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Abstract

Building on a recent framework for distribu-
tionally robust optimization, we consider in-
verse covariance matrix estimation for mul-
tivariate data. A novel notion of Wasser-
stein ambiguity set is provided that is specif-
ically tailored to this problem, leading to
a tractable class of regularized estimators.
Penalized likelihood estimators for Gaussian
data, specifically the graphical lasso estima-
tor, are special cases. Consequently, a direc-
tion connection is made between the radius
of the Wasserstein ambiguity and the regu-
larization parameter, so that the level of ro-
bustness of the estimator is shown to corre-
spond to the level of confidence with which
the ambiguity set contains a distribution with
the population covariance. A unique fea-
ture of the formulation is that the radius can
be expressed in closed-form as a function of
the ordinary sample covariance matrix. Tak-
ing advantage of this finding, a simple algo-
rithm is developed to determine a regulariza-
tion parameter for graphical lasso, using only
the bootstrapped sample covariance matri-
ces, rendering computationally expensive re-
peated evaluation of the graphical lasso algo-
rithm unnecessary. Alternatively, the distri-
butionally robust formulation can also quan-
tify the robustness of the corresponding es-
timator if one uses an off-the-shelf method
such as cross-validation. Finally, a numerical
study is performed to analyze the robustness
of the proposed method relative to other au-
tomated tuning procedures used in practice.
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1 Introduction

In statistics and machine learning, the covariance ma-
trix Σ of a random vector X ∈ Rd is a fundamen-
tal quantity for characterizing marginal pairwise de-
pendencies between variables. Furthermore, the in-
verse covariance matrix Ω = Σ−1 provides information
about the conditional linear dependency structure be-
tween the variables. For example, in the case that X
is Gaussian, Ωjk = 0 if and only if the jth and kth
variables of X are conditionally independent given the
rest. Such relationships are of interest in many ap-
plications such as environmental science, biology, and
neuroscience (Guillot et al., 2015; Huang et al., 2010;
Krumsiek et al., 2011), and have given rise to various
statistical and machine learning methods for inverse
covariance estimation.

Given an independent sample Xi ∼ X, i = 1, . . . , n,
the sample covariance An = 1

n

∑n
i=1XiX

>
i , which is

the maximum likelihood estimator if X is Gaussian,
can be a poor estimator of Σ unless d/n is very small.
Driven by a so-called high dimensional setting where
n � d, where An is not invertible, regularized esti-
mation of the precision matrix has gained significant
interest (Cai et al., 2011; Edwards, 2010; Friedman
et al., 2007; Khare et al., 2015; Won et al., 2012; Yuan
and Lin, 2007). Such regularization procedures are
useful even when An is a stable estimate (i.e., posi-
tive definite with small condition number), since the
inverse covariance estimate A−1

n is dense and will not
reflect the sparsity of corresponding nonzero elements
in Ω.

Distributionally Robust Optimization: Let Sd be
the set of d × d symmetric matrices, and S++

d ⊂ Sd

be the subset of positive definite symmetric matri-
ces. Given a loss function l(X;K) for K ∈ S++

d

and X ∈ Rd, a classical approach would be to esti-
mate Ω by minimizing the empirical loss

∑n
i=1 l(Xi;K)

over K ∈ S++
d , perhaps including a regularization or

penalty term. The error in this estimate arises from
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the discrepancy between the true data-generating dis-
tribution and the observed training samples, and can
be assessed by various tools such as concentration
bounds or rates of convergence. In contrast, distribu-
tionally robust optimization (DRO) is a technique that
explicitly incorporates uncertainty about the distribu-
tion of the Xi into the estimation procedure. For an
introduction on the general topic of DRO, we refer to
the works (Shafieezadeh-Abadeh et al., 2015; Blanchet
and Murthy, 2016; Shafieezadeh-Abadeh et al., 2019)
and the references therein. In the context of inverse co-
variance estimation, a distributionally robust estimate
of Ω is obtained by solving

inf
K∈S++

d

sup
P∈S

EP [l(K;X)], (1)

where S, known as an ambiguity set, is a collec-
tion of probability measures on Rd. As pointed out
in (Blanchet and Murthy, 2016), a natural choice for
S is the neighborhood {P | D(P, µ) ≤ δ}, with µ be-
ing a chosen baseline model, δ being some tolerance
level which defines the uncertainty size of the ambigu-
ity set, and D being some discrepancy metric between
two probability measures. In a practical setting, we
have access to some samples (or data points) from the
unknown distribution, and thus, a good candidate for
the baseline model is the empirical measure.

Very recent work by Nguyen et al. (2018), also ana-
lyzed by Blanchet and Si (2019), used the DRO frame-
work to construct a new regularized (dense) inverse
covariance estimator. Working under the assumption
that X is Gaussian, the authors construct an ambigu-
ity set S of Gaussian distributions that, up to a cer-
tain tolerance level, are consistent with the observed
data. Recent work on DRO in other machine learn-
ing problems has revealed explicit connections to well-
known regularized estimators, specifically regularized
logistic regression (Shafieezadeh-Abadeh et al., 2015)
and the square-root lasso for linear models (Blanchet
et al., 2016); however, such a connection to regularized
sparse inverse covariance estimators that are used in
practice has yet to be made.

The Graphical Lasso: One of the most common
methods to recover the sparsity pattern in Ω is to add
an l1-regularization term to the Gaussian likelihood
function, motivated by the consideration of the Gaus-
sian Graphical Model (GGM). A sparse estimate of
Ω = Σ−1 is produced by minimizing

Lλ(K) =
1

n

n∑
i=1

X>i KXi−log |K|+λ
d∑
i=1

d∑
j=1

|kij |, (2)

where kij is the (i, j) entry of K and λ > 0 is a user-
specified regularization parameter (Banerjee et al.,

2008; Friedman et al., 2007; Yuan and Lin, 2007).
Although several algorithms exist to solve this objec-
tive function (Friedman et al., 2007; Rolfs et al., 2012;
Hsieh et al., 2014), the minimizer of (2) is often re-
ferred to as graphical lasso estimator (Friedman et al.,
2007). The first two terms of (2) are related to Stein’s
loss (James and Stein, 1961) when evaluated at the
empirical measure, and also correspond to the nega-
tive log-likelihood up to an additive constant if X is
Gaussian. The performance of the graphical lasso es-
timator in high-dimensional settings has been investi-
gated (Rothman et al., 2008; Jankova and van de Geer,
2018), as well as modifications and extensions that im-
plement some notion of robustness, i.e., for making it
robust to outliers or relaxing the normality assump-
tions in the data (Khare et al., 2015; Lam and Fan,
2009; Loh and Tan, 2018; Xue and Zou, 2012; Yang
and Lozano, 2015).

Besides its theoretical relevance, the graphical lasso
and its extensions also enjoy many practical advan-
tages. For example, it has been used as a network
inference tool. In these applications, the precision ma-
trix can indicate which nodes in a network are condi-
tionally independent given information from remaining
nodes, thus giving an indication of network function-
ality. This has been important in neuroscience ap-
plications when studying the inference of brain con-
nectivity (Yang et al., 2015; Smith et al., 2011; Huang
et al., 2010). Applications in gene regulatory networks
and metabolomics have also been reported (Menéndez
et al., 2010; Sulaimanov et al., 2018; Krumsiek et al.,
2011).

The performance of the graphical lasso estimator
hinges critically on the choice of λ. While there have
been studies on how to properly tune λ to obtain a
consistent estimator or to establish correct detection
of nonzero elements in the precision matrix (Roth-
man et al., 2008; Banerjee et al., 2008; Mazumder and
Hastie, 2012), in practice, this selection is often made
through automated methods like cross-validation.

Contributions: In this paper, we propose a distri-
butionally robust reformulation of the graphical lasso
estimator in (2). Following Shafieezadeh-Abadeh et al.
(2015); Blanchet et al. (2016); Esfahani and Kuhn
(2018), we utilize the Wasserstein metric to quantify
distributional uncertainty for the construction of the
ambiguity set. The following points summarize our
main contributions.

• We formulate a class of DRO problems for inverse
covariance estimation, leading to a tractable class
of `p-norm regularized estimators. As the graph-
ical lasso estimator (2) is a special case, this pro-
vides us with a new interpretation of this pop-
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ular technique. This DRO formulation is made
possible by a novel type of ambiguity set, now
defined as a collection of measures on matri-
ces. This nontrivial adaptation is necessary due
to the fact that a direct generalization of other
DRO approaches using vector-valued data (e.g.,
Shafieezadeh-Abadeh et al. (2019)) does not re-
sult in a closed-form regularization problem, and
thus does not provide the desired connection to
the graphical lasso.

• We use this formulation to suggest a criterion
for the selection of the regularization parameter
in the estimation problem in the classical regime
n > d. This criterion follows the Robust Wasser-
stein Profile (RWP) inference recently introduced
by Blanchet et al. (2016), which makes no assump-
tion on the normality of the data, and which we
tailor to our specific problem. The proposed cri-
terion expresses the regularization parameter as
an explicit function of the sample covariance An,
unlike other instances where RWP has been im-
plemented which rely on stochastic dominance ar-
guments.

• We formulate a novel robust selection (RobSel) al-
gorithm for regularization parameter choice. Fo-
cusing on the graphical lasso, we provide numeri-
cal results that compare the performance of cross-
validation and our proposed algorithm for the se-
lection of the regularization term.

The paper is organized as follows. In Section 2 we de-
scribe our main theoretical result: the distributionally
robust formulation of the regularized inverse covari-
ance (log-likelihood) estimation, from which graphi-
cal lasso is a particular instance. In Section 3 we
propose a criterion for choosing the regularization pa-
rameter inspired by this formulation and outline the
bootstrap-based RobSel algorithm for its computation.
In Section 4 we present some numerical results com-
paring the proposed criterion of Section 3 with cross-
validation. Finally, we state some concluding remarks
and future research directions in Section 5. All proofs
of theoretical results can be found in the supplemen-
tary material.

2 A Distributionally Robust
Formulation of the Graphical lasso

First, we provide preliminary details on notation.
Given a matrix A ∈ Rd×d, ajk denotes its (j, k) entry

and vec(A) ∈ Rd
2

denotes its vectorized form, which
we assume to be in a row major fashion. For matrices
denoted by Greek letters, its entries are simply denoted

by appropriate subscripts, i.e. Σjk. The operator | · |,
when applied to a matrix, denotes its determinant;
when applied to a scalar or a vector, it denotes the ab-
solute value or entry-wise absolute value, respectively.
The `p-norm of a vector is denoted by ‖·‖p. We use
the symbol ⇒ to denote convergence in distribution.

Recall that X ∈ Rd is a zero-mean random vector with
covariance matrix Σ ∈ S++

d . Let Q0 be the probability
law forX and Ω = Σ−1 be the precision matrix. Define
the graphical loss function as

l(X;K) = X>KX − log |K|
= trace(KXX>)− log |K|.

(3)

Then EQ0
[l(K;X)] = trace(KΣ) − log |K| is a con-

vex function of K over the convex cone S++
d . Using

the first-order optimality criterion, we observe that
K = Ω sets the gradient ∂

∂KEQ0 [l(X,K)] = Σ −K−1

equal to the zero matrix (see (Boyd and Vandenberghe,
2004, Appendix A) for details on this differentiation).
Hence,

arg min
K∈S++

d

EQ0
[l(X;K)] = Ω.

so that (3) is a consistent loss function.

Now, if we consider an iid random sample
X1, · · · , Xn ∼ X, n > d, with empirical measure Qn,
then

arg min
K∈S++

d

EQn
[l(X;K)] = arg min

K∈S++
d

1

n

n∑
i=1

l(Xi;K)

= A−1
n

with An = 1
n

∑n
i=1XiX

>
i . Thus, as described in the

Introduction, a natural approach would be to imple-
ment the DRO procedure outlined in Esfahani and
Kuhn (2018) by building an ambiguity set based on
perturbations of Qn, leading to the DRO estimate
given by (1). However, this approach does not convert
(1) into a regularized estimation problem as desired,
since the inner supremum cannot be explicitly given
in closed-form. For more details, see section A in the
supplementary material.

As an alternative, let P0 represent the measure of the
random matrix W = XX> on Sd induced by Q0 and,
similarly let Pn be empirical measure of the sample
Wi = XiX

>
i , i = 1, . . . , n. Redefining the graphical

loss function l : Sd × S++
d as

l(W ;K) = trace(KW )− log |K|, (4)

then

Ω = arg min
K∈S++

d

EP0
[l(W ;K)]

A−1
n = arg min

K∈S++
d

EPn
[l(W ;K)].
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This observation leads to a tractable DRO formula-
tion by constructing ambiguity sets built around the
empirical measure Pn. The DRO formulation for in-
verse covariance estimation becomes

min
K∈S++

d

sup
P : Dc(P,Pn)≤δ

EP [l(W ;K)]. (5)

The ambiguity set in this formulation is specified by
the collection of measures {P | Dc(P,Pn) ≤ δ}, which
we now describe. Given two probability distributions
P1 and P2 on Sd and some transportation cost function
c : Sd×Sd → [0,∞) (which we will specify below), we
define the optimal transport cost between P1 and P2

as

Dc(P1, P2) = inf{Eπ [c (U, V )] |π ∈ P (Sd × Sd) ,

π
U

= P1, πV
= P2}

(6)

where P (Sd × Sd) is the set of joint probability dis-
tributions π of (U, V ) supported on Sd × Sd, and π

U

and π
V

denote the marginals of U and V under π,
respectively. In this paper, we are interested in cost
functions

c(U, V ) = ‖vec(U)− vec(V )‖ρq , (7)

with U, V ∈ Sd, ρ ≥ 1, q ∈ [1,∞]. As pointed out
by Blanchet et al. (2016), the resulting optimal trans-

port cost D1/ρ
c is the Wasserstein distance of order ρ.

Our first theoretical result demonstrates that the op-
timization in (5) corresponds to a class of regularized
estimators under the graphical loss function (4).

Theorem 2.1 (DRO formulation of regularized in-
verse covariance estimation). Consider the cost func-
tion in (7) for a fixed ρ ≥ 1. Then,

min
K∈S++

d

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= min
K∈S++

d

{
trace(KAn)− log |K|+ δ1/ρ ‖vec(K)‖p

}
,

(8)

where 1
p + 1

q = 1.

Theorem 2.1 is a remarkable theoretical result that
provides a mapping between the regularization param-
eter and the uncertainty size δ of the ambiguity set in
the DRO formulation. Then, the regularization prob-
lem reduces to determining a good criterion for choos-
ing δ, which we explore in Section 3. Moreover, we
obtain the graphical lasso formulation (2) by setting
q = ∞ in (7). From (8), a smaller ambiguity set im-
plies less robustness being introduced in the estimation
problem by reducing the importance of the regulariza-
tion term. Conversely, a larger regularization term
increases the number of nuisance distributions inside
the ambiguity set, and thus the robustness.

Remark 2.2. The ambiguity set used in (8) makes no
assumptions on the normality of the distribution of the
samples {X1, . . . , Xn}. Then, (8) tells us that adding
a penalization to the precision matrix gives a robust-
ness in terms of the distributions that the samples may
have, which do not necessarily have to be Gaussian for
this formulation to hold. Furthermore, it holds inde-
pendent of the relationship between n and d.

3 Selection of the regularization
parameter

This section follows closely the line of thought recently
introduced by Blanchet et al. (2016) in the analysis
of regularized estimators under the DRO formulation.
Specifically, we will demonstrate that the ambiguity
set {P : Dc(P,Pn) ≤ δ} represents a confidence region
for Ω = Σ−1, and use the techniques of Blanchet et al.
(2016) to explicitly connect the amibiguity size δ with
a confidence level. As previously stated, l(W ;K) is a
differentiable function on K ∈ S++

d with ∂
∂K l(W ;K) =

W −K−1, so that

EP0

[
∂

∂K
l(W ;K)

∣∣∣
K=Ω

]
= 0d×d. (9)

Hence, even though the loss function l(W ;K) has been
inspired from the log-likehood estimation of the covari-
ance matrix Σ for samples of Gaussian random vectors,
equation (9) is transparent to any underlying distribu-
tion of the data. For any K ∈ S++

d , define the set

O(K) :=
{
P ∈ P(Sd)

∣∣∣
EP

[
∂

∂K ′
l(W ;K ′)

∣∣∣
K′=K

]
= 0d×d

}
,

(10)

corresponding to all probability measures with covari-
ance K−1, i.e. for which K is an optimal loss mini-
mization parameter; here, P(Sd) denotes the set of all
probability distributions supported on Sd. Thus, O(Ω)
contains all probability measures with covariance ma-
trix agreeing with that of X.

Implicitly, the Wasserstein ambiguity set {P :
Dc(P,Pn) ≤ δ} is linked to the collection of covari-
ance matrices

Cn(δ) :={K ∈ S++
d | there exists P ∈ O(K)

∩ {P | Dc(P,Pn) ≤ δ}}

=
⋃

P : Dc(P,Pn)≤δ

arg min
K∈S++

d

EP [l(W ;K)].
(11)

We refer to Cn(δ) as the set of plausible selections for
Ω.

Lemma 3.1 (Interchangeability in the DRO formula-
tion). Consider the setting of Theorem 2.1. Then, for



Pedro Cisneros-Velarde, Sang-Yun Oh, Alexander Petersen

n > d, the following holds with probability one:

inf
K∈S++

d

sup
P : Dc(P,Pn)≤δ

EP
[
l
(
W ;K

)]
= sup
P : Dc(P,Pn)≤δ

inf
K∈S++

d

EP
[
l
(
W ;K

)]
.

(12)

Lemma 3.1 states that any estimator obtained by min-
imizing the left-hand side of (12) must be in Cn(δ),
otherwise the right-hand side of (12) would be strictly
greater than the left. Thus, in line with the goal of
providing a robust estimator, the idea is to choose δ
so that Cn(δ) also contains the true inverse covariance
matrix Ω with high confidence.

As P0 is the weak limit of Pn, we will eventually have
that Ω ∈ Cn(δ) with high probability for any δ, so that
Cn(δ) is a confidence region for Ω. From this observa-
tion, we can choose the uncertainty size δ optimally
by the criterion

δ = inf {δ > 0 | P0(Ω ∈ Cn(δ)) ≥ 1− α} , (13)

i.e., for a specified confidence level 1− α, we choose δ
so that Cn(δ) is a (1− α)-confidence region for Ω.

To continue our anlaysis, we make use of the so-called
Robust Wasserstein Profile (RWP) function Rn intro-
duced by Blanchet et al. (2016),

Rn(K) = inf {Dc(P,Pn) | P ∈ O(K)}

= inf
{
Dc(P,Pn)

∣∣∣
EP

[
∂

∂K ′
l(W ;K ′)

∣∣∣
K′=K

]
= 0d×d

}
,

(14)

for K ∈ S++
d , which has the geometric interpretation

of being the minimum distance between the empirical
distribution and any distribution that satisfies the op-
timality condition for the precision matrix K. Then,
using the equivalence of events {Ω ∈ Cn(δ)} = {O(Ω)∩
{P | Dc(P,Pn) ≤ δ} 6= ∅} = {Rn(Ω) ≤ δ}, (13) be-
comes equivalent to

δ = arg inf {δ > 0 | P0(Rn(Ω) ≤ δ) ≥ 1− α} , (15)

i.e., the optimal selection of δ is the 1 − α quantile
of Rn(Ω). Indeed, the set {P | Dc(P,Pn) ≤ Rn(Ω)}
is the smallest ambiguity set around the empirical
measure Pn such that there exists a distribution for
which Ω is an optimal loss minimization parameter.
In contrast to previously reported applications of the
RWP function on linear regression and logistic regres-
sion (Blanchet et al., 2016), our problem allows for a
(finite sample) closed form expression of this function.
This is due to the fact that we have recast the covari-
ance Σ as the mean of the random matrix XX>, so
that the following result gives a nontrivial generaliza-
tion of (Blanchet et al., 2016, Example 3).

Theorem 3.2 (RWP function). Consider the cost
function in (7) for a fixed ρ ≥ 1. For K ∈ S++

d ,
consider Rn(K) as in (14). Then,

Rn(K) =
∥∥vec(An −K−1)

∥∥ρ
q
. (16)

We now establish important convergence guarantees
on the RWP function in the following corollary.

Corollary 3.3 (Asymptotic behavior of the RWP
function). Suppose that the conditions of Theorem 3.2

hold, and that EQ0
(‖X‖42) < ∞. Let H ∈ Sd be

a matrix of jointly Gaussian random variables with
zero mean and such that Cov(hij , hk`) = E[wijwk`] −
ΣijΣk` = E[xixjxkx`]− ΣijΣk`. Then,

nρ/2Rn(Ω)⇒ ‖vec(H)‖ρq . (17)

Proof. By the central limit theorem, we observe that√
n(An − Σ) ⇒ H, and by the continuous mapping

theorem, we get that

nρ/2Rn(Ω) =
∥∥√nvec(An − Σ)

∥∥ρ
q
⇒ ‖vec(H)‖ρq .

Remark 3.4. Turning our attention back to Theo-
rem 2.1, a robust selection for the ambiguity size or
regularization parameter λ = δ1/ρ, as obtained from
Theorem 3.2, is

δ1/ρ = inf
{
δ > 0 | P0(‖vec(An − Σ)‖q ≤ δ) ≥ 1− α

}
(18)

As a result, this robust selection for λ results in a class
of estimators, given by minimizers of the right-hand
side of (8), that are invariant to the choice of ρ in
(7). Thus, for simplicity, we will set ρ = 1 in the
remainder of the paper.

Remark 3.5. Let r1−α be the (1 − α) quantile from
the distribution of the right-hand side of (17). Then,
for any fixed α, the robust selection δ in (18) satisfies
n1/2δ → r1−α, so that the optimal decay rate of n−1/2

for λ is automatically chosen by the RWP function.

As solving (18) requires knowledge of Σ, we now out-
line the robust selection (RobSel) algorithm for data-
adaptive choice of the regularization parameter δ for
our inverse covariance estimation with an `p penaliza-
tion parameter. The special case p = 1 corresponds
to the graphical lasso in (2), in which case we will
also use the notation δ = λ. The asymptotic result
in Corollary 3.3 invokes a central limit theorem, and
thus motivates the approximation of the RWP func-
tion through bootstrapping, which we further explain
and evaluate its numerical performance in the next sec-
tion. Let α ∈ (0, 1) be a prespecified confidence level



Distributionally Robust Formulation and Model Selection for the Graphical Lasso

Algorithm RobSel algorithm for estimation of the
regularization parameter λ

1: For b = 1, . . . , B, obtain a bootstrap sample
X∗1b, . . . , X

∗
nb by sampling uniformly and with re-

placement from the data, and compute the boot-

strap RWP function R∗n,b =
∥∥∥A∗n,b −An∥∥∥

q
, with

the empirical covariance A∗n,b computed from the
bootstrap sample.

2: Set λ to be the bootstrap order statistic
R∗n,((B+1)(1−α)).

and B a large integer such that (B + 1)(1− α) is also
an integer.

RobSel can potentially provide considerable computa-
tional savings over cross-validation in practice. Com-
puting sample covariance matrices for each of B boot-
strap samples has cost O(Bnd2). On the other hand,
it is known that each iteration of graphical lasso can
cost O(d3) in the worst case (Mazumder and Hastie,
2012); therefore, performing an F -fold cross-validation
to search over L-grid of regularization parameters,
each taking T -iterations of graphical lasso, would cost
O(FLTd3).

4 Numerical results and analysis

The true precision matrix Ω ∈ S++
d used to gener-

ate simulated data has been constructed as follows.
First, generate an adjacency matrix of an undirected
Erdős-Renyi graph with equal edge probability of 0.1
and without self-loops. Then, the weight of each edge
is sampled uniformly between [0.5, 1], and the sign of
each non-zero weight is positive or negative with equal
probability of 0.5. Finally, the diagonal entries of this
weighted adjacency matrix are set to 1 and the matrix
is made diagonally dominant by following a procedure
described in (Peng et al., 2009), which ensures that
the resulting matrix Ω is positive definite. Through-
out this numerical study section, a randomly generated
sparse matrix Ω (edge probability 0.1 and d = 100) is
fixed. Using this Ω, a total of N = 200 datasets (of
varying size n) were generated as independent obser-
vations from a multivariate zero-mean Gaussian dis-
tribution, i.e., N (0d,Ω−1).

Consider the problem of choosing the regularization
parameter λ (equivalently, the ambiguity size param-
eter δ) to obtain graphical lasso estimates K̂λ of Ω
using the simulated datasets. An R software pack-
age, glasso, from CRAN was used throughout our
numerical experiments. Below, we compare two differ-
ent criteria for choosing λ. The first criterion is Ro-
bust Selection (RS), which follows our proposed Rob-

Sel algorithm with B = 200 sets of bootstrap samples.
We present here results mainly for n > d, but addi-
tional results in the high-dimensional regime n < d can
be found in the supplementary material. The second
criterion is a 5-fold cross-validation (CV) procedure1.
The performance on the validation set is the evalua-
tion of the graphical loss function under the empirical
measure of the samples on the training set.

Recall the elements in the confusion matrix to be true
positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN). We compare model se-
lection performance of λ chosen by the two different
approaches: λRS and λCV . The following comparison
metrics are used:

• True positive rate (TPR) and false detection rate
(FDR): TPR = TP

TP+FN is the proportion of
nonzero entries of Ω that are correctly identified
in K̂λ, and FDR = FP

FP+TP is the proportion of
zero entries of Ω that are incorrectly identified as
nonzeros in K̂λ.

• Matthew’s Correlation Coefficient (MCC): MCC
summarizes all counts in the confusion matrix in
contrast to other measures like TPR and FDR.
More details about MCC is given in supplemental
subsection D.1.

In the remainder of this section, we compare the model
selection performance (FDR, TPR, MCC) from our
simulation results. Additional comparison metrics can
be found in the supplemental subsection D.3.

As mentioned in Remark 3.5, supplemental subsec-
tion D.2 shows that λRS decreases as n increases as
is also observed to be true with λCV . Furthermore,
across the tested range of α, the regularization λRS
are all larger than λCV for any n. Then, our distribu-
tionally robust representation (8) allows us to observe
that even for small values of n, CV always chooses a λ
that corresponds to smaller ambiguity sets than RS.

To assess the accuracy of RobSel in estimating λ = δ
for a given α, we approximated the right-hand side of

1For each dataset, we set up the grid for the choices of
λ in the CV algorithm as follows. First, we obtained the
sample covariance using the whole dataset and obtained
the maximum absolute value of its entries, which we denote
by smax. Then, we created a grid of ten values in the
interval (0, smax] and ran the graphical lasso over these
values. Then, we determined the maximum value s∗max

from this grid such that the estimated inverse covariance
matrix has in its off-diagonal upper triangular part: 1) at
least one non-zero element for n ≤ 200, or 2) at least 5%
non-zero entries for n > 200. Finally, a grid of 100 values
in the interval (0, s∗max] was used as the grid for λ in the
CV algorithm. We always had the case that the obtained
λ was less than s∗max.



Pedro Cisneros-Velarde, Sang-Yun Oh, Alexander Petersen

(18) using the N = 200 data sets and the true co-
variance Σ, giving the “true” value λRWP . Figures
in supplemental subsection D.3 show that the perfor-
mance obtained by λRWP is similar to the one ob-
tained by λRS for all comparison metrics. This finite
sample behavior of RS indicates that the RobSel boot-
strap algorithm reliably approximates the desired ro-
bustness level corresponding to the choice of α. These
plots also indicate that the RS criterion is more con-
servative than CV in achieving a lower FDR across
different sample sizes, due to providing larger values
for λ (see supplemental subsection D.2). More specifi-
cally, Fig. 1 shows that RS gives a better performance
than CV in terms of FDR even for smaller values of
n and this performance improves even more as n in-
creases.

Moreover, the trade-off between the preference for ro-
bustness and the preference for a higher density esti-
mation of nonzero entries in the precision matrix can
be observed in terms of the Matthews correlation co-
efficient (MCC), as shown in Fig. 2. Higher values in
the curve of MCC implies values of λ that describe a
better classification of the entries of Ω as either zero
or nonzero (see supplemental subsection D.1 for more
details). We observe that cross-validation chooses λCV
that are smaller than λ corresponding to the high-
est achievable MCC and overestimates the number of
nonzero entries in Ω. On the other handRS chooses
λRS that underestimates the number of nonzero en-
tries in Ω induced by its robust nature. Then, it
is up to the experimenter to know which method to
choose depending on their false discovery rate toler-
ance. Remarkably, for large numbers of n, RS seems
to be much closer to the highest achievable MCC per-
formance than CV, and it does this by maintaining a
lower FDR than CV while increasing its TPR.

Our results from the MCC analysis and supplemental
subsection D.3 also indicate that we should aim for
higher values of α if we want a performance closer to
CV in terms of TPR when using the RS criterion, with
the advantage of still maintaining a better performance
than CV in terms of the FDR. In contrast, if we want
more conservative results, we should aim for lower val-
ues of α. This is a good property of RS: it allows the
use of an intuitive single parameter α ∈ (0, 1) to adjust
the importance of the regularization term. Further-
more, as mentioned in section 3, an added practical
benefit of RS is that it provides a candidate for λ with
potential computational savings over CV.

5 Conclusion

We provide a recharacterization of the popular graph-
ical lasso estimator in (2) as the optimal solution to a

distributionally robust optimization problem. To the
best of our knowledge, this is the first work to make
such a connection for sparse inverse covariance estima-
tion. The DRO form of the estimator leads to a reinter-
pretation of the regularization parameter as the radius
of the distributional amibiguity set, which can be cho-
sen based on a desired level of robustness. We propose
the RobSel method for the selection of the regular-
ization parameter and compare it to cross-validation
for the graphical lasso. In our numerical experiments,
RobSel gives a better false detection rate than cross-
validation, and, as the sample size increases, other per-
formance metrics like the true positive rate for the two
are similar. Moreover, RobSel is a computationally
simpler procedure, notably only performing the graph-
ical lasso algorithm once at the final step rather than
repeatedly as is necessary for cross-validation. Future
work includes theoretical justification for robust selec-
tion of the regularization parameter for the graphical
lasso in the high-dimensional setting.
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Figure 1: False Detection Rate (FDR) for seven differ-
ent sample sizes, with both axes in logarithmic scale.
For each sample size, the average FDR is plotted for
both criteria, cross-validation (CV) and RobSel (RS).
For RS, a point is plotted with a different symbol for
each different value of the parameter α (some points
may not be plotted for lower values of α, since those
values gave no true positive detected, and so FDR was
not well-defined). The dotted line observed in the fig-
ure simply emphasizes the consistent gap (across sim-
ulation parameters) between RS and CV in terms of
the average FDR.
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