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Abstract
We show that there is a simple (approximately radial) function on Rd, expressible by a small 3-layer
feedforward neural networks, which cannot be approximated by any 2-layer network, to more than
a certain constant accuracy, unless its width is exponential in the dimension. The result holds for
virtually all known activation functions, including rectified linear units, sigmoids and thresholds,
and formally demonstrates that depth – even if increased by 1 – can be exponentially more valuable
than width for standard feedforward neural networks. Moreover, compared to related results in the
context of Boolean functions, our result requires fewer assumptions, and the proof techniques and
construction are very different.
Keywords: Neural networks, Depth vs. Width, Function approximation, Fourier transform

1. Introduction and Main Result

Learning via multi-layered artificial neural networks, a.k.a. deep learning, has seen a dramatic
resurgence of popularity over the past few years, leading to impressive performance gains on dif-
ficult learning problems, in fields such as computer vision and speech recognition. Despite their
practical success, our theoretical understanding of their properties is still partial at best.

In this paper, we consider the question of the expressive power of neural networks of bounded
size. The boundedness assumption is important here: It is well-known that sufficiently large depth-2
neural networks, using reasonable activation functions, can approximate any continuous function on
a bounded domain (Cybenko (1989); Hornik et al. (1989); Funahashi (1989); Barron (1994)). How-
ever, the required size of such networks can be exponential in the dimension, which renders them
impractical as well as highly prone to overfitting. From a learning perspective, both theoretically
and in practice, our main interest is in neural networks whose size is bounded.

For a network of bounded size, a basic architectural question is how to trade off between its
width and depth: Should we use networks that are narrow and deep (many layers, with a small num-
ber of neurons per layer), or shallow and wide? Is the “deep” in “deep learning” really important?
Or perhaps we can always content ourselves with shallow (e.g. depth-2) neural networks?

Overwhelming empirical evidence as well as intuition indicates that having depth in the neural
network is indeed important: Such networks tend to result in complex predictors which seem hard
to capture using shallow architectures, and often lead to better practical performance. However, for
the types of networks used in practice, there are surprisingly few formal results (see related work
below for more details).

In this work, we consider fully connected feedforward neural networks, using a linear output
neuron and some non-linear activation function on the other neurons, such as the commonly-used
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rectified linear unit (ReLU, σ(z) = max{z, 0}), as well as the sigmoid (σ(z) = (1 + exp(−z))−1)
and the threshold (σ(z) = 1 {z ≥ 0}). Informally speaking, we consider the following question:
What functions on Rd expressible by a network with `-layers and w neurons per layer, that cannot
be well-approximated by any network with < ` layers, even if the number of neurons is allowed to
be much larger than w?

More specifically, we consider the simplest possible case, namely the difficulty of approxi-
mating functions computable by 3-layer networks using 2-layer networks, when the networks are
feedforward and fully connected. Following a standard convention, we define a 2-layer network of
width w on inputs in Rd as

x 7→
w∑
i=1

viσ (〈wi,x〉+ bi) (1)

where σ : R → R is the activation function, and vi, bi ∈ R, wi ∈ Rd, i = 1, . . . , w are parameters
of the network. This corresponds to a set of w neurons computing x 7→ σ(〈wi,x〉+ bi) in the first
layer, whose output is fed to a linear output neuron x 7→

∑w
i=1 vixi in the second layer1. Similarly,

a 3-layer network of width w is defined as

w∑
i=1

uiσ

 w∑
j=1

vi,jσ (〈wi,j ,x〉+ bi,j) + ci

 , (2)

where ui, ci, vi,j , bi,j ∈ R,wi,j ∈ Rd, i, j = 1, . . . , w are parameters of the network. Namely, the
outputs of the neurons in the first layer are fed to neurons in the second layer, and their outputs in
turn are fed to a linear output neuron in the third layer.

Clearly, to prove something on the separation between 2-layer and 3-layer networks, we need
to make some assumption on the activation function σ(·) (for example, if σ(·) is the identity, then
both 2-layer and 3-layer networks compute linear functions, hence there is no difference in their
expressive power). All we will essentially require is that σ(·) is universal, in the sense that a
sufficiently large 2-layer network can approximate any univariate Lipschitz function which is non-
constant on a bounded domain. More formally, we use the following assumption:

Assumption 1 Given the activation function σ, there is a constant cσ ≥ 1 (depending only on σ)
such that the following holds: For any L-Lipschitz function f : R → R which is constant outside
a bounded interval [−R,R], and for any δ, there exist scalars a, {αi, βi, γi}wi=1, where w ≤ cσ

RL
δ ,

such that the function

h(x) = a+

w∑
i=1

αi · σ(βix− γi)

satisfies
sup
x∈R
|f(x)− h(x)| ≤ δ.

1. Note that sometimes one also adds a constant bias parameter b to the output neuron, but this can be easily simulated
by a “constant” neuron i in the first layer where wi = 0 and vi, bi are chosen appropriately. Also, sometimes the
output neuron is defined to have a non-linearity as well, but we stick to linear output neurons, which is a very common
and reasonable assumption for networks computing real-valued predictions.
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This assumption is satisfied by the standard activation functions we are familiar with. First of all,
we provide in Appendix A a constructive proof for the ReLU function. For the threshold, sigmoid,
and more general sigmoidal functions (e.g. monotonic functions which satisfy limz→∞ σ(z) =
a, limz→−∞ σ(z) = b for some a 6= b in R), the proof idea is similar, and implied by the proof of
Theorem 1 of Debao (1993)2. Finally, one can weaken the assumed bound onw to any poly(R,L, 1/δ),
at the cost of a worse polynomial dependence on the dimension d in Thm. 1 part 1 below (see Sub-
section 4.4 for details).

In addition, for technical reasons, we will require the following mild growth and measurability
conditions, which are satisfied by virtually all activation functions in the literature, including the
examples discussed earlier:

Assumption 2 The activation function σ is (Lebesgue) measurable and satisfies

|σ(x)| ≤ C(1 + |x|α)

for all x ∈ R and for some constants C,α > 0.

Our main result is the following theorem, which implies that there are 3-layer networks of width
polynomial in the dimension d, which cannot be arbitrarily well approximated by 2-layer networks,
unless their width is exponential in d:

Theorem 1 Suppose the activation function σ(·) satisfies assumption 1 with constant cσ, as well
as assumption 2. Then there exist universal constants c, C > 0 such that the following holds: For
every dimension d > C, there is a probability measure µ on Rd and a function g : Rd → R with the
following properties:

1. g is bounded in [−2,+2], supported on {x : ‖x‖ ≤ C
√
d}, and expressible by a 3-layer

network of width Ccσd19/4.

2. Every function f , expressed by a 2-layer network of width at most cecd, satisfies

Ex∼µ (f(x)− g(x))2 ≥ c.

The proof is sketched in Sec. 2, and is formally presented in Sec. 4. Roughly speaking, g ap-
proximates a certain radial function g̃, depending only on the norm of the input. With 3 layers,
approximating radial functions (including g̃) to arbitrary accuracy is straightforward, by first ap-
proximating the squared norm function, and then approximating the univariate function acting on
the norm. However, performing this approximation with only 2 layers is much more difficult, and
the proof shows that exponentially many neurons are required to approximate g̃ to more than con-
stant accuracy. We conjecture (but do not prove) that a much wider family of radial functions also
satisfy this property.

We make the following additional remarks about the theorem:

2. Essentially, a single neuron with such a sigmoidal activation can express a (possibly approximate) single-step func-
tion, a combination of w such neurons can express a function with w such steps, and any L-Lipschitz function which
is constant outside [−R,R] can be approximated to accuracy δ with a function involving O(RL/δ) steps.
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Remark 2 (Activation function) The theorem places no constraints on the activation function σ(·)
beyond assumptions 1 and 2. In fact, the inapproximability result for the function g̃ holds even if
the activation functions are different across the first layer neurons, and even if they are chosen
adaptively (possibly depending on g̃), as long as they satisfy assumption 2.

Remark 3 (Constraints on the parameters) The theorem places no constraints whatsoever on the
parameters of the 2-layer networks, and they can take any values in R. This is in contrast to
related depth separation results in the context of threshold circuits, which do require the size of the
parameters to be constrained (see discussion of related work below).

Remark 4 (Properties of g) At least for specific activation functions such as the ReLU, sigmoid,
and threshold, the proof construction implies that g is poly(d)-Lipschitz, and the 3-layer network
expressing it has parameters bounded by poly(d).

Related Work

On a qualitative level, the question we are considering is similar to the question of Boolean cir-
cuit lower bounds in computational complexity: In both cases, we consider functions which can be
represented as a combination of simple computational units (Boolean gates in computational com-
plexity; neurons in neural networks), and ask how large or how deep this representation needs to be,
in order to compute or approximate some given function. For Boolean circuits, there is a relatively
rich literature and some strong lower bounds. A recent example is the paper Rossman et al. (2015),
which shows for any d ≥ 2 an explicit depth d, linear-sized circuit on {0, 1}n, which cannot be
non-trivially approximated by depth d − 1 circuits of size polynomial in n. That being said, it is
well-known that the type of computation performed by each unit in the circuit can crucially affect the
hardness results, and lower bounds for Boolean circuits do not readily translate to neural networks
of the type used in practice, which are real-valued and express continuous functions. For example,
a classical result on Boolean circuits states that the parity function over {0, 1}d cannot be computed
by constant-depth Boolean circuits whose size is polynomial in d (see for instance Håstad (1986)).
Nevertheless, the parity function can in fact be easily computed by a simple 2-layer, O(d)-width
real-valued neural network with most reasonable activation functions3.

A model closer to ours is a threshold circuit, which is a neural network where all neurons (in-
cluding the output neuron) has a threshold activation function, and the input is from the Boolean
cube (see Parberry (1994) for a survey). For threshold circuits, the main known result in our context
is that computing inner products mod 2 over d-dimensional Boolean vectors cannot be done with
a 2-layer network with poly(d)-sized parameters and poly(d) width, but can be done with a small
3-layer network (Hajnal et al. (1993)). Note that unlike neural networks in practice, the result in
Hajnal et al. (1993) is specific to the non-continuous threshold activation function, and considers
hardness of exact representation of a function by 2-layer circuits, rather than merely approximating
it. Following the initial publication of our paper, we were informed (Martens (2015)) that the proof
technique, together with techniques in the papers (Maass et al. (1994); Martens et al. (2013))), can

3. See Rumelhart et al. (1986), Figure 6, where reportedly the structure was even found automatically by back-
propagation. For a threshold activation function σ(z) = 1 {z ≥ 0} and input x = (x1, . . . , xd) ∈ {0, 1}d, the

network is given by x 7→
∑d+1
i=1 (−1)

i+1σ
(∑d

j=1 xj − i+
1
2

)
. In fact, we only need σ to satisfy σ(z) = 1 for

z ≥ 1
2

and σ(z) = 0 for z ≤ − 1
2

, so the construction easily generalizes to other activation functions (such as a
ReLU or a sigmoid), possibly by using a small linear combination of them to represent such a σ.
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possibly be used to show that inner product mod 2 is also hard to approximate, using 2-layer neural
networks with continuous activation functions, as long as the network parameters are constrained to
be polynomial in d, and that the activation function satisfies certain regularity conditions4. Even so,
our result does not pose any constraints on the parameters, nor regularity conditions beyond assump-
tions 1,2. Moreover, we introduce a new proof technique which is very different, and demonstrate
hardness of approximating not the Boolean inner-product-mod-2 function, but rather functions in
Rd with a simple geometric structure (namely, radial functions).

Moving to networks with real-valued outputs, one related field is arithmetic circuit complexity
(see Shpilka and Yehudayoff (2010) for a survey), but the focus there is on computing polynomials,
which can be thought of as neural networks where each neuron computes a linear combination or a
product of its inputs. Again, this is different than most standard neural networks used in practice,
and the results and techniques do not readily translate.

Recently, several works in the machine learning community attempted to address questions sim-
ilar to the one we consider here. Pascanu et al. (2013); Montufar et al. (2014) consider the number of
linear regions which can be expressed by ReLU networks of a given width and size, and Bianchini
and Scarselli (2014) consider the topological complexity (via Betti numbers) of networks with cer-
tain activation functions, as a function of the depth. Although these can be seen as measures of the
function’s complexity, such results do not translate directly to a lower bound on the approximation
error, as in Thm. 1. Delalleau and Bengio (2011); Martens and Medabalimi (2014) and Cohen et al.
(2015) show strong approximation hardness results for certain neural network architectures (such as
polynomials or representing a certain tensor structure), which are however fundamentally different
than the standard neural networks considered here.

Quite recently, Telgarsky (2015) gave a simple and elegant construction showing that for any
k, there are k-layer, O(1) wide ReLU networks on one-dimensional data, which can express a
sawtooth function on [0, 1] which oscillates O(2k) times, and moreover, such a rapidly oscillating
function cannot be approximated by poly(k)-wide ReLU networks with o(k/ log(k)) depth. This
also implies regimes with exponential separation, e.g. that there are k2-depth networks, which any
approximating k-depth network requires Ω(exp(k)) width. These results demonstrate the value of
depth for arbitrarily deep, standard ReLU networks, for a single dimension and using functions
which have an exponentially large Lipschitz parameter. In this work, we use different techniques,
to show exponential separation results for general activation functions, even if the number of layers
changes by just 1 (from two to three layers), and using functions in Rd whose Lipschitz parameter
is polynomial in d.

2. Proof Sketch

In a nutshell, the 3-layer network we construct approximates a radial function with bounded support
(i.e. one which depends on the input x only via its Euclidean norm ‖x‖, and is 0 for any x whose
norm is larger than some threshold). With 3 layers, approximating radial functions is rather straight-
forward: First, using assumption 1, we can construct a linear combination of neurons expressing the
univariate mapping z 7→ z2 arbitrarily well in any bounded domain. Therefore, by adding these
combinations together, one for each coordinate, we can have our network first compute (approxi-

4. See remark 20 in Martens et al. (2013). These conditions are needed for constructions relying on distributions over
a finite set (such as the Boolean hypercube). However, since we consider continuous distributions on Rd, we do not
require such conditions.
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Figure 1: The left figure represents ϕ(x) in d = 2 dimensions. The right figure represents a cropped
and re-scaled version, to better show the oscillations of ϕ beyond the big origin-centered
bump. The density of the probability measure µ is defined as ϕ2(·)

mately) the mapping x 7→ ‖x‖2 =
∑

i x
2
i inside any bounded domain, and then use the next layer

to compute some univariate function of ‖x‖2, resulting in an approximately radial function. With
only 2 layers, it is less clear how to approximate such radial functions. Indeed, our proof essentially
indicates that approximating radial functions with 2 layers can require exponentially large width.

To formalize this, note that if our probability measure µ has a well-behaved density function
which can be written as ϕ2(x) for some function ϕ, then the approximation guarantee in the theo-
rem, Eµ(f(x)− g(x))2, can be equivalently written as∫

(f(x)− g(x))2ϕ2(x)dx =

∫
(f(x)ϕ(x)− g(x)ϕ(x))2dx = ‖fϕ− gϕ‖2L2

. (3)

In particular, we will consider a density function which equals ϕ2(x), where ϕ is the inverse Fourier
transform of the indicator 1 {x ∈ B}, B being the origin-centered unit-volume Euclidean ball (the
reason for this choice will become evident later). Before continuing, we note that a formula for ϕ
can be given explicitly (see Lemma 6), and an illustration of it in d = 2 dimensions is provided
in Figure 2. Also, it is easily verified that ϕ2(x) is indeed a density function: It is clearly non-
negative, and by isometry of the Fourier transform,

∫
ϕ2(x)dx =

∫
ϕ̂2(x)dx =

∫
1 {x ∈ B}2 dx,

which equals 1 since B is a unit-volume ball.
Our goal now is to lower bound the right hand side of Eq. (3). To continue, we find it conve-

nient to consider the Fourier transforms f̂ϕ, ĝϕ of the functions fϕ, gϕ, rather than the functions
themselves. Since the Fourier transform is isometric, the above equals

‖f̂ϕ− ĝϕ‖2L2
.
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Luckily, the Fourier transform of functions expressible by a 2-layer network has a very particular
form. Specifically, consider any function of the form

f(x) =

k∑
i=1

fi(〈vi,x〉),

where fi : R → R (such as 2-layer networks as defined earlier). Note that f may not be square-
integrable, so formally speaking it does not have a Fourier transform in the standard sense of a
function on Rd. However, assuming |fi(x)| grows at most polynomially as x → ∞ or x → −∞,
it does have a Fourier transform in the more general sense of a tempered distribution (we refer the
reader to the proof for a more formal discussion). This distribution can be shown to be supported on⋃
i span{vi}: namely, a finite collection of lines5. The convolution-multiplication principle implies

that f̂ϕ equals f̂ ? ϕ̂, or the convolution of f̂ with the indicator of a unit-volume ball B. Since f̂ is
supported on

⋃
i span{vi}, it follows that

Supp(f̂ϕ) ⊆ T :=
k⋃
i=1

(span{vi}+B) .

In words, the support of f̂ϕ is contained in a union of tubes of bounded radius passing through the
origin. This is the key property of 2-layer networks we will use to derive our main theorem. Note
that it holds regardless of the exact shape of the fi functions, and hence our proof will also hold if
the activations in the network are different across the first layer neurons, or even if they are chosen
in some adaptive manner.

To establish our theorem, we will find a function g expressible by a 3-layer network, such that
ĝϕ has a constant distance (in L2 space) from any function supported on T (a union of k tubes as
above). Here is where high dimensionality plays a crucial role: Unless k is exponentially large in
the dimension, the domain T is very sparse when one considers large distances from the origin, in
the sense that

V old−1(T ∩ rSd−1)

V old−1(rSd−1)
. ke−d

(where Sd−1 is the d-dimensional unit Euclidean sphere, and V old−1 is the d − 1-dimensional
Hausdorff measure) whenever r is large enough with respect to the radius of B. Therefore, we need
to find a function g so that ĝϕ has a lot of mass far away from the origin, which will ensure that
‖f̂ϕ − ĝϕ‖2L2

will be large. Specifically, we wish to find a function g so that gϕ is radial (hence
ĝϕ is also radial, so having large mass in any direction implies large mass in all directions), and has
a significant high-frequency component, which implies that its Fourier transform has a significant
portion of its mass outside of the ball rB.

The construction and analysis of this function constitutes the technical bulk of the proof. The
main difficulty in this step is that even if the Fourier transform ĝ of g has some of its L2 mass
on high frequencies, it is not clear that this will also be true for ĝϕ = g ? 1 {B} (note that while

5. Roughly speaking, this is because each function x 7→ fi(〈vi,x〉) is constant in any direction perpendicular to vi,
hence do not have non-zero Fourier components in those directions. In one dimension, this can be seen by the fact
that the Fourier transform of the constant 0 function is the Dirac delta function, which equals 0 everywhere except at
the origin.
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convolving with a Euclidean ball increases the average distance from the origin in the L1 sense, it
doesn’t necessarily do the same in the L2 sense).

We overcome this difficulty by considering a random superposition of indicators of thin shells:
Specifically, we consider the function

g̃(x) =

N∑
i=1

εigi(x), (4)

where εi ∈ {−1,+1}, N = poly(d), and gi(x) = 1 {‖x‖ ∈ ∆i}, where ∆i are disjoint intervals of
width O(1/N) on values in the range Θ(

√
d). Note that strictly speaking, we cannot take our hard-

to-approximate function g to equal g̃, since g̃ is discontinuous and therefore cannot be expressed
by a 3-layer neural network with continuous activations functions. However, since our probability
distribution ϕ2 can be shown to have bounded density in the support of Eq. (4), we can use a 3-
layer network to approximate such a function arbitrarily well with respect to the distribution ϕ2 (for
example, by computing

∑
i εigi(x) as above, with each hard indicator function gi replaced by a

Lipschitz function, which differs from gi on a set with arbitrarily small probability mass). Letting
the function g be such a good approximation, we get that if no 2-layer network can approximate the
function g̃ in Eq. (4), then it also cannot approximate its 3-layer approximation g.

Let us now explain why the function defined in Eq. (4) gives us what we need. For large N ,
each gi is supported on a thin Euclidean shell, hence giϕ is approximately the same as cigi for
some constant ci. As a result, g̃(x)ϕ(x) ≈

∑N
i=1 εicigi(x), so its Fourier transform (by linearity)

is ̂̃gϕ(w) ≈
∑N

i=1 εiciĝi(w). Since gi is a simple indicator function, its Fourier transform ĝi(w) is
not too difficult to compute explicitly, and involves an appropriate Bessel function which turns out
to have a sufficiently large mass sufficiently far away from the origin.

Knowing that each summand gi has a relatively large mass on high frequencies, our only remain-
ing objective is to find a choice for the signs εi so that the entire sum will have the same property.
This is attained by a random choice of signs: it is an easy observation that given an orthogonal pro-
jection P in a Hilbert space H , and any sequence of vectors v1, ..., vN ∈ H such that |Pvi| ≥ δ|vi|,
one has that E

[
|P
∑

i εivi|2
]
≥ δ2

∑
i |vi|2 when the signs εi are independent Bernoulli ±1 vari-

ables. Using this observation with P being the projection onto the subspace spanned by functions
supported on high frequencies and with the functions ĝi, it follows that there is at least one choice
of the εi’s so that a sufficiently large portion of g̃’s mass is on high frequencies.

3. Preliminaries

We begin by defining some of the standard notation we shall use. We let N and R denote the
natural and real numbers, respectively. Bold-faced letters denote vectors in d-dimensional Euclidean
space Rd, and plain-faced letters to denote either scalars or functions (distinguishing between them
should be clear from context). L2 denotes the space of squared integrable functions (

∫
x f

2(x)dx <
∞, where the integration is over Rd), and L1 denotes the space of absolutely integrable functions
(
∫
x |f(x)|dx <∞). ‖·‖ denotes the Euclidean norm, 〈·, ·〉L2 denotes inner product in L2 space (for

functions f, g, we have 〈f, g〉L2 =
∫
f(x)g(x)dx), ‖·‖L2

denotes the standard norm in L2 space (
‖f‖2L2

=
∫
x f(x)2dx), and ‖·‖L2(µ) denotes the L2 space norm weighted by a probability measure

µ (namely ‖f‖2L2(µ) =
∫
f(x)2dµ(x)). Given two functions f, g, we let fg be shorthand for the
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Figure 2: Bessel function of the first kind, J20(·)

function x 7→ f(x) · g(x), and f + g be shorthand for x 7→ f(x) + g(x). Given two sets A,B in
Rd, we let A+B = {a+ b : a ∈ A, b ∈ B} and AC = {a ∈ Rd : a /∈ A}

Fourier Transform. For a function f : R→ R, our convention for the Fourier transform is

f̂(w) =

∫
R

exp (−2πixw) f(x)dx

whenever the integral is well defined. This is generalized for f : Rd → R by

f̂(w) =

∫
Rd

exp (−2πi〈x,w〉) f(x)dx. (5)

Radial Functions. A radial function f : Rd 7→ R is such that f(x) = f(x′) for any x,x′

such that ‖x‖ = ‖x′‖. When dealing with radial functions, which are invariant to rotations, we
will somewhat abuse notation and interchangeably use vector arguments x to denote the value of
the function at x, and scalar arguments r to denote the value of the same function for any vector of
norm r. Thus, for a radial function f : Rd → R, f(r) equals f(x) for any x such that ‖x‖ = r.

Euclidean Spheres and Balls. Let Sd−1 be the unit Euclidean sphere in Rd, Bd be the d-
dimensional unit Euclidean ball, and letRd be the radius so thatRdBd has volume one. By standard
results, we have the following useful lemma:

Lemma 5 Rd =
√

1
π

(
Γ
(
d
2 + 1

))1/d
, which is always between 1

5

√
d and 1

2

√
d.

Bessel Functions. Let Jν : R 7→ R denote the Bessel function of the first kind, of order ν. The
Bessel function has a few equivalent definitions, for example Jν(x) =

∑∞
m=0

(−1)m

m!Γ(m+ν+1)

(
x
2

)2m+ν

where Γ(·) is the Gamma function. Although it does not have a closed form, Jν(x) has an oscillating

shape, which for asymptotically large x behaves as
√

2
πx cos

(
− (2ν+1)π

4 + x
)

. Figure 3 illustrates
the function for ν = 20. In appendix C, we provide additional results and approximations for the
Bessel function, which are necessary for our proofs.
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4. Proof of Thm. 1

In this section, we provide the proof of Thm. 1. Note that some technical proofs, as well as some
important technical lemmas on the structure of Bessel functions, are deferred to the appendix.

4.1. Constructions

As discussed in Sec. 2, our theorem rests on constructing a distribution µ and an appropriate function
g, which is easy to approximate (w.r.t. µ) by small 3-layer networks, but difficult to approximate
using 2-layer networks. Thus, we begin by formally defining g, µ that we will use.

First, µ will be defined as the measure whose density is dµ
dx = ϕ2(x), where ϕ(x) is the Fourier

transform of the indicator of a unit-volume Euclidean ball 1 {w ∈ RdBd}. Note that since the
Fourier transform is an isometry,

∫
Rd ϕ(x)2dx =

∫
Rd 1 {w ∈ RdBd}

2 dw = 1, hence µ is indeed
a probability measure. The form of ϕ is expressed by the following lemma:

Lemma 6 Let ϕ(x) be the Fourier transform of 1 {w ∈ RdBd}. Then

ϕ(x) =

(
Rd
‖x‖

)d/2
Jd/2(2πRd‖x‖).

The proof appears in Appendix B.1.
To define our hard-to-approximate function, we introduce some notation. Let α ≥ 1 and γ be

some large numerical constants to be determined later, and set N = γd2, assumed to be an integer
(essentially, we need α, γ to be sufficiently large so that all the lemmas we construct below would
hold). Consider the intervals

∆i =

[(
1 +

i− 1

N

)
α
√
d ,

(
1 +

i

N

)
α
√
d

]
, i = 1, 2, . . . , N.

We split the intervals to “good” and “bad” intervals using the following definition:

Definition 7 ∆i is a good interval (or equivalently, i is good) if for any x ∈ ∆i

J2
d/2(2πRdx) ≥ 1

80πRdx
.

Otherwise, we say that ∆i is a bad interval.

For any i, define

gi(x) =

{
1 {x ∈ ∆i} i good
0 i bad

(6)

By definition of a “good” interval and Lemma 6, we see that gi is defined to be non-zero, when the
value of ϕ on the corresponding interval ∆i is sufficiently bounded away from 0, a fact which will
be convenient for us later on.

Our proof will revolve around the L2 function

g̃(x) =
N∑
i=1

εigi(x),

which as explained in Sec. 2, will be shown to be easy to approximate arbitrarily well with a 3-layer
network, but hard to approximate with a 2-layer network.

10
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4.2. Key Lemmas

In this subsection, we collect several key technical lemmas on gi and ϕ, which are crucial for the
main proof. The proofs of all the lemmas can be found in Appendix B.

The following lemma ensures that ϕ(x) is sufficiently close to being a constant on any good
interval:

Lemma 8 If d ≥ 2, α ≥ c and N ≥ cα3/2d2 (for some sufficiently large universal constant c),
then inside any good interval ∆i, ϕ(x) has the same sign, and

supx∈∆i
|ϕ(x)|

infx∈∆i |ϕ(x)|
≤ 1 + d−1/2.

The following lemma ensures that the Fourier transform ĝi of gi has a sufficiently large part of
its L2 mass far away from the origin:

Lemma 9 Suppose N ≥ 100αd3/2. Then for any i,∫
(2RdBd)C

ĝi
2(w)dw ≥ 1

2

∫
Rd
ĝi

2(w)dw,

where ĝi is the Fourier transform of gi.

The following lemma ensures that ĝiϕ also has sufficiently large L2 mass far away from the
origin:

Lemma 10 Suppose that α ≥ C, N ≥ Cα3/2d2 and d > C, where C > 0 is a universal constant.
Then for any i, ∫

(2RdBd)C
((̂giϕ)(w))2dw ≥ 1

4

∫
Rd

(ϕ(x)gi(x))2dx.

The following lemma ensures that a linear combination of the gi’s has at least a constant L2(ϕ2)
probability mass.

Lemma 11 Suppose that α ≥ c and N ≥ c(αd)3/2 for some sufficiently large universal constant
c, then for every choice of εi ∈ {−1,+1}, i = 1, . . . , N , one has

∫ ( N∑
i=1

εigi(x)

)2

ϕ2(x)dx ≥ 0.003

α
.

Finally, the following lemma guarantees that the non-Lipschitz function
∑N

i=1 εigi(x) can be
approximated by a Lipschitz function (w.r.t. the density ϕ2). This will be used to show that∑N

i=1 εigi(x) can indeed be approximated by a 3-layer network.

Lemma 12 Suppose that d ≥ 2. For any choice of εi ∈ {−1,+1}, i = 1, . . . , N , there exists an
N -Lipschitz function f , supported on [α

√
d, 2α

√
d] and with range in [−1,+1], which satisfies

∫ (
f(x)−

N∑
i=1

εigi(x)

)2

ϕ2(x)dx ≤ 3

α2
√
d
.

11
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4.3. Inapproximability of the Function g̃ with 2-Layer Networks

The goal of this section is to prove the following proposition.

Proposition 13 Fix a dimension d, suppose that d > C, α > C and N ≥ Cα3/2d2 and let k be
an integer satisfying

k ≤ cecd (7)

with c, C > 0 being universal constants. There exists a choice of εi ∈ {−1,+1}, i = 1, . . . , N ,
such that the function g̃(x) =

∑N
i=1 εigi(‖x‖) has the following property. Let f : Rd → R be of

the form

f(x) =
k∑
i=1

fi(〈x,vi〉) (8)

for vi ∈ Sd−1, where fi : R→ R are measurable functions satisfying

|fi(x)| ≤ C ′(1 + |x|κ)

for constants C ′, κ > 0. Then one has

‖f − g̃‖L2(µ) ≥ δ/α

where δ > 0 is a universal constant.

The proof of this proposition requires a few intermediate steps. In the remainder of the section,
we will assume that N, d, α are chosen to be large enough to satisfy the assumptions of Lemma 11
and Lemma 10. In other words we assume that d > C and N ≥ Cα3/2d2 for a suitable universal
constant C > 0. We begin with the following:

Lemma 14 Suppose that d,N are as above. There exists a choice of εi ∈ {−1, 1}, i = 1, . . . , N
such that ∫

(2RdBd)C

 ̂(∑
i

εigiϕ

)
(w)

2

dw ≥ c

for a universal constant c > 0.

Proof Suppose that each εi is chosen independently and uniformly at random from {−1,+1}. It
suffices to show that

E

∫
(2RdBd)C

 ̂(∑
i

εigiϕ

)
(w)

2

dw

 ≥ c
for some universal constant c > 0, since that would ensure there exist some choice of ε1, . . . , εN
satisfying the lemma statement. Define h(w) = 1

{
w ∈ (2RdBd)

C
}

and consider the operator

P (g) = ̂̂gh.

12
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This is equivalent to removing low-frequency components from g (in the Fourier domain), and there-
fore is an orthogonal projection. According to Lemma 10 and isometry of the Fourier transform, we
have

‖P (giϕ)‖2L2
≥ 1

4
‖gi‖2L2(µ) (9)

for every good i. Moreover, an application of Lemma 11, and the fact that 〈gi, gj〉L2 = 0 for any
i 6= j (as gi, gj have disjoint supports) tells us that

N∑
i=1

‖gi‖2L2(µ) =

∥∥∥∥∥
N∑
i=1

gi

∥∥∥∥∥
2

L2(µ)

≥ c (10)

for a universal constant c > 0. We finally get,

E

∫
(2RdBd)C

 ̂(
N∑
i=1

εigiϕ

)
(w)

2

dw

 = E

∫
Rd

((
N∑
i=1

εiP (giϕ)

)
(x)

)2

dx


= E

∥∥∥∥∥
N∑
i=1

εiP (giϕ)

∥∥∥∥∥
2

L2

=

N∑
i,j=1

E[εiεj ]〈P (giϕ), P (gjϕ)〉L2

=
N∑
i=1

‖P (giϕ)‖2L2

Eq. (9)

≥ 1

4

N∑
i,j=1

‖gi‖2L2(µ)

Eq. (10)

≥ c/4.

for a universal constant c > 0.

Claim 15 Let f be a function such that fϕ ∈ L2, and is of the form in Eq. (8). Suppose that the
functions fi are measurable functions satisfying

|fi(x)| ≤ C(1 + |x|α) (11)

for constants C,α > 0. Then,

Supp(f̂ϕ) ⊂
k⋃
i=1

(Span{vi}+RdBd) (12)

13
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Proof Informally, the proof is based on the convolution-multiplication and linearity principles of
the Fourier transform, which imply that if f =

∑
i fi, where each fi as well as ϕ have a Fourier

transform, then f̂ϕ =
∑

i f̂iϕ =
∑

i f̂i ?ϕ̂. Roughly speaking, in our case each f̂i(x) = f̂i(〈x,vi〉)
(as a function in Rd) is shown to be supported on Span{vj}, so its convolution with ϕ̂ (which is an
indicator for the ball RdBd) must be supported on Span{vi} + RdBd. Summing over i gives the
stated result.

Unfortunately, this simple analysis is not formally true, since we are not guaranteed that fi has
a Fourier transform as a function in L2 (this corresponds to situations where the integral in the
definition of the Fourier transform in Eq. (5) does not converge). However, at least for functions
satisfying the claim’s conditions, the Fourier transform still exists as a generalized function, or
tempered distribution, over Rd, and using this object we can attain the desired result.

We now turn to provide the formal proof and constructions, starting with a description of tem-
pered distributions and their relevant properties (see (Hunter and Nachtergaele, 2001, Chapter 11)
for a more complete survey). To start, let S denote the space of Schwartz functions 6 on Rd. A
tempered distribution µ in our context is a continuous linear operator from S to R (this can also be
viewed as an element in the dual space S∗). In particular, any measurable function h : Rd 7→ R,
which satisfies a polynomial growth condition similar to Eq. (11), can be viewed as a tempered
distribution defined as

ψ 7→ 〈h, ψ〉 :=

∫
Rd
h(x)ψ(x)dx,

where ψ ∈ S. Note that the growth condition ensures that the integral above is well-defined. The
Fourier transform ĥ of a tempered distribution h is also a tempered distribution, and defined as

〈ĥ, ψ〉 := 〈h, ψ̂〉,

where ψ̂ is the Fourier transform of ψ. It can be shown that this directly generalizes the standard
notion of Fourier transforms of functions. Finally, we say that a tempered distribution h is supported
on some subset of Rd, if 〈h, ψ〉 = 0 for any function ψ ∈ S which vanishes on that subset.

With these preliminaries out of the way, we turn to the setting considered in the claim. Let f̂i
denote the Fourier transform of fi (possibly as a tempered distribution, as described above), the
existence of which is guaranteed by the fact that fi is measurable and by Eq. (11). We also define,
for ψ : Rd → R and 1 ≤ i ≤ N , a corresponding function ψi : R→ R by

ψi(x) = ψ(xvi),

and define the tempered distribution µi (over Schwartz functions in Rd) as

〈µi, ψ〉 := 〈fi, ψ̂i〉,

which is indeed an element of S∗ by the linearity of the Fourier transform, by the continuity of
ψ → ψi(x) with respect to the topology of S and by the dominated convergence theorem. Finally,
define

f̃i(x) = fi(〈x,vi〉).

6. This corresponds to infinitely-differentiable functions ψ : Rd 7→ R with super-polynomially decaying values and

derivatives, in the sense that supx

(
xα1
1 · x

α2
2 · · ·x

αd
d

∂α1

∂x
α1
1

· ∂
α2

∂x
α2
2

· · · ∂
αd

∂x
αd
d

f(x)

)
<∞ for all indices α1, . . . , αd.

14
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Using the fact that7 ∫
Rd
ĝ(x)dx = g(0) (13)

for any g ∈ S, recalling that vi has unit norm, and letting v⊥i denote the subspace of vectors
orthogonal to vi, we have the following for any ψ ∈ S:

〈f̃i, ψ̂〉 =

∫
Rd
f̃i(x)ψ̂(x)dx =

∫
R

∫
v⊥i

f̃i(x + viy)ψ̂(x + viy)dxdy (14)

=

∫
R
fi(y)

∫
v⊥i

ψ̂(x + viy)dxdy

=

∫
R
fi(y)

∫
v⊥i

∫
Rd
ψ(w) exp(−2πi〈w,x + viy〉)dwdxdy

=

∫
R
fi(y)

∫
v⊥i

∫
R

∫
v⊥i

ψ(w1 + viw2) exp(−2πi〈w1 + viw2,x + viy〉)dw1dw2dxdy

=

∫
R
fi(y)

∫
R

exp(−2πiw2y)

∫
v⊥i

∫
v⊥i

ψ(w1 + viw2) exp(−2πi〈w1,x〉)dw1dxdw2dy

(13)
=

∫
R
fi(y)

∫
R

exp(−2πiw2y)ψ(viw2)dw2dy

=

∫
R
fi(y)ψ̂(viy)dy =

∫
R
fi(y)ψ̂i(y)dy = 〈fi, ψ̂i〉 = 〈µi, ψ〉,

where the use of Fubini’s theorem is justified by the fact that ψ ∈ S.
We now use the convolution-multiplication theorem (see e.g., (Hunter and Nachtergaele, 2001,

Theorem 11.35)) according to which if f, g ∈ L1 then

f̂ ? g = f̂ ĝ. (15)

Using this, we have the following for every ψ ∈ S:

〈̂̃fiϕ,ψ〉 = 〈f̃iϕ, ψ̂〉 = 〈f̃i, ϕψ̂〉
(15)
= 〈f̃i, ̂̂ϕ ? ψ〉

(14)
= 〈µi, ϕ̂ ? ψ〉 = 〈µi,1 {RdBd} ? ψ〉.

Based on this equation, we now claim that 〈̂̃fiϕ,ψ〉 = 0 for any ψ ∈ S supported on the comple-

ment of Span{vi} + RdBd. This would imply that the tempered distribution ̂̃fiϕ is supported in
Span{vi}+RdBd, and therefore f̂ϕ is supported in

⋃k
i=1 (Span{vi}+RdBd) (by linearity of the

Fourier transform and the fact that f =
∑k

i=1 f̃i). Since the Fourier transform of fϕ as a tempered
distribution coincides with the standard one (as we assume fϕ ∈ L2), the result follows.

7. This is because
∫
ĝ(x)dx =

∫ ∫
g(x) exp(−2πi〈x,w〉)dwdx =

∫
g(x)

(∫
exp(−2πi〈x,w〉) · 1dw

)
dx =∫

g(x)δ(x)dx = g(0), where δ(·) is the Dirac delta function, which is the Fourier transform of the constant 1
function. See also (Hunter and Nachtergaele, 2001, Chapter 11, Example 11.31).
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It remains to prove that f̂iϕ(ψ) = 0 for any ψ ∈ S supported on the complement of Span{vi}+
RdBd. For such ψ, by definition of a convolution, 1 {RdBd} ? ψ is supported on the comple-
ment of Span{vi}. However, µi is supported on Span{vi} (since if ψ vanishes on vi, then ψi
is the zero function, hence ψ̂i is also the zero function, and 〈µi, ψ〉 = 〈fi, ψ̂i〉 = 0). Therefore,

〈µi,1 {RdBd} ? ψ〉 = 0, which by the last displayed equation, implies that 〈̂̃fiϕ,ψ〉 = 0 as re-
quired.

Lemma 16 Let q, w be two functions of unit norm in L2. Suppose that q satisfies

Supp(q) ⊂
k⋃
j=1

(Span{vj}+RdBd) (16)

for some k ∈ N. Moreover, suppose that w is radial and that
∫

2RdBd
w(x)2dx ≤ 1 − δ for some

δ ∈ [0, 1]. Then
〈q, w〉L2 ≤ 1− δ/2 + k exp(−cd)

where c > 0 is a universal constant.

Proof Define A = (2RdBd)
C and denote

T =
k⋃
j=1

(Span{vj}+RdBd)

so that T contains the support of q(·). For each r > 0, define

h(r) =
V old−1(rSd−1 ∩ T )

V old−1(rSd−1)
,

where Sd−1 is the Euclidean sphere in Rd. Since T is star shaped, the function h(r) is non-
increasing. We claim that there exists a universal constant c > 0 such that

h(2Rd) ≤ k exp(−cd). (17)

Indeed, fix v ∈ Sd−1 and consider the tube T0 = Span{v} + RdBd. Let z be a uniform random
point in 2RdSd−1. We have by a standard calculation (See e.g., (Sodin, 2007, Section 2))

Pr(z ∈ T0) = Pr(‖z‖2 − 〈z,v〉2 ≤ R2
d)

= Pr(4R2
d − 〈z,v〉2 ≤ R2

d) = Pr(|〈z,v〉| ≥
√

3Rd)

=

∫ 1√
3/2(1− t2)(d−3)/2∫ 1
0 (1− t2)(d−3)/2

dt ≤ exp(−cd).

Using a union bound and the definition of h, equation Eq. (17) follows.
Next, define

q̃(x) =

∫
‖x‖Sd−1 q(y)dHd−1(y)

V old−1(‖x‖Sd−1)

16
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to be the averaging of q(·) with respect to rotations (in the above formula Hd−1 denotes the d − 1
dimensional Hausdorff measure, i.e. the standard measure in d − 1 dimensions). We have the
following: Since w(·) is radial and has unit L2 norm, and we assume q(·) is supported on T , we
have∫
A
w(x)q(x)dx

(1)
=

∫
A
w(x)q̃(x)dx

(2)

≤ ‖w‖L2
‖q̃1 {A}‖L2

(3)
=

√∫ ∞
2Rd

q̃(r)2V old−1(rSd−1)dr

=

√∫ ∞
2Rd

V old−1(rSd−1)

(
1

V old−1(rSd−1)

∫
rSd−1∩T

q(y)dHd−1(y)

)2

dr

=

√∫ ∞
2Rd

h(r)2V old−1(rSd−1)

(
1

V old−1(rSd−1 ∩ T )

∫
rSd−1∩T

q(y)dHd−1(y)

)2

dr

(4)

≤

√∫ ∞
2Rd

h(r)2V old−1(rSd−1)

(
1

V old−1(rSd−1 ∩ T )

∫
rSd−1∩T

q(y)2dHd−1(y)

)
dr

=

√∫ ∞
2Rd

h(r)

∫
rSd−1

q2(y)dHd−1(y)dr

(5)

≤
√
h(2Rd) ‖q1 {A}‖L2

(6)

≤ k exp(−cd/2).

In the above, (1) follows from w(·) being radial; (2) follows from Cauchy-Schwartz; (3) follows
from w(·) having unit L2 norm; (4) follows from the fact that the term being squared is the expec-
tation of q(y) where y is uniformly distributed in rSd−1 ∩ T , and we have (Ey[q(y)])2 ≤ Ey[q2(y)]
by Jensen’s inequality; (5) follows from h(·) being non-increasing; and (6) follows from Eq. (17)
and the fact that q(·) has unit L2 norm.

As a result of these calculations, we have

〈q, w〉L2 =

∫
A
w(x)q(x)dx +

∫
AC

w(x)q(x)dx

≤ k exp(−cd/2) + ‖q‖L2

∥∥w1{AC}∥∥
L2

= k exp(−cd/2) + 1 ·

√∫
AC

w2(x)dx

≤ k exp(−cd/2) +
√

1− δ.

where we used the assumption that q(·) is unit norm and that
∫
AC w

2(x)dx =
∫

(2RdBd)C w
2(x)dx ≤

1− δ. Since
√

1− δ ≤ 1− 1
2δ for any δ ∈ [0, 1], the result follows.

Proof [Proof of Proposition 13] Define

g̃(x) =
∑
i

εigi(|x|)

17
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where (εi) are the signs provided by Lemma 14. According to Lemma 11, we have

‖g̃‖L2(µ) ≥ c1/α (18)

for a universal constant c1 > 0. Note that the function g̃ is bounded between −1 and 1. Define the
function w =

̂̃gϕ
‖g̃ϕ‖L2

. By construction (hence according to Lemma 14) we have

∫
2RdBd

w(x)2dx = 1−
∫

2RdBd
̂̃gϕ(x)2dx

‖g̃ϕ‖2L2

≤ 1−
∫

2RdBd
̂̃gϕ(x)2dx

‖ϕ‖2L2

≤ 1− c2,

for a universal constant c2 > 0, where in the first inequality we used the fact that |g̃(x)| ≤ 1 for all
x.

Next, define the function q = f̂ϕ
‖fϕ‖L2

, where f is an arbitrary function having the form in

Eq. (8). Thanks to the assumptions on the functions fi, we may invoke8 Claim 15, by which we
observe that the functions w, q satisfy the assumptions of Lemma 16. Thus, as a consequence of
this lemma we obtain that

〈q, w〉L2 ≤ 1− c2/2 + k exp(−c3d) (19)

for a universal constant c3 > 0. Next, we claim that since ‖q‖L2
= ‖w‖L2

= 1, we have for every
scalars β1, β2 > 0 that

‖β1q − β2w‖L2
≥ β2

2
‖q − w‖L2

. (20)

Indeed, we may clearly multiply both β1 and β2 by the same constant affecting the correctness of
the formula, thus we may assume that β2 = 1. It thus amounts to show that for two unit vectors v, u
in a Hilbert space, one has that minβ>0 ‖βv − u‖2 ≥ 1

4‖v − u‖
2. We have

min
β
‖βv − u‖2 = min

β

(
β2‖v‖2 − 2β〈v, u〉+ ‖u‖2

)
= min

β

(
β2 − 2β〈v, u〉+ 1

)
= 1− 〈v, u〉2 =

1

2
‖v − u‖2

which in particular implies formula Eq. (20).
Combining the above, and using the fact that q, w have unit L2 norm, we finally get

‖f − g̃‖L2(µ) = ‖fϕ− g̃ϕ‖L2
=
∥∥∥f̂ϕ− ̂̃gϕ∥∥∥

L2

=
∥∥(‖fϕ‖L2

)
q(·)−

(
‖g̃ϕ‖L2

)
w(·)

∥∥
L2

Eq. (20)

≥ 1

2
‖q − w‖L2

‖g̃ϕ‖L2
=

1

2
‖q − w‖L2

‖g̃‖L2(µ)

Eq. (18)

≥ 1

2

√
2(1− 〈q, w〉L2)

c1

α
Eq. (19)

≥ c1

2α

√
2 max(c2/2− k exp(−c3d), 0) ≥

c1
√
c2

4α

8. Claim 15 also requires that fϕ is an L2 function, but we can assume this without loss of generality: Otherwise,
‖fϕ‖L2

=∞, and since g̃ϕ is anL2 function with ‖g̃ϕ‖L2
<∞, we would have ‖f − g̃‖2L2(µ)

= ‖fϕ− g̃ϕ‖2L2
=

∞, in which case the proposition we wish to prove is trivially true.
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where in the last inequality, we use the assumption in Eq. (7), choosing c = min{c2/4, c3}. The
proof is complete.

4.4. Approximability of the Function g̃ with 3-Layer Networks

The next ingredient missing for our proof is the construction of a 3-layer function which approxi-
mates the function g̃ =

∑N
i=1 εigi.

Proposition 17 There is a universal constant C > 0 such that the following holds. Let δ ∈ (0, 1).
Suppose that d ≥ C and that the functions gi are constructed as in Eq. (6). For any choice of
εi ∈ {−1,+1}, i = 1, . . . , N , there exists a function g expressible by a 3-layer network of width at
most 8cσ

δ α
3/2Nd11/4 + 1, and with range in [−2,+2], such that∥∥∥∥∥g(x)−

N∑
i=1

εigi(‖x‖)

∥∥∥∥∥
L2(µ)

≤
√

3

αd1/4
+ δ.

The proof of this proposition relies on assumption 1, which ensures that we can approximate
univariate functions using our activation function. As discussed before Thm. 1, one can also plug in
weaker versions of the assumption (i.e. worse polynomial dependence of the width w onR,L, 1/δ),
and get versions of proposition 17 where the width guarantee has worse polynomial dependence on
the parametersN,α, d, δ. This would lead to versions of the Thm. 1 with somewhat worse constants
and polynomial dependence on the dimension d.

For this proposition, we need a simple intermediate result, in which an approximation for radi-
ally symmetric Lipschitz functions in Rd, using assumption 1, is constructed.

Lemma 18 Suppose the activation function σ satisfies assumption 1. Let f be an L-Lipschitz
function supported on [r,R], where r ≥ 1. Then for any δ > 0, there exists a function g expressible
by a 3-layer network of width at most 2cσd2R2L√

rδ
+ 1, such that

sup
x∈Rd

∣∣g(x)− f(‖x‖)
∣∣ < δ.

Proof Define the 2R-Lipschitz function

l(x) = min{x2, R2},

which is constant outside [−R,R], as well as the function

`(x) =
d∑
i=1

l(xi) =
d∑
i=1

min{x2
i , R

2}

on Rd. Applying assumption 1 on l(·), we can obtain a function l̃(x) having the form a+
∑w

i=1 αiσ(βix−
γi) so that

sup
x∈R

∣∣∣l̃(x)− l(x)
∣∣∣ ≤ √rδ

dL
,
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and where the width parameter w is at most 2cσdR2L√
rδ

. Consequently, the function

˜̀(x) =
d∑
i=1

l̃(xi)

can be expressed in the form a+
∑w

i=1 αiσ(βix− γi) where w ≤ 2cσd2R2L√
rδ

, and it holds that

sup
x∈Rd

∣∣∣˜̀(x)− `(x)
∣∣∣ ≤ √rδ

L
. (21)

Next, define

s(x) =

{
f(
√
x) x ≥ 0

0 x < 0
.

Since f is L-Lipschitz and supported on {x : r ≤ x ≤ R}, it follows that s is L
2
√
r
-Lipschitz and

supported on the interval [−R2, R2]. Invoking assumption 1 again, we can construct a function
s̃(x) = a+

∑w
i=1 αiσ(βix− γi) satisfying

sup
x∈R
|s̃(x)− s(x)| < δ/2, (22)

where w ≤ cσR2L√
rδ

.

Now, let us consider the composition g = s̃ ◦ ˜̀, which by definition of s̃, ˜̀, has the form

a+

w∑
i=1

uiσ

 w∑
j=1

vi,jσ (〈wi,j ,x〉+ bi,j) + ci

 (23)

for appropriate scalars a, ui, ci, vi,j , bi,j and vectors wi,j , and where w is at most

max

{
2cσd

2R2L√
rδ

,
cσR

2L√
rδ

}
=

2cσd
2R2L√
rδ

.

Eq. (23) is exactly a 3-layer network (compare to Eq. (2)), except that there is an additional constant
term a. However, by increasing w by 1, we can simulate a by an additional neuron x 7→ a

σ(σ(0)+z) ·
σ(σ(〈0,x〉) + z), where z is some scalar such that σ(σ(0) + z) 6= 0 (note that if there is no such
z, then σ is the zero function, and therefore cannot satisfy assumption 1). So, we can write the
function g as a 3-layer network (as defined in Eq. (2)), of width at most

2cσd
2R2L√
rδ

+ 1.

All the remains now is to prove that supx∈Rd |g(x) − f(‖x‖)| ≤ δ. To do so, we note that for any
x ∈ Rd, we have

|g(x)− f(‖x‖)| =
∣∣∣s̃(˜̀(x))− f(‖x‖)

∣∣∣
≤
∣∣∣s̃(˜̀(x))− s(˜̀(x)

∣∣∣+
∣∣∣s(˜̀(x)− s(`(x))

∣∣∣+ |s(`(x))− f(‖x‖)|

=
∣∣∣s̃(˜̀(x))− s(˜̀(x)

∣∣∣+
∣∣∣s(˜̀(x)− s(`(x))

∣∣∣+
∣∣∣f(
√
`(x))− f(‖x‖)

∣∣∣ .
Let us consider each of the three absolute values:
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• The first absolute value term is at most δ/2 by Eq. (22).

• The second absolute value term, since s is L
2
√
r
-Lipschitz, is at most L

2
√
r
|˜̀(x)− `(x)|, which

is at most δ/2 by Eq. (21).

• As to the third absolute value term, if ‖x‖2 ≤ R2, then `(x) = ‖x‖2 and the term is zero. If
‖x‖2 > R2, then it is easy to verify that `(x) ≥ R2, and since f is continuous and supported
on [r,R], it follows that f(

√
`(x) = f(‖x‖) = 0, and again, we get a zero.

Summing the above, we get that |g(x)− f(‖x‖)| ≤ δ
2 + δ

2 + 0 = δ as required.

We are now ready to prove Proposition 17, which is essentially a combination of Lemmas 12
and 18.
Proof [Proof of Proposition 17] First, invoke Lemma 12 to obtain an N -Lipschitz function h with
range in [−1,+1] which satisfies∥∥∥∥∥h(x)−

N∑
i=1

εigi(x)

∥∥∥∥∥
L2(µ)

=

√√√√∫
Rd

(
f̃(x)−

N∑
i=1

εigi(x)

)2

ϕ2(x)dx ≤
√

3

αd1/4
. (24)

Next, we use Lemma 18 withR = 2α
√
d, r = α

√
d, L = N to construct a function g expressible by

a 3-layer network of width at most 8cσ
δ α

3/2Nd11/4 + 1, satisfying supx∈Rd |g(x)−h(x)| ≤ δ. This
implies that ‖g − h‖L2(µ) ≤ δ, and moreover, that the range of g is in [−1 − δ, 1 + δ] ⊆ [−2,+2]
(since we assume δ < 1). Combining with Eq. (24) and using the triangle inequality finishes the
proof.

4.5. Finishing the Proof

We are finally ready to prove our main theorem.
Proof [Proof of Theorem 1] The proof is a straightforward combination of propositions 13 and 17
(whose conditions can be verified to follow immediately from the assumptions used in the theorem).
We first choose α = C and N = dCα3/2d2e with the constant C taken from the statement of
Proposition 13. By invoking this proposition we obtain signs εi ∈ {−1, 1} and a universal constant
δ1 > 0 for which any function f expressed by a bounded-size 2-layer network satisfies

‖g̃ − f‖L2(µ) ≥ δ1, (25)

where g̃(x) =
∑N

i=1 εigi(‖x‖). Next, we use Proposition 17 with δ = min{δ1/2, 1} to approximate
g̃ by a function g expressible by a 3-layer network of width at most

16cσ
δ

α3/2Nd11/4 + 1 =
16cσ
δ

C3/2dC5/2d2ed11/4 + 1 ≤ C ′cσd
19/4,

(where C ′ is a universal constant depending on the universal constants C, δ1), so that

‖g̃ − g‖L2(µ) ≤ δ ≤ δ1/2. (26)

Combining Eq. (25) and Eq. (26) with the triangle inequality, we have that ‖f − g‖L2(µ) ≥ δ1/2
for any 2-layer function f . The proof is complete.
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circuits of bounded depth. Journal of Computer and System Sciences, 46(2):129–154, 1993.

J. Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 6–20. ACM, 1986.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approx-
imators. Neural networks, 2(5):359–366, 1989.

John K. Hunter and Bruno Nachtergaele. Applied analysis. World Scientific Publishing Co., Inc.,
River Edge, NJ, 2001.

Ilia Krasikov. Approximations for the bessel and airy functions with an explicit error term. LMS
Journal of Computation and Mathematics, 17(01):209–225, 2014.

22

http://dlmf.nist.gov/


THE POWER OF DEPTH FOR FEEDFORWARD NEURAL NETWORKS

W. Maass, G. Schnitger, and E. Sontag. A comparison of the computational power of sigmoid and
boolean threshold circuits. In V. P. Roychowdhury, K. Y. Siu, and A. Orlitsky, editors, Theoretical
Advances in Neural Computation and Learning, pages 127–151. Springer, 1994.

J. Martens and V. Medabalimi. On the expressive efficiency of sum product networks. arXiv preprint
arXiv:1411.7717, 2014.

James Martens. Private Communication, 2015.

James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On the representational
efficiency of restricted boltzmann machines. In NIPS, pages 2877–2885, 2013.

G. F Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural
networks. In Advances in Neural Information Processing Systems, pages 2924–2932, 2014.

I. Parberry. Circuit complexity and neural networks. MIT press, 1994.

R. Pascanu, G. Montufar, and Y. Bengio. On the number of inference regions of deep feed forward
networks with piece-wise linear activations. arXiv preprint arXiv, 1312, 2013.

B. Rossman, R. Servedio, and L.-Y. Tan. An average-case depth hierarchy theorem for boolean
circuits. In FOCS, 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In D. E. Rumelhart and J.L. McClelland, editors, Parallel distributed Processing,
volume 1. MIT Press, 1986.

A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends R© in Theoretical Computer Science, 5(3–4):207–388, 2010.

Sasha Sodin. Tail-Sensitive Gaussian Asymptotics for Marginals of Concentrated Measures in High
Dimension. In Vitali D. Milman and Gideon Schechtman, editors, Geometric Aspects of Func-
tional Analysis, volume 1910 of Lecture Notes in Mathematics, pages 271–295. Springer Berlin
Heidelberg, 2007.

M. Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

23



ELDAN SHAMIR

Appendix A. Approximation Properties of the ReLU Activation Function

In this appendix, we prove that the ReLU activation function satisfies assumption 1, and also prove
bounds on the Lipschitz parameter of the approximation and the size of the required parameters.
Specifically, we have the following lemma:

Lemma 19 Let σ(z) = max{0, z} be the ReLU activation function, and fix L, δ,R > 0. Let
f : R→ R which is constant outside an interval [−R,R]. There exist scalars a, {αi, βi}wi=1, where
w ≤ 3RLδ , such that the function

h(x) = a+

w∑
i=1

αiσ(x− βi) (27)

is L-Lipschitz and satisfies
sup
x∈R

∣∣f(x)− h(x)
∣∣ ≤ δ. (28)

Moreover, one has |αi| ≤ 2L and w ≤ 3RLδ .

Proof If one has 2RL < δ, then the results holds trivially because we may take the function h to be
the 0 function (with width parameter w = 0). Otherwise, we must haveR ≥ δ/2L, so by increasing
the value of R by a factor of at most 2, we may assume without loss of generality that there exists
an integer m such that R = mδ/L.

Let h be the unique piecewise linear function which coalesces with f on points of the form δ/Li,
i ∈ Z ∩ [−m,m], is linear in the intervals (wδ/L, (w + 1)δ/L) and is constant outside [−R,R].
Since f is L-Lipschitz, equation Eq. (28) holds true. It thus suffices to express h as a function
having the form Eq. (27). Let βi = iδ/L, choose a = h(−R) and set

αi = h′(βi + δ
2L)− h′(βi − δ

2L), −m ≤ i ≤ m.

Then clearly equation Eq. (27) holds true. Moreover, we have |αi| ≤ 2L, which completes the
proof.

Appendix B. Technical Proofs

B.1. Proof of Lemma 6

By definition of the Fourier transform,

ϕ(x) =

∫
w:‖w‖≤Rd

exp(−2πix>w)dw.

Since ϕ(x) is radial (hence rotationally invariant), let us assume without loss of generality that it
equals re1, where r = ‖x‖ and e1 is the first standard basis vector. This means that the integral
becomes∫
w:‖w‖≤Rd

exp(−2πirw1)dw =

∫ Rd

w1=−Rd
exp(−2πirw1)

(∫
w2...wd:

∑d
j=2 w

2
j≤R2

d−w
2
1

dw2 . . . dwd

)
dw1.
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The expression inside the parenthesis is simply the volume of a ball of radius
(
R2
d − w2

1

)1/2 in
Rd−1. Letting Vd−1 be the volume of a unit ball in Rd−1, this equals∫ Rd

w1=−Rd
exp(−2πirw1)

(
Vd−1(R2

d − w2
1)

d−1
2

)
dw1.

Performing the variable change z = arccos(w1/Rd) (which implies that as w1 goes from −Rd to
Rd, z goes from π to 0, and also Rd cos(z) = w1 and −Rd sin(z)dz = dw1), we can rewrite the
integral above as

Vd−1

∫ π

z=0

(
R2
d −R2

d cos2(z)
) d−1

2 exp(−2πirRd cos(z))Rd sin(z)dz

= Vd−1R
d
d

∫ π

z=0
sind(z) exp (−2πirRd cos(z)) dz.

Since we know that this integral must be real-valued (since we’re computing the Fourier transform
ϕ(x), which is real-valued and even), we can ignore the imaginary components, so the above re-
duces to

Vd−1R
d
d

∫ π

z=0
sind(z) cos (2πrRd cos(z)) dz. (29)

By a standard formula for Bessel functions (see Equation 10.9.4. in DLMF), we have

Jd/2(x) =
(x/2)d/2

π1/2Γ
(
d+1

2

) ∫ π

0
sind(z) cos(x cos(z))dz,

which by substituting x = 2πrRd and changing sides, implies that∫ π

0
sind(z) cos(2πrRd cos(z))dz =

π1/2Γ
(
d+1

2

)
(πrRd)d/2

Jd/2(2πrRd).

Plugging this back into Eq. (29), we get the expression

Vd−1R
d/2
d

π1/2Γ
(
d+1

2

)
(πr)d/2

Jd/2(2πrRd).

Plugging in the explicit formula Vd−1 = π(d−1)/2

Γ( d+1
2 )

, this simplifies to

(
Rd
r

)d/2
Jd/2(2πRdr).

Recalling that this equals ϕ(x) where ‖x‖ = r, the result follows.

B.2. Proof of Lemma 8

By Lemma 6,

ϕ(x) =

(
Rd
x

)d/2
Jd/2(2πRdx).
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Moreover, using the definition of a good interval, and the fact that the maximal value in any interval
is at most 2α

√
d, we have

|Jd/2(2πRdx)| ≥ 1√
80πRdx

≥ 1√
160πRdα

√
d
. (30)

Since x (in any interval) is at least α
√
d, then Jd/2(2πRdx) is 2πRd-Lipschitz in x by Lemma 20.

Since the width of each interval only α
√
d

N , Eq. (30) implies that Jd/2(2πRdx) (and hence ϕ(x))

does not change signs in the interval, provided that N > 2
√

160
(
παRd

√
d
)3/2

. Recalling that

Rd ≤ 1
2

√
d, this is indeed satisfied by the lemma’s conditions.

Turning to the second part of the lemma, assuming ϕ(x) is positive without loss of generality,
and using the Lipschitz property of Jd/2(·) and Eq. (30), we have

supx∈∆i
ϕ(x)

infx∈∆i ϕ(x)
≤

supx∈∆i

(
Rd
x

)d/2
infx∈∆i

(
Rd
x

)d/2 · supx∈∆i
Jd/2(2πRdx)

infx∈∆i Jd/2(2πRdx)

≤
(

supx∈∆i
x

infx∈∆i x

)d/2
·

infx∈∆i Jd/2(2πRdx) + 2πRdα
√
d

N

infx∈∆i Jd/2(2πRdx)

≤

(
infx∈∆i x+ α

√
d

N

infx∈∆i x

)d/2(
1 +

2πRdα
√
d

N

√
80πRdα

√
d

)

≤

(
1 +

α
√
d

Nα
√
d

)d/2(
1 +

2
√

80(παRd
√
d)3/2

N

)

≤
(

1 +
1

N

)d/2(
1 +

2
√

80(παd/2)3/2

N

)
,

which is less than 1 + d−1/2 provided that N ≥ cα3/2d2 for some universal constant c.

B.3. Proof of Lemma 9

The result is trivially true for a bad interval i (where gi is the 0 function, hence both sides of the
inequality in the lemma statement are 0), so we will focus on the case that i is a good interval.

For simplicity, let us denote the interval ∆i as [`, `+δ], where δ = 1
N and ` is between α

√
d and

2α
√
d. Therefore, the conditions in the lemma imply that δ ≤ 1

50d` . Also, we drop the i subscript
and refer to gi as g.

Since, g is a radial function, its Fourier transform is also radial, and is given by

ĝ(w) = ĝ(‖w‖) = 2π

∫ ∞
s=0

g(s)

(
s

‖w‖

)d/2−1

Jd/2−1(2πs‖w‖)s ds,

(see for instance Grafakos and Teschl (2013), section 2, and references therein). Using this formula,
and switching to polar coordinates (letting Ad denote the surface area of a unit sphere in Rd), we
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have the following:∫
2RdBd

ĝ2(w)dw =

∫ 2Rd

r=0
Adr

d−1ĝ2(r)dr

=

∫ 2Rd

r=0
Adr

d−1

(
2π

∫ ∞
s=0

g(s)
(s
r

)d/2−1
Jd/2−1(2πsr)s ds

)2

dr

= 4π2Ad

∫ 2Rd

r=0
r

(∫ ∞
s=0

g(s)sd/2Jd/2−1(2πsr) ds

)2

dr

= 4π2Ad

∫ 2Rd

r=0
r

(∫ `+δ

s=`
sd/2Jd/2−1(2πsr) ds

)2

dr. (31)

By Lemma 20, |Jd/2−1(x)| ≤ 1, hence Eq. (31) can be upper bounded by

4π2Ad

∫ 2Rd

r=0
r

(∫ `+δ

s=`
sd/2ds

)2

dr ≤ 4π2Ad

∫ 2Rd

r=0
r
(
δ(`+ δ)d/2

)2
dr

≤ 4π2Adδ
2(`+ δ)d

∫ 2Rd

r=0
r dr = 8π2Adδ

2(`+ δ)dR2
d.

Overall, we showed that ∫
2RdBd

ĝ2(w)dw ≤ 8π2R2
dAdδ

2(`+ δ)d. (32)

Let us now turn to consider
∫
ĝ2(w)dw, where the integration is over all of w ∈ Rd. By isometry

of the Fourier transform, this equals
∫
g2(x)dx, so∫

ĝ2(w)dw =

∫
Rd
g2(x)dx =

∫ ∞
r=0

Adr
d−1g2(r)dr =

∫ `+δ

r=`
Adr

d−1dr ≥ Adδ`
d−1.

Combining this with Eq. (32), we get that∫
2RdBd

ĝ2(w)dw∫
Rd ĝ

2(w)dw
≤

8π2R2
dAdδ

2(`+ δ)d

Adδ`d−1
= 8π2R2

d`δ

(
1 +

δ

`

)d
.

Since we assume δ ≤ 1
50d` , and it holds that

(
1 + 1

50d

)d ≤ exp(1/50) and Rd ≤ 1
2

√
d by Lemma 5,

the above is at most

2π2d`δ

(
1 +

1

50d

)d
≤ 2π2d`δ exp(1/50) ≤ 2π2 1

50
exp(1/50) <

1

2
.

Overall, we showed that
∫
2RdBd

ĝ2(w)dw∫
Rd ĝ

2(w)dw
≤ 1

2 , and therefore∫
(2RdBd)C ĝ

2(w)dw∫
Rd ĝ

2(w)dw
=

∫
Rd ĝ

2(w)dw −
∫

2RdBd
ĝ2(w)dw∫

Rd ĝ
2(w)dw

≥ 1− 1

2
=

1

2

as required.
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B.4. Proof of Lemma 10

The result is trivially true for a bad interval i (where gi is the 0 function, hence both sides of the
inequality in the lemma statement are 0), so we will focus on the case that i is a good interval.

Define a = supx∈∆i
ϕ(x). Using Lemma 8, we have that ϕ(x) does not change signs in the

interval ∆i. Suppose without loss of generality that it is positive. Moreover, by the same lemma we
have that

|ϕ(x)− a| ≤ d−1/2a, ∀x ∈ ∆i

Consequently, we have that∫
(2RdBd)C

( ̂((ϕ− a)gi)(w))2dw ≤
∫
Rd

( ̂((ϕ− a)gi)(w))2dw (33)

=

∫
Rd

((ϕ− a)gi(x))2dx

≤ d−1

∫
Rd

(agi(x))2dx.

Next, by choosing the constant C to be large enough, we may apply Lemma 9, which yields that∫
(2RdBd)C

((̂agi)(w))2dw ≥ 1

2

∫
Rd

(agi(x))2dx. (34)

By the triangle inequality, we have that for two vectors u, v in a normed space, one has ‖v‖2 ≥
‖u‖2 − 2‖v‖‖v − u‖. This teaches us that∫

(2RdBd)C
((̂giϕ)(w))2dw ≥

∫
(2RdBd)C

((̂agi)(w))2dw

− 2

√∫
(2RdBd)C

((̂agi)(w))2dw

√∫
(2RdBd)C

( ̂((ϕ− a)gi)(w))2dw

Eq. (33)

≥
∫

(2RdBd)C
((̂agi)(w))2dw − 2d−1/2

∫
Rd

(agi(x))2dx

Eq. (34)

≥ 1

2
(1− 4d−1/2)

∫
Rd

(agi(x))2dx ≥ 1

4

∫
Rd

(ϕ(x)gi(x))2dx.

B.5. Proof of Lemma 11

Since the gi for different i have disjoint supports (up to measure-zero sets), the integral in the lemma
equals ∫ N∑

i=1

(εigi(x))2 ϕ2(x)dx =

∫ N∑
i=1

g2
i (x)ϕ2(x)dx =

∫
x:‖x‖∈good ∆i

ϕ2(x)dx,

where we used the definition of gi. Switching to polar coordinates (letting Ad be the surface area of
the unit sphere in Rd), and using the definition of ϕ from Lemma 6, this equals

Ad

∫
r∈good ∆i

rd−1ϕ2(r)dr = Ad

∫
r∈good ∆i

Rdd
r
J2
d/2(2πRdr)dr
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Recalling that Ad = dπd/2

Γ( d2+1)
and that Rdd = π−d/2Γ

(
d
2 + 1

)
by Lemma 5, this equals

d

∫
r∈good ∆i

J2
d/2(2πRdr)

r
dr. (35)

We now claim that for any r ∈ [α
√
d, 2α

√
d] (that is, in any interval),

J2
d/2(2πRdr) ≥

1

40πRdr
=⇒ r ∈ good ∆i, (36)

which would imply that we can lower bound Eq. (35) by

d

∫ 2α
√
d

α
√
d

J2
d/2(2πRdr)

r
1

{
J2
d/2(2πRdr) ≥

1

40πRdr

}
dr. (37)

To see why Eq. (36) holds, consider an r which satisfies the left hand side. The width of its interval
is at most α

√
d

N , and by Lemma 20, Jd/2(2πRdr) is at most 2πRd-Lipschitz in r. Therefore, for any
other r′ in the same interval as r, it holds that

∣∣Jd/2(2πRdr
′)
∣∣ ≥√ 1

40πRdr
− 2πRdα

√
d

N
,

which can be verified to be at least
√

1
80πRdr

by the condition on N in the lemma statement, and

the facts that r ≤ 2α
√
d,Rd ≤ 1

2

√
d. As a result, J2

d/2(2πRdr
′) ≥ 1

80πRdr
for any r′ in the same

interval as r, which implies that r is in a good interval.
We now continue by taking Eq. (37), and performing the variable change x = 2πRdr, leading

to

d

∫ 4πRdα
√
d

2πRdα
√
d

J2
d/2(x)

x
1

{
J2
d/2(x) ≥ 1

20x

}
dx.

Applying Lemma 23 with β = 2πRdα/
√
d (which by Lemma 5, is between 2πα/5 and πα, hence

satisfies the conditions of Lemma 23 if α is large enough), this is at least

d
0.005

βd
≥ 0.005

2πα/5
≥ 0.003

α
,

from which the lemma follows.

B.6. Proof of Lemma 12

For any i, define

ǧi(x) =

{
max{1, Ndist(x,∆C

i )} i good
0 i bad

where dist(x,∆C
i ) is the distance of x from the boundaries of ∆i. Note that for bad i, this is the

same as gi(x), whereas for good i, it is an N -Lipschitz approximation of gi(x).

29



ELDAN SHAMIR

Let f(x) =
∑N

i=1 εǧ(x), and note that since the support of ǧi are disjoint, f is alsoN Lipschitz.
With this definition, the integral in the lemma becomes∫ ( N∑

i=1

εi(ǧi(x)− gi(x))

)2

ϕ2(x)dx.

Since the support of ǧi(x)− gi(x) is disjoint for different i, this equals∫ N∑
i=1

(ǧi(x)− gi(x))2 ϕ2(x)dx =
N∑
i=1

∫
(ǧi(x)− gi(x))2 ϕ2(x)dx.

Switching to polar coordinates (using Ad to denote the surface area of the unit sphere in Rd), and
using the definition of ϕ from Lemma 6, this equals

N∑
i=1

∫ ∞
0

Adr
d−1(ǧi(r)− gi(r))2ϕ2(r)dr =

N∑
i=1

∫ ∞
0

Ad
Rdd
r

(ǧi(r)− gi(r))2J2
d/2(2πRdr)dr.

Using the definition of Rd from Lemma 5, and the fact that Ad = dπd/2

Γ( d2+1)
, this equals

N∑
i=1

∫ ∞
0

d

r
(ǧi(r)− gi(r))2J2

d/2(2πRdr)dr.

Now, note that by definition of ǧi, gi, their difference |ǧi(r) − gi(r)| can be non-zero (and at most
1) only for r belonging to two sub-intervals of width 1

N within the interval ∆i (which itself lies in
[α
√
d, 2α

√
d]). Moreover, for such r (which is certainly at least α

√
d), we can use Lemma 22 to

upper bound J2
d/2(2πRdr) by 1.3

αd . Overall, we can upper bound the sum of integrals above by

N∑
i=1

d

α
√
d
· 2

N
· 1.3

αd
<

3

α2
√
d
.

Appendix C. Technical Results On Bessel functions

Lemma 20 For any ν ≥ 0 and x, |Jν(x)| ≤ 1. Moreover, for any ν ≥ 1 and x ≥ 3ν, Jν(x) is
1-Lipschitz in x.

Proof The bound on the magnitude follows from equation 10.14.1 in DLMF.
The derivative of Jν(x) w.r.t. x is given by −Jν+1(x) + (ν/x)Jν(x) (see equation 10.6.1 in

DLMF). Since |Jν+1(x)| and |Jν(x)|, for ν ≥ 1, are at most 1√
2

(see equation 10.14.1 in DLMF),

we have that the magnitude of the derivative is at most 1√
2

∣∣1 + ν
x

∣∣ ≤ 1√
2

(
1 + 1

3

)
< 1.

To prove the lemmas below, we will need the following explicit approximation result for the
Bessel function Jd/2(x), which is an immediate corollary of Theorem 5 in Krasikov (2014), plus
some straightforward approximations (using the facts that for any z ∈ (0, 0.5], we have

√
1− z2 ≥

1− 0.3z and 0 ≤ z arcsin(z) ≤ 0.6z):
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Lemma 21 (Krasikov (2014)) If d ≥ 2 and x ≥ d, then∣∣∣∣∣Jd/2(x)−

√
2

πcd,xx
cos

(
−(d+ 1)π

4
+ fd,xx

)∣∣∣∣∣ ≤ x−3/2,

where

cd,x =

√
1− d2 − 1

4x2
, fd,x = cd,x +

√
d2 − 1

2x
arcsin

(√
d2 − 1

2x

)
.

Moreover, assuming x ≥ d,

1 ≥ cd,x ≥ 1− 0.15 d

x
≥ 0.85

and
1.3 ≥ 1 +

0.3 d

x
≥ fd,x ≥ 1− 0.15 d

x
≥ 0.85

Lemma 22 If d ≥ 2 and r ≥
√
d, then

J2
d/2(2πRdr) ≤

1.3

r
√
d
.

Proof Using Lemma 21 (which is justified since r ≥
√
d and Rd ≥ 1

5

√
d by Lemma 5), the fact

that cos is at most 1, and the assumption d ≥ 2,

∣∣Jd/2(2πRdr)
∣∣ ≤√ 2

π · 0.85 · 2πRdr
+ (2πRdr)

−3/2

=
1√

2πRdr

(√
2

0.85π
+

1

2πRdr

)

≤

√
5

2π
√
dr

(√
2

0.85π
+

5

2π
√
d
√
d

)

≤

√
5

2π
√
dr

(√
2

0.85π
+

5

4π

)

Overall, we have that

J2
d/2(2πRdr) ≤

5

2πr
√
d

(√
2

0.85π
+

5

4π

)2

≤ 1.3

r
√
d
.

Lemma 23 For any β ≥ 1, d ≥ 2 such that βd ≥ 127, it holds that∫ 2βd

βd

J2
d/2(x)

x
· 1
{
J2
d/2(x) ≥ 1

20x

}
dx ≥ 0.005

βd
.
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Proof For any a, b ≥ 0, we have a · 1 {a ≥ b} ≥ a− b. Therefore,∫ 2βd

βd

1

x
· J2

d/2(x) · 1
{
J2
d/2(x) ≥ 1

20x

}
dx

≥
∫ 2βd

βd

1

x
·
(
J2
d/2(x)− 1

20x

)
dx

=

∫ 2βd

βd

1

x
J2
d/2(x)dx− 1

20

∫ 2βd

βd

1

x2
dx

=

∫ 2βd

βd

1

x
J2
d/2(x)dx− 1

40βd
.

We now wish to use Lemma 21 and plug in the approximation for Jd/2(x). To do so, let a = Jd/2(x),
let b be its approximation from Lemma 21, and let ε = x−3/2 the bound on the approximation from
the lemma. Therefore, we have |a− b| ≤ ε. This implies

a2 ≥ b2 − (2|b|+ ε)ε, (38)

which follows from

b2 − a2 = (b+ a)(b− a) ≤ (|b|+ |a|)|b− a| ≤ (|b|+ |b|+ ε)ε = (2|b|+ ε)ε.

Eq. (38) can be further simplified, since by definition of b and Lemma 21,

|b| ≤

√
2

πcd,xx
≤
√

2

π · 0.85 · x
≤ 1√

x
.

Plugging this back into Eq. (38), plugging in the definition of a, b, and recalling that cd,x ≤ 1 and
x ≥ d ≥ 2, we get that

J2
d/2(x) ≥ 2

πcd,xx
cos2

(
−(d+ 1)π

4
+ fd,xx

)
−
(

2√
x

+ x−3/2

)
x−3/2

≥ 2

πx
cos2

(
−(d+ 1)π

4
+ fd,xx

)
− 3x−2.

Therefore, ∫ 2βd

βd

1

x
J2
d/2(x)dx

≥ 2

π

∫ 2βd

βd

1

x2
cos2

(
−(d+ 1)π

4
+ fd,xx

)
dx− 3

∫ 2βd

βd
x−3dx

=
2

π

∫ 2βd

βd

1

x2
cos2

(
−(d+ 1)π

4
+ fd,xx

)
dx− 9

8β2d2
.

To compute the integral above, we will perform a variable change, but first lower bound the integral
in a more convenient form. A straightforward calculation (manually or using a symbolic computa-
tion toolbox) reveals that

∂

∂x
(fd,xx) =

√
1− d2 − 1

4x2
,

32



THE POWER OF DEPTH FOR FEEDFORWARD NEURAL NETWORKS

which according to Lemma 21, equals cd,x, which is at most 1. Using this and the fact that fd,x ≥
0.85 by the same lemma ,∫ 2βd

βd

1

x2
cos2

(
−(d+ 1)π

4
+ fd,xx

)
dx

≥
∫ 2βd

βd

1

x2
cos2

(
−(d+ 1)π

4
+ fd,xx

)(
∂

∂x
(fd,xx)

)
dx

≥
∫ 2βd

βd

0.852

(fd,xx)2
cos2

(
−(d+ 1)π

4
+ fd,xx

)(
∂

∂x
(fd,xx)

)
dx

Using the variable change z = fd,xx, and the fact that 1.3 ≥ fd,x ≥ 0.85, the above equals

0.852

∫ fd,2βd2βd

fd,βdβd

1

z2
cos2

(
−(d+ 1)π

4
+ z

)
dz ≥ 0.852

∫ 1.7βd

1.3βd

1

z2
cos2

(
−(d+ 1)π

4
+ z

)
dz

We now perform integration by parts. Note that cos2
(
− (d+1)π

4 + z
)

= ∂
∂z

(
z
2 + 1

4 sin
(
− (d+1)π

2 + 2z
))

,
and sin is always bounded by 1, hence∫ 1.7βd

1.3βd

1

z2
cos2

(
−(d+ 1)π

4
+ z

)
dz

=

z
2 + 1

4 sin
(
− (d+1)π

2 + 2z
)

z2

∣∣∣1.7βd
1.3βd

+ 2

∫ 1.7βd

1.3βd

z
2 + 1

4 sin
(
− (d+1)π

2 + 2z
)

z3
dz

≥

 1

2z
+

sin
(
− (d+1)π

2 + 2z
)

4z2

 ∣∣∣1.7βd
1.3βd

+

∫ 1.7βd

1.3βd

(
1

z2
− 1

2z3

)
dz

=

 1

2z
+

sin
(
− (d+1)π

2 + 2z
)

4z2

 ∣∣∣1.7βd
1.3βd

+

(
−1

z
+

1

4z2

) ∣∣∣1.7βd
1.3βd

=

− 1

2z
+

1 + sin
(
− (d+1)π

2 + 2z
)

4z2

 ∣∣∣1.7βd
1.3βd

=

(
− 1

2z

) ∣∣∣1.7βd
1.3βd

+

1 + sin
(
− (d+1)π

2 + 2z
)

4z2

 ∣∣∣1.7βd
1.3βd

≥
(

0.09

βd

)
− 1 + 1

4(1.3βd)2

=
1

βd

(
0.09− 1

3.38βd

)
.
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Concatenating all the lower bounds we attained so far, we showed that∫ 2βd

βd

1

x
· J2

d/2(x) · 1
{
J2
d/2(x) ≥ 1

9x

}
dx

≥ − 1

40βd
− 9

8β2d2
+

2

π
0.852 1

βd

(
0.09− 1

3.38βd

)
≥ 1

βd

(
0.015− 1.27

βd

)
.

If βd ≥ 127, this is at least 0.005
βd , from which the lemma follows.
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