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Abstract

The true population-level importance of a variable
in a prediction task provides useful knowledge
about the underlying data-generating mechanism
and can help in deciding which measurements to
collect in subsequent experiments. Valid statis-
tical inference on this importance is a key com-
ponent in understanding the population of inter-
est. We present a computationally efficient pro-
cedure for estimating and obtaining valid statisti-
cal inference on the Shapley Population Variable
Importance Measure (SPVIM). Although the
computational complexity of the true SPVIM
scales exponentially with the number of variables,
we propose an estimator based on randomly sam-
pling only Θ(n) feature subsets given n obser-
vations. We prove that our estimator converges
at an asymptotically optimal rate. Moreover, by
deriving the asymptotic distribution of our estima-
tor, we construct valid confidence intervals and
hypothesis tests. Our procedure has good finite-
sample performance in simulations, and for an
in-hospital mortality prediction task produces sim-
ilar variable importance estimates when different
machine learning algorithms are applied.

1. Introduction
In many scientific applications, understanding the intrinsic
predictive value of a variable can shed light on the internal
mechanisms relating the variable to the outcome of interest,
help build future models, and guide experimental design.
For example, hospital administrators may want to know the
important features to collect for predicting patient outcomes.
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Likewise, vaccine researchers may want to know the most
important molecular phenotypes to measure that are most
predictive of binding or vaccine efficacy (see, e.g., Dun-
ning, 2006). Variable importance measures (VIMs) provide
necessary information towards answering these questions.

Our interest here is in statistical inference on the population
VIM. This VIM quantifies the predictive value of a variable
within the oracle prediction model f0 defined relative to
an arbitrary predictiveness measure V . For many choices
of V , f0 is either the conditional mean outcome given co-
variates (e.g., if V = R2) or a simple functional of this
conditional mean (e.g., if V = classification accuracy). We
note that population VIMs are distinct from algorithmic
VIMs, which describe the importance of a variable within a
fitted model f̂ (see, e.g., Breiman, 2001; Garson, 1991; Mur-
doch et al., 2019). Although algorithmic VIMs have been
used as a proxy for population VIMs out of convenience,
differences between f̂ and f0 can often lead to substantially
different interpretations of the resulting VIMs. Whereas an
algorithmic VIM necessarily varies across fitted models, a
population VIM is independent of the specific procedure
used to estimate f0.

Existing population VIMs suffer from a number of issues.
Traditionally, population VIMs have relied on restrictive
parametric assumptions (e.g., R2 in linear models; see, e.g.,
Grömping, 2007; Nathans et al., 2012), which can lead to
misleading results if the parametric model does not hold.
Recent work has focused on extending these definitions by
removing the parametric assumptions (Feng et al., 2018;
Williamson et al., 2020b); however, these definitions define
importance of a variable with respect to the others and assign
near-zero importance when features are highly correlated.
Other VIMs require strong assumptions on the design to be
valid (e.g., ANOVA), but again fail in simple cases with cor-
related variables. To address this, Owen and Prieur (2017)
proposed using Shapley values to quantify the population
VIM, where the value function is the variance explained;
these VIMs inherit many desirable theoretical properties
from the Shapley value. In fact, contemporary work has
also defined the ideal estimand of algorithmic VIM estima-
tion procedures to be the Shapley population VIM (SPVIM)
(Covert et al., 2020).
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Unfortunately, exact estimation of SPVIM is computation-
ally intractable in general settings (Owen and Prieur, 2017):
the SPVIM is defined as the sum of 2p terms, where p is the
number of features and each term depends on estimating the
conditional mean function with respect to a unique feature
subset. Previous approaches have either suggested sampling
as many subsets as possible to estimate the Shapley value
(see, e.g., Castro et al., 2009) or utilized special properties
of tree estimators to reduce the number of subsets required
(Lundberg et al., 2020). Notably, Štrumbelj and Kononenko
(2014) analyzed the asymptotic distribution of a sampling-
based estimator of Shapley algorithmic variable importance
to derive confidence intervals.

In this paper, we combine the aforementioned developments
and provide a nonparametric statistical inference procedure
for SPVIM. We generalize previous definitions of SPVIM
and use an arbitrary measure of predictiveness V . We tackle
the computational complexity of the problem by randomly
sampling feature subsets according to the Shapley value
weights and then fitting corresponding models. We derive
the asymptotic distribution of this sampling-based SPVIM
estimator and show that the error from our proposed pro-
cedure can be decomposed into two components: the error
from estimating the oracle prediction models and the error
from omitting summands from the Shapley value estimand.
Given n training observations, we find that our estimator
only needs to sample m = Θ(n) subsets to converge at an
asymptotically optimal rate. Moreover, since the subset sam-
pling distribution is highly skewed, the number of unique
feature subsets is much smaller than m in practice. We then
use the asymptotic distribution to construct asymptotically
unbiased point estimates, valid confidence intervals, and
hypothesis tests with proper type I error control.

We demonstrate the validity of our approach in a simulation
study and estimate the SPVIM of hospital measurements
for predicting mortality in the intensive care unit (ICU). All
numerical results can be replicated using code available on
GitHub at bdwilliamson/spvim_supplementary;
the proposed methods are also implemented in the Python
package vimpy and the R package vimp.

2. Variable importance
2.1. Data structure and notation

LetM be a nonparametric class of joint distributions over
covariates X = (X1, . . . , Xp) ∈ X ⊆ Rp and response
Y ∈ Y ⊆ R, where X and Y denote the sample spaces
of X and Y , respectively. Suppose that each observation
O consists of (X,Y ). In this article, we consider observa-
tions O1, . . . , On drawn independently according to a joint
probability distribution P0 ∈M.

Next, we define the feature subsets and oracle prediction

models of interest. We take S to be the power set of
N := {1, . . . , p}. Let s(j) for j = 1, . . . , 2p be an or-
dered sequence of the subsets in S, where s(1) = ∅ and
s(2p) = N . For any index set s ∈ S, we denote by Xs
and X−s the sample spaces of Xs and X−s, respectively.
We denote by as and a−s the elements of a vector a with
indices in s and not in s, respectively. We also consider the
binary vector z(s) ∈ Rp+1 for each s ∈ S , where z(s)1 = 1
for all s ∈ S and z(s)k+1 = I(k ∈ s) for k = 1, . . . , p.
Finally, we consider a rich class F of functions from X to
Y endowed with a norm ‖·‖F . For any s ∈ S, we define
the subset Fs := {f ∈ F : f(u) = f(v) for all u, v ∈
X satisfying us = vs} of functions in F whose evaluation
ignores elements of the input x with index not in s. In all ex-
amples we consider, we takeF to be a rich class of functions
that is essentially unrestricted up to regularity conditions.

2.2. Oracle predictiveness

We define the importance of a variable at the population level
in terms of its oracle predictiveness. This predictiveness
is measured by a real-valued functional V : F ×M 7→
R. We assume that larger values of V (f, P ) imply higher
predictiveness. Examples of predictiveness measures —
including R2, deviance, area under the ROC curve, and
classification accuracy — are provided in Williamson et al.
(2020b).

The oracle predictiveness is the maximum achievable pre-
dictiveness over a class of prediction functions. More for-
mally, we define the total oracle predictiveness v0,N :=
maxf∈F V (f, P0) and its associated oracle prediction func-
tion f0,N ∈ argmaxf∈F V (f, P0). For many machine
learning algorithms, f0,N is the target of interest. We further
define the oracle prediction function f0,s that maximizes
V (f, P0) over all f ∈ Fs; the marginal oracle predictive-
ness v0,s := V (f0,s, P0) quantifies the prediction potential
of features with index in s. The null oracle predictiveness
v0,∅ := V (f0,∅, P0) quantifies the prediction potential of
a model that uses no covariate information. Finally, let
v := [v , v , . . . , v ]> p
0 0,∅ 0,s(2) 0,N denote the 2 -dimensional

vector of predictiveness measures for all subsets in S. The
predictiveness measure v0,s(j) is defined relative to the popu-
lation P0, a joint distribution in the nonparametric statistical
modelM; thus, its interpretation is tied to neither any partic-
ular estimation procedure nor any parametric assumptions.

2.3. The Shapley population variable importance
measure

We now define a population VIM using the classical form
of the Shapley value (see, e.g., Shapley, 1953; Charnes
et al., 1988) with an arbitrary measure of predictiveness V .
Specifically, the Shapley population variable importance
measure (SPVIM) of the variable Xj is the average gain
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in oracle predictiveness from including feature Xj over all
possible subsets: ( )∑ −1

1 p− 1
0,0,j := {V (f0,s∪j , P0)− V (f0,s, P0)},

p |s|
s∈N\{j}

(1)

ψ

where the indices of ψ describe the number of subsets, the
distribution P0, and the feature of interest j, respectively.
We use the index 0 to indicate that the SPVIM is computed
using all subsets and the true distribution P0. SPVIMs in-
herit the following properties from Shapley values (Shapley,
1953):

• Non-negativity: by construction, ψ0,0,j ≥ 0.

• Additivity1: the sum of the SPVIMs across all variables
is equal to the difference between the total and null
oracle predictiveness,

∑p
ψ0,0,j = v0,N − v0,∅ (2)

j=1

• Symmetry: if Xi = Xj , then ψ0,0,i = ψ0,0,j .

• Null feature: if Xj provides no added predictive value,
i.e., v0,s∪j = v0,s for all s ⊆ (N \ {j}), then its
SPVIM value is ψ0,0,j = 0.

• Linearity: if Ṽ ≡ αV , then its associated SPVIM
values are ψ̃0,0,j = αψ0,0,j for all j ∈ {1, . . . , p}.

Because SPVIMs satisfy these properties, they clearly ad-
dress the issue of correlated features: given collinear vari-
ables Xj and Xk that are each marginally predictive, previ-
ous nonparametric population VIMs (see, e.g., Williamson
et al., 2020b) would assign zero importance to both vari-
ables whereas SPVIM would assign the same positive value
to both variables.

In this paper, we take advantage of an alternate formula-
tion of the Shapley value noted in previous work (see, e.g.,
Charnes et al., 1988; Lundberg and Lee, 2017). In particular,
we can rewrite the weighted average in (1) as the solution of
a weighted linear regression problem, where we treat the pre-
dictiveness of a feature subset v0,s as the response and the
subset membership z(s) as the covariates. Define a diagonal
matrix of weights

p p

W ∈ R2 ×2 where W1,1 = W( 2)p,2p = 1,
and for any

−1
j ∈ 2, . . . , 2p − 1, Wj,j = p−2

|s . The
(j)|−1

matrix Z ∈ R2p×(p+1) consists of the stacked z(s) vectors

1In the Shapley value literature, this additivity property is re-
ferred to as “efficiency”. However, this notion of efficiency is
very different from statistical efficiency, which is related to the
asymptotic variance of a statistical estimator.

for each s ∈ S. Setting ψ0,0,∅ := v0,∅, we denote by ψ0,0

the (p+1)-dimensional vector of population Shapley values.
Then (1) is equivalent to

√
ψ ‖ 2
0,0 := argmin W (Zψ − v0)‖2, (3)

ψ∈Rp+1

a result that we prove in the Supplement. If we define
the distribution Q0 over subsets S with probability mass(
function assigning weight

−p− 12
)

|S|−1 for S ∈ S \ {∅, N}
and weight 1 for S ∈ {∅, N} (scaled so that the weights
sum to one), then (3) is equivalent to a population average:[ ]

ψ0,0 ≡ argminEQ0
(z(S)ψ − v0,S)2 .

ψ∈Rp+1

We will use this fact in our estimation procedure below.

3. Estimation and inference
3.1. Plug-in estimation

We now discuss how to estimate the SPVIM values for
all p features using independent observations O1, . . . , On
drawn from P0. Definition (3) suggests considering an
estimator based on plugging in estimators of each individual
component. We discuss each component in turn.

First, we estimate the predictiveness measure v0,s =
V (f0,s, P0) for a subset s ∈ S by plugging in estimates
of the oracle function f0,s and the distribution P0. A simple
approach is to partition the data into a training set and a
validation set, construct an estimator fn,s for f0,s on the
training data (using only the observed covariates in s), and
estimate P0 using the empirical distribution of the validation
set PV . Using this training-validation split, our estimate of
predictiveness is then

vn,s = V (fn,s, PV ). (4)

An alternative approach is to perform K-fold cross-fitting,
where we partition the data into K subsets of roughly equal
size and, for each k ∈ {1, . . . ,K}, construct an estimator
fk,n,s based on all the data except for the kth subset. Let
Pk,n be the empirical distribution of the kth subset. Then
we could estimate v0,s using

vn,s =
1

K

K∑
k=1

V (fk,n,s, Pk,n). (5)

If we had the entire estimated vector of predictiveness mea-
sures vn, we could estimate ψ0,0 using the plug-in estimator

ψ0,n := argmin
ψ∈Rp+1

EQ0
(Z(S)ψ − vn,S)2
[ ]

. (6)

Unfortunately, obtaining vn requires training 2p models,
rendering this a computationally intractable task in general.
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Instead, we can replace Q0 in (6) with an empirical distri-
bution estimator Qm obtained by sampling m subsets from
S according to Q0. This leads us to the SPVIM estimator
ψm,n which solves the constrained least squares problem

min
ψ∈Rp+1

EQm (Z(S)ψ − vn,S)2
[ ]

subject to Gψ = cn,

(7)

where G := [z(∅)>, z(N)>]> ∈ R2×(p+1) and cn :=
[vn,∅, vn,N ]> ∈ R2. The constraint ensures that the esti-
mated SPVIMs satisfy the additivity property (2) and that
the estimated SPVIM for the null set is the estimated null
predictiveness value.

This constrained least squares problem can be solved by
forming a Lagrangian and inverting its Karush-Kuhn-Tucker
(KKT) conditions (Boyd and Vandenberghe, 2004). More
specifically, let s1, . . . , s` be the unique subsets in Qm.
Let Wm be the ` × ` diagonal matrix where the kth di-
agonal element is the probability mass of sk in Qm. Let
vm,n = (vn,s1 , . . . , vn,s`) be the estimated predictiveness
measures for the ` subsets. Let Zm be the stack of vectors
z(s1), . . . , z(s`). Then (7) can also be written as

min
ψ∈Rp+1

∥∥∥ ∥
Wm (Zmψ − vm,n)

∥∥2
2

subject to Gψ = cn.
√

Solving the KKT conditions with Lagrange multipliers de-
noted by λ, we obtain a closed-form SPVIM estimator:[
ψm,n 2Z>

[ > −1] [ √ ]
m

]
λ

=
WmZm G
G 0

2 Wmvm,n
cn

. (8)

To ensure that (7) has a unique solution, we select a suffi-
ciently large value of m so that Qm inclues at least p + 1
unique subsets. The full estimation procedure is given in
Algorithm 1.

We now describe the properties listed in Section 2.3 that are
satisfied by this sampling-based SPVIM estimator. It is easy
to see that the additivity, symmetry, and linearity properties
always hold. One possible concern is that the nonnegativity
property can be violated. Nevertheless, in practice we find
that negative SPVIM estimates are close to zero and the
95% confidence intervals cover zero. If nonnegativity is
truly a concern, one can also add a nonnegative constraint
to (7). Finally, the null feature property holds with respect
to estimated predictiveness values and the sampled subsets.
Note that this property is only relevant for discrete predic-
tiveness measures like 0-1 classification accuracy, since the
estimated predictiveness values are rarely exactly the same
for continuous predictiveness measures like R2.

The plug-in estimator ψm,n is appealing due to its simplic-
ity. In general, however, such an estimator may fail to be
consistent at rate n−1/2 if the population optimizers f0,s are

flexibly estimated. This phenomenon is due in large part to
the optimal bias-variance tradeoff for estimating f0,s differ-
ing in general from the optimal bias-variance tradeoff for
estimating vn,s. Plug-in estimators typically inherit much
of the bias from estimating f0,s, and this bias does not in
general tend to zero sufficiently fast to allow n−1/2-rate
estimation of ψ0,0 (Williamson et al., 2020a). In the next
section, we extend the results of Williamson et al. (2020b)
to describe conditions under which the estimator ψm,n is
asymptotically normal.

Algorithm 1 Estimation of SPVIM
1: Input initial parameter γ ≥ 1.
2: Sample m = γn subsets from Q0, denoted s1, . . . , sm.
3: Estimate prediction functions fn,s for each s ∈
{s1, . . . , sm} ∪ {∅, N}.

4: Compute predictiveness estimates vn,s for s ∈
{s1, . . . , sm} ∪ {∅, N} using a training-validation split
(see Equation (4)) or K-fold cross-fitting (see Equation
(5)).

5: Solve for ψm,n using Equation (8).

3.2. Large-sample inferential properties

We now study the conditions under which ψm,n is an asymp-
totically normal estimator of the SPVIM ψ0,0. Using these
conditions, we can design a procedure to construct confi-
dence intervals and hypothesis tests. To do this, we de-
compose the error of our estimator ψm,n into the following
components:

ψm,n − ψ0,0 = (ψ0,n − ψ0,0) + (ψm,0 − ψ0,0) + rm,n,
(9)

where ψm,0 is obtained by replacing vn,S with v0,S in (7)
and rm,n := (ψm,n − ψm,0) − (ψ0,n − ψ0,0). Each term
on the right-hand side of (9) can then be studied separately
to determine the large-sample behavior of ψm,n. The first
term is the error of the estimator ψ0,n (6) constructed using
prediction functions fn,s estimated using n observations
for all subsets s. The second term is the error of the esti-
mator ψm,0 constructed using oracle prediction functions
for sampled subsets in Qm. In other words, the first term
characterizes the error contribution from sampling training
observations and the second term characterizes the error
contribution from sampling subsets. The third term is a
difference-in-differences remainder term that we prove to be
negligible under some regularity conditions. Based on this
decomposition, we will show that the asymptotic variance√
of n(ψm,n − ψ0,0) is simply the sum of the asymptotic
variances of the first and second error terms.

Our result makes use of several conditions that require
additional notation. These conditions were initially pro-
vided in Williamson et al. (2020b). We define the linear
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space R := {c(P1 − P2) : c ∈ R, P1, P2 ∈ M} of fi-
nite signed measures generated by M. For any R ∈ R,
e.g., R = c(P1 − P2), we consider the supremum norm
‖R‖∞ := |c| supo |F1(o) − F2(o)|, where F1 and F2 are
the distribution functions corresponding to P1 and P2, re-
spectively. Next, we define the following notation for each
subset s ∈ S. For distribution P0,ε := P0 + εh with ε ∈ R
and h ∈ R, we define f0,ε,s = fP0,ε,s to be its correspond-
ing oracle prediction function with respect to subset s. Let
V̇ (f, P0;h) denote the Gâteaux derivative of P 7→ V (f, P )
at P0 in the direction h ∈ R, and define the random func-
tion ˙ ˙gn,s : o 7→ V (fn,s, P0; δo−P0)−V (f0,s, P0; δo−P0),
where δo is the degenerate distribution on {o}. Consider the
following set of deterministic [(A1)–(A4)] and stochastic
[(B1)–(B2)] conditions for each subset s ∈ S:

(A1) (optimality) there is some C > 0 such that for each
sequence f1, f2, · · · ∈ Fs with ‖fj − f0,s‖Fs → 0,
there is a J such that for all j > J , |V (fj , P0) −
V (f0,s, P0)| ≤ C‖fj − f0,s‖2Fs ;

(A2) (differentiability) there is some δ > 0 such that for
each sequence ε1, ε2, . . . ∈ R and h, h1, h2, . . . ∈ R
satisfying that εj → 0 and ‖hj − h‖∞ → 0, it holds
that ∣∣∣V (f, P0 + εjhj)− V (f, P0)

sup ∣
f∈Fs:‖f−f0,s‖Fs<δ εj∣∣

− V̇ (f, P0;hj)∣∣ −→ 0 ;

(A3) (optimizer continuity) ‖f0,ε,s − f0,s‖Fs = o(ε) for
each h ∈ R;

(A4) (derivative continuity) f 7→ V̇ (f, P0;h) is continuous
at f0,s relative to Fs for each h ∈ R;

(B1) (minimum rate of convergence) ‖fn,s − f0,s‖Fs =
oP (n−1/4); ∫

(B2) (weak consistency) E0[ {gn,s(o)}2dP0(o)] = oP (1);

The Gâteaux derivative V̇ is provided in Williamson
et al. (2020b) for several common measures of pre-
dictiveness, including classification accuracy, AUC, and
R2. Assuming conditions (A1)–(A4) and (B1)–(B2)
hold for every subset in S, vn is an asymptotically lin-
ear estimator of v0 with influence function V̇0 : o 7→
˙ ˙[V (f0,∅, P0; δ >

o − P0), . . . , V (f0,N , P0; δo − P0)] by The-
orem 2 in Williamson et al. (2020b). Finally, we introduce
a condition that specifies the number of subsets to sample:

(C1) (minimum number of subsets) For γ > 0 and sequence
γ1, γ2, . . . ∈ R+ satisfying that |γj − γ| → 0, m =
γnn.

For convenience, we define several objects that simplify the
notation in our main result below. Set A := Z>WZ, where
Z is the stack of vectors z(s) for all s ∈ S, and define
C := A−1G(G>A−1G)−1. Let the QR decomposition of
G> be [ ]

G>
[ ] R

= U1 U2 ,
0

where R is an upper-triangular matrix. We define the func-
tions

φ0,1(O) = A−1Z>
√
WV̇0(O) and

φ0,2(S; v0) = −U2V
−1 [z(S)>ψ0,0 − v0,S

]
U>2 z(S),

where V = U>2 Z
>WZU2. Assuming all of the aforemen-

tioned conditions hold, then ψm,n is a consistent and an
asymptotically normal estimator of ψ0,0.

Theorem 1. If the collection of conditions implied by (A1)–
(A4) and (B1)–(B2) hold for every subset in S and condition
(C1) holds, then ψm,n has the asymptotic distribution

√
n(ψm,n − ψ0,0)→d N (0,Σ0) ,

where Σ0 := CovP0
(φ0,1(O)) + γ−1 CovQ0

(φ0,2(S; v0)).

To construct Wald-based confidence intervals (CIs) for ψ0,0,
we estimate the asymptotic covariance Σ0 by plugging in
consistent estimators of each component. That is, we use
consistent estimators Am, Zm, and Wm of A, Z, and W ,
respectively. Note that the estimators and CIs may be con-
structed using only the sampled subsets. If ψ0,0,j = 0 for
any j, then the contribution from sampling observations to
the asymptotic covariance term corresponding to index j
will be zero, leading to some additional complications. We
discuss this case further in the next section.

Conditions (A1)–(A4) are required to control the contri-
bution from estimating f0,s for each s ∈ S. Williamson
et al. (2020b) show that these conditions are satisfied forR2,
deviance, accuracy, and AUC. Conditions (B1)–(B2) place
restrictions on the class of estimators of f0,s that we may
consider. While condition (B1) holds for many estimators
(e.g., generalized additive models (Hastie and Tibshirani,
1990)), we show in Section 5 that this condition may only
need to be approximately satisfied. Condition (B2) is im-
plied by a form of consistency of fn,s.

Finally, condition (C1) is necessary to control the contri-
bution from having had to estimate Q0. Because ψ0,n is
an asymptotically efficient estimator of ψ0,0, this condition
implies that sampling m = Θ(n) subsets is asymptotically
optimal, up to a constant factor proportional to γ−1. Intu-
itively, this is because there is an irremovable error contribu-
tion from having sampled n training observations. As such,
we simply need to sample enough subsets for the second
error term in (9) to be on the same order as the first term.
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Moreover, because the distribution Q0 places the heaviest
weight on subset sizes at the extremes (closest in size to
the empty set and full set), we do not need to estimate a
large number of unique prediction functions in practice. To
our knowledge, this is the first result that delineates the
number of feature subsets to sample for constructing an
asymptotically normal estimator of Shapley values.

3.3. Testing the null SPVIM hypothesis

We now use Theorem 1 to construct a test for the null hy-
pothesis that a variable is not important, i.e., ψ0,0,j = 0 for
some j. When a variable Xj has null importance, the true
value ψ0,0,j is at the boundary of the parameter space, and
the contribution to the asymptotic variance from sampling
observations in Theorem 1 is zero. This may cause difficul-
ties in hypothesis testing: as the number of sampled subsets
grows, the contribution to the asymptotic variance from
sampling subsets tends to zero. Thus, in the limit, a hypoth-
esis test based on the estimator of this asymptotic variance
proposed in the previous section will fail to appropriately
control the type I error.

Instead, we rely on sample-splitting to construct a valid test
of the δ-null hypothesis of the jth SPVIM value, i.e., H0,j :
ψ0,0,j ∈ [0, δ]. In our approach, we make use of the fact that
ψ0,0,∅ may be nonzero for some predictiveness measures
(e.g., AUC). Based on one portion of the data, construct
estimator ψm,n,j,+ := ψm,n,j + ψm,n,∅ of ψ0,0,j + ψ0,0,∅
and obtain an estimator σ2

n,j of the variance σ2
0,j := (Σ0)jj .

Based on the remaining data, obtain an estimator ψm,n,∅,1
of ψ0,0,∅ with corresponding variance estimator σ2

n,∅. Then,

we calculate a test statistic (ψ
Tn := m,n,j,+−ψm,n,∅,1)−δ√

n−1 2
1 σ +2∗n−1

n,j 2 σ2
and

n,∅

its corresponding p-value pn := 1− Φ(Tn), where n1 and
n2 denote the respective sample sizes of the split dataset
and Φ denotes the standard normal cumulative distribution
function. We reject H0 if and only if pn < α for some pre-
specified level α. Under conditions (A1)–(A4), (B1)–(B2),
and (C1), for any α ∈ (0, 1), the proposed test is consistent
and has type I error equal to α.

4. Local and group variable importance
Until now, we have focused on a global measure of impor-
tance by integrating over the entire distribution P0. For
certain settings, we may be interested instead in a local ver-
sion of variable importance. A simple extension of (1) or (3)
allows us to define a local version of variable importance:
for a subpopulation A ⊆ X ,

ψ0,0,j(A) :=
1

p

∑
s∈S

p− 1

|s|

−1( )
{V (f0,s∪j , P0|X∈A)

− V (f0,s, P0|X∈A)},

where we have simply plugged the conditional distribution
P0|X∈A into (1). Taken to the extreme, where the subpopu-
lation A consists only of a single observation, this definition
of local feature importance is equivalent to the SHAP val-
ues considered by Lundberg and Lee (2017), though here
we use an arbitrary measure of predictiveness in place of
the conditional expectation. Unfortunately, valid statistical
inference on this individual-observation-level importance
appears difficult, if not impossible.

In addition, if there is some scientifically meaningful parti-
tion of the features, we can extend SPVIM to these feature
subgroups. For example, one may group together all mea-
surements from the same medical device. Let the partition
of features into groups be denotedP := {s1, . . . , sk}where⋃
si ∈ S and k ⋂

∅i=1 si = N , and si sj = for every (i, j)
pair. Then the Shapley-based population variable group
importance measure may be determined as in (1), where the
sum is taken over all subsets in P .

5. Simulation study
In this section, we present simulation results validating our
statistical inference procedure for SPVIM in finite samples.
We consider 200 covariates X ∼ N200(0,Σ). The variance-
covariance matrix Σ has diagonal equal to 1 and several cor-
related features: Cov(X1, X11) = 0.7; Cov(X3, X12) =
Cov(X3, X13) = 0.3; and Cov(X5, X14) = 0.05. The
covariance of the remaining feature pairs is zero. Based
on these covariates, we observe a continuous outcome
Y | X = x ∼ N(f(x), 1), where

f(x) =
∑

j∈{1,3,5}

fj(xj),

f1(x) = sign(x),

f3(x) = (−6)I(x ≤ −4) + (−4)I(−4 < x ≤ −2)

+ (−2)I(0 ≤ x < −2) + 2I(2 < x ≤ 4)

+ 4I(x > 4), and
f5(x) = (−1)I(x ≤ −4 or − 2 < x ≤ 0 or 2 < x ≤ 4)

+ I(−4 < x ≤ −2 or 0 < x ≤ 2 or x > 4).

In this data-generating mechanism, the vector (X1, X3, X5)
is directly relevant to predicting the outcome, while the vec-
tor (X11, . . . , X14) is only related to the outcome through
correlation with (X1, X3, X5); the remaining 193 features
are pure noise. We generated 1,000 random datasets of
size n ∈ {500, 1000, 2000, 3000, 4000}. The true SPVIM
values for predictiveness defined in terms of R2 are approx-
imately (0.19, 0.29, 0.23, 0.04, 0.01, 0.01, 0) for the non-
noise features, respectively, and zero for the remaining fea-
tures.

To obtain each fn,s we fit boosted trees (Friedman,
2001) using the Python package xgboost (Chen
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and Guestrin, 2016) with maximum tree depth
equal to one, learning rate equal to 10−2, and `2-
regularization parameter equal to zero. The number of
trees varied among {50, 100, 250, 500, 1000, . . . , 3000}
and the `1-regularization parameter varied among
{10−3, 10−2, 0.1, 1, 5, 10}; the combination of these
parameters was tuned using five-fold cross-validation to
minimize the mean squared error (MSE).

We computed the relevant SPVIM estimator using Algo-
rithm 1, where we sampled m = 2n subsets and estimated
predictiveness using five-fold cross-fitting. For comparison,
we computed the mean absolute SHAP value (Lundberg and
Lee, 2017), where the average was taken over all observa-
tions. This allows us to directly evaluate the accuracy of
algorithmic VIMs for estimating the population VIMs. We
then computed the empirical MSE scaled by n, the empiri-
cal coverage of nominal 95% CIs, and the empirical power
of our proposed hypothesis test. Finally, we compare the
accuracy of our SPVIM estimates and the mean SHAP val-
ues in terms of their correlation with the true SPVIM values.
All analyses were performed on a computer cluster with
32-core CPU nodes with 64 GB RAM.

We display the results of this experiment in Figure 1. We
see that as n increases, the scaled empirical MSE of our
estimator decreases to a fixed level — namely, the scaled
empirical variance — for each feature. This matches our
expectations from Section 3.2: the scaled empirical bias of
our proposed estimator should tend to zero with increasing
sample size, while the scaled empirical variance tends to
the asymptotic variance. We note here that while boosted
trees are a popular estimation procedure, they do not neces-
sarily satisfy condition (B1) (see, e.g., Zhang and Yu, 2005).
Thus, the convergence observed here provides some em-
pirical evidence that condition (B1) may only need to hold
approximately in practice. We also find that the coverage of
nominal 95% confidence intervals increases to the nominal
level as the sample size increases. Our proposed hypothesis
test controls the type I error rate and is consistent: the empir-
ical type I error rate is at the nominal level for null feature
X6, while the empirical power is near one for each of the
directly important features. Power tends to be small for the
indirectly important features (X11, . . . , X14), especially at
small sample sizes; this reflects the fact that the importance
of these features is closer to the null hypothesis than the
importance of the directly relevant features. Finally, we
see that SPVIM estimates are more correlated with the true
population importance than SHAP values. We provide the
estimated SPVIM and mean absolute SHAP values in the
Supplement.

6. Predicting mortality of patients in the
intensive care unit

We now analyze data on patients’ stays in the ICU from
the Multiparameter Intelligent Monitoring in Intensive Care
II (MIMIC-II) database (Silva et al., 2012). We consider
4000 records on several features: five general descriptors
collected upon admission to the ICU, and 15 features —
including the Glasgow Coma Scale (GCS), blood urea nitro-
gen (BUN), and heart rate — measured over the course of
the first 48 hours after admission to the ICU. The outcome
of interest is in-hospital mortality. Rather than use the en-
tire time series, we simplify the analysis by first computing
the minimum, average, and maximum value of each of the
time-series features used in the simplified acute physiology
(SAPS) I or II scores. The SAPS scores are established
measures for estimating the mortality risk of ICU patients.
We then remove any features that are measured in fewer
than 70% of the patients. When combined with the gen-
eral descriptor variables, a total of 37 extracted features
remain. We provide a full list of these extracted features in
the Supplement.

We estimate the SPVIM for each variable using AUC to
measure predictiveness. For comparison, we also provide
the mean absolute SHAP value obtained from Tree SHAP
(Lundberg et al., 2020) and Kernel SHAP (Lundberg and
Lee, 2017); and the proportion of times a feature was se-
lected across test instances using LIME (Ribeiro et al.,
2016). We discuss conditions under which the mean ab-
solute SHAP value is a suitable proxy for the SPVIM in
Section 2.2 in the Supplement.

We obtained estimates of each f0,s using two separate proce-
dures. In the first analysis, we maximized the empirical log
likelihood using boosted trees with maximum depth equal to
four, learning rate equal to 10−3, and a number of estimators
in {2000, 4000, . . . , 12000} selected using five-fold cross-
validation. In the second analysis, we maximized the empir-
ical log likelihood by fitting ensembles of five dense ReLU
neural networks (NNs) with architectures chosen from
{(37, 25, 25, 20, 10, 1), (37, 25, 20, 1), (37, 25, 20, 20, 1)}
using 5-fold cross-validation. The NNs were trained using
Adam (Kingma and Ba, 2014) with a maximum of 2000
iterations and with `2 regularization parameter equal to
0.1. We again used 5-fold cross-fitting to estimate the
predictiveness measures for the sampled subsets. Using our
procedure, we fit models for only 119 unique subsets and
computed SPVIM estimates in two hours for each analysis.
LIME had similar computation time (1.7 hours) in the case
of NNs, but longer computation time (4 hours) in the case
of trees. The computation time of both our procedure and
LIME falls between the highly specialized Tree SHAP
algorithm, which completed in a few minutes, and the
general-purpose Kernel SHAP, which took approximately
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Figure 1. Performance of our statistical inference procedure for estimating the Shapley-based population variable importance (SPVIM)
with respect to R2 using n training observations and 2n sampled subsets. (A, E) Empirical MSE for the proposed plug-in estimator scaled
by n for j ∈ {1, 3, 5, 6} and j ∈ {11, 12, 13, 14}, respectively; (B, F) Empirical coverage of nominal 95% confidence intervals; (C,
G) Empirical power of the hypothesis testing procedure for null hypothesis that the jth variable has null importance; (D) Kendall’s tau
between the true and estimated SPVIM values using our approach versus the mean absolute SHAP value.

20 hours.

In Figure 2, we display the estimates from each VIM and
both estimation procedures. We first focus on the SPVIM
estimates provided in Panel A. The GCS is estimated to
be the most important feature using both trees and NNs,
though different summaries of the GCS are most important
across the two procedures (mean for trees and max for NNs).
This result matches prior knowledge: GCS is used to assess
the level of consciousness of patients and is the highest
scoring item in the SAPS scores. We find that the confidence
intervals for SPVIM are quite wide, which is important
information for placing the results in context.

Next, we compare the agreement between rankings calcu-
lated based on the fitted boosted trees and NNs for the
SPVIM estimates, mean absolute SHAP values (Figure 2
panel B), and LIME (panel C). There is considerably more
agreement between the two procedures for the SPVIM es-
timates than for the SHAP value estimates and LIME pro-
portions. The estimated Kendall’s tau between procedures
is 0.71 for our SPVIM estimator vs 0.37 for SHAP and 0.39
for LIME. Given the large discrepancies between the algo-
rithmic VIMs, we conclude that they are poor proxies for
our population VIM. Instead, one should use a procedure
specifically designed to estimate SPVIM.

Finally, we find that the feature rankings within trees or NNs
from our SPVIM estimator, SHAP, and LIME are substan-
tively different. One noticeable difference is that SHAP and
LIME values for several summary statistics derived from the
same measurement (e.g., min, mean, and max GCS) differ
widely; this should not occur, since these summary statistics
are highly correlated. On the other hand, SPVIM estimates
for summary statistics derived from the same measurement

tend to be more similar.

7. Discussion
We have proposed a computationally tractable statistical
inference procedure for the Shapley population variable im-
portance measure (SPVIM). Methods for estimating SPVIM
are complementary to those for estimating algorithmic vari-
able importance. The former helps us understand the under-
lying data-generating mechanism and can help guide future
experiments; the latter helps us interpret a particular fitted
model. Here, we define SPVIM with respect to an arbitrary
measure of predictiveness, allowing the data analyst to se-
lect the most appropriate measure for the task at hand. Since
the SPVIM is also defined relative to the population, the
target of inference is not affected by the choice of prediction
algorithm. We have derived the asymptotic distribution of
an SPVIM estimator based on randomly sampled feature
subsets, and have used this distribution to construct asymp-
totically normal point estimates, valid confidence intervals,
and hypothesis tests with the correct type I error control.
Notably, we determined a minimum number of feature sub-
sets to sample: we show that our estimator only needs to
fit prediction models for m = Θ(n) sampled subsets for
its error to be on the same order as an estimator that fits
prediction models for all possible subsets.

In this manuscript, we have focused on quantifying the im-
portance of a variable averaging across the entire population.
Local importance measures can be obtained by restricting
to smaller subpopulations. However, as the subpopulations
decrease in size, the uncertainty of our estimates increases.
Our asymptotic results do not apply to the most extreme
case, the variable importance at the level of a single obser-
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Figure 2. We estimated importance of features for predicting in-hospital death in the ICU using our statistical inference procedure for
SPVIM with respect to AUC (A), the mean absolute SHAP value (B), and LIME (C). Gray circles and blue triangles denote estimates
from fitting boosted trees and neural networks, respectively. The features are ordered from top to bottom by their point estimate from the
neural networks procedure. 95% confidence intervals only appear in (A) since there is no statistical inference procedure for mean absolute
SHAP values or LIME.

vation. Nevertheless, this value may be of interest in some
tasks. Further work is necessary to define relevant impor-
tance measures at the single-observation-level and derive
procedures with the desired performance.

Finally, we caution against interpreting SPVIM estimates in
a causal manner. SPVIM reflects importance in the oracle
prediction model rather than importance in the oracle causal
model. In many scientific applications, the importance in
the causal model is of ultimate interest. To get causal im-
portance, one may need to employ techniques from causal
inference. Recent developments relating prediction mod-
els and causal models may also be of use in these cases
(Arjovsky et al., 2019).
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