-Read” elimination of atomic ac-
cesses is unsound in the C11 memory model, both in the current
formulation and in the patched models (Section 7.1).

• Our investigation also highlighted some corner cases of the C11
model which break important metatheory properties. We dis-
cuss them, together with possible fixes, in Sections 4.3 and 5.4.

To make the paper self-contained we recall the presentation of the
C11 memory model and the setup to reason about program transfor-
mations in Section 2. We finally discuss related work in Section 8.
The Coq proof scripts and our appendix with the counterexamples
are available at the following URL:

http://plv.mpi-sws.org/c11comp/

2. Abstract Optimisations in C11
In this paper, we are not looking at the actual algorithms used to
implement compiler optimisations. Rather, we are concerned by the
effects of compiler optimisations on program executions. We thus
build on the representation of abstract optimisations introduced by

Ševčík [18] and adapted to the C11 memory model in Morisset et
al. [11], which we recall below. The subsection headings refer to
the relevant files in our Coq development.

2.1 Representation of Programs [actions.v, opsemsets.v]
To abstract from the syntax complexity of the C language, we
identify a source program with a set of descriptions of what actions
it can perform when executed in an arbitrary context.

More precisely, in a source program each thread consists of a
sequence of instructions. We assume that, for each thread, a thread-
local semantics associates to each instruction instance zero, one, or
more shared memory accesses, which we call actions. The actions
we consider, ranged over by act , are of the form:

Φ ::= skip |W(SC|REL|RLX|NA)(`, v) | R(SC|ACQ|RLX|NA)(`, v)
| C(SC|REL-ACQ|ACQ|REL|RLX)(`, v, v

′) | F(ACQ|REL) | A(`)

act ::= tid : Φ

where ` ranges over memory locations, v over values and tid ∈
{1..n} over thread identifiers. We consider atomic and non-atomic
loads from (denoted R) and stores to (W) memory, fences (F), read-
modify-writes (C), and allocations (A) of memory locations. To
simplify the statement of some theorems, we also include a no-
op (skip) action. Each action specifies its thread identifier tid , the
location ` it affects, the value read or written v (when applicable),
and the memory-order (written as a subscript, when applicable).2

We assume a labelling function, lab, that associates action identi-
fiers (ranged over by a, b, r, w, . . .) to actions. In the drawings we
usually omit thread and action identifiers.

We introduce some terminology regarding actions. A read ac-
tion is a load or a read-modify-write (RMW); a write is a load or
an RMW; a memory access is a load, store or RMW. Where appli-
cable, we write mode(a) for the memory order of an action, tid(a)
for its thread identifier, and loc(a) for the location accessed. We
say an action is non-atomic iff its memory-order is NA, and SC-
atomic iff it is SC. An acquire action has memory-order ACQ or
stronger, while a release has REL or stronger. The is stronger rela-
tion, writtenw: P(MO ×MO), is defined to be the least reflexive
and transitive relation containing SC w REL-ACQ w REL w RLX,
and REL-ACQ w ACQ w RLX.

The thread local semantics captures control flow dependencies
via the sequenced-before (sb) relation, which relates action iden-
tifiers of the same thread that follow one another in control flow.
We have sb(a, b) if a and b belong to the same thread and a pre-
cedes b in the thread’s control flow. Even among actions of the
same thread, the sequenced-before relation is not necessarily to-
tal because the order of evaluation of the arguments of functions,
or of the operands of most operators, is underspecified in C and
C++. The thread local semantics also captures thread creation via
the additional-synchronised-with (asw) relation, that orders all the
action identifiers of a thread after the corresponding thread fork
(which can be represented by a skip action).

Summarising, the thread local semantics identifies each pro-
gram execution a triple O = (lab, sb, asw), called an opsem. As
an example, Figure 4 depicts one opsem for the program on the left
and one for the program on the right. Both opsems correspond to
the executions obtained from an initial state where y holds 3, and

2 We omit consume atomics and sequentially consistent fences. The seman-
tics of the former is intricate and at the time of writing no major compiler
profits from their weaker semantics, treating consume as acquire; the se-
mantics of the latter is unclear. Despite their name, SC fences do not guar-
antee sequential consistency even when placed between every two instruc-
tions. This is because while they rule out the relaxed behaviour of the SB
(store buffering) example, they permit those of the IRIW (independent reads
of independent writes) example.

http://llvm.org/
http://plv.mpi-sws.org/c11comp/
http://plv.mpi-sws.org/c11comp/coq/actions.html
http://plv.mpi-sws.org/c11comp/coq/opsemsets.html

isread`,v(a)
def
= ∃X, v′. lab(a) ∈ {RX(`, v),CX(`, v, v′)} isread`(a)

def
= ∃v. isread`,v(a) isread(a)

def
= ∃`. isread`(a)

iswrite`,v(a)
def
= ∃X, v′. lab(a) ∈ {WX(`, v),CX(`, v′, v)} iswrite`(a)

def
= ∃v. iswrite`,v(a) iswrite(a)

def
= ∃`. iswrite`(a)

isfence(a)
def
= lab(a) ∈ {FACQ,FREL} isaccess(a)

def
= isread(a) ∨ iswrite(a) isNA(a)

def
= mode(a) = NA

sameThread(a, b)
def
= tid(a) = tid(b) isrmw(a)

def
= isread(a) ∧ iswrite(a) isSC(a)

def
= mode(a) = SC

rsElem(a, b)
def
= sameThread(a, b) ∨ isrmw(b) isAcq(a)

def
= mode(a) w ACQ isRel(a)

def
= mode(a) w REL

rseq(a, b)
def
= a = b ∨ rsElem(a, b) ∧mo(a, b) ∧ (∀c. mo(a, c) ∧mo(c, b)⇒ rsElem(a, c))

sw(a, b)
def
= ∃c, d. ¬sameThread(a, b) ∧ isRel(a) ∧ isAcq(b) ∧ rseq(c, rf (d))

∧ (a = c ∨ isfence(a) ∧ sb+(a, c)) ∧ (d = b ∨ isfence(b) ∧ sb+(d, b))

hb
def
= (sb ∪ sw ∪ asw)+

Racy
def
= ∃a, b. isaccess(a) ∧ isaccess(b) ∧ loc(a) = loc(b) ∧ a 6= b

∧(iswrite(a) ∨ iswrite(b)) ∧ (isNA(a) ∨ isNA(b)) ∧ ¬(hb(a, b) ∨ hb(b, a))

Observation
def
= {(a, b) | mo(a, b) ∧ loc(a) = loc(b) = world}

Figure 2. Auxiliary definitions for a C11 execution (lab, sb, asw , rf ,mo, sc).

a : WREL

rf (b) b : RACQ
rf

rseq
sw a : FREL

c rf (b) b : RACQ
rfrseq

sw a : WREL rf (d) d

b : FACQ

rfrseq

sw

a : FREL

c rf (d)

d

b : FACQ

rf

rseq

sw

Figure 3. Illustration of the “synchronizes-with” definition: the four cases inducing an sw edge.

the environment does not perform any write to the shared variables
(each read returns the last value written).

The set of all the opsems of a program is an opsemset, denoted
by S. We require opsemsets to be receptive: S is receptive if, for
every opsem O, for every read action r in the opsem O, for all
values v′ there is an opsem O′ in S which only differs from O
because the read r returns v′ rather than v, and for the actions that
occur after r in sb ∪ asw . Intuitively an opsemset is receptive if it
defines a behaviour for each possible value returned by each read.

We additionally require opsemsets to be prefix-closed, assuming
that a program can halt at any time. Formally, we say that an opsem
O′ is a prefix of an opsem O if there is an injection of the actions
of O′ into the actions of O that behaves as the identity on actions,
preserves sb and asw , and, for each action x ∈ O′, whenever
x ∈ O and (sb ∪ asw)(y, x), it holds that y ∈ O′.

Program Transformations. Opsemsets abstract the syntax of
programs by identifying each program with the set of actions it
can perform in an arbitrary environment. We can then characterise
the effect of an arbitrary source code transformation directly on
opsemsets. On a given opsem, the effect of any transformation of
the source code is to eliminate, reorder, or introduce actions and
modifying the sb and asw relations accordingly.

In the example in Figure 4, taken from Morisset et al. [11], the
loop on the left is optimised into the code on the right by loop
invariant code motion. As we said, the figure shows opsems for
the initial state z = 0, y = 3 assuming that the code is not
run in parallel with an interfering context. Observe that the effect
of the optimisation on the first opsem is to eliminate the shaded
actions, and to reorder the stores to x, thus mapping the opsem of
the unoptimised code into an opsem of the optimised code.

An opsem captures a possible execution of the program, so by
applying a transformation to an opsem we are actually optimising
one particular execution. Lifting pointwise this definition of seman-
tic transformations to opsemsets enables optimising all the execu-
tion paths of a program, one at a time, thus abstracting from actual
source program transformation.

Soundness of program transformations can then be formalised
by identifying the set of conditions under which eliminating, re-
ordering or introducing actions in the opsems of an opsemset does

for (i=0; i<2; i++) {
z = z + y + i;
x = y;

}

t = y; x = t;
for (i=0; i<2; i++) {

z = z + t + i;
}

RNA(z, 0) RNA(y, 3)

WNA(z, 3)

RNA(y, 3)

WNA(x, 3)

RNA(y, 3) RNA(z, 3)

WNA(z, 7)

RNA(y, 3)

WNA(x, 3)

RNA(y, 3)

WNA(x, 3)

RNA(z, 0)

WNA(z, 3)

RNA(z, 3)

WNA(z, 7)

Figure 4. Effect of loop invariant code motion on an opsem.

not introduce new observable behaviours. We must thus define what
it means to execute an opsemset.

2.2 Executing Programs [c11.v, lang.v]
The mapping of programs to opsemsets only takes into account
the structure of each thread’s statements, not the semantics of
memory operations. In particular, the values of reads are chosen
arbitrarily, without regard for writes that have taken place. (In our
Coq development, we present such a mapping from programs to
opsemsets for a concurrent WHILE language.)

The C11 memory model then filters inconsistent opsems by con-
structing additional relations and checking the resulting candidate
executions against the axioms of the model. For the subset of C11
we consider, a witness W for an opsem O contains the following
additional relations:3

3 The full model includes two additional relations, dd (data dependency)
and dob (dependency ordered before), used to define hb for consume reads.

http://plv.mpi-sws.org/c11comp/coq/c11.html
http://plv.mpi-sws.org/c11comp/coq/lang.html

∀a, b. sb(a, b) =⇒ tid(a) = tid(b) (ConsSB)

order(iswrite,mo) ∧ ∀`. total(iswrite`,mo) (ConsMO)

order(isSC, sc) ∧ total(isSC, sc)
∧ (hb ∪mo) ∩ (isSC× isSC) ⊆ sc

(ConsSC)

∀b. (∃c. rf (b) = c) ⇐⇒
∃`, a. iswrite`(a) ∧ isread`(b) ∧ hb(a, b)

(ConsRFdom)

∀a, b. rf (b) = a =⇒ ∃`, v. iswrite`,v(a) ∧ isread`,v(b) (ConsRF)

∀a, b. rf (b) = a ∧ (isNA(a) ∨ isNA(b)) =⇒ hb(a, b) (ConsRFna)

∀a, b. rf (b) = a ∧ isSC(b) =⇒
imm(scr, a, b) ∨ ¬isSC(a) ∧ @x. hb(a, x) ∧ imm(scr, x, b) (SCReads)

@a. hb(a, a) (IrrHB)

@a, b. rf (b) = a ∧ hb(b, a) (ConsRFhb)

@a, b. hb(a, b) ∧mo(b, a) (CohWW)

@a, b. hb(a, b) ∧mo(rf (b), rf (a)) (CohRR)

@a, b. hb(a, b) ∧mo(rf (b), a) (CohWR)

@a, b. hb(a, b) ∧mo(b, rf (a)) (CohRW)

∀a, b. isrmw(a) ∧ rf (a) = b =⇒
imm(mo, b, a)

(AtRMW)

∀a, b, `. lab(a) = lab(b) = A(`) =⇒ a = b (ConsAlloc)

where order(P,R)
def
= (@a. R(a, a)) ∧ (R+ ⊆ R) ∧ (R ⊆ P × P) imm(R, a, b)

def
= R(a, b) ∧ @c. R(a, c) ∧R(c, b)

total(P,R)
def
= (∀a, b. P (a) ∧ P (b) =⇒ a = b ∨R(a, b) ∨R(b, a)) scr(a, b)

def
= sc(a, b) ∧ iswriteloc(b)(a)

Figure 5. Axioms satisfied by consistent C11 executions, Consistent(lab, sb, asw , rf ,mo, sc).

• The reads-from map (rf) maps every read action r to the write
action w that wrote the value read by r.

• The modification-order (mo) relates writes to the same loca-
tion; for every location, it is a total order among the writes to
that location.

• The sequential-consistency order (sc) is a total order over all
SC-atomic actions. (The standard calls this relation S.)

From these relations, C11 defines a number of derived relations
(written in sans-serif font), the most important of which are: the
synchronizes-with relation and the happens-before order.
• Synchronizes-with (sw) relates each release write with the ac-

quire reads that read from some write in its release sequence
(rseq). This sequence includes the release write and certain sub-
sequent writes in modification order that belong to the same
thread or are RMW operations. The sw relation also relates
fences under similar conditions. Roughly speaking, a release
fence turns succeeding writes in sb into releases and an acquire
fence turns preceding reads into acquires. (For details, see the
definition in Figure 2 and the illustration in Figure 3.)

• Happens-before (hb) is a partial order on actions formalising
the intuition that one action was completed before the other. In
the C11 subset we consider, hb = (sb ∪ sw ∪ asw)+.

We refer to a pair of an opsem and a witness (O,W) as a candi-
date execution. A candidate execution is said to be consistent if it
satisfies the axioms of the memory model, which will be presented
shortly. The model finally checks if none of the consistent execu-
tions contains an undefined behaviour, arising from a race (two
conflicting accesses not related by hb)4 or a memory error (access-
ing an unallocated location), where two accesses are conflicting if
they are to the same address, at least one is a write, and at least one
is non-atomic. Programs that exhibit an undefined behaviour in one
of their consistent executions are undefined; programs that do not
exhibit any undefined behaviour are called well-defined, and their
semantics is given by the set of their consistent executions.

Consistent Executions. According to the C11 model, a candidate
execution (lab, sb, asw , rf ,mo, sc) is consistent if all of the prop-
erties shown in Figure 5 hold.

(ConsSB) Sequenced-before relates only same-thread actions.

4 The standard distinguishes between races arising from accesses of differ-
ent threads, which it calls data races, and from those of the same thread,
which it calls unsequenced races. The standard says unsequenced races can
occur even between atomic accesses.

(ConsMO) Writes on the same location are totally ordered by mo.
(ConsSC) The sc relation must be a total order over SC actions and

include both hb and mo restricted to SC actions. This in effect
means that SC actions are globally synchronised.

(ConsRFdom) The reads-from map, rf , is defined for those read
actions for which the execution contains an earlier write to the
same location.

(ConsRF) Each entry in the reads-from map, rf , should map a read
to a write to the same location and with the same value.

(ConsRFna) If a read reads from a write and either the read or
the write are non-atomic, then the write must have happened
before the read. Batty et al. [4] additionally require the write to
be visible: i.e. not to have been overwritten by another write that
happened before the read. This extra condition is unnecessary,
as it follows from (CohWR).

(SCReads) SC reads are restricted to read only from the immedi-
ately preceding SC write to the same location in sc order or
from a non-SC write that has not happened before that immedi-
ately preceding SC write.

(IrrHB) The happens-before order, hb, must be irreflexive: an ac-
tion cannot happen before itself.

(ConsRFhb) A read cannot read from a future write.
(CohWW,CohRR,CohWR,CohRW) Next, we have four coher-

ence properties relating mo, hb, and rf on accesses to the same
location. These properties require that mo never contradicts hb
or the observed read order, and that rf never reads values that
have been overwritten by more recent actions that happened be-
fore the read.

(AtRMW) Read-modify-write accesses execute atomically: they
read from the immediately preceding write in mo.

(ConsAlloc) The same location cannot be allocated twice by dif-
ferent allocation actions. (This axiom is sound because for sim-
plicity we do not model deallocation. The C11 model by Batty
et al. [4, 3] does not even model allocation.)

Observable Behaviour. The observable behaviour of a candidate
execution is the restriction of the mo relation to the distinguished
world location. If none of the candidate executions of a program
exhibit an undefined behaviour, then its observable behaviour is the
set of all observable behaviours of its candidate executions. In our
counterexamples, we often distinguish executions based on the final
values of memory—this is valid because there could be a context
program reading those values and writing them to world.

x.store(1, RLX);
x.store(2, SC);
y.store(1, SC);

x.store(3, RLX);
y.store(2, SC);

y.store(3, SC);
r = x.load(SC);

s1 = x.load(RLX);
s2 = x.load(RLX);
s3 = x.load(RLX);
t1 = y.load(RLX);
t2 = y.load(RLX);
t3 = y.load(RLX);

Behaviour in question: r = s1 = t1 = 1 ∧ s2 = t2 = 2 ∧ s3 = t3 = 3

WRLX(x, 1)

WSC(x, 2)

WRLX(x, 3)

WSC(y, 1)

WSC(y, 2)

WSC(y, 3)

RSC(x, 1)

mo mo

mo

mo
rf sc

sc
sc

sc

Figure 6. A weird consequence of the SCReads axiom: strengthening the x.store(3, RLX) into x.store(3, SC) introduces new behaviour.

3. Invalid Source-to-Source Transformations
In the introduction we discussed how sequentialisation, a simple
transformation rewriting C1‖C2 C1;C2 can introduce new be-
haviours in C11 programs. Here we present other surprising prob-
lems that arise from innocent-looking program transformations.

Strengthening is Unsound. A desirable property of a memory
model is that adding synchronisation to a program introduces
no new behaviour (other than deadlock). The following example
shows however that replacing a relaxed atomic store with a release
atomic store is unsound in C11. Consider:

a = 1;
z.store(1, RLX);

if (x.load(RLX))
if (z.load(ACQ))

if (a)
y.store(1, RLX);

if (y.load(RLX))
x.store(1, RLX);

As in the SEQ program from Section 1, the load of a cannot return
1 because the store to a does not happen before it (and this time we
can name the axiom responsible for this: ConsRFna). Therefore,
the only final state is a = z = 1 ∧ x = y = 0. If, however,
we make the store of z a release store, then it synchronises with the
acquire load, and it is easy to build a consistent execution with final
state a = z = x = y = 1. A symmetric counterexample can be
constructed for strengthening a relaxed load to an acquire load.

What is more interesting is that even in the absence of causal-
ity cycles, strengthening an atomic access into a sequentially con-
sistent one is unsound in general. Consider, for example, the pro-
gram in Figure 6, where coherence of the relaxed loads in the final
thread forces the mo-orderings to be as shown in the execution on
the right of the figure. Now, the question is whether the SC-load
can read from the first store to x and return r = 1. In the pro-
gram as shown, it cannot, because that store happens before the
x.store(2, SC) store, which is the immediate sc-preceding store to
x before the load. If, however, we also make the x.store(3, RLX)
be sequentially consistent, then it becomes the immediately sc-
preceding store to x, and hence reading r = 1 is no longer blocked.

Roach Motel Reorderings are Unsound. Roach motel reorder-
ings are a class of optimisations that let compilers move accesses
to memory into synchronised blocks, but not move them out: the
intuition is that it is always safe to move more computations (in-
cluding memory accesses) inside critical sections. In the context of
C11, roach motel reorderings would allow moving non-atomic ac-
cesses after an acquire read (which behaves as a lock operation) or
before a release write (which behaves as an unlock operation).

However the following example program shows that in C11 it is
unsound to move a non-atomic store before a release store.

z.store(1, REL);
a = 1;

if (x.load(RLX))
if (z.load(ACQ))

if (a)
y.store(1, RLX);

if (y.load(RLX))
x.store(1, RLX);

As before, the only possible final state of this program is a = z = 1
and x = y = 0. If, however, we reorder the two stores in the
first thread, we get a consistent execution leading to the final state

RACQ(x, 1)

RNA(y, 1)

RNA(t, 2)

WRLX(w, 1)

RRLX(w, 1)

WRLX(z, 1)

WREL(x, 1)

WNA(y, 1)

RRLX(z, 1)

rf

sw

rf

rf rf

Figure 7. Execution generating new behaviour if the expression
evaluation order is linearised.

a = z = x = y = 1. Again, we can construct a similar example
showing that reordering over an acquire load is also not allowed by
C11.

Expression Linearisation is Unsound. A simple variation of se-
quentialisation is expression evaluation order linearisation, a trans-
formation that adds an sb arrow between two actions of the same
thread and that every compiler is bound to perform. This transfor-
mation is unsound as demonstrated below:
t = x.load(ACQ)+y;
if (t == 2)

w.store(1, RLX);

if (w.load(RLX))
z.store(1, RLX);

if (z.load(RLX))
y = 1;
x.store(1, REL);

The only possible final state for this program has all variables,
including t, set to zero. Indeed, the store y = 1; does not happen
before the load of y, which can then return only 0. However, if
the t = x.load(ACQ) + y; is linearised into t = x.load(ACQ); t =
t+y;, then a synchronisation on x induces an order on the accesses
to y, and the execution shown in Figure 7 is allowed.

4. Further C11 Weaknesses and Proposed Fixes
In this section, we consider possible solutions to the problems iden-
tified in the previous section, as well as to two other weaknesses
with the C11 model, which however do not manifest themselves as
invalid program transformations. (All of the models in this section
as well as the relationships among them are formalised in c11.v.)

4.1 Resolving Causality Cycles and the ConsRFna Axiom
We first discuss possible solutions for the most important problem
with C11, namely the interaction between causality cycles and the
ConsRFna axiom.

Naive Fix. A first, rather naive solution is to permit causality
cycles, but drop the offending ConsRFna axiom. As we will show
in Sections 6 and 7, this solution allows all the optimisations that
were intended to be sound on C11. It is, however, of dubious
usefulness as it gives extremely weak guarantees to programmers.

The DRF theorem—stating that programs whose sequential
consistent executions have no data races, have no additional relaxed
behaviours besides the SC ones—does not hold. As a counterex-
ample, take the CYC program from the introduction, replacing the
relaxed accesses by non-atomic ones.

http://plv.mpi-sws.org/c11comp/coq/c11.html

Arf: Forbidding (hb∪ rf) Cycles. A second, much more reason-
able solution is to try to rule out causality cycles. Ruling out causal-
ity cycles, while allowing non-causal loops in hb ∪ rf is, however,
difficult and cannot be done by stating additional axioms over sin-
gle executions. This is essentially because the offending execution
of the CYC program from the introduction is also an execution of
the LB program, also from the introduction.

As an approximation, we can rule out all (hb ∪ rf) cycles, by
stating the following axiom:

acyclic(hb ∪ {(a, b) | rf (b) = a}) (Arf)

This solution has been proposed before by Boehm and Demsky [6]
and also by Vafeiadis and Narayan [16]. Here, however, we take
a subtly different approach from the aforementioned proposals in
that besides adding the Arf axiom, we also drop the problematic
ConsRFna axiom.

In Sections 6 and 7 we show that this model allows the same
optimisations as the naive one (i.e., all the intended ones), except
the reordering of atomic reads over atomic writes.

It is however known to make relaxed accesses more costly
on ARM/Power, as there must be either a bogus branch or a
lightweight fence between every shared load and shared store [6].

Arfna: Forbidding Only Non-Atomic Cycles. Another approach
is to instead make more behaviours consistent, so that the non-
atomic accesses in the SEQ example from the introduction can
actually occur and race. The simplest way to do this is to replace
ConsRFna by

acyclic(hb ∪ {(rf (b), b) | isNA(b) ∨ isNA(rf (b))}) (Arfna)

A non-atomic load can read from a concurrent write, as long as it
does not cause a causality cycle.

This new model has several nice properties. First, it is weaker
than C11 in that it allows all behaviours permitted by C11. This
entails that any compilation strategy proved correct from C11 to
hardware memory models, such as to x86-TSO and Power, remains
correct in the modified model (contrary to the previous fix).

Theorem 1. If ConsistentC11(X), then ConsistentArfna(X).

Proof. Straightforward, since by the ConsRFna condition,

{(rf (b), b) | isNA(b) ∨ isNA(rf (b))} ⊆ hb

and hence Arfna follows from IrrHB.

Second, this model is not much weaker than C11. More pre-
cisely, it only allows more racy behaviours.

Theorem 2. If ConsistentArfna(X) and not Racy(X), then
ConsistentC11(X).

Note that the definition of racy executions, Racy(X), does not
depend on the axioms of the model, and is thus the same for all
memory models considered here.

Finally, it is possible to reason about this model as most reason-
ing techniques on C11 remain true. In particular, in the absence of
relaxed accesses, this model is equivalent to the Arf model. We are
thus able to use the program logics that have been developed for
C11 (namely, RSL [16] and GPS [15]) to also reason about pro-
grams in the Arfna model.

However, we found that reordering non-atomic loads past non-
atomic stores is forbidden in this model, as shown by the following
example:

if (x.load(RLX)) {
t = a;
b = 1;
if (t) y.store(1, RLX);
}

if (y.load(RLX))
if (b) {

a = 1;
x.store(1, RLX);
}

In this program, the causality cycle does not occur, because for it
to happen, an (hb ∪ rf)-cycle must also occur between the a and
b accesses (and that is ruled out by our axiom). However, if we
swap the non-atomic load of a and store of b in the first thread,
then the causality cycle becomes possible, and the program is racy.
Introducing a race is clearly unsound, so compilers are not allowed
to do such reorderings (note that these accesses are non-atomic
and adjacent). It is not clear whether such a constraint would be
acceptable in C/C++ compilers.

4.2 Correcting the SCReads Axiom
As we have seen in the counterexample of Figure 6, the SCReads
axiom places an odd restriction on where a sequentially consistent
read can read from. The problem arises from the case where the
source of the read is a non-SC write. In this case, the axiom forbids
that write to happen before the immediately sc-preceding write to
the same location. It may, however, happen before an earlier write
in the sc order.

We propose to strengthen the SCReads axiom by requiring there
not to be a happens before edge between rf (b) and any same-
location write sc-prior to the read, as follows:

∀a, b. rf (b) = a ∧ isSC(b) =⇒
imm(scr, a, b) ∨ ¬isSC(a)∧ @x. hb(a, x)∧ scr(x, b)

(SCread′)

Going back to the program in Figure 6, this stronger axiom rules
out reading r = 1, a guarantee that is provided by the suggested
compilations of C11 atomic accesses to x86/Power/ARM.

We also considered an even stronger version where instead of
hb, the axiom mentions mo, as in the coherence axioms, but have
not established its soundness for the suggested compilation of C11
atomic accesses to the Power and ARM architectures.

4.3 Strengthening the Release Sequence Definition
The definition of release sequences in the C11 model is too weak,
as shown be the following example.

x.store(2, RLX);
y = 1;
x.store(1, REL);
x.store(3, RLX);

if (x.load(ACQ) == 3)
print(y);

In this program, assuming the test condition holds, the acquire load
of x need not synchronise with the release store even though it
reads from a store that is sequenced after the release, and hence the
program is racy. The reason is that the seemingly irrelevant store of
x.store(2, RLX) can interrupt the release sequence as shown in the
following execution snippet.

WREL(x, 1)

WRLX(x, 3) RACQ(x, 3)WRLX(x, 2)

mo sb
mo

mo rf

In the absence, however, of the first thread, the acquire and the
release do synchronise and the program is well-defined.

As a fix for the release sequences definition, we propose to
replace the definition of release sequences by the least fixed point
of the following recursive definition (with respect to ⊆) :

rseqRSnew(a, b)
def
= a = b ∨ sameThread(a, b) ∧mo(a, b)

∨ isrmw(b) ∧ rseqRSnew(a, rf (b))

Our release sequences are not defined in terms of mo sequences,
but rather in terms of rf sequences. Either b should belong to the
same thread as a, or there should be a chain of RMW actions
reading from one another connecting b to a write in the same thread
as a.

In the absence of uninitialised RMW accesses, this change
strengthens the semantics. Every consistent execution in the re-
vised model is also consistent in the original model. Despite being
a strengthening, it does not affect the compilation results to x86,
Power, and ARM. The reason is that release sequences do not play
any role on x86, while on Power and ARM the compilation of re-
lease writes and fences issues a memory barrier that affects all later
writes of the same thread, not just an uninterrupted mo-sequence
of such writes.

4.4 Allowing Intra-Thread Synchronisation
A final change is to remove the slightly odd restriction that actions
from the same thread cannot synchronise.5 This change allows
us to give meaning to more programs. In the original model, the
following program has undefined behaviour:

#define f(x, y) (x.CAS(1, 0, ACQ)?(y++, x.store(1, REL)) : 0)
f(x, y) + f(x, y)

That is, although f uses x as a lock to protect the increments
of y, and therefore the y accesses could never be adjacent in an
interleaving semantics, the model does not treat the x-accesses as
synchronising because they belong to the same thread. Thus, the
two increments of y are deemed to race with one another.

As we believe that this behaviour is highly suspicious, we have
also considered an adaptation of the C11 model, where we set

sameThreadSTnew(a, b)
def
= sb+(a, b)

rather than tid(a) = tid(b). We have proved that with the new
definition, we can drop the ¬sameThread(a, b) conjunct from the
sw definition without affecting hb.

Since, by the ConsSB axiom, every sb edge has the same thread
identifiers, the change also strengthens the model by assigning
defined behaviour to more programs.

4.5 Summary of the Models to be Considered
As the four problems are independent and we have proposed fixes
to each problem, we consider the product of the fixes:ConsRFna

Naive
Arfna
Arf

×
§4.2︷ ︸︸ ︷(

SCorig
SCnew

)
×

§4.3︷ ︸︸ ︷(
RSorig
RSnew

)
×

§4.4︷ ︸︸ ︷(
STorig
STnew

)
We use tuple notation to refer to the individual models. For exam-
ple, we write (ConsRFna,SCorig,RSorig, STorig) for the model
corresponding to the 2011 C and C++ standards.

In Sections 5, 6 and 7, we show that the RSnew and STnew
components, despite further constraining the set of consistent exe-
cutions, permit all the transformations allowed by the RSorig and
STorig components respectively.

5. Basic Metatheory of the Corrected C11 Models
In this section, we develop basic metatheory of the various correc-
tions to the C11 model, which will assist us in verifying the pro-
gram transformations in the next sections. The subsection headings
mention the Coq source file containing the corresponding proofs.

5.1 Semiconsistent Executions [cmon.v]
We observe that in the monotone models (see Definition 3) the
happens-before relation appears negatively in all axioms except for
the⇐= direction of the ConsRFdom axiom. It turns out, however,
that this apparent lack of monotonicity with respect to happens-
before does not cause problems as it can be circumvented by the
following lemma.

5 This restriction breaks monotonicity in the presence of consume reads.

Definition 1 (Semiconsistent Executions). An execution is semi-
consistent with respect to a model M iff it satisfies all the axioms
of the model except for the⇐= direction of the ConsRFdom axiom.

Lemma 1 (Semiconsistency). Given a semiconsistent execution
(O, rf ,mo, sc) with respect to M for M 6= (ConsRFna, _, _, _),
there exists rf ′ ⊆ rf such that (O, rf ′,mo, sc) is consistent with
respect to M .

Proof. We pick rf ′ as the greatest fixed point of the functional:

F (rf)(x) :=

{
rf (x) if ∃y. hb(y, x) ∧ iswriteloc(x)(y)

undefined otherwise

that is smaller than rf (with respect to⊆). Such a fixed point exists
by Tarski’s theorem as the function is monotone. By construction, it
satisfies the ConsRFdom axiom, while all the other axioms follow
easily because they are antimonotone in rf .

5.2 Monotonicity [cmon.v]
We move on to proving the most fundamental property of the cor-
rected models: monotonicity, saying that if we weaken the access
modes of some of the actions of a consistent execution and/or re-
move some sb edges, the execution remains consistent.

Definition 2 (Access type ordering). Let v : P(MO ×MO) be
the least reflexive and transitive relation containing RLX v REL v
REL-ACQ v SC, and RLX v ACQ v REL-ACQ.

We lift the access order to memory actions,v : P(EV × EV),
by letting act v act, RX(`, v) v RX′(`, v), WX(`, v) v
WX′(`, v), CX(`, v, v′) v CX′(`, v, v′), FX v FX′ , and skip v
FX′ , whenever X v X ′. We also lift this order to functions point-
wise: lab v lab′ iff ∀a. lab(a) v lab′(a).

Monotonicity does not hold for all the models we consider, but
only after some necessary fixes have been applied. We call those
corrected models monotone.

Definition 3. We call a memory model, M , monotone, iff M 6=
(ConsRFna, _, _, _) and M 6= (_, SCorig, _, _).

Theorem 3 (Monotonicity). For a monotone memory model M ,
if ConsistentM (lab, sb, asw , rf ,mo, sc) and lab′ v lab and
sb′ ⊆ sb, then there exist rf ′ ⊆ rf and sc′ ⊆ sc such that
ConsistentM (lab′, sb′, asw , rf ′,mo, sc′).

Proof sketch. From Lemma 1, it suffices to prove that the execution
(lab′, sb′, asw , rf ,mo, sc′) is semiconsistent. We can show this
by picking:

sc′(x, y)
def
= sc(x, y) ∧ isSC(lab′(x)) ∧ isSC(lab′(y))

We can show that hb′ ⊆ hb, and then all the axioms of the model
follow straightforwardly.

From Theorem 3, we can immediately show the soundness of
three simple kinds of program transformations:

• Expression evaluation order linearisation and sequentialisa-
tion, because in effect they just add sb edges to the program;

• Strengthening of the memory access orders, such as replacing a
relaxed load by an acquire load; and

• Fence insertion, because this can be seen as replacing a skip
node (an empty fence) by a stronger fence.

http://plv.mpi-sws.org/c11comp/coq/cmon.html
http://plv.mpi-sws.org/c11comp/coq/cmon.html

IrrHB ConsRFhb CohWW CohRR CohWR CohRW AtRMW

x

hb

a

b

rf hb

a

b

hb mo

c

d

a

b

rf

rf

hbmo
rb

c a

b

rf
hb

mo

rb

a

b c

hb

mo

rf

a : RMW

rf

a

b: RMW

rf mo

c a

b: RMW

rf
mo

mo

Figure 8. Executions violating the coherence axioms: all contain a cycle in {(a, b) ∈ hb | loc(a) = loc(b)} ∪ com.

5.3 Alternative Presentation of the Coherence Axioms
[coherence.v]

Next, we consider equivalent alternative presentations of the coher-
ence axioms, which can be used to gain better understanding of the
models and to simplify some proofs about them.

Since mo is a total order on writes to the same location, and
hb is irreflexive, the CohWW axiom is actually equivalent to the
following one:

∀a, b, `. hb(a, b) ∧ iswrite`(a) ∧ iswrite`(b)
=⇒ mo(a, b)

(ConsMOhb)

The equivalence can be derived by a case analysis on how mo
orders a and b. (For what it is worth, the C/C++ standards as well
as the formal model of Batty et al. [4] include both axioms even
though, as we show, one of them is redundant.)

Next, we show that the coherence axioms can be restated in
terms of a single acyclicity axiom. To state this axiom, we need
some auxiliary definitions. We say that a read, a, reads before6

a different write, b, denoted rb(a, b), if and only if a 6= b and
mo(rf (a), b). (Note that we need the a 6= b condition because
RMW actions are simultaneously both reads and writes.) We define
the communication order, com, as the union of the modification
order, the reads-from map, and the reads-before relation.

rb(a, b)
def
= mo(rf (a), b) ∧ a 6= b

com(a, b)
def
= mo(a, b) ∨ rf (b) = a ∨ rb(a, b)

In essence, for every location `, com+ relates the writes to and
initialised reads from that location, `. Except for uninitialised reads
and loads reading from the same write, com+ is a total order on all
accesses of a given location, `.

We observe that all the violations of the coherence axioms are
cyclic in {(a, b) ∈ hb | loc(a) = loc(b)} ∪ com (see Figure 8).
This is not accidental: from Shasha and Snir [14] we know that
any execution acyclic in hb ∪ com is sequentially consistent, and
coherence essentially guarantees sequential consistency on a per-
location basis.

Based on this observation, we consider the following axiom
stating that the union of hb restricted to relate same-location actions
and com is acyclic.

acyclic({(a, b) ∈ hb | loc(a) = loc(b)} ∪ com) (Coh)

This axiom is equivalent to the conjunction of seven C11 axioms as
shown in the following theorem:

Theorem 4. Assuming ConsMO and ConsRF hold, then

Coh ⇐⇒
(

IrrHB ∧ ConsRFhb ∧ CohWW ∧
CohRR ∧ CohWR ∧ CohRW ∧ AtRMW

)
.

Proof (sketch). In the (⇒) direction, it is easy to see that all the
coherence axiom violations exhibit cycles (see Fig. 8). In the other
direction, careful analysis reveals that these are the only possible
cycles—any larger ones can be shortened as mo is a total order.

6 Alglave et al. [1] call this relation “from-read.”

Although the alternative presentation of the coherence axioms
developed here is much more concise than the original one, it is of
limited use in verifying the program transformations, because we
need to reason about yet another transitive closure (besides hb).

5.4 Prefixes of Consistent Executions [prefixes.v]
Another basic property we would like to hold for a memory model
is for any prefix of a consistent execution to also form a consistent
execution. Such a property would allow, for instance, to execute
programs in a stepwise operational fashion generating the set of
consistent executions along the way. It is also very useful in prov-
ing the DRF theorem and the validity of certain optimisations by
demonstrating an alternative execution prefix of the program that
contradicts the assumptions of the statement to be proved (e.g., by
containing a race).

One question remains: Under which relation should we be con-
sidering execution prefixes? To make the result most widely ap-
plicable, we want to make the relation as small as possible, but at
the very least we must include (the dependent part of) the program
order, sb and asw , in order to preserve the program semantics, as
well as the reads from relation, rf , in order to preserve the memory
semantics. Moreover, in the case of RSorig models, as shown in the
example from Section 4.3, we must also include mo-prefixes.

Definition 4 (Prefix closure). We say that a relation, R, is prefix
closed on a set, S, iff ∀a, b. R(a, b) ∧ b ∈ S =⇒ a ∈ S.

Definition 5 (Prefix opsem). An opsem (lab′, sb′, asw ′) is a
prefix of another opsem (lab, sb, asw) iff lab′ ⊆ lab, sb′ =
sb ∩ (dom(lab′) × dom(lab′)), asw ′ = asw ∩ (dom(lab′) ×
dom(lab′)), and sb and asw are prefix closed on dom(lab′).

Theorem 5. Given a model M , opsems O and O′ = (lab′, _, _)
and a witness W = (rf ,mo, sc), if ConsistentM (O,W) and
O′ is a prefix of O and {(a, b) | rf (b) = a} is prefix-closed on
dom(lab′) and either M = (_, _,RSnew, _) or mo is prefix-closed
on dom(lab′), then there exists W ′ such that ConsistentM (O′,W ′).

Proof (sketch). We pick W ′ to be W restricted to the actions in
dom(lab′). Then, we show hb′ = hb ∩ (dom(lab′)× dom(lab′))
and that each consistency axiom is preserved.

To be able to use such a theorem in proofs, the relation defining
prefixes should be acyclic. This is because we would like there to
exist a maximal element in the relation, which we can remove from
the execution and have the resulting execution remain consistent.
This means that, for example, in the Arf model, we may want to
choose hb ∪ rf as our relation. Unfortunately, however, this does
not quite work in the RSorig model and requires switching to the
RSnew model.

6. Verifying Instruction Reorderings
We proceed to the main technical results of the paper, namely the
proofs of validity for the various program transformations. Having
already discussed the simple monotonicity-based ones, we now

http://plv.mpi-sws.org/c11comp/coq/coherence.html
http://plv.mpi-sws.org/c11comp/coq/prefixes.html

↓ a \ b→ RNA|RLX|ACQ(`′) RSC(`′) WNA(`′) WRLX(`′) WREL|SC(`′) CRLX|ACQ(`′) CwREL(`′) FACQ FREL

RNA(`) 3Thm.6 3Thm.6 3Thm.6/?/7C 3Thm.6/?/7C 7A.1 3Thm.6/?/7C 7A.2 3Thm.6 7A.7
RRLX(`) 3Thm.6 3Thm.6 3Thm.6/?/7C 3Thm.6/7B/7C 7A.1 3Thm.6/7B/7C 7A.2 7A.6 7A.7

RACQ|SC(`) 7A.3 7A.3 7A.3 7A.3 7A.1 7A.3 7A.3 3Thm.7 7A.7
WNA|RLX|REL(`) 3Thm.6 3Thm.6 3Thm.6 3Thm.6 7A.1 3Thm.6 7A.2 3Thm.6 7A.7

WSC(`) 3Thm.6 7A.4 3Thm.6 3Thm.6 7A.1 3Thm.6 7A.2 3Thm.6 7A.7
CRLX|REL(`) 3Thm.6 3Thm.6 3Thm.6/?/7C 3Thm.6/7B/7C 7A.1 3Thm.6/7B/7C 7A.2 7A.6 7A.7
CwACQ(`) 7A.3 7A.3 7A.3 7A.3 7A.1 7A.3 7A.2 3Thm.7 7A.7

FACQ 7A.5 7A.5 7A.5 7A.5 7A.5 7A.5 7A.5 = 7A.9
FREL 3Thm.6 3Thm.6 3Thm.6 7A.8 3Thm.8 7A.8 3Thm.8 3Thm.6 =

Table 1. Allowed parallelisations a ; b a ‖ b in monotone models, and therefore reorderings a ; b b ; a. We assume ` 6= `′. Where
multiple entries are given, these correspond to Naive/Arf/Arfna. Ticks cite the appropriate theorem, crosses the counterexample. Question
marks correspond to unknown cases. (We conjecture these are valid, but need a more elaborate definition of opsem prefixes to prove.)

focus on transformations that reorder adjacent instructions that do
not access the same location.

We observe that for monotone models, a reordering can be
decomposed into a parallelisation followed by a linearisation:

a ; b
under some conditions

a ‖ b
By Theorem 3

b ; a

We summarise the allowed reorderings/parallelisations in Table 1.
There are two types of allowed updates:
(§6.1) “Roach motel” instruction reorderings, and
(§6.2) Fence reorderings against the roach motel semantics.
For the negative cases, we provide counterexamples in the ap-
pendix.

6.1 Roach Motel Instruction Reorderings [reorder.v]
The “roach motel” reorderings are the majority among those in
Table 1 and are annotated by ‘3Thm.6.’ This category contains all
reorderable pairs of actions, a and b, that are adjacent according to
sb and asw . We say that two actions a and b are adjacent according
to a relation R if (1) every action directly reachable from b is
directly reachable from a; (2) every action directly reachable from
a, except for b, is also directly reachable by b; (3) every action that
reaches a directly can also reach b directly; and (4) every action
that reaches b directly, except for a, can also reach a directly. Note
that adjacent actions are not necessarily related by R.

Definition 6 (Adjacent actions). Two actions a and b are adjacent
in a relation R, written Adj(R, a, b), if for all c, we have:
(1) R(b, c)⇒ R(a, c), and (2) R(a, c) ∧ c 6= b⇒ R(b, c), and
(3) R(c, a)⇒ R(c, b), and (4) R(c, b) ∧ c 6= a⇒ R(c, a).

Two actions a and b are reorderable if (1) they belong to the
same thread; (2) they do not access the same location, (3) a is not
an acquire access or fence, (4) b is not a release access or fence, (5)
if the model is based on Arfna or Arf and a is a read, then b is not
a write, (6) if a is a release fence, then b is not an atomic write, (7)
if b is an acquire fence, then a is not an atomic read, and (8) a and
b are not both SC actions.

Definition 7 (Reorderable pair). Two distinct actions a and b are
reorderable in a memory model M , written ReordM (a, b), if

(1) tid(a) = tid(b)
and (2) loc(a) 6= loc(b)
and (3) ¬isAcq(a)
and (4) ¬isRel(b)
and (5i) ¬(M = (Arfna, _, _, _) ∧ isread(a) ∧ iswrite(b))
and (5ii) ¬(M = (Arf, _, _, _) ∧ isread(a) ∧ iswrite(b))
and (6) ¬(isFenceRel(a) ∧ isAtomicWrite(b))
and (7) ¬(isAtomicRead(a) ∧ isFenceAcq(b))
and (8) ¬(isSC(a) ∧ isSC(b))

Theorem 6. For a monotone M , if ConsistentM(lab, sb, asw ,W),
Adj(sb, a, b), Adj(asw , a, b), and ReordM (a, b), there exists W ′,
(i) ConsistentM (lab, sb ∪ {(a, b)}, asw ,W ′),
(ii) Observation(lab′,W ′) = Observation(lab,W), and
(iii) RacyM (lab, sb,W)⇒ RacyM (lab, sb ∪ {(a, b)},W ′).

Proof (sketch). By Lemma 1, it suffices to show semiconsistency.
The main part is then proving that hb = hb′ ∪ {(a, b)}, where
hb (resp. hb′) denotes the happens-before relation in (lab, sb ∪
{(a, b)}, asw ,W) (resp. (lab, sb, asw ,W)). Hence these transfor-
mations do not really affect the behaviour of the program, and the
preservation of each axiom is a simple corollary.

The proof of Theorem 6 (and similarly those of Theorems 7
and 8 in Section 6.2), require only conditions (1) and (3) from the
definition of adjacent actions; Conditions (2) and (4) are, however,
important for the theorems of Section 7.1, and so, for simplicity,
we presented a single definition of when two actions are adjacent.

6.2 Non-RM Reorderings with Fences [fenceopt.v]
The second class is comprised of a few valid reorderings between a
fence and a memory access of the same or stronger type. In contrast
to the previous set of transformations, these new ones remove some
synchronisation edges but only to fence instructions. As fences
do not access any data, there are no axioms constraining these
incoming and outgoing synchronisation edges to and from fences,
and hence they can be safely removed.

Theorem 7. For a monotone M , if ConsistentM(lab, sb, asw ,W),
Adj(sb, a, b), Adj(asw , a, b), isAcq(a), and lab(b) = FACQ, then
(i) ConsistentM (lab, sb ∪ {(a, b)}, asw ,W) and
(ii) RacyM (lab, sb,W)⇒ RacyM (lab, sb ∪ {(a, b)},W).

Theorem 8. For a monotone M , if ConsistentM(lab, sb, asw ,W),
Adj(sb, a, b), Adj(asw , a, b), lab(a) = FREL and isRel(b), then
(i) ConsistentM (lab, sb ∪ {(a, b)}, asw ,W) and
(ii) RacyM (lab, sb,W)⇒ RacyM (lab, sb ∪ {(a, b)},W).

That is, we can reorder an acquire command over an acquire
fence, and a release fence over a release command.

acq ; FACQ
Thm. 7 & 3

FACQ ; acq FREL ; rel Thm. 8 & 3 rel ; FREL

7. Verifying Instruction Eliminations
Next, we consider eliminating redundant memory accesses, as
would be performed by standard optimisations such as common
subexpression elimination or constant propagation. To simplify the
presentation (and the proofs), in §7.1, we first focus on the cases
where eliminating an instruction is justified by an adjacent instruc-
tion (e.g., a repeated read, or an immediately overwritten write). In
§7.2, we will then tackle the general case.

http://plv.mpi-sws.org/c11comp/coq/reorder.html
http://plv.mpi-sws.org/c11comp/coq/fenceopt.html

Consider the following program:
x = y = 0;

y.store(1, RLX);
fence(REL);
t1 = x.load(RLX);
x.store(t1, RLX);

t2 = x.CAS(0, 1, ACQ);
t3 = y.load(RLX);

t4 = x.load(RLX);

The outcome
t1 = 0, t2 = 0, t3 = 0, t4 = 1

is not possible. If, however, we remove the x.store(. . .)
then this outcome becomes possible.

[x = y = 0]

WRLX(y, 1)

FREL

RRLX(x, 0)

WRLX(x, 0)

CACQ(x, 0, 1)

RRLX(y, ???)

RRLX(x, 1)

mo

rf

rf

mo

mo

rf

sw

[x = y = 0]

WRLX(y, 1)

FREL

RRLX(x, 0)

CACQ(x, 0, 1)

RRLX(y, 0)

RRLX(x, 1)

mo

rf

mo

rf
rf

rf

Figure 9. Counterexample for the ‘write after read’ elimination optimisation.

7.1 Elimination of Redundant Adjacent Accesses [celim.v]
Repeated Read. The first transformation we consider is eliminat-
ing the second of two identical adjacent loads from the same loca-
tion. Informally, if two loads from the same location are adjacent in
program order, it is possible that both loads return the value written
by the same store. Therefore, if the loads also have the same access
type, the additional load will not introduce any new synchronisa-
tion, and hence we can always remove one of them, say the second.

RX(`, v) ; RX(`, v) RX(`, v) ; skip (RAR-adj)

Formally, we say that a and b are adjacent if a sequenced before b
and they adjacent according to sb and asw . That is:

Adj(a, b)
def
= sb(a, b) ∧ Adj(sb, a, b) ∧ Adj(asw , a, b)

We can prove the following theorem:

Theorem 9 (RaR-Adjacent). For a monotone memory model M ,
if ConsistentM (lab, sb, asw ,W), Adj(a, b), lab(a) = RX(`, v),
lab(b) = skip, and lab′ = lab[b := RX(`, v)], then there exists
W ′ such that
(i) ConsistentM (lab′, sb, asw ,W ′),
(ii) Observation(lab′,W ′) = Observation(lab,W), and
(iii) RacyM (lab, sb, asw ,W)⇒ RacyM (lab′, sb, asw ,W ′).

This says that any consistent execution of the target of the
transformation can be mapped to one of the program prior to the
transformation. To prove this theorem, we pick rf ′ := rf [b 7→
rf (a)] and extend the sc order to include the (a, b) edge in case
X = SC.

Read after Write. Similarly, if a load immediately follows a store
to the same location, then it is always possible for the load to get
the value from that store. Therefore, it is always possible to remove
the load.

WX(`, v) ; RY (`, v) WX(`, v) ; skip (RAW-adj)

Formally, we prove the following theorem:

Theorem 10 (RaW-Adjacent). For a monotone memory model M ,
if ConsistentM (lab, sb, asw ,W), Adj(a, b), lab(a) = WX(`, v),
lab(b) = skip, lab′ = lab[b := RY (`, v)] and either Y 6= SC or
M 6= (_, _, STorig, _), then there exists W ′ such that
(i) ConsistentM (lab′, sb, asw ,W ′),
(ii) Observation(lab′,W ′) = Observation(lab,W), and
(iii) RacyM (lab, sb, asw ,W)⇒ RacyM (lab′, sb, asw ,W ′).

Overwritten Write. If two stores to the same location are adjacent
in program order, it is possible that the first store is never read
by any thread. So, if the stores have the same access type we can

always remove the first one. That is, we can do the transformation:

WX(`, v′) ; WX(`, v) skip ; WX(`, v) (OW-adj)

To prove the correctness of the transformation, we prove the fol-
lowing theorem saying that any consistent execution of the target
program corresponds to a consistent execution of the source pro-
gram.

Theorem 11 (OW-Adjacent). For a monotone memory model M ,
if ConsistentM (lab, sb, asw ,W) and Adj(a, b) and lab(a) = skip
and lab(b) = WX(`, v) and lab′ = lab[a := WX(`, v′)] and
` 6= world, then there exists W ′ such that
(i) ConsistentM (lab′, sb, asw ,W ′),
(ii) Observation(lab′,W ′) = Observation(lab,W), and
(iii) RacyM (lab, sb, asw ,W)⇒ RacyM (lab′, sb, asw ,W ′).

Note that as a special case of this transformation, if the two
stores are identical, we can alternatively remove the second one:

WX(`,v) ; WX(`,v)
(OW-adj)

skip ; WX(`,v)
reorder

WX(`,v) ; skip

Write after Read. The next case to consider is what happens
when a store immediately follows a load to the same location, and
writes the same value as observed by the load.

RX(`, v) ; WRLX(`, v) RX(`, v) ; skip

In this case, can we eliminate the redundant store?
Well, actually, no, we cannot. Figure 9 shows a program demon-

strating that the transformation is unsound. The program uses an
atomic read-modify-write instruction, CAS, to update x, in parallel
to the thread that reads x to be 0 and then writes back 0 to x.

Consider an execution in which the load of x reads 0 (enforced
by t1 = 0), the CAS succeeds (enforced by t2 = 0) and is in
modification order after the store to x (enforced by t4 = 1 and the
CohWR axiom). Then, because of the atomicity of CAS (axiom
AtRMW), the CAS must read from the first thread’s store to x,
inducing a synchronisation edge between the two threads. As a
result, by the CohWR axiom, the load of y cannot read the initial
value (i.e., necessarily t3 6= 0).

If, however, we remove the store to x from the left thread, the
outcome in question becomes possible as indicated by the second
execution shown in Figure 9.

In essence, this transformation is unsound because we can force
a operation to be ordered between the load and the store (according
to the communication order). In the aforementioned counterexam-
ple, we achieved this by the atomicity of RMW instructions.

We can also construct a similar counterexample without RMW
operations, by exploiting SC fences, a more advanced feature of
C11, which for simplicity we do not model in this paper.

http://plv.mpi-sws.org/c11comp/coq/celim.html

7.2 Elimination of Redundant Non-Adjacent Operations
We proceed to the general case, where the removed redundant op-
eration is in the same thread as the operation justifying its removal,
but not necessarily adjacent to it.

In the appendix, we have proved three theorems generalising the
theorems of Section 7.1. The general set up is that we consider two
actions a and b in program order (i.e., sb(a, b)), accessing the same
location ` (i.e., loc(a) = loc(b) = `), without any intermediate
actions accessing the same location (i.e., @c. sb(a, c) ∧ sb(c, b) ∧
loc(c) = `). In addition, for the generalisations of Theorems 9
and 10 (respectively, of Theorem 11), we also require there to be
no acquire (respectively, release) operation in between.

Under these conditions, we can reorder the action to be elimi-
nated (using Theorem 6) past the intermediate actions to become
adjacent to the justifying action, so that we can apply the adjacent
elimination theorem. Then we can reorder the resulting “skip” node
back to the place the eliminated operation was initially.

8. Related Work
The C11 model was introduced by the 2011 revisions of the C and
C++ standards [8, 7]. A rigorous mathematical formalisation of the
C11 memory model was given by Batty et al. [4] and was later
extended to cover read-modify-write and fence instructions [13].

Sample compilation schemes for atomic accesses have been
proved correct both for the x86-TSO architecture [4] and for
the Power/ARM architecture [3, 13]. The aim here was to study
how expensive it is to enforce the intended C11 semantics on
widespread architectures: the idealised compiler considered naively
applies a one-to-one mapping from C memory accesses to machine
memory accesses, attempting no optimisations at all.

Out-of-thin-air behaviours are being recognised as the most
troublesome corner of the design of modern language memory
models. The Java memory model [10] tried to effectively prohibit
out-of-thin-air results in its specification. Complicated causality
rules were introduced for this purpose, which turned out to for-
bid some program transformations that the reference HotSpot com-
piler actually performs [19]. The work of Ševčík is closely bound
to the specificities of the Java memory model, and his counterex-
amples cannot be translated to C. The existence of causality cycles
is vaguely acknowledged in the C and C++ language standards, and
is stated clearly in [4, Sec. 4]. Since then, independent lines of re-
search, including program logics [2, 16] and model checkers [12]
bumped into issues related to causality cycles; it is today acknowl-
edged that code verification is infeasible in their presence.

It turns out that it is very difficult to define a language memory
model that both allows programmers to take full advantage of
weakly-ordered memory accesses but still correctly disallows out-
of-thin-air results. The quest for an updated model for Java is
still open; it is the objective of the OpenJDK JEP 188 but no
concrete design has yet been proposed. Surprisingly, the simpler
requirements of the C language did not lead to a quick fix. A brute-
force solution preventing relaxed loads from being reordered with
subsequent relaxed stores has been proposed by Boehm [5, 6] and
by Vafeiadis and Narayan [16], which we also studied in this paper.
This condition imposes a non-negligible cost on some architectures
(ARM, GPUs) and its adoption in the standard is unclear.

As already mentioned, the study of correctness of compiler
optimisations in an idealised DRF model was done by Ševčík [18]
and later adapted to C11 for some optimisations by Morisset et
al. [11]. This paper uses the same setup but explores in a far greater
depth the interaction between optimisations and low-level atomic
accesses, with the surprising results presented.

The certified compilers CompCert [9] and CompCertTSO [20]
(the latter extending an earlier version of the former to concurrent

shared memory programming with a TSO-based memory seman-
tics) share the same memory model for all the intermediate lan-
guages. A hypothetical CompCertC11 compiler could not use the
C11 memory model for this purpose: expression linearisation is
performed in the first pass of CompCert and, as we have shown, it
cannot be proved correct in the C11 model. Unless the C11 model is
fixed along the lines we discussed, the hypothetical CompCertC11
would have to expand the compilation of atomic accesses immedi-
ately after parsing, and then reason in terms of the target architec-
ture memory model. This is not an option for an efficiently im-
plementable, general purpose, programming language: hardware
memory models are not DRF models and prevent most optimisa-
tions on memory accesses.

Acknowledgements
This work is supported by the EC FP7 FET project ADVENT and
the ANR grant WMC (ANR-11-JS02-011). We would like to thank
Brian Demsky, Jean-Jacques Lévy, Peter Sewell and the anony-
mous reviewers for their helpful feedback. Morisset was supported
by a Google European PhD Fellowship.

References
[1] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: modelling,

simulation, testing, and data-mining for weak memory. TOPLAS,
36(2):7:1–7:74, 2014.

[2] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In POPL, 2013.

[3] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying
and compiling C/C++ concurrency: From C++11 to POWER. In
POPL, 2012.

[4] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematiz-
ing C++ concurrency. In POPL, 2011.

[5] H.-J. Boehm. N3710: Specifying the absence of “out of thin air”
results, 2013. Available at http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2013/n3710.html.

[6] H.-J. Boehm and B. Demsky. Outlawing ghosts: avoiding out-of-thin-
air results. In MSPC, 2014.

[7] ISO/IEC 14882:2011. Programming language C++, 2011.
[8] ISO/IEC 9899:2011. Programming language C, 2011.
[9] X. Leroy. Formal verification of a realistic compiler. CACM,

52(7):107–115, 2009.
[10] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In

POPL, 2005.
[11] R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing via a

theory of sound optimisations in the C11/C++11 memory model. In
PLDI, 2013.

[12] B. Norris and B. Demsky. CDSChecker: Checking concurrent data
structures written with C/C++ atomics. In OOPSLA, 2013.

[13] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget,
J. Alglave, and D. Williams. Synchronising C/C++ and POWER. In
PLDI 2012, pages 311–322. ACM, 2012.

[14] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory. TOPLAS, 10(2):282–312, 1988.

[15] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak-
memory with ghosts, protocols, and separation. In OOPSLA, 2014.

[16] V. Vafeiadis and C. Narayan. Relaxed separation logic: A program
logic for C11 concurrency. In OOPSLA, 2013.

[17] J. Ševčík. The Sun Hotspot JVM does not conform with the Java
memory model. Technical Report EDI-INF-RR-1252, School of
Informatics, University of Edinburgh, 2008.

[18] J. Ševčík. Safe optimisations for shared-memory concurrent pro-
grams. In PLDI, 2011.

[19] J. Ševčík and D. Aspinall. On validity of program transformations in
the Java memory model. In ECOOP, 2008.

[20] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22:1–22:50, June 2013.

http://openjdk.java.net/jeps/188
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html

A. Unsafe Reordering Examples for All Models
We present a series of counterexamples showing that certain adja-
cent instruction permutations are invalid.

A.1 access; WREL|SC WREL|SC; access

Our first counterexample shows that we cannot reorder a memory
access past a release store. Consider the following program:

access(y);
x.store(1,wREL);

if (x.load(ACQ))
y = 1;

This program is race-free as illustrated by the following execution:

[x = y = 0]

a: access(y)

b: WwREL(x, 1)

c: RACQ(x, 1)

d: WNA(y, 1)
sw

If we reorder the instructions in the first thread, the following racy
execution is possible.

[x = y = 0]

b: WwREL(x, 1)

a: access(y)

c: RACQ(x, 1)

d: WNA(y, 1)

sw

(RACE)

This means that the reordering introduced new behaviour and is
therefore unsound.

A.2 access; CwREL CwREL; access

We can construct a similar example to show that reordering an
access past a release RMW is also unsound. Consider the program:

access(y);
x.CAS(0, 1,wREL);

if (x.load(ACQ))
y = 1;

This program is race free because y = 1 can happen only after the
load of x reads 1 and synchronises with the successful CAS.

[x = y = 0]

a: access(y)

b: CwREL(x, 0, 1)

c: RACQ(x, 1)

d: WNA(y, 1)
sw

rf

If we reorder the instructions in the first thread, the following racy
execution is possible, and therefore the transformation is unsound.

[x = y = 0]

b: CwREL(x, 0, 1)

a: access(y)

c: RACQ(x, 1)

d: WNA(y, 1)

sw

(RACE)

rf

A.3 RwACQ; access access; RwACQ

Next, we construct dual examples showing that reordering an ac-
quire read past a memory access is unsound. Consider the follow-
ing example, where on the second thread, we use a busy loop to

wait until the store of x has happened.

y = 1;
x.store(1, REL);

while (1 6= x.load(wACQ))
access(y);

The program is race-free as demostrated by the following execu-
tion:

[x = y = 0]

a: WNA(y, 1)

b: WREL(x, 1)

c: RwACQ(x, 1)

d: access(y)
sw

Reordering the access(y) above the load of x is unsound, because
then the following execution would be possible:

[x = y = 0]

a: WNA(y, 1)

b: WREL(x, 1)

d: access(y)

c: RwACQ(x, 1)sw

(RACE)

This execution contains racy accesses to y, and therefore exhibits
more behaviours than the original program does.

This shows that reordering an acquire load past a memory ac-
cess is unsound. In a similar fashion, we can show that reordering
an acquire RMW past a memory access is also unsound. All we
have to do is consider the following program:

y = 1;
x.store(1, REL);

while (¬x.CAS(1, 2,wACQ));
access(y);

where we have replaced the acquire load by an acquire CAS.

A.4 WSC; RSC RSC; WSC

Consider the store-buffering program with SC accesses:

x.store(1, SC);
r1 = y.load(SC);

y.store(1, SC);
r2 = x.load(SC);

Since SC accesses are totally ordered, the outcome r1 = r2 = 0 is
not possible. This outcome, however, can be obtained by reordering
the actions of the left thread.

[x = y = 0]

a: RSC(y, 0)

b: WSC(x, 1)

c: WSC(y, 1)

d: RSC(x, 0)

rf
rf

A.5 FACQ; access access; FACQ

Consider the following program

y = 1;
x.store(1, REL);

while (1 6= x.load(RLX)));
fence(ACQ);
access(y);

The execution trace is as follows

[x = y = 0]

a: WNA(y, 1)

b: WwREL(x, 1)

c: RRLX(x, 1)

d: FACQ

e: access(y)

sw

rf

In this execution (a, e) ∈ hb and hence the execution is data race
free.

The reordering d; e e; d would result in following execution

[x = y = 0]

a: WNA(y, 1)

b: WwREL(x, 1)

c: RRLX(x, 1)

e: access(y)

d: FACQ

sw

(RACE)

rf

In this case the (a, e) 6∈ hb and hence result in data race.
Hence the transformation is unsafe.

A.6 RRLX; FACQ FACQ; RRLX

Consider the following program

y = 1;
x.store(1, REL);

while (1 6= x.load(RLX));
fence(ACQ);
access(y);

This program is well synchronised, because for the access to y to
occur, the relaxed load must have read from the release store of x,
and therefore the release store and the acquire fence synchronise.

[x = y = 0]

a: WNA(y, 1)

b: WwREL(x, 1)

c: RRLX(x, 1)

d: FACQ

e: access(y)

sw

rf

In this execution (a, e) ∈ hb and hence the execution is data race
free.

The reordering c; d d; c would result in following execution

[x = y = 0]

a: WNA(y, 1)

b: WwREL(x, 1)

d: FACQ

c: RRLX(x, 1)

e: access(y)

(RACE)

rf

In this case (a, e) 6∈ hb and hence there is a data race. Therefore,
the transformation is unsafe.

With a similar program, we can show that moving a RLX or
REL RMW past an acquire fence is also unsafe. (Just replace 1 6=
x.load(RLX) with ¬x.CAS(1, 2, {RLX, REL}).)

A.7 access; FREL FREL; access

Similarly consider the program below

access(y);
fence(REL);
x.store(1, RLX);

if (x.load(ACQ))
y = 1;

This program is data race free, because for a store of y to occur, the
load of x must read 1 and therefore synchronize with the fence:

[x = y = 0]

a: access(y)

b: FREL

c: WRLX(x, 1)

d: RACQ(x, 1)

e: WNA(y, 1)

sw

rf

Reordering a; b b; a, however, results in a racy execution:

[x = y = 0]

b: FREL

a: access(y)

c: WRLX(x, 1)

d: RACQ(x, 1)

e: WNA(y, 1)

sw

(RACE)

rf

Therefore, the transformation is unsafe.

A.8 FREL; WRLX WRLX; FREL

Consider the following program

y = 1;
fence(REL);
x.store(1, RLX);

if (x.load(ACQ)) y = 2;

The program is race-free because if y = 2 happens, then it happens
after the y = 1 store because the load of x must synchronise with
the fence.

[x = y = 0]

a: WNA(y, 1)

b: FREL

c: WRLX(x, 1)

d: RACQ(x, 1)

e: WNA(y, 2)

sw

rf

Reordering b; c c; b, however, can result in the following racy
execution:

[x = y = 0]

a: WNA(y, 1)

c: WRLX(x, 1)

b: FREL

d: RACQ(x, 1)

e: WNA(y, 2)

(RACE)

rf

Hence, the transformation is unsafe.
With a similar program, we can show that moving a release

fence past a RLX or ACQ RMW is also unsafe. (Just replace
x.store(1, RLX) with x.CAS(0, 1, {RLX, ACQ}).)

A.9 FACQ; FREL FREL; FACQ

Consider the following program

z = 1;
x.store(1, REL);

if (x.load(RLX)) {
fence(ACQ);
fence(REL);
y.store(1, RLX);
}

if (y.load(ACQ))
z = 2;

The program is race free because the only consistent execution
containing conflicting accesses is the following:

[x = y = z = 0]

a: WNA(z, 1)

b: WREL(x, 1)

c: RRLX(x, 1)

d: FACQ

e: FREL

f: WRLX(y, 1)

g: RACQ(y, 1)

h: WNA(z, 2)sw
rf sw

rf

which is, however, not racy because hb(a, h). Reordering d and
e does, however, result in the following racy execution and is,
therefore, unsound.

[x = y = z = 0]

a: WNA(z, 1)

b: WREL(x, 1)

c: RRLX(x, 1)

e: FREL

d: FACQ

f: WRLX(y, 1)

g: RACQ(y, 1)

h: WNA(z, 2)

sw

rf
sw

rf

B. Counterexamples for the Arf model
Reordering an atomic read past an adjacent atomic write is unsound
in the Arf memory model. We show this first for an atomic load and
an atomic store. Consider the following program, where implictly

all variables are initialised to 0.
r = x.load(wRLX);
y.store(1,wRLX);

r′ = y.load(RLX);
x.store(1, RLX);

In this code the outcome r = r′ = 1 is not possible. The only
execution that could yield this result is the following,

[x = y = 0]

RRLX(x, 1)

WRLX(y, 1)

RRLX(y, 1)

WRLX(x, 1)

rf
rf

which is inconsistent. If, however, we permute the instructions of
the first thread, then this outcome is possible by the following
execution:

[x = y = 0]

WRLX(y, 1)

RRLX(x, 1)

RRLX(y, 1)

WRLX(x, 1)

rf

rf

Note that if we replace the load of x with a compare and swap,
x.CAS(1, 2, _), and/or the store of y with a compare and swap,
y.CAS(0, 1, _), the displayed source execution remains inconsis-
tent, and while the target execution is valid. Hence reordering any
kind of atomic read over any kind of atomic write is unsound in this
model.

C. Counterexamples for the Arfna model
We show that reodering a non-atomic or atomic read past an adja-
cent non-atomic or atomic write is unsound. Consider the following
program, where implicitly all variables are initialized to 0.

if (x.load(RLX)) {
t = p.load(X);
q.store(1, Y);
if (t) y.store(1, RLX);
}

if (y.load(RLX))
if (q) {

p = 1;
x.store(1, RLX);
}

(Where X and Y stand for any atomic or non-atomic access
modes.)

Note that this program is race-free and its only possible outcome
is p = q = 0. (The racy execution yielding p = q = 1 is
inconsistent because it contains a cycle forbidden by the Arfna
axiom.)

[x = y = p = q = 0]

RRLX(x, 1)

RX(p, 1)

WY (q, 1)

WRLX(y, 1)

RRLX(y, 1)

RNA(q, 1)

WNA(p, 1)

WRLX(x, 1)
rf

rf

rf-na

rf-na

(The reads in this cycle are annotated by “rf-na.”)

If, however, we permute the two adjacent non-atomic access of
the first thread as follows:

t = p; q = 1; q = 1; t = p;

then the following racy execution:

[x = y = p = q = 0]

RRLX(x, 1)

WY (q, 1)

RX(p, 1)

WRLX(y, 1)

RRLX(y, 1)

RNA(q, 1)

WNA(p, 1)

WRLX(x, 1)
rf

rf

rf-na

rf-na

is consistent, and therefore the target program has more behaviours
than the source program.

Note that if we replace the load p.load(X) with a compare and
swap, p.CAS(1, 2, X), and/or the q.store(1, Y) with a compare
and swap, q.CAS(0, 1, Y), the displayed source execution remains
inconsistent, and while the target execution is valid. Hence the
transformation adds new behaviour and is unsound.

D. Introductions and Eliminations of Accesses
D.1 Introduction of Memory Accesses
Introducing a memory access in a program is unsound in general
because there may exist concurrent non-atomic accesses to that
variable, which could race with the newly introduced memory
access.

We can, however, introduce an unused atomic load or an over-
written store adjacent to another access of the same location, as we
can then ensure that the irrelevant access would not introduce any
races that were not already present in the original program.

More precisely, we can introduce an action, b, adjacently before
an action, a, if loc(a) = loc(b) ∧ (iswrite(b) ⇒ iswrite(a)) ∧
(isNA(b)⇒ isNA(a)).

We can introduce action b adjacently after action a if loc(a) =
loc(b) ∧ ¬iswrite(b) ∧ (isNA(b)⇒ isNA(a)).

D.2 Elimination of Irrelevant Loads
We say that a load is irrelevant if the value read never used by
the program. Removing such a load is valid under an interleaving
semantics and under the TSO memory model.

In C11, however, eliminating an irrelevant load is not always
valid, because doing so may remove an opportunity for synchroni-
sation, thereby yielding more behaviours.

If, however, the eliminated load is non-atomic, then it cannot
be involved in a synchronisation, and cannot be observed by other
threads. Consequently, eliminating irrelevant non-atomic loads is
valid.

D.3 Eliminations of Non-Adjacent Redundant Accesses
As mentioned in Section 7.2, Theorems 9, 10 and 11 from Sec-
tion 7.1 can be extended to handle the non-adjacent cases. Here are
the statements and the proof sketches of the corresponding theo-
rems.

Theorem 12 (Read after Read). For a monotone memory model
M , if ConsistentM (lab, sb, asw ,W) and lab(a) = RX(`, v) and
lab(b) = skip and sb(a, b) and Adj(asw , a, b) and ∀c. sb(a, c) ∧

sb(c, b) =⇒ loc(c) 6= loc(a) ∧ ¬isAcq(c) and lab′ =
lab[b := RX(`, v)], then there exists W ′ such that
(i) ConsistentM (lab′, sb, asw ,W ′),
(ii) Observation(lab′,W ′) = Observation(lab,W), and
(iii) RacyM (lab, sb, asw ,W)⇒ RacyM (lab′, sb, asw ,W ′).

Proof sketch. We apply the following sequence of transformations:

RX(`, v) ;C ; RX(`, v)
reorder
===⇒ RX(`, v) ; RX(`, v) ;C since ¬isAcq(C)

(RAR-adj)
=====⇒ RX(`, v) ; skip ;C

reorder
===⇒ RX(`, v) ;C ; skip

Theorem 13 (Read after Write). For a monotone memory model
M , if ConsistentM (lab, sb,W) and lab(a) = WX(`, v) and
lab(b) = skip and sb(a, b) and Adj(asw , a, b) and ∀c. sb(a, c) ∧
sb(c, b) =⇒ loc(c) 6= loc(a) ∧ ¬isAcq(c) and Y 6= SC, and
lab′ = lab[b := RY (`, v)] then there exists W ′ such that
(i) ConsistentM (lab′, sb, asw ,W ′),
(ii) Observation(lab′,W ′) = Observation(lab,W), and
(iii) RacyM (lab, sb, asw ,W)⇒ RacyM (lab′, sb, asw ,W ′).

Proof sketch. We apply the following sequence of transformations:

WX(`, v) ;C ; RY (`, v)
reorder
===⇒ WX(`, v) ; RY (`, v) ;C since ¬isAcq(C)

(RAW-adj)
=====⇒ WX(`, v) ; skip ;C

reorder
===⇒ WX(`, v) ;C ; skip

Theorem 14 (Overwritten Write). For a monotone memory model
M , if ConsistentM (lab, sb,W) and lab(a) = skip and lab(b) =
WX(`, v) and ` 6= world and sb(a, b) and Adj(asw , a, b) and
∀c. sb(a, c) ∧ sb(c, b) =⇒ loc(c) 6= ` ∧ ¬isRel(c) and
lab′ = lab[a := WX(`, v′)], then there exists W ′ such that
(i) ConsistentM (lab′, sb, asw ,W ′),
(ii) Observation(lab′,W ′) = Observation(lab,W), and
(iii) RacyM (lab, sb, asw ,W)⇒ RacyM (lab′, sb, asw ,W ′).

Proof sketch. We apply the following sequence of transformations:

WX(`, v′) ;C ; WX(`, v)
reorder
===⇒ C ; WX(`, v′) ; WX(`, v) since ¬isRel(C)
(OW-adj)
====⇒ C ; skip ; WX(`, v)

reorder
===⇒ skip ;C ; WX(`, v)

	Introduction
	Abstract Optimisations in C11
	Representation of Programs
	Executing Programs

	Invalid Source-to-Source Transformations
	Further C11 Weaknesses and Proposed Fixes
	Resolving Causality Cycles and the ConsRFna Axiom
	Correcting the SCReads Axiom
	Strengthening the Release Sequence Definition
	Allowing Intra-Thread Synchronisation
	Summary of the Models to be Considered

	Basic Metatheory of the Corrected C11 Models
	Semiconsistent Executions
	Monotonicity
	Alternative Presentation of the Coherence Axioms
	Prefixes of Consistent Executions

	Verifying Instruction Reorderings
	Roach Motel Instruction Reorderings
	Non-RM Reorderings with Fences

	Verifying Instruction Eliminations
	Elimination of Redundant Adjacent Accesses
	Elimination of Redundant Non-Adjacent Operations

	Related Work
	Unsafe Reordering Examples for All Models
	Access and Store/rel
	Access and RMW/rel
	Read/acq and Access
	Write/sc and Read/sc
	Fence/acq and Access
	Read/rlx and Fence/acq
	Access and Fence/rel
	Fence/rel and Write/rlx
	Fence/acq and Fence/rel

	Counterexamples for the Arf model
	Counterexamples for the Arfna model
	Introductions and Eliminations of Accesses
	Introduction of Memory Accesses
	Elimination of Irrelevant Loads
	Eliminations of Non-Adjacent Redundant Accesses

